Relaciones
Llamaremos par ordenado a una lista de dos
objetos (a, b) donde a es un elemento de un
conjunto A y b es un ele...
Teorema 1 Si A y B son conjuntos finitos,
entonces |A × B| = |A| |B|
En general, se define el producto cartesiano
de un n´um...
Teorema 2 Si A y B son conjuntos finitos con |A| = m
y |B| = n, entonces el n´umero de relaciones posibles de
A en B es 2mn...
Representaci´on matricial
Definici´on 5 Llamaremos matriz m × n de ce-
ros y unos M = (mij) a una matriz de m filas
y n colu...
Suponemos A = {a1, a2, . . . , am} y
B = {b1, b2, . . . , bn}
Definici´on 6 Dada R de A en B, llamaremos
matriz asociada a ...
Ejemplo: Sean A = {1, 2, 3} y B = {1, 2, 3, 4}.
Si
R= {(1, 2), (1, 4), (3, 2), (3, 3)}
S= {(1, 2), (1, 3), (1, 4), (2, 3),...
Ejemplo: Dadas
M =


0 1 1 1
0 0 1 0
1 1 1 0

 y N =


1 0 1 1
1 0 0 0
0 0 1 0


se obtiene:
M ∨ N =


1 1 1 1
1...
Teorema 4 Si R y S son relaciones de A en
B (finitos), entonces
M(R ∪ S) = M(R) ∨ M(S)
M(R ∩ S) = M(R) ∧ M(S)
M(R) = M(R)
C...
entonces se verifica que
R1 ◦ R2= {(1, y), (1, z), (1, x), (2, z), (3, y), (3, z)}
A
1
2
3
a
b
R1 ◦ R2
c
d
x
y
z
R2
R1
B C
...
Teorema 6 Dados los conjuntos A, B, C y las
relaciones R⊆ A × B, S⊆ B × C, entonces
a) (R ◦ S)−1
= S−1 ◦ R−1.
b) R−1 −1
=R...
Producto booleano de matrices
Definici´on 10 Dadas M ∈ Mm×n-{0,1} y N ∈
Mn×p-{0,1}, M = (mij) y N = (nij) tiene sen-
tido e...
Es evidente que el producto booleano de matri-
ces no es conmutativo. Se deja como ejercicio
comprobar que es asociativo, ...
Ejemplo: Las matrices identidad de orden 2 y
3 son:
I2 =
1 0
0 1
; I3 =



1 0 0
0 1 0
0 0 1



In tiene la propieda...
Relaciones binarias
Definici´on 12 Llamaremos relaci´on binaria R
en un conjunto A a una relaci´on de A en A, es
decir un s...
Relaci´on identidad: Sobre un conjunto A denotaremos
por I una relaci´on binaria
a I b ⇐⇒ a = b
en ocasiones especificaremo...
Definici´on 13 Dada R en A se define: a) R0=I,
y b) para todo n ∈ N, Rn+1=R ◦ Rn.
Si R est´a definida sobre un conjunto finito...
Relaci´on de accesibilidad: An´alogamente definimos
R∗ como sigue:
a R∗
b ⇐⇒ ∃ n ∈ N | a Rn
b
es decir R∗=I ∪ R∞
Teorema 10...
Teorema 11 R en A es reflexiva si y solo si
contiene a la relaci´on identidad.
R reflexiva ⇐⇒ I⊆R
Corolario 12 Dadas R y S e...
Corolario 14 Dadas R y S en A, entonces:
a) Si R es sim´etrica, tambi´en lo son R−1 y R.
b) Si R y S son sim´etricas, tamb...
Representaci´on por grafos
Si un v´ertice a del grafo est´a unido mediante
una arista con un otro v´ertice b se dice que
a...
Una relaci´on es transitiva si verifica que todo
v´ertice unido a otro por un camino de longitud
2 es adyacente a ´el.
1 2
...
Cierres
Definici´on 15 Dada una relaci´on binaria R so-
bre un conjunto A y una propiedad P, llama-
remos cierre P de R a u...
Teorema 19 Si R es una relaci´on sobre A, en-
tonces su cierre sim´etrico es σ(R) =R ∪ R−1
Si A es finito M(σ(R)) = M(R) ∨ ...
El cierre transitivo de una relaci´on binaria no es tan
f´acil como los anteriores. Obs´ervese que dada R, la
relaci´on R∞...
Algoritmo de Warshall
Definici´on 16 Dado un conjunto
A = {a1, a2, · · · , an}
y una relaci´on binaria R sobre A, definimos ...
Ejemplo: Dado A = {a, b, c, d} vamos a calcular el cierre
transitivo de la relaci´on binaria R
R= {(a, a), (a, b), (a, d),...
Relaciones de equivalencia
Definici´on 17 Dado A = ∅, llamaremos parti-
ci´on de A a una colecci´on de subconjuntos no
vac´...
Definici´on 18 Si R es una relaci´on de equivalencia en
A y a ∈ A, llamaremos clase de equivalencia de a
[a] = {x ∈ A | x R...
Corolario 23 Las clases de equivalencia de u-
na relaci´on de equivalencia sobre un conjunto
A definen una partici´on sobre...
Ejemplos:
1. Dado n ∈ N, definimos la relaci´on de con-
gruencia m´odulo n sobre Z:
a R b ⇐⇒ a ≡ b (mod n) ⇐⇒
b − a es m´ul...
Sean π1 y π2 particiones de un conjunto A y
sean R1 y R2 sus respectiva relaciones de e-
quivalencia.
Definici´on 20 (Refina...
Relaciones de orden
Diremos que una relaci´on R es de orden si verifica las
propiedades reflexiva, antisim´etrica y transiti...
Próxima SlideShare
Cargando en…5
×

