SlideShare una empresa de Scribd logo
1 de 247
1
Unidad 2
Programación Lineal
Aplicaciones
2
El objetivo general es encontrar el mejor plan de distribución, es
decir, la cantidad que se debe enviar por cada una de las rutas
desde los puntos de suministro hasta los puntos de demanda.
El “mejor plan” es aquel que minimiza los costos totales de envío,
produzca la mayor ganancia u optimice algún objetivo corporativo.
Se debe contar con:
i) Nivel de oferta en cada fuente y la cantidad de demanda
en cada destino.
ii) Costo de transporte unitario de mercadería desde cada
fuente a cada destino.
2.1 Modelo de Transporte
3
También es necesario satisfacer ciertas restricciones:
1. No enviar más de la capacidad especificada desde cada punto de
suministro (oferta).
2. Enviar bienes solamente por las rutas válidas.
3. Cumplir (o exceder) los requerimientos de bienes en los puntos
de demanda.
2.1 Modelo de Transporte
4
2.1 Modelo de Transporte
Esquemáticamente se podría ver como se muestra en la siguiente
figura
DestinosFuentes
1 1
22
n
m
Unidadesdedemanda
Unidadesdeoferta
s2
sm
d2
s1
d1
dn
Xij: cantidad transportada desde la fuente i al destino j
C11, X11
Cmn, Xmn
Cij: Costo del transporte unitario desde la fuente i al destino j
donde
Gráficamente: Para m fuentes y n destinos
5
Modelo general de PL que representa al modelo de Transporte
ox
dx
sx
xcZ
ij
j
m
i
ij
i
n
j
ij
m
i
n
j
ijij
≥
≥
≤
=
∑
∑
∑∑
=
=
= =
1
1
1 1
j=1,2,...,n
i=1,2,...,m
El modelo implica que al menos la oferta debe ser igual a la demanda
para toda i y j
minimizar
s aa
2.1 Modelo de Transporte
6
Modelo general de PL que representa al modelo de Transporte
Modelo de transporte equilibrado: Oferta = Demanda
i
n
j
ij Sx =∑=1
j=1, 2, 3,....,nj
m
i
ij Dx =∑=1
i=1, 2, 3,....,m
0≥ijx para toda i y j
2.1 Modelo de Transporte
Solución del Modelo de
Transporte
2.1 Modelo de Transporte
8
Algoritmos Específicos
2.1.1 Regla de la esquina noroeste (MEN)
2.1.2 Método por aproximación de Vogel (MAV)
2.1.3 Método del costo mínimo (MCM)
2.1.4 Método del paso secuencial y
2.1.5 DIMO (método de distribución modificada)
2.1 Modelo de Transporte
9
Descripción de los algoritmos
La regla de la esquina noroeste, el método de aproximación
de Vogel y el método del costo mínimo son alternativas para
encontrar una solución inicial factible.
El método del escalón y el DIMO son alternativas para
proceder de una solución inicial factible a la óptima.
Por tanto, el primer paso es encontrar una solución inicial
factible, que por definición es cualquier distribución de
ofertas que satisfaga todas las demandas
2.1 Modelo de Transporte
10
Descripción de los algoritmos
Una vez obtenida una solución básica factible, el algoritmo
procede paso a paso para encontrar un mejor valor para la
función objetivo.
La solución óptima es una solución factible de costo mínimo
Para aplicar los algoritmos, primero hay que construir una
tabla de transporte.
2.1 Modelo de Transporte
11
Tabla Inicial
Destinos
Origen 1 2 3 4 n Ofertas
1 C11 C12 C13 C14 .... C1n
2 C21 C22 C23 C24 .... C2n
3 C31 C32 C33 C34 .... C3n
... .... ..... .... .... ....
m Cm1 Cm2 Cm3 Cm4 .... Cmn
Demanda
2.1 Modelo de Transporte
12
Tabla Inicial del Ejemplo
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
500
2 6 4 10 11
700
3 10 9 12 4
800
Demanda 400 900 200 500 2000
2.1 Modelo de Transporte
13
2.1.1 Regla de la esquina Noroeste
Se inicia el proceso desde la esquina izquierda superior
Se ubican tantas unidades como sea posible en la ruta
Cantidad de Unidades = Mínimo(disponibilidad, demanda)
Las siguientes asignaciones se hacen o bien recorriendo hacia la
derecha o bien hacia abajo.
Las demandas se satisfacen recorriendo sucesivamente de
izquierda a derecha y las ofertas se destinan recorriendo de
arriba hacia abajo.
2.1 Modelo de Transporte
14
Primera asignación
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 500
2 6 4 10 11
700
3 10 9 12 4
800
Demanda 0 400 900 200 500 2000
2.1 Modelo de Transporte
15
Hasta cuarta asignación
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 700 800
Demanda 0 400 0 900 200 500 2000
2.1 Modelo de Transporte
16
Esquina Noroeste: Solución final factible
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 200 500 0 800
Demanda 0 400 0 900 200 500 2000
Valor FO: 400*12+100*13+700*4+100*9+200*12+500*4= $14.200
2.1 Modelo de Transporte
17
2.1.2 Método de aproximación de
Vogel (MAV)
MAV usa información de costos mediante el concepto de
costo de oportunidad para determinar una solución inicial
factible.
Seleccionar en una fila la ruta más barata y la que le sigue.
