SlideShare una empresa de Scribd logo
1 de 36
RAÍCES DE ECUACIONES MÓNICA YAMILE CAMACHO  2010
RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico  2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de  x  para los que se cumple:  f ( x ) = 0  Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
RAÍCES DE ECUACIONES Para resolver ecuaciones no lineales existen varios métodos numéricos  que los podemos clasificar así: Método grafico   Cerrado o acotado:   (requiere de dos valores de x que encierren la raíz) ,[object Object],[object Object],Abierto:  ( requiere de uno o dos valores de x, pero no necesariamente encierran la raíz) ,[object Object],[object Object],[object Object]
RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En  y= f(x), establece el valor  de x para el cual f(x)=0. x 1.  Si en un intervalo {a,b} cerrado se cumple que :  no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias.  f(a).f(b)>0 f(x) a b
MÉTODO GRAFICO 2.  Si en un intervalo {a,b} cerrado se cumple que :  Entonces existen dos raíces reales  f(a).f(b)>0 f(x) a b x
MÉTODO GRAFICO 3.  Si en un intervalo {a,b} cerrado se cumple que :  da la certeza de encontrar una sola raíz real en el intervalo.  f(a).f(b)<0 x f(x) a b
MÉTODO GRAFICO 4.  Si en un intervalo {a,b} cerrado se cumple que :  hay más de dos raíces.  f(a).f(b)<0 f(x) a b x
MÉTODO GRAFICO 5.  También puede existir una función  , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico,  pues la ecuación es tangente al eje x .  f(x) a b x
MÉTODO DE BISECCIÓN   Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental  f ( x ) y un intervalo [ x i,  x s], tal que  f ( x i) y  f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
[object Object],[object Object],[object Object],[object Object],xi xs ,[object Object],Donde:  ∆x = longitud del intervalo  n= numero de iteraciones error
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN Ejemplo: Calcule la raíz de: 3X 0,00125541 1,7252E-07 -1,1992E-07 -0,00106276 -0,00016234 0,0007387 0,35048828 0,35004883 0,34960938 11 0,00250766 3,0414E-06 -7,8506E-07 -0,00286179 -0,00106276 0,0007387 0,35136719 0,35048828 0,34960938 10 0,00500278 1,8466E-05 -2,114E-06 -0,00645259 -0,00286179 0,0007387 0,353125 0,35136719 0,34960938 9 0,01005587 -4,7665E-06 5,8866E-06 -0,00645259 0,0007387 0,00796895 0,353125 0,34960938 0,34609375 8 0,02031603 -5,142E-05 0,00017968 -0,00645259 0,00796895 0,02254804 0,353125 0,34609375 0,3390625 7 0,04147465 -0,00014549 0,00117684 -0,00645259 0,02254804 0,05219235 0,353125 0,3390625 0,325 6 0,07964602 0,00040411 -0,00033678 -0,06262805 -0,00645259 0,05219235 0,38125 0,353125 0,325 5 0,14754098 0,01054366 -0,00326871 -0,16835365 -0,06262805 0,05219235 0,4375 0,38125 0,325 4 0,25714286 0,0602622 -0,00878677 -0,35795009 -0,16835365 0,05219235 0,55 0,4375 0,325 3 0,69230769 -0,01868226 0,03344581 -0,35795009 0,05219235 0,64081822 0,55 0,325 0,1 2 0,34012881 -0,22938094 -0,95021293 -0,35795009 0,64081822 1 0,55 0,1 1 error f(xr)f(xs) f(xi)f(xr) f(xs) f(xr) f(xi) xs xr xi iter
FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz  f ( x ) = 0, es decir, dos puntos  x i y  x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación,  x r, se calcula como la intersección con el eje  X  de la recta que une ambos puntos empleando la ecuación  La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla  f ( xi ) f ( x r) < 0 ;  f ( xr ) f ( x s) < 0.
FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
FALSA POSICIÓN Ejemplo: Calcule la raíz de: 0,00813106 1,0663E-09 -9,3671E-06 -7,2949E-05 -1,4617E-05 0,64081822 0,35000522 0,34997676 0,1 7 0,04057728 2,6556E-08 -4,6747E-05 -0,00036404 -7,2949E-05 0,64081822 0,35014724 0,35000522 0,1 6 0,20245435 6,6109E-07 -0,00023328 -0,001816 -0,00036404 0,64081822 0,35085613 0,35014724 0,1 5 1,00905905 1,6424E-05 -0,00116373 -0,0090439 -0,001816 0,64081822 0,35439648 0,35085613 0,1 4 5,00381971 0,00040399 -0,0057955 -0,04466988 -0,0090439 0,64081822 0,37212984 0,35439648 0,1 3 24,2824855 0,0095052 -0,02862527 -0,2127876 -0,04466988 0,64081822 0,46249221 0,37212984 0,1 2 0,20219353 -0,13635817 -0,95021293 -0,2127876 0,64081822 1 0,46249221 0,1 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter 3X
MÉTODO DE   PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
MÉTODO DE   PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que  y solución monotónicamente convergente  (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 2. Que  y  solución oscilatoriamente convergente  (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 3. Que  y  solución monotónicamente divergente  (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 4. Que  y  solución oscilatoriamente divergente  (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE NEWTON – RAPHSON Ejemplo: Calcule la raíz de: 3X 0,01570641 -1,9947E-05 0,34997936 -1,349989337 3,8473E-05 0,34995086 13 0,03028815 3,8473E-05 0,34995086 -1,34993163 -7,4199E-05 0,35000583 12 0,0584342 -7,4199E-05 0,35000583 -1,350042937 0,00014312 0,34989982 11 0,11263635 0,00014312 0,34989982 -1,349828292 -0,00027599 0,35010428 10 0,21748478 -0,00027599 0,35010428 -1,350242396 0,00053246 0,34970993 9 0,41855733 0,00053246 0,34970993 -1,34944416 -0,00102634 0,3504705 8 0,81064494 -0,00102634 0,3504705 -1,350985368 0,00198179 0,34900358 7 1,55100642 0,00198179 0,34900358 -1,348018973 -0,00381379 0,35183276 6 3,03839078 -0,00381379 0,35183276 -1,353763228 0,00738742 0,34637581 5 5,68922458 0,00738742 0,34637581 -1,342768431 -0,01413163 0,35690006 4 11,6372509 -0,01413163 0,35690006 -1,364297058 0,02770184 0,33659522 3 20,1630051 0,02770184 0,33659522 -1,323907616 -0,05185803 0,37576565 2 -0,05185803 0,37576565 -1,40656966 0,10656966 0,3 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter
MÉTODO DE SECANTE   Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando.  Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
MÉTODO DE SECANTE   El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
MÉTODO DE SECANTE   X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
MÉTODO DE SECANTE   0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
F i n