Relaciones binarias

390 visualizaciones

Publicado el

relaciones binarias, conjuntos, algoritmo de warshall, relacion compuesta definida

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
390
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
17
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Relaciones binarias

  1. 1. Relaciones Llamaremos par ordenado a una lista de dos objetos (a, b) donde a es un elemento de un conjunto A y b es un elemento de un conjunto B . (a1, b1) = (a2, b2) ⇐⇒ a1 = a2 y b1 = b2. Definici´on 1 Dados dos conjuntos A y B se define el producto cartesiano A × B como el conjunto de todos los pares ordenados. A × B = {(a, b) | a ∈ A, b ∈ B} Ejemplo: Dados A = {1, 2, 3} y B = {a, b} A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)} Luego est´a claro que, en general, A×B = B×A Prof. Francisco Rodr´ıguez 1
  2. 2. Teorema 1 Si A y B son conjuntos finitos, entonces |A × B| = |A| |B| En general, se define el producto cartesiano de un n´umero finito n de conjuntos como el conjunto formado por las posibles n-uplas or- denadas de elementos de los conjuntos. Definici´on 2 Llamaremos relaci´on de A en B a un subconjunto del producto cartesiano, R ⊆ A × B. Si (a, b) ∈ R se dicen que a y b est´an relacio- nados y se representa a R b en caso contrario se representa a R b. Diagrama de flechas 3 4 1 2 b c a A B a c b 1 2 3 4 A B Diagrama Cartesiano Prof. Francisco Rodr´ıguez 2
  3. 3. Teorema 2 Si A y B son conjuntos finitos con |A| = m y |B| = n, entonces el n´umero de relaciones posibles de A en B es 2mn. Definici´on 3 Dom(R) = {x | x ∈ A y ∃ b ∈ B : x R b} Im(R) = {x | x ∈ B y ∃ a ∈ A : a R x}. Definici´on 4 Dada una relaci´on R de A en B, definimos R−1⊆ B × A de forma que b R−1 a ⇐⇒ a R b Ejemplo: Si R= {(1, b), (1, d), (2, a), (3, b), (3, c)} del ejemplo anterior, se tiene que R−1 = {(b, 1), (d, 1), (a, 2), (b, 3), (c, 3)} Desde el punto de vista gr´afico, R−1 no es otra cosa que invertir el sentido de las flechas de la relaci´on R. Es evidente que Dom(R) = Im(R−1 ) y Im(R) = Dom(R−1 ) Prof. Francisco Rodr´ıguez 3
  4. 4. Representaci´on matricial Definici´on 5 Llamaremos matriz m × n de ce- ros y unos M = (mij) a una matriz de m filas y n columnas cuyos elementos mij ´unicamente pueden ser 0 o 1. M =    0 1 1 1 0 0 1 0 1 1 1 0    ∈ Mm×n-{0, 1} Llamaremos matriz traspuesta de M a la ma- triz MT ∈ Mn×m-{0,1} resultante de transfor- mar las filas de M en columnas. Es decir, si M = (mij), entonces MT = (mji) donde mji = mij. MT =      0 0 1 1 0 1 1 1 1 1 0 0      Prof. Francisco Rodr´ıguez 4
  5. 5. Suponemos A = {a1, a2, . . . , am} y B = {b1, b2, . . . , bn} Definici´on 6 Dada R de A en B, llamaremos matriz asociada a M(R) = (mij) definida: mij = 1 si ai R bj 0 en otro caso Es f´acil comprobar que si R es una relaci´on entre conjuntos finitos, entonces M(R−1) = M(R)T Definici´on 7 Dadas dos matrices M, N ∈ Mm×n- {0,1}, diremos que M precede a N si mij ≤ nij para cada i, j. Teorema 3 Si R, S⊆ A×B , entonces R⊆S es equivalente a M(R) ≤ M(S). Prof. Francisco Rodr´ıguez 5