Hacer su diferencia (penalidad), que es el costo adicional por
enviar una unidad desde el origen actual al segundo destino y
no al primero.
En nuestro caso, para el puerto1, C13 y C14; Penalidad = 6 - 4
MAV asigna un costo de penalidad por no usar la mejor ruta
en esta fila.
2.1 Modelo de Transporte
18
2.1.2 Método de aproximación de Vogel
Lo anterior se repite para cada fila y cada columna, esto es,
determinar todas las penalidades
Los pasos iterativos de MAV son los siguientes:
1. Identificar la fila o columna con la máxima penalidad.
2.Colocar la máxima asignación posible a la ruta no usada que
tenga menor costo en la fila o columna seleccionada en el punto
1 (los empates se resuelven arbitrariamente)
3. Reajustar la oferta y demanda en vista de esta asignación.
4. Eliminar la columna en la que haya quedado una demanda 0 (o
la fila con oferta 0), de consideraciones posteriores.
5. Calcular los nuevos costos de penalidad.
2.1 Modelo de Transporte
19
2.1.2 Método de aproximación de Vogel
El MAV continúa aplicando este proceso en forma sucesiva
hasta que se haya obtenido una solución factible.
Los resultados obtenidos se muestran en las siguientes tablas
2.1 Modelo de Transporte
20
2.1.2 Método de aproximación de Vogel
Plantas
Puertos 1 2 3 4 Oferta Penalidades
1 12 13 4 6 2
500
2 6 4 10 11 2
700
3 10 9 12 4 5
800
Demanda 400 900 200 500 2000
Penalidades 4 5 6 2
Calculadas todas las penalidades, la mayor
corresponde a la columna 3 (penalidad = 6)
Paso 1: Identificar máxima penalidad (fila o columna)
Paso 0: Cálculo de penalidades
2.1 Modelo de Transporte
21
2.1.2 Método de aproximación de Vogel
Paso 2: Asignación de unidades (MIN(oferta,demanda))
Paso 3:Reajuste de oferta y demanda
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 11
700
3 10 9 12 4
800
Demanda 400 900 0 200 500 2000
2.1 Modelo de Transporte
22
2.1.2 Método de aproximación de Vogel
Paso 4: Eliminar columna (fila) con demanda (oferta) 0Paso 4: Eliminar columna (fila) con demanda (oferta) 0
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 11
700
3 10 9 12 4
800
Demanda 400 900 0 200 500 2000
2.1 Modelo de Transporte
23
2.1.2 Método de aproximación de
Vogel
Paso 5: Calcular los nuevos costos de penalidad
Plantas
Puertos 1 2 3 4 Oferta Penalidades
1 12 13 4 6 6
200 300 500
2 6 4 10 11 2
700
3 10 9 12 4 5
800
Demanda 400 900 0 200 500 2000
Penalidades 4 5 2
2.1 Modelo de Transporte
24
2.1.2 Método de aproximación de Vogel
Repitiendo los pasos anteriores, finalmente se llega a la siguiente
solución
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 300 500
2 6 4 10 11
700 0 700
3 10 9 12 4
400 200 200 600 800
Demanda 400 900 0 200 200 500 2000
¿Es solución factible? ¿m + n - 1 = 6? SI
Costo: 200*4+300*6+700*4+400*10+200*9+200*4 = $12.000
2.1 Modelo de Transporte
25
2.1.3. Método del Costo Mínimo
1. Dada una tabla de transporte
2. Asignar la mayor cantidad de unidades a la variable
(ruta) con el menor costo unitario de toda la tabla.
3. Tachar la fila o columna satisfecha.
4. Ajustar oferta y demanda de todas las filas y columnas
5. Si hay más de una fila o columna no tachada repetir
los puntos 2, 3 y 4
Algoritmo
Fundamento
Asignar la mayor cantidad de unidades a una ruta
disponible de costo mínimo
2.1 Modelo de Transporte
26
2.1.3. Método del Costo Mínimo (cont.)
Ejemplo: Aplicar MCM a la tabla de transporte
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
500
2 6 4 10 11
700
3 10 9 12 4
800
Demanda 400 900 200 500 2000
Unidades a asignar = MIN(200,400) = 200
Existen tres rutas costo mínimo. Elijamos la 1_3Paso 2
2.1 Modelo de Transporte
27
2.1.3. Método del Costo Mínimo (cont.)
Paso 3: Tachar fila o columna (columna 3)
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 11
700
3 10 9 12 4
800
Demanda 400 900 0 200 500 2000
Aún quedan más de una fila o columna sin tachar. Ir a paso 2
Ajustar ofertas y demandas (fila 1 y columna 3)
Paso 5
Paso 4
2.1 Modelo de Transporte
28
2.1.3. Método del Costo Mínimo (cont.)
Paso 4: Tachar ajustar fila 3 y columna 4
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 11
700
3 10 9 12 4
500 300 800
Demanda 400 900 0 200 0 500 2000
Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5
Paso 2: Ruta de costo menor -> 3_4 (ó 2_2)