Más contenido relacionado

La actualidad más candente

Variacion De Parametros
Variacion De ParametrosVariacion De Parametros
Variacion De ParametrosDANNY´S
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equationsRifat Rahamatullah
 
ventajas y desventajas de los metodos secante,biseccion, newton-raphson
ventajas y desventajas de los metodos secante,biseccion, newton-raphsonventajas y desventajas de los metodos secante,biseccion, newton-raphson
ventajas y desventajas de los metodos secante,biseccion, newton-raphsonFer Echavarria
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application Yana Qlah
 
Diferenciacion integracion
Diferenciacion integracionDiferenciacion integracion
Diferenciacion integracionGean Ccama
 
Integracion numérica
Integracion numéricaIntegracion numérica
Integracion numéricaKike Prieto
 
2. Fixed Point Iteration.pptx
2. Fixed Point Iteration.pptx2. Fixed Point Iteration.pptx
2. Fixed Point Iteration.pptxsaadhaq6
 
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalSesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalJuan Carlos Broncanotorres
 
Variacion de parametros
Variacion de parametrosVariacion de parametros
Variacion de parametrosgermane123
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B techRaj verma
 
Fourier series and fourier integral
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integralashuuhsaqwe
 
1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdf1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdfFighting2
 
Aplicacion de las derivadas
Aplicacion de las derivadasAplicacion de las derivadas
Aplicacion de las derivadasEmma Resendiz
 
the fourier series
the fourier seriesthe fourier series
the fourier seriessafi al amu
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method Bhavik Vashi
 
Teorema de existencia y unicidad 2014
Teorema de existencia y unicidad 2014Teorema de existencia y unicidad 2014
Teorema de existencia y unicidad 2014santiago2301
 
Tutorial 1: Differential equations: Variable Separable
Tutorial 1: Differential equations: Variable SeparableTutorial 1: Differential equations: Variable Separable
Tutorial 1: Differential equations: Variable SeparableDr. Mehar Chand
 

La actualidad más candente (20)

Variacion De Parametros
Variacion De ParametrosVariacion De Parametros
Variacion De Parametros
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
ventajas y desventajas de los metodos secante,biseccion, newton-raphson
ventajas y desventajas de los metodos secante,biseccion, newton-raphsonventajas y desventajas de los metodos secante,biseccion, newton-raphson
ventajas y desventajas de los metodos secante,biseccion, newton-raphson
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
Diferenciacion integracion
Diferenciacion integracionDiferenciacion integracion
Diferenciacion integracion
 
Integracion numérica
Integracion numéricaIntegracion numérica
Integracion numérica
 
2. Fixed Point Iteration.pptx
2. Fixed Point Iteration.pptx2. Fixed Point Iteration.pptx
2. Fixed Point Iteration.pptx
 
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccionalSesión 03,Plano tangente, derivadas parciales y derivada direccional
Sesión 03,Plano tangente, derivadas parciales y derivada direccional
 
Variacion de parametros
Variacion de parametrosVariacion de parametros
Variacion de parametros
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
Numerical methods
Numerical methodsNumerical methods
Numerical methods
 
Fourier series and fourier integral
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integral
 
1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdf1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdf
 
Aplicacion de las derivadas
Aplicacion de las derivadasAplicacion de las derivadas
Aplicacion de las derivadas
 
the fourier series
the fourier seriesthe fourier series
the fourier series
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
Es272 ch7
Es272 ch7Es272 ch7
Es272 ch7
 
Teorema de existencia y unicidad 2014
Teorema de existencia y unicidad 2014Teorema de existencia y unicidad 2014
Teorema de existencia y unicidad 2014
 
Tutorial 1: Differential equations: Variable Separable
Tutorial 1: Differential equations: Variable SeparableTutorial 1: Differential equations: Variable Separable
Tutorial 1: Differential equations: Variable Separable
 

Destacado

Destacado (9)

metodos numericos
 metodos numericos metodos numericos
metodos numericos
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos Numericos
Metodos NumericosMetodos Numericos
Metodos Numericos
 
Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricos
 
Metodos numericos tema 3
Metodos numericos tema 3Metodos numericos tema 3
Metodos numericos tema 3
 
el metodo
el metodoel metodo
el metodo
 
METODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraMETODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -Chapra
 
Métodos de investigacion
Métodos de investigacionMétodos de investigacion
Métodos de investigacion
 

Similar a Raíces ecuaciones métodos

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02wnorabuena
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Busqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosBusqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosjorgeduardooo
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Xavier Davias
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESJenny López
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSAnahi Daza
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivadayicel abella
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptxCrisbelChvez
 
Método de Newton
Método de NewtonMétodo de Newton
Método de NewtonKike Prieto
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesluisrial15
 
Métodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesMétodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesDavid A. Baxin López
 
ECUACIONES NO LINEALES
ECUACIONES NO LINEALESECUACIONES NO LINEALES
ECUACIONES NO LINEALESsdiupg1
 

Similar a Raíces ecuaciones métodos (20)

No lineales
No linealesNo lineales
No lineales
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02Metodosnumericos2 100720142006-phpapp02
Metodosnumericos2 100720142006-phpapp02
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Busqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericosBusqueda de una raiz-Metodos numericos
Busqueda de una raiz-Metodos numericos
 