  6. 6. Ejemplo: Sean A = {1, 2, 3} y B = {1, 2, 3, 4}. Si R= {(1, 2), (1, 4), (3, 2), (3, 3)} S= {(1, 2), (1, 3), (1, 4), (2, 3), (3, 1)(3, 2), (3, 3)} tenemos R⊆S, y por tanto: M(R) =    0 1 0 1 0 0 0 0 0 1 1 0    ≤ M(S) =    0 1 1 1 0 0 1 0 1 1 1 0    Operaciones booleanas ∨ 0 1 0 0 1 1 1 1 ∧ 0 1 0 0 0 1 0 1 − 0 1 1 0 Definici´on 8 Si M, N ∈ Mm×n-{0,1}, M = (mij) y N = (nij), se definen: M ∨ N = (mij ∨ nij) M ∧ N = (mij ∧ nij) M = (mij) Prof. Francisco Rodr´ıguez 6
  7. 7. Ejemplo: Dadas M =   0 1 1 1 0 0 1 0 1 1 1 0   y N =   1 0 1 1 1 0 0 0 0 0 1 0   se obtiene: M ∨ N =   1 1 1 1 1 0 1 0 1 1 1 0   M ∧ N =   0 0 1 1 0 0 0 0 0 0 1 0   M =   1 0 0 0 1 1 0 1 0 0 0 1   Podemos generalizar ∨ a un n´umero finito de operandos: 1. 1 i=1 Mi = M1 2. n i=1 Mi = ( n−1 i=1 Mi) ∨ Mn para n > 1 Igualmente para . Prof. Francisco Rodr´ıguez 7
  8. 8. Teorema 4 Si R y S son relaciones de A en B (finitos), entonces M(R ∪ S) = M(R) ∨ M(S) M(R ∩ S) = M(R) ∧ M(S) M(R) = M(R) Composici´on de relaciones Definici´on 9 Dadas R1 de A en B y R2 de B en C podemos establecer una nueva relaci´on R1 ◦R2 de A en C llamada relaci´on compuesta definida a(R1 ◦ R2)c ⇐⇒ ∃ b ∈ B | aR1b y b R2 c Ejemplo: Dados A = {1, 2, 3}, B = {a, b, c, d} y C = {x, y, z} R1= {(1, b), (1, d), (2, a), (3, b), (3, c)} R2= {(a, z), (b, y), (b, z), (d, x)} Prof. Francisco Rodr´ıguez 8
  9. 9. entonces se verifica que R1 ◦ R2= {(1, y), (1, z), (1, x), (2, z), (3, y), (3, z)} A 1 2 3 a b R1 ◦ R2 c d x y z R2 R1 B C Teorema 5 Dados los conjuntos A, B, C y D y las relaciones R1⊆ A × B, R2⊆ B × C y R3⊆ C × D, entonces R1 ◦(R2 ◦ R3) = (R1 ◦ R2)◦ R3. A partir de ahora se podr´a expresar (sin am- big¨uedad) R1 ◦ R2 ◦ R3. Prof. Francisco Rodr´ıguez 9
  10. 10. Teorema 6 Dados los conjuntos A, B, C y las relaciones R⊆ A × B, S⊆ B × C, entonces a) (R ◦ S)−1 = S−1 ◦ R−1. b) R−1 −1 =R. c) R−1 = (R)−1. Teorema 7 Si R y S son relaciones de A en B, entonces se verifica: a) Si R⊆S, entonces R−1⊆S−1. b) (R ∩ S)−1 =R−1 ∩ S−1. c) (R ∪ S)−1 =R−1 ∪ S−1. Prof. Francisco Rodr´ıguez 10
  11. 11. Producto booleano de matrices Definici´on 10 Dadas M ∈ Mm×n-{0,1} y N ∈ Mn×p-{0,1}, M = (mij) y N = (nij) tiene sen- tido el producto booleano de ambas matrices que se realiza de la siguiente forma: M N =   n k=1 (mik ∧ nkj)   La nueva matriz M N ∈ Mm×p-{0,1}. Queda establecido en la definici´on que s´olo ad- miten el producto booleano aquellas matrices que est´an “encadenadas” en el sentido que el n´umero de columnas de la primera matriz coin- cide con el n´umero de filas de la segunda ma- triz. Ejemplo:    0 1 1 1 0 0 1 0 1 1 1 0         1 0 1 0 1 1 0 1 0 0 1 0      =    0 1 1 0 1 0 1 1 1    Prof. Francisco Rodr´ıguez 11
  12. 12. Es evidente que el producto booleano de matri- ces no es conmutativo. Se deja como ejercicio comprobar que es asociativo, es decir: M (N Q) = (M N) Q pudi´endose, por tanto representar el producto booleano de tres matrices de la forma M N Q. Llamamos matrices-{0,1} cuadradas a aque- llas que tienen el mismo n´umero de filas que de columnas. En ellas tiene sentido el produc- to M M que podemos representar por M2, abreviando el s´ımbolo simplemente como M2, quedando claro, dentro de este contexto, que nos referimos al producto booleano. Definici´on 11 Llamaremos matriz identidad de orden n a la matriz-{0,1} cuadrada de n filas y n columnas In = (δij) definida δij = 1 si i = j 0 si i = j Prof. Francisco Rodr´ıguez 12