Unidades = MIN(500,800) = 500
Paso 3: Tachar columna 4
2.1 Modelo de Transporte
29
2.1.3. Método del Costo Mínimo (cont.)
Paso 4: Tachar ajustar fila 2 y columna 2
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 0
700 0 700
3 10 9 12 4
500 300 800
Demanda 400 200 900 0 200 0 500 2000
Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5
Paso 2: Ruta de costo menor -> 2_2
Unidades = MIN(700,900) = 300
Paso 3: Tachar fila2
2.1 Modelo de Transporte
30
2.1.3. Método del Costo Mínimo (cont.)
Paso 4: Tachar ajustar fila 3 y columna 2
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 0
700 0 700
3 10 9 12 4 100
200 500 300 800
Demanda 400 200 900 0 200 0 500 2000
Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5
Paso 2: Ruta de costo menor -> 3_2
Unidades = MIN(200,300) = 200
Paso 3: Tachar columna 2
2.1 Modelo de Transporte
31
2.1.3. Método del Costo Mínimo (cont.)
Paso 4: Tachar ajustar fila 3 y columna 1
Puertos 1 2 3 4 Oferta
1 12 13 4 6
200 300 500
2 6 4 10 0
700 0 700
3 10 9 12 4 100 0
100 200 500 300 800
Demanda 300 400 200 900 0 200 0 500 2000
Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5
Paso 2: Ruta de costo menor -> 3_1
Unidades = MIN(400,100) = 100
Paso 3: Tachar fila 3
2.1 Modelo de Transporte
32
2.1.3. Método del Costo Mínimo (cont.)
Paso 4: Tachar ajustar fila 1 y columna 1
Puertos 1 2 3 4 Oferta
1 12 13 4 6 0
300 200 300 500
2 6 4 10 0
700 0 700
3 10 9 12 4 100 0
100 200 500 300 800
Demanda 300 400 200 900 0 200 0 500 2000
Queda sólo una fila sin tachar. TerminarPaso 5
Paso 2: Ruta de costo menor -> 1_1
Unidades = MIN(300,300) = 300
Paso 3: Tachar fila 1 ó columna 1 (sólo una de ellas)
2.1 Modelo de Transporte
33
2.1.3. Método del Costo Mínimo (cont.)
Comparación de los resultados
¿Es solución factible? ¿m + n - 1 = 6? SI
Costo: 300*12+200*4+700*4+100*10+200*9+500*4 = $12.000
Método Rutas Costo
MEN 6 $14.200
MAV 6 $12.000
MCM 6 $12.000
Los tres métodos entregan soluciones básicas factibles,
pero ninguno asegura que la solución sea óptima.
Conclusión
2.1 Modelo de Transporte
34
2.1.4. Método de Pasos Secuenciales
Este método comienza con una solución inicial factible.
En cada paso se intenta enviar artículos por una ruta que
no se haya usado en la solución factible actual, en tanto
se elimina una ruta usada actualmente.
En cada cambio de ruta debe cumplirse que:
1. La solución siga siendo factible y
2. Que mejore el valor de la función objetivo
El procedimiento termina cuando no hay cambio de rutas
que mejoren el valor de la función.
Fundamento
2.1 Modelo de Transporte
35
2.1.4. Método de pasos secuenciales (cont..)
Usar la solución actual (MEN, MAV o MCM) para crear una
trayectoria única del paso secuencial. Usar estas trayectorias
para calcular el costo marginal de introducir a la solución
cada ruta no usada.
Si todos los costos marginales son iguales o mayores que
cero, terminar; se tendrá la solución óptima. Si no, elegir la
celda que tenga el costo marginal más negativo (empates se
resuelven arbitrariamente)
Usando la trayectoria del paso secuencial, determine el
máximo número de artículos que se pueden asignar a la ruta
elegida en el punto 2 y ajustar la distribución adecuadamente.
Regrese al paso 1
Algoritmo
1
2
3
4
2.1 Modelo de Transporte
36
2.1.4. Método de pasos secuenciales (cont..)
a) Ponga un signo + en la celda de interés no ocupada
b) Ponga un signo - en una celda usada de la misma fila
c) Ponga un + en una celda usada de la misma columna
El proceso continúa alternando los signos + y - tanto en las filas
como en las columnas hasta que se obtenga una sucesión de
celdas (trayectoria) que satisfagan dos condiciones
1. Hay un signo + en la celda desocupada original de interés, y
2. Cualquier fila o columna que tenga un signo + debe tener
también un signo - y viceversa.
Algoritmo Paso 1
2.1 Modelo de Transporte
37
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 1
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 200 500 0 800
Demanda 0 400 0 900 200 500 2000
Solución básica factible obtenida aplicando el método de la Esquina Noroeste
2.1 Modelo de Transporte
38
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 1
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 - + 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 + 200 - 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
Trayectoria 1: +C13-C12+C32-C33
2.1 Modelo de Transporte
39
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 1
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 - + 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 + 200 - 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
1: +(4)-(13)+(9)-(12)= -12 2: +(6)-(13)+(9)-(4) = -2
3: +(6)-(4)+(13)-(12)= 3 4: +(10)-(4)+(9)-(12) = 3
5: +(11)-(4)+(9)-(4) = 12 6: +(10)-(9)+(13)-(12)= 2
Costos de las Trayectorias
2.1 Modelo de Transporte
40
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 2
1: +(4)-(13)+(9)-(12)= -12 2: +(6)-(13)+(9)-(4) = -2
3: +(6)-(4)+(13)-(12)= 3 4: +(10)-(4)+(9)-(12) = 3
5: +(11)-(4)+(9)-(4) = 2 6: +(10)-(9)+(13)-(12)= 2
La solución factible NO es óptima !!