Derivadas. aplicaciones
Derivadas. aplicacionesDerivadas. aplicaciones
Derivadas. aplicaciones
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
 
RAÍCES DE ECUACIONES
RAÍCES DE ECUACIONESRAÍCES DE ECUACIONES
RAÍCES DE ECUACIONES
 
Resumen de analisis_matii
Resumen de analisis_matiiResumen de analisis_matii
Resumen de analisis_matii
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOS
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivada
 
Metodos deber
Metodos deberMetodos deber
Metodos deber
 
Practica4 newton-raph-resuelta
Practica4 newton-raph-resueltaPractica4 newton-raph-resuelta
Practica4 newton-raph-resuelta
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Unidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccionUnidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccion
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Funcion cuadratic a
Funcion cuadratic aFuncion cuadratic a
Funcion cuadratic a
 
Métodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De EcuacionesMétodos numéricos - Solución de Raíces De Ecuaciones
Métodos numéricos - Solución de Raíces De Ecuaciones
 
ECUACIONES NO LINEALES
ECUACIONES NO LINEALESECUACIONES NO LINEALES
ECUACIONES NO LINEALES
 

Más de monica

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 

Más de monica (11)

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 

Último

cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 

Último (20)

cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 

Raíces ecuaciones métodos

  • 1. RAÍCES DE ECUACIONES MÓNICA YAMILE CAMACHO 2010
  • 2. RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico 2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
  • 3. RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de x para los que se cumple: f ( x ) = 0 Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
  • 4.
  • 5. RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
  • 6. MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En y= f(x), establece el valor de x para el cual f(x)=0. x 1. Si en un intervalo {a,b} cerrado se cumple que : no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias. f(a).f(b)>0 f(x) a b
  • 7. MÉTODO GRAFICO 2. Si en un intervalo {a,b} cerrado se cumple que : Entonces existen dos raíces reales f(a).f(b)>0 f(x) a b x
  • 8. MÉTODO GRAFICO 3. Si en un intervalo {a,b} cerrado se cumple que : da la certeza de encontrar una sola raíz real en el intervalo. f(a).f(b)<0 x f(x) a b
  • 9. MÉTODO GRAFICO 4. Si en un intervalo {a,b} cerrado se cumple que : hay más de dos raíces. f(a).f(b)<0 f(x) a b x
  • 10. MÉTODO GRAFICO 5. También puede existir una función , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico, pues la ecuación es tangente al eje x . f(x) a b x
  • 11. MÉTODO DE BISECCIÓN Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental f ( x ) y un intervalo [ x i, x s], tal que f ( x i) y f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
  • 12.
  • 13. MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
  • 14.
  • 15.
  • 16.
  • 17. MÉTODO DE BISECCIÓN Ejemplo: Calcule la raíz de: 3X 0,00125541 1,7252E-07 -1,1992E-07 -0,00106276 -0,00016234 0,0007387 0,35048828 0,35004883 0,34960938 11 0,00250766 3,0414E-06 -7,8506E-07 -0,00286179 -0,00106276 0,0007387 0,35136719 0,35048828 0,34960938 10 0,00500278 1,8466E-05 -2,114E-06 -0,00645259 -0,00286179 0,0007387 0,353125 0,35136719 0,34960938 9 0,01005587 -4,7665E-06 5,8866E-06 -0,00645259 0,0007387 0,00796895 0,353125 0,34960938 0,34609375 8 0,02031603 -5,142E-05 0,00017968 -0,00645259 0,00796895 0,02254804 0,353125 0,34609375 0,3390625 7 0,04147465 -0,00014549 0,00117684 -0,00645259 0,02254804 0,05219235 0,353125 0,3390625 0,325 6 0,07964602 0,00040411 -0,00033678 -0,06262805 -0,00645259 0,05219235 0,38125 0,353125 0,325 5 0,14754098 0,01054366 -0,00326871 -0,16835365 -0,06262805 0,05219235 0,4375 0,38125 0,325 4 0,25714286 0,0602622 -0,00878677 -0,35795009 -0,16835365 0,05219235 0,55 0,4375 0,325 3 0,69230769 -0,01868226 0,03344581 -0,35795009 0,05219235 0,64081822 0,55 0,325 0,1 2 0,34012881 -0,22938094 -0,95021293 -0,35795009 0,64081822 1 0,55 0,1 1 error f(xr)f(xs) f(xi)f(xr) f(xs) f(xr) f(xi) xs xr xi iter