  13. 13. Ejemplo: Las matrices identidad de orden 2 y 3 son: I2 = 1 0 0 1 ; I3 =    1 0 0 0 1 0 0 0 1    In tiene la propiedad de dejar invariante a otra matriz mediante el producto booleano. Si M es una matriz cuadrada del mismo orden que In se verifica que In M = M In = M. Si M es una matriz-{0,1}, generalizamos las potencias de M con el siguiente sentido: 1. M0 = In 2. Si n ∈ Z+ Mn = M Mn−1 Teorema 8 Si R1 y R2 son relaciones entre conjuntos finitos y exite R1 ◦ R2, entonces M(R1 ◦ R2) = M(R1) M(R2) Prof. Francisco Rodr´ıguez 13
  14. 14. Relaciones binarias Definici´on 12 Llamaremos relaci´on binaria R en un conjunto A a una relaci´on de A en A, es decir un subconjunto de A × A. De forma an´aloga se pueden definir las rela- ciones n-arias como los subconjuntos del n- producto cartesiano A × · · · × A = An. Ejemplo: La relaci´on si A = {1, 2, 3, 4} y R= {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (4, 2)} po- demos representarla por el grafo dirigido 1 2 34 Prof. Francisco Rodr´ıguez 14
  15. 15. Relaci´on identidad: Sobre un conjunto A denotaremos por I una relaci´on binaria a I b ⇐⇒ a = b en ocasiones especificaremos el conjunto como sub´ındice: IA. Si A es finito de n elementos, entonces M(I) = In: Una relaci´on binaria R⊆ A × A se dice que es: • Reflexiva: para cada a ∈ A, a R a. • Sim´etrica: para cada a, b ∈ A, a R b ⇒ b R a. • Antisim´etrica: para cada a, b ∈ A, a R b y b R a ⇒ a = b. • Transitiva: para cada a, b, c ∈ A, a R b y b R c ⇒ a R c. Relaci´on de Equivalencia:    Reflexiva sim´etrica transitiva Relaci´on de orden:    Reflexiva antisim´etrica transitiva Ejemplos: • Definimos sobre A = Z × Z∗ la relaci´on binaria (a, b) R (c, d) ⇐⇒ ad = bc es de equivalencia. • En Z+ se define la relaci´on binaria a | b es de orden. Prof. Francisco Rodr´ıguez 15
  16. 16. Definici´on 13 Dada R en A se define: a) R0=I, y b) para todo n ∈ N, Rn+1=R ◦ Rn. Si R est´a definida sobre un conjunto finito, entonces es f´acil comprobar que M(Rn) = M(R)n Relaci´on de conectividad: Dada R en A, construimos R∞ como sigue; a R∞ b ⇐⇒ ∃ n ∈ Z+ | a Rn b Es f´acil probar el siguiente Teorema 9 Si R es una relaci´on binaria, en- tonces R∞= ∞ n=1 Rn Prof. Francisco Rodr´ıguez 16
  17. 17. Relaci´on de accesibilidad: An´alogamente definimos R∗ como sigue: a R∗ b ⇐⇒ ∃ n ∈ N | a Rn b es decir R∗=I ∪ R∞ Teorema 10 Si R es una relaci´on binaria, entonces R∗ = ∞ n=0 Rn Si A es finito, es trivial que el n´umero de posibles po- tencias Rn es finito, con lo cual el c´alculo de R∞ y R∗ se realiza mediante un proceso finito. Ejemplo: Si A = {1, 2, 3, 4} y R= {(1, 2), (1, 3), (2, 4), (3, 2)} entonces R2 = {(1, 4), (1, 2), (3, 4)} R3 = {(1, 4)} Rn = ∅ para n ≥ 4 Por otro lado se tiene que R∞ = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 2), (3, 4)} R∗ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 2), (3, 3), (3, 4), (4, 4)} Prof. Francisco Rodr´ıguez 17