Se selecciona la trayectoria 1 (costo marginal más negativo)
2.1 Modelo de Transporte
41
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 3 (Generación de la nueva tabla)
¿Cuántas unidades se pueden asignar a la ruta elegida?
Acción Ruta Unidades disponibles en
celdas decrecientes
Aumentar 1 unidad 1_3
Disminuir 1 unidad 1_2 100
Aumentar 1 unidad 3_2
Disminuir 1 unidad 3_3 200
2.1 Modelo de Transporte
42
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 - 100 + 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
200 + 100 - 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
Paso 3 (Generación de la nueva tabla)
Costo: $13.000Costo: $13.000
2.1 Modelo de Transporte
43
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 4
Volver al Paso 1:
Para cada trayectoria evaluar costo marginal
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
200 100 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
2.1 Modelo de Transporte
44
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 2: Elección de CMg menor
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 +12 100 +10 100 500
2 6 4 10 11
-9 700 +3 +12 0 700
3 10 9 12 4
-10 200 100 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
La celda más negativa es c 31 (-10) y la trayectoria es:
C31 – C33 + C13 – C11
2.1 Modelo de Transporte
45
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 3 (Generación de la nueva tabla)
¿Cuántas unidades se pueden asignar a la ruta elegida?
Acción Ruta Unidades disponibles en
celdas decrecientes
Aumentar 1 unidad 31
Disminuir 1 unidad 33 100
Aumentar 1 nidad 13
Disminuir 1 unidad 11 400
2.1 Modelo de Transporte
46
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 3 (Generación de la nueva tabla)
Costo: $12.000Costo: $12.000
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
300 200 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 200 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
2.1 Modelo de Transporte
47
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 4
Volver al Paso 1:
Para cada trayectoria evaluar costo marginal
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
300 200 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 200 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
2.1 Modelo de Transporte
48
2.1.4. Método de pasos secuenciales (cont..)
Algoritmo Paso 2: Determinar costos marginales
Todas rutas son no negativas (positivas o cero)
Solución factible óptima!!! $12.000
Compare esta solución con la obtenida con MAV y MCM ¿ ...?
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
300 +2 200 0 100 500
2 6 4 10 11
+1 700 +13 +12 0 700
3 10 9 12 4
100 200 +10 500 0 800
Demanda 0 400 0 900 0 200 0 500 2000
2.1 Modelo de Transporte
49
2.1.5. Método de Distribución Modificada (DIMO)
Algoritmo
1. Usar la solución actual (NE, MAV o MCM) y las siguientes
operaciones (a) y (b) para determinar el costo marginal de enviar
material para cada una de las rutas no usadas.
Asociar a cada fila un índice ui y a cada columna un índice vj
a) Hacer u1 = 0. Encuéntrese los índices de las filas u2, ..., um y los
índices de las columnas v1, ...., vn tales que cij = ui + vj para cada
celda usada.
b) Sea eij = cij - (ui+vj) para cada celda no usada; eij será el costo
marginal de introducir la celda (ruta) i, j a la solución.
Los pasos 2 a 4 son los mismos que en el método secuencial.
2.1 Modelo de Transporte
50
2.1.5. Método de Distribución Modificada (DIMO)
Aplicar el algoritmo al problema en estudio y
comparar resultados obtenidos con los métodos
anteriores
Comentar resultados
¿Qué explica que existan dos soluciones
óptimas factibles?
2.1 Modelo de Transporte
51
2.1.5. Método de Distribución Modificada
(DIMO)
Aplicación
Costo por
Ruta en uso motor ($) Ecuación
11 12 u1 + v1 = 12
12 13 u1 + v2 = 13
22 4 u2 + v2 = 4
32 9 u3 + v2 = 9
33 12 u3 + v3 = 12
34 4 u3 + v4 = 4
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 200 500 700 800
Demanda 0 400 0 900 200 500 2000
Paso 0: Asociar índices
ui
vj
2.1 Modelo de Transporte
52
2.1.5. Método de Distribución Modificada (DIMO)
Paso1.a) Solucionar la ecuación
Existen 6 ecuaciones y siete variables entonces se hace u1 = 0
(puede ser cualquiera) y se determina el resto de los índices
v1 = 12 v2 = 13 u2 = - 9 u3 = -4 v3 = 16 v4 = 8
Paso 1.b) Calcular los costos marginales para cada celda no usada.
eij = cij - (ui + vj)
2.1 Modelo de Transporte
53
2.1.5. Método de Distribución Modificada (DIMO)
Costos marginales para las celdas no usadas.
eij = cij - (ui + vj)
1) e13 = c13 - (u1 + v3)= 4 - (0 + 16) = -12
2) e14 = c14 - (u1 + v4)= 6 - (0 + 8) = -2
3) e21 = c21 - (u2 + v1)= 6 - (-9 + 13) = 2
4) e23 = c23 - (u2 + v3)= 10 - (-9 + 16) = 3
5) e24 = c24 - (u2 + v4)= 11 - (-9 + 8) = 12
6) e31 = c31 - (u3 + v1)= 10 - (-4 + 12) = 2
2.1 Modelo de Transporte
54
2.1.5. Método de Distribución Modificada (DIMO)
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 -12 -2 100 500
2 6 4 10 11
2 700 3 12 0 700
3 10 9 12 4
2 100 200 500 700 800
Demanda 0 400 0 900 200 500 2000
Paso 2: Prueba de Optimalidad.