  • 18. FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz f ( x ) = 0, es decir, dos puntos x i y x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación, x r, se calcula como la intersección con el eje X de la recta que une ambos puntos empleando la ecuación La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla f ( xi ) f ( x r) < 0 ; f ( xr ) f ( x s) < 0.
  • 19. FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
  • 20. FALSA POSICIÓN Ejemplo: Calcule la raíz de: 0,00813106 1,0663E-09 -9,3671E-06 -7,2949E-05 -1,4617E-05 0,64081822 0,35000522 0,34997676 0,1 7 0,04057728 2,6556E-08 -4,6747E-05 -0,00036404 -7,2949E-05 0,64081822 0,35014724 0,35000522 0,1 6 0,20245435 6,6109E-07 -0,00023328 -0,001816 -0,00036404 0,64081822 0,35085613 0,35014724 0,1 5 1,00905905 1,6424E-05 -0,00116373 -0,0090439 -0,001816 0,64081822 0,35439648 0,35085613 0,1 4 5,00381971 0,00040399 -0,0057955 -0,04466988 -0,0090439 0,64081822 0,37212984 0,35439648 0,1 3 24,2824855 0,0095052 -0,02862527 -0,2127876 -0,04466988 0,64081822 0,46249221 0,37212984 0,1 2 0,20219353 -0,13635817 -0,95021293 -0,2127876 0,64081822 1 0,46249221 0,1 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter 3X
  • 21. MÉTODO DE PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
  • 22. MÉTODO DE PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que y solución monotónicamente convergente (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 23. MÉTODO DE PUNTO FIJO 2. Que y solución oscilatoriamente convergente (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 24. MÉTODO DE PUNTO FIJO 3. Que y solución monotónicamente divergente (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 25. MÉTODO DE PUNTO FIJO 4. Que y solución oscilatoriamente divergente (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 26. MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
  • 27. MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
  • 28. MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
  • 29.
  • 30. MÉTODO DE NEWTON – RAPHSON Ejemplo: Calcule la raíz de: 3X 0,01570641 -1,9947E-05 0,34997936 -1,349989337 3,8473E-05 0,34995086 13 0,03028815 3,8473E-05 0,34995086 -1,34993163 -7,4199E-05 0,35000583 12 0,0584342 -7,4199E-05 0,35000583 -1,350042937 0,00014312 0,34989982 11 0,11263635 0,00014312 0,34989982 -1,349828292 -0,00027599 0,35010428 10 0,21748478 -0,00027599 0,35010428 -1,350242396 0,00053246 0,34970993 9 0,41855733 0,00053246 0,34970993 -1,34944416 -0,00102634 0,3504705 8 0,81064494 -0,00102634 0,3504705 -1,350985368 0,00198179 0,34900358 7 1,55100642 0,00198179 0,34900358 -1,348018973 -0,00381379 0,35183276 6 3,03839078 -0,00381379 0,35183276 -1,353763228 0,00738742 0,34637581 5 5,68922458 0,00738742 0,34637581 -1,342768431 -0,01413163 0,35690006 4 11,6372509 -0,01413163 0,35690006 -1,364297058 0,02770184 0,33659522 3 20,1630051 0,02770184 0,33659522 -1,323907616 -0,05185803 0,37576565 2 -0,05185803 0,37576565 -1,40656966 0,10656966 0,3 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter
  • 31. MÉTODO DE SECANTE Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando. Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
  • 32. MÉTODO DE SECANTE El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
  • 33. MÉTODO DE SECANTE X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
  • 34. MÉTODO DE SECANTE 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
  • 35.
  • 36. F i n