  18. 18. Teorema 11 R en A es reflexiva si y solo si contiene a la relaci´on identidad. R reflexiva ⇐⇒ I⊆R Corolario 12 Dadas R y S en A, entonces: a) Si R es reflexiva, tambi´en lo es R−1. b) Si R y S son reflexivas, tambi´en lo son R ∪ S y R ∩ S. Teorema 13 Dada R en A: a) R es sim´etrica ⇐⇒ R=R−1. b) R es antisim´etrica ⇐⇒ R ∩ R−1⊆I. Prof. Francisco Rodr´ıguez 18
  19. 19. Corolario 14 Dadas R y S en A, entonces: a) Si R es sim´etrica, tambi´en lo son R−1 y R. b) Si R y S son sim´etricas, tambi´en lo son R ∪ S y R ∩ S. Teorema 15 Sea R en A, entonces R es tran- sitiva, si y solo si R2⊆R Corolario 16 Si R y S son transitivas, enton- ces tambi´en R ∩ S lo es. Teorema 17 Si R y S son antisim´etricas, en- tonces tambi´en R ∩ S lo es. Se deja como ejercicio expresar los teoremas y corolarios anteriores en funci´on a la matriz de la relaci´on sobre un conjunto finito. Prof. Francisco Rodr´ıguez 19
  20. 20. Representaci´on por grafos Si un v´ertice a del grafo est´a unido mediante una arista con un otro v´ertice b se dice que a es adyacente a b. Puede ocurrir que dos v´ertices sean mutuamente adyacentes, como ocurre con los v´ertices 1 y 2 del ejemplo an- terior. Un v´ertice adyacente consigo mismo se dice que es un lazo. Se tiene, por tanto que, una relaci´on es refle- xiva si todos los v´ertices de su grafo son lazos. Es sim´etrica si todos los v´ertices adyacentes lo son mutuamente. Es antisim´etrica si no exis- ten v´ertices mutuamente adyacentes. Definici´on 14 Un v´ertice a de un grafo esta unido a b por un camino de longitud k si existen k + 1 v´ertices x0, x1, x2, . . . , xk tales que: • a = x0 • ∀ i (1 ≤ i ≤ k) xi−1 es adyacente a xi • b = xk Prof. Francisco Rodr´ıguez 20
  21. 21. Una relaci´on es transitiva si verifica que todo v´ertice unido a otro por un camino de longitud 2 es adyacente a ´el. 1 2 3 Podemos construir las relaciones Rn a partir de un grafo que represente a R, sin m´as que con- siderar los caminos de longitud n. As´ı mismo, se construye R∞ relacionando dos elementos entre s´ı cuando existe alg´un camino (de cual- quier longitud) que los enlaza. 1 2 3 4 5   1 2 3 4 5   2 1 2 3 4 5   8 Prof. Francisco Rodr´ıguez 21
  22. 22. Cierres Definici´on 15 Dada una relaci´on binaria R so- bre un conjunto A y una propiedad P, llama- remos cierre P de R a una relaci´on R definida sobre el mismo conjunto que verifica: 1. R posee la propiedad P. 2. R⊆R . 3. Si S posee la propiedad P y R⊆S, entonces R ⊆S Teorema 18 Si R es una relaci´on sobre A, en- tonces su cierre reflexivo es ρ(R) =R ∪ I Si A es finito, desde el punto de vista matricial se tiene M(ρ(R)) = M(R) ∨ In. Prof. Francisco Rodr´ıguez 22
  23. 23. Teorema 19 Si R es una relaci´on sobre A, en- tonces su cierre sim´etrico es σ(R) =R ∪ R−1 Si A es finito M(σ(R)) = M(R) ∨ M(R)T . Ejemplo: M(R) =    1 0 0 0 1 1 0 1 0    y seg´un los teoremas anteriores: M(ρ(R)) =    1 0 0 0 1 1 0 1 1    M(σ(R)) =    1 0 0 0 1 1 0 1 0    ∨    1 0 0 0 1 1 0 1 0    =    1 0 0 0 1 1 0 1 0    Por tanto ρ(R) = {(1, 1), (2, 2), (3, 2), (3, 3)} y σ(R) = {(1, 1), (2, 2), (2, 3), (3, 2)} =R Prof. Francisco Rodr´ıguez 23