Hay costos negativos por lo tanto no es óptima
La ruta de reasignación es: +C13 -C33 +C32 -C12 (más negativo, -12)
2.1 Modelo de Transporte
55
2.1.5. Método de Distribución Modificada (DIMO)
Paso 3: Asignación de unidades a la ruta elegida.
Unidades disponibles a mover:
Disminuir 1 unidad C12 100
Disminuir 1 unidad C33 200
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
400 100 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
200 100 500 700 800
Demanda 0 400 0 900 200 500 2000
2.1 Modelo de Transporte
56
2.1.5. Método de Distribución Modificada (DIMO)
Vuelta al Paso 1:
Costo por
Ruta en uso motor ($) Ecuación
11 12 u1 + v1 = 12
13 4 u1 + v3 = 4
22 4 u2 + v2 = 4
32 9 u3 + v2 = 9
33 12 u3 + v3 = 12
34 4 u3 + v4 = 4
Paso1.a) Solucionar la ecuación
Se hacer u1 = 0 y se determina el resto de los índices
v1 = 12 v2 = 1 v3 = 4 v4 = -4 u2 = 3 u3 = 8
Paso 1.b) Calcular los costos marginales para cada
celda no usada. eij = cij - (ui + vj)
2.1 Modelo de Transporte
57
2.1.5. Método de Distribución Modificada (DIMO)
Costos marginales para las celdas no usadas.
eij = cij - (ui + vj)
1) e12 = c12 - (u1 + v2)= 13 - (0 + 1) = 12
2) e14 = c14 - (u1 + v4)= 6 - (0 - 4) = 10
3) e21 = c21 - (u2 + v1)= 6 - (3 + 12) = -9
4) e23 = c23 - (u2 + v3)= 10 - (3 + 4) = 3
5) e24 = c24 - (u2 + v4)= 11 - (3 - 4) = 12
6) e31 = c31 - (u3 + v1)= 10 - (8 + 12) = -10
2.1 Modelo de Transporte
58
2.1.5. Método de Distribución Modificada (DIMO)
Paso 2: Prueba de Optimalidad.
Hay costos negativos por lo tanto no es óptima
La ruta de reasignación es: +C31 -C33 +C13 -C11
Plantas
Puertos 1 2 3 4 Oferta
1 - 12 13 + 4 6
400 19 100 1 100 500
2 6 4 10 11
0 700 3 12 0 700
3 + 10 9 - 12 4
-1 200 100 500 700 800
Demanda 0 400 0 900 200 500 2000
2.1 Modelo de Transporte
59
2.1.5. Método de Distribución Modificada (DIMO)
Paso 3: Asignación de unidades a la ruta elegida.
Unidades disponibles a mover:
Disminuir 1 unidad C11 400
Disminuir 1 unidad C33 100
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
300 200 100 500
2 6 4 10 11
700 0 700
3 10 9 12 4
100 200 500 700 800
Demanda 0 400 0 900 200 500 2000
2.1 Modelo de Transporte
60
2.1.5. Método de Distribución Modificada
(DIMO)
Vuelta al Paso 1:
Paso1.a) Solucionar la ecuación
u1 = 0 y se determina el resto de los índices
v1 = 12 v2 = 11 v3 = 4 v4 = 6 u2 = - 7 u3 = -2
Paso 1.b) Calcular los costos marginales para cada
celda no usada. eij = cij - (ui + vj)
Costo por
Ruta en uso motor ($) Ecuación
11 12 u1 + v1 = 12
13 4 u1 + v3 = 4
22 4 u2 + v2 = 4
31 10 u3 + v1 = 10
32 9 u3 + v2 = 9
34 4 u3 + v4 = 4
2.1 Modelo de Transporte
61
2.1.5. Método de Distribución Modificada (DIMO)
Costos marginales para las celdas no usadas.
eij = cij - (ui + vj)
1) e12 = c12 - (u1 + v2)= 13 - (0 + 11) = 2
2) e14 = c14 - (u1 + v4)= 6 - (0 + 6) = 0
3) e21 = c21 - (u2 + v1)= 6 - (-7 + 12) = 1
4) e23 = c23 - (u2 + v3)= 10 - (-7 + 4) = 13
5) e24 = c24 - (u2 + v4)= 11 - (-7 + 6) = 12
6) e33 = c33 - (u3 + v3)= 12 - (-2 + 4) = 10
2.1 Modelo de Transporte
62
2.1.5. Método de Distribución Modificada (DIMO)
Paso 2: Prueba de Optimalidad.
No hay costos negativos por lo tanto es óptima
VO = 300*12+200*4+700*4+100*10+200*9+500*4=$12.000
Plantas
Puertos 1 2 3 4 Oferta
1 12 13 4 6
300 0 200 0 100 500
2 6 4 10 11
1 700 13 12 0 700
3 10 9 12 4
100 200 10 500 700 800
Demanda 0 400 0 900 200 500 2000
Ver Transporte RPG Equilibrio
2.1 Modelo de Transporte
63
2.1.6. Modelo de Transporte: Situaciones Especiales
1. Solución en problemas de maximización de transporte
2. El caso en que la oferta excede a la demanda.
3. Eliminación de rutas inaceptables.
4. Degeneración en problemas de transporte.
5. Propiedades especiales del modelo de transporte
2.1 Modelo de Transporte
64
2.1.6. Modelo de Transporte: Situaciones Especiales
1. Solución en problemas de maximización de transporte.
a) Se utilizan los beneficios marginales en lugar de los costos.