  24. 24. El cierre transitivo de una relaci´on binaria no es tan f´acil como los anteriores. Obs´ervese que dada R, la relaci´on R∞ es siempre transitiva(¿por qu´e?), de hecho, se prueba Teorema 20 Si R es una relaci´on sobre A, entonces su cierre transitivo es τ(R) =R∞. Ejemplo: Dada la relaci´on binaria cuya matriz es M(R) =    0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1    calculamos las sucesivas potencias de M(R) que son: M(R)2 =    0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1    M(R)3 = M(R)4 =    0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1    luego M(R∞ ) = M(R) ∨ M(R)2 ∨ M(R)3 ∨ M(R)4 =    0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1    Prof. Francisco Rodr´ıguez 24
  25. 25. Algoritmo de Warshall Definici´on 16 Dado un conjunto A = {a1, a2, · · · , an} y una relaci´on binaria R sobre A, definimos la secuencia de matrices-(0,1) W0, W1, · · · , Wn cu- yos elementos denotaremos Wk = (w (k) ij ) cons- truidas del siguiente modo: • W0 = M(R) • para k > 0 se define Wk a partir de Wk−1 w (k) ij = w (k−1) ij ∨ (w (k−1) ik ∧ w (k−1) kj ) Teorema 21 (Algoritmo de Warshall) En las condiciones de la defici´on anterior, se tiene que Wn = M(R∞). Prof. Francisco Rodr´ıguez 25
  26. 26. Ejemplo: Dado A = {a, b, c, d} vamos a calcular el cierre transitivo de la relaci´on binaria R R= {(a, a), (a, b), (a, d), (b, c), (b, d), (d, d), (d, a)} W0 =    1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1    1 2 4 1 11 12 14 4 41 42 44 W1 =    1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1    3 4 1 13 14 4 43 44 W2 =    1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1    W3 = W2 1 2 3 4 1 11 12 13 14 2 21 22 23 24 4 41 42 43 44 de donde resulta W4 =    1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1    con lo que resulta que M(R∞) = W4. Prof. Francisco Rodr´ıguez 26
  27. 27. Relaciones de equivalencia Definici´on 17 Dado A = ∅, llamaremos parti- ci´on de A a una colecci´on de subconjuntos no vac´ıos de A tales que verifican: i) i∈I Ai = A ii) Los subconjuntos Ai son disjuntos dos a dos: Ai ∩ Aj = ∅ para todo i = j A A A A A 1 2 3 4 5 Ejemplo: Si A = {1, 2, · · · , 10} son particiones de A: • A1 = {1, 2, 3, 4, 5}, A2 = {6, 7, 8, 9, 10} • A1 = {2, 4, 6}, A2 = {8, 10}, A3 = {1, 3}, A4 = {5, 7, 9} • Ai = {2i − 1, 2i}, i ∈ {1, 2, 3, 4, 5} Prof. Francisco Rodr´ıguez 27
  28. 28. Definici´on 18 Si R es una relaci´on de equivalencia en A y a ∈ A, llamaremos clase de equivalencia de a [a] = {x ∈ A | x R a} Teorema 22 Si R es una relaci´on de equivalencia sobre A y a, b ∈ A, entonces: i) a ∈ [a]. ii) a R b si y s´olo si [a] = [b]. iii) Si [a] = [b], entonces [a] ∩ [b] = ∅. Ejemplo: si A = {1, 2, 3, 4, 5}, y R es la relaci´on binaria definida en la figura, tenemos entonces dos clases de equivalencia: [1] = {1, 4} y [2] = {2, 3, 5} 2 3 4 5 1 Las clases de equivalencia sobre A o bien son iguales o bien son disjuntas, y cada elemento pertenece a una clase, la suya propia. Prof. Francisco Rodr´ıguez 28