Se asignará unidades a la celda que tenga el mayor valor
marginal y el procedimiento concluirá cuando todas las rutas
tengan valores marginales negativos.
b) Convertir la tabla de beneficios en una tabla de costo: Se
busca el beneficio mayor, en cada celda se le resta al mayor
el beneficio de la celda. Ejemplo:
2.1 Modelo de Transporte
65
2.1.6. Modelo de Transporte: Situaciones Especiales
Tabla de beneficios
14 19 12
17 19 15
16 20 11
6 1 8
3 1 5
4 0 9
2
3
Destinos
Fuentes
1 2 3
1
Destinos
1 2 3
Fuentes
1
2
3
Mayor = 20
Tabla de costo
2.1 Modelo de Transporte
66
2.1.6. Modelo de Transporte: Situaciones Especiales
2. El caso en que la oferta excede a la demanda.
Se utiliza un destino ficticio en la tabla de transporte. Se
considera como nulo el costo de enviar una unidad a dicho
destino desde cada una de las fuentes (orígenes).
Si la demanda es mayor que la oferta el problema no tiene
solución factible, sin embargo el administrador podría
abastecer toda la demanda que sea posible a un costo
mínimo.
Se utiliza un origen ficticio. El costo de abastecer cualquier
destino desde dicho origen será cero. Sin embargo podría
haber un cargo por orden no cubierta.
Ver Transporte RPG (O>D) y (O<D
2.1 Modelo de Transporte
67
2.1.6. Modelo de Transporte: Situaciones Especiales
3. Eliminación de rutas inaceptables.
Se asocia a una ruta no aceptable un costo lo suficientemente
alto para que no sea atrayente la ruta en cuestión. El costo M
Por ejemplo: producir en abril para vender en febrero del mismo
año.
4. Degeneración en problemas de transporte.
Se dice que un problema se degenera cuando hay menos de
m + n - 1 rutas ocupadas. Esto puede ocurrir cuando
simultáneamente se satisface una demanda y se agota una
oferta.
Ver Transporte RPG (inaceptable)
2.1 Modelo de Transporte
68
2.1.6. Modelo de Transporte: Situaciones Especiales
5. Propiedades especiales del modelo de transporte
Todo problema de transporte es posible resolverlo mediante
algoritmos que usan sólo la adición y la sustracción.
Si todas las ofertas y demandas tienen valores enteros en un
problema de transporte, los valores óptimos de las variables
de decisión serán también enteros.
2.1 Modelo de Transporte
69
Ejercicios
Suponer que se tienen tres fábricas M1, M2 y M3 que producen
39, 48 y 33 toneladas respectivamente, de un cierto producto
que debe llevarse a cuatro destinos, D1, D2, D3 y D4, los cuales
requieren 40, 37, 18 y 25 toneladas.
Los costos están dados por la siguiente tabla:
2.1 Modelo de Transporte
1
D1 D2 D3 D4
M1 2 3 1 2
M2 1 4 7 6
M3 8 9 4 5
70
Planificación de la producción:
2.1 Modelo de Transporte
2
Periodo Capacidad de Producción
Máxima (unidades)
Demanda a
satisfacer
Costo de
Producción ($)
Costo de
Almacenaje ($)
1 1200 900 15 1.2
2 800 800 18 1.4
3 1100 1000 17 1.1
4 900 700 20 1.5
¿Cuánto hay que producir en cada periodo para satisfacer la
demanda al mínimo costo (tanto de producción como de
almacenaje)?.
Supuesto: No existe inventario inicial ni final.
Plantear el problema usando el modelo de transporte.
Encuentre las respuestas usando Solver.
71
Situación:
Asignar m trabajos (o trabajadores) a n máquinas.
Un trabajo i (=1, 2, 3 ,...,m) cuando se asigna a la máquina
j (=1,2,....,n) incurre en un costo cij.
El objetivo es asignar los trabajos a las máquinas uno a uno
al menor costo.
La formulación de este problema puede considerarse como
un caso especial del modelo de transporte.
2.2 Modelo de Asignación
72
Descripción
Los trabajos representan las “fuentes” y las máquinas los
“destinos”
La oferta disponible en cada fuente es 1 como también lo
es la demanda en cada destino.
cij es el costo de transportar (asignar) el trabajo i a la
máquina j
El costo puede representar también características de
competencia de cada trabajador
73
Descripción
En el caso que un trabajo no deba ser asignado
(porque no cumple con los requisitos) a una máquina
(actividad) en particular, este costo debe tener un
valor alto (M)
En el caso de existir desequilibrio, esto es, más
trabajos que máquinas o más máquinas que trabajos,
hay que equilibrar con máquinas o trabajos figurados
(ficticios), logrando de esta forma que m = n
74
Expresión matemática del modelo
0, si el i-ésimo trabajo no se asigna a la j-ésima máquina
1, si el i-ésimo trabajo se asigna a la j-ésima máquina
Xij =
Máquina
1 2 ….. n
C11 C12 ….. C1n
C21 C22 ….. C2n
….. ….. ….. …..
Cn1 Cn2 ….. Cnn
1
2
…..
n
Trabajo
1
1
…..
1
1 1 ….. 1
75
Por lo tanto el modelo está dado por:
minimizar z = ∑∑= =
n
i
n
j
ijij xc
1 1
sujeto a 1
1
=∑=
n
j
ijx i=1,2, ...,n
1
1
=∑=
n
i
ijx j=1,2,..n
xij = 0 ó bien 1
76
Ejemplo:
La gerencia general de RPG (ejemplo de transporte) con sede
en Bruselas, este año, como parte de su auditoría anual, decidió
que cada uno de sus cuatro vicepresidentes visite e inspeccione
cada una de sus plantas de ensamblaje durante las primeras dos
semanas de junio. Las plantas están ubicadas en Leipzig
(Alemania), Nancy (Francia, Lieja (Bélgica) y Tilburgo
(Holanda).
Para decidir a que vicepresidente enviar a una planta
determinada, se asignaron puntospuntos (costos) a cada uno de ellos
de acuerdo a su experiencia, habilidades lenguísticas, tiempo
que durará la inspección y otros. Estos datos se muestran en la
siguiente tabla:
77
Ejemplo
PLANTA
Leipzig (1) Nancy(2) Lieja (3) Tilburgo(4)
Finanzas (F) (1) 24 10 21 11
Mercadotecnia(M) (2) 14 22 10 15
Operaciones (O) (3) 15 17 20 19
Personal(P) (4) 11 19 14 13
Plantear el modelo de PL
78
Ejemplo: Modelo de PL
MIN Z = 24 X11 + 10 X12 + ... + 14 X43 + 13 X44
sujeto a:
a) Oferta X11 + X12 + X13 + X14 = 1
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1
b) Demanda X11 + X21 + X31 + X41 = 1
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1
c) No negatividad Xij >= 0 i=1,...,4, j=1,....,4
79
Métodos de Solución
Existen varias formas de obtener la solución:
a) Listar todas las alternativas posibles con sus costos y seleccionar
la de menor costo (algoritmo exhaustivo)
b) Método Húngaro: método iterativo
a) Listar todas las alternativas:
¿Cuántas alternativas posibles existen?
- El primer trabajo se puede asignar de n formas formas posibles
- El segundo de n-1 formas
- El último sólo de 1 forma
En total existen n! formas de hacer la asignación completa
80
Método Húngaro:
Paso 0: Construir la matriz de asignación
Para obtener la solución óptima cada nueva matriz de asignación
debe satisfacer:
Propiedad 1: Todos los números son no negativos
Propiedad 2: Cada fila y cada columna tiene al menos una celda con
un valor cero
Paso 1:
a) Reducción de filas:a) Reducción de filas: Restar el costo menor de cada fila a la fila
correspondiente y/o
b) Reducción de columnas:b) Reducción de columnas: Restar el costo menor de cada columna
a la columna correspondiente
Con esto se crea una nueva matriz con las propiedades 1 y 2
81
Método Húngaro:
Paso 2: Determinar si la matriz es reducida (Prueba de Optimalidad).
Trazar el menor número de líneas rectas sobre las filas y columnas
para cubrir todos los ceros.
Si el número de rectas es igual al número de filas o columnas se dice
que esta matriz es reducida.
Si la matriz no es reducida pasar al paso 3, sino pasar al paso 4
82
Método Húngaro:
Paso 3: Movimiento
De todas las celdas no cruzadas identifique una con el menor
valor y haga lo siguiente:
a) Restar el valor a cada celda no cruzada
b) Sumar el valor a cada celda de intersección de rectas
Volver al paso 2
83
Método Húngaro:
Paso 4: Solución óptima (Asignación)
Primero se asigna a las que tengan sólo una alternativa, se van
marcando y así sucesivamente
Determinar el costo: Se suman todos los costos
correspondientes a las asignaciones (o sumar todos los pi y qj).
¿Qué valor se obtiene al sumar todos los valores que se restaron
en las reducciones de filas y columnas?
84
Ejemplo: Aplique el método Húngaro al ejemplo
1 2 3 4 pi
F 24 10 21 11
M 14 22 10 15
O 15 17 20 19
P 11 19 14 13
qj
Paso 0: Matriz de Asignación
Nota: En negrita los menores de cada fila
85
Paso 1: Reducción de filas y columnas
1 2 3 4 pi
F 14 0 11 1 10
M 4 12 0 5 10
O 0 2 5 4 15
P 0 8 3 2 11
qj 1
1 2 3 4 pi
F 14 0 11 0 10
M 4 12 0 4 10
O 0 2 5 3 15
P 0 8 3 1 11
qj 1
Filas
Columnas
86
Paso 2: Determinar si la matriz es reducida
1 2 3 4 pi
F 14 0 11 0 10
M 4 12 0 4 10
O 0 2 5 3 15
P 0 8 3 1 11
qj 1
No es reducida: sólo tres rectas (para ser reducida deben ser 4)
Ir al paso 3
87
Paso 3: Movimiento (Seleccionar el menor: restar a las
no tachadas, sumar a las intersecciones)
1 2 3 4 pi
F 14 0 11 0 10
M 4 12 0 4 10
O 0 2 5 3 15
P 0 8 3 1 11
qj 1
1 2 3 4 pi
F 15 0 12 0 10
M 4 11 0 3 10
O 0 1 5 2 15
P 0 7 3 0 11
qj 1 + 1
Volver al paso 2 !!