  29. 29. Corolario 23 Las clases de equivalencia de u- na relaci´on de equivalencia sobre un conjunto A definen una partici´on sobre el conjunto. El rec´ıproco de este corolario tambi´en se ve- rifica, es decir: una partici´on {Ai: i ∈ I} sobre un conjunto A tambi´en define una relaci´on de equivalencia, a saber a R b ⇐⇒ a, b pertenecen a Ai y las clases de equivalencia de dicha relaci´on coincide con la partici´on de la cual procede. Definici´on 19 Al conjunto de todas las clases de equivalencia definidas por R sobre A, se le llama conjunto cociente y lo representamos A/ R. N´otese que en el conjunto cociente, las clases de equivalencia, pasan de ser conjuntos a ser elementos de dicho conjunto cociente. Prof. Francisco Rodr´ıguez 29
  30. 30. Ejemplos: 1. Dado n ∈ N, definimos la relaci´on de con- gruencia m´odulo n sobre Z: a R b ⇐⇒ a ≡ b (mod n) ⇐⇒ b − a es m´ultiplo de n Es f´acil probar que es una relaci´on de e- quivalencia. El conjunto cociente recibe el nombre de enteros modulares Z/ R= Zn = {[0], [1], · · · , [n − 1]}. 2. Q es tambi´en un conjunto cociente cons- truido a partir de Z × (Z − {0}). (m, n) R (m , n ) ⇐⇒ mn = nm los elementos [(m, n)] ∈ Z × (Z − {0})/ R= Q se llaman fracciones enteras o n´umeros racionales y se representan m n . Prof. Francisco Rodr´ıguez 30
  31. 31. Sean π1 y π2 particiones de un conjunto A y sean R1 y R2 sus respectiva relaciones de e- quivalencia. Definici´on 20 (Refinamientos) Diremos que π1 es un refinamiento de π2 (π1 ≤ π2) si R1 ⊆ R2. Definici´on 21 (Producto de particiones) Llamamos π1·π2 a la partici´on correspondiente a la relaci´on R1 ∩ R2. Definici´on 22 (Suma de particiones) Llamamos π1+π2 a la partici´on correspondien- te a la relaci´on (R1 ∪ R2)∗. Ejemplo: Sea A = {a, b, c, d, e, f, g, h, i, j, k} y sean π1 = {{a, b, c, d}, {e, f, g}, {h, i}, {j, k}} π2 = {{a, b, c, h}, {d, i}, {e, f, j, k}, {g}} entonces π1 · π2 = {{a, b, c}, {d}, {e, f}, {g}, {h}, {i}, {j, k}} π1 + π2 = {{a, b, c, d, h, i}, {e, f, g, j, k}} Prof. Francisco Rodr´ıguez 31
  32. 32. Relaciones de orden Diremos que una relaci´on R es de orden si verifica las propiedades reflexiva, antisim´etrica y transitiva. Gene- ralmente usaremos la notaci´on ≤ en lugar de R para expresar relaciones de orden. Definici´on 23 Diremos que un conjunto A es ordena- do si hay definido en ´el alguna relaci´on de orden. Lo representamos de la forma (A, ≤). Orden total o lineal Un conjunto ordenado (A, ≤) se dice que totalmente ordenado o linealmente ordenado si para cada par de elementos a, b ∈ A se tiene o bien a ≤ b o bien b ≤ a. Un conjunto ordenado que no es totalmente ordenado se dice que es parcialmente ordenado. Diagramas de Hasse Si E es finito, se puede representar un grafo, poniendo los elementos “posteriores” a otros, en escalones supe- riores unidos por una sucesi´on ascendente de arcos. Ejemplo: Dado (A, |), donde A = {1, 2, 3, 5, 6, 8, 10, 15, 16, 20, 30} su diagrama de Hasse se puede representar 1 3 52 8 6 10 15 16 20 30 Prof. Francisco Rodr´ıguez 32

×