88
Iteración paso 2:
1 2 3 4 pi
F 15 0 12 0 10
M 4 11 0 3 10
O 0 1 5 2 15
P 0 7 3 0 11
qj 1 + 1
Se tachan todos los ceros con cuatro rectas, por tanto es óptima
Ir al paso 4 !!
89
Paso 4: Asignación
1 2 3 4 pi
F 15 0 12 0 10
M 4 11 0 3 10
O 0 1 5 2 15
P 0 7 3 0 11
qj 1 + 1
Costo = c12 + c23 + c31 +c44
= 10+10+15+13 = 48
∑∑ += ji qpCosto
=10 + 10 + 15 + 11 + 1 + 1 = 48
Ver Asignación RPG
90
Modelo de Asignación: Otras consideraciones
El modelo de asignación de RPG es un modelo de minimización
en el cual el número de vicepresidentes es igual al número de
plantas, y todas las asignaciones posibles son aceptables.
Consideremos ahora modelos tipo asignación donde no todas las
condiciones anteriores se cumplen. En particular se considerarán
situaciones en las que:
1 Hay una desigualdad entre el número de “personas” por
asignar y el número de “destinos” que requieren personas
asignadas.
2 Hay un modelo de maximización
3 Existen asignaciones inaceptables
91
Modelo de Asignación: Otras consideraciones
1. Ofertas y demandas desiguales
a) Oferta mayor que la demanda
Suponer que el presidente de RPG quiere auditar a la planta de
Tilburgo, por tanto tendrá que decidir cual de los cuatro
vicepresidentes debe asignar a cada una de las tres plantas
restantes.
Solución: Se elimina la restricción que requería un
vicepresidente para Tilburgo. El resultado de este cambio es que
la holgura para uno de los cuatro vicepresidentes será 1 en la
nueva solución óptima
Ver Asignación RPG (O>D)
92
Modelo de Asignación: Otras consideraciones
1. Ofertas y demandas desiguales
b) Demanda mayor que la oferta
Suponer que el vicepresidente de Personal tiene que viajar a
Illinois durante la primer semana de junio, por lo tanto no puede
participar en la auditoría en Europa.
Solución: Se agrega un vicepresidente ficticio (igual al modelo
de transporte) para obtener una solución factible, pero es claro
que una de las plantas quedará sin auditar.
93
Modelo de Asignación: Otras consideraciones
2. Hay un modelo de maximización
La respuesta de asignación es un beneficio y no un costo
Ejemplo: Suponga que RPG tiene que asignar vendedores a sus
territorios de venta.
Existen cuatro personas bien capacitadas listas para ser
asignadas y tres territorios requieren un nuevo vendedor. Uno
de los vendedores no será asignado.
En este caso la asignación de un vendedor cualquiera a un
territorio se mide por el incremento marginal esperado en la
contribución de dicha asignación a las ganancias.
94
Modelo de Asignación: Otras consideraciones
2. Hay un modelo de maximización
La matriz de ganancia es la siguiente
Contribución del
Vendedora
Territorio
1
Territorio
2
Territorio
3
A 40$ 30$ 20$
B 18$ 28$ 22$
C 12$ 16$ 20$
D 25$ 24$ 27$
Ver Asignación Vendedores RPG
95
Modelo de Asignación: Otras consideraciones
3. Situaciones con asignaciones inaceptables
Ejemplo: Suponga que el presidente de RPG no tiene
el menor deseo de que el vicepresidente de
Operaciones realice una auditoría a la Planta Nancy.
Solución: Asignar un costo arbitrariamente alto a esta
“ruta”, de tal modo que al restar de él cualquier
número finito se obtiene siempre un valor mayor que
otros números relevantes
Ver Asignación RPG inaceptable
96
2.3 Modelo de Transbordo
Este modelo permite que las unidades no vayan
directamente desde un origen a un destino, sino
que pasen por nodos intermedios o transitorios.
Cada origen, punto intermedio y destino final se representan
como nodos y se conectan a través de arcos dirigidos
Restricción en cada nodo transitorio:
suma flujos entrantes = suma flujos saliente
También se puede representar por medio de una matriz donde
un mij = 1 cuando existe un enlace directo entre el nodo i y el
nodo j; y mij = 0 cuando no hay enlace directo entre estos nodos
97
Modelo de Transbordo: Algoritmo
Inicialización: Encuentre un plan de embarque factible que
satisfaga todas las restricciones de suministro y demanda, al
mismo tiempo que mantiene un equilibrio en todos los nodos
de transbordo.
Prueba de Optimalidad: Pruebe el plan de embarque actual
para ver si es óptimo, es decir, si es el plan que incurre en los
costos totales mínimos. Si es así, deténgase con la solución
óptima, sino vaya al paso 3.
Movimientos: Use el hecho de que el plan de embarque
actual no es óptimo para crear un nuevo plan de embarque
factible con menos costo total que el actual. Vaya al paso 2.
1
2
3
98
Consideraciones:
• Los pasos del algoritmo son análogos a los del algoritmo de
pasos sucesivos (escalón).
• Tanto los nodos origen como los destinos pueden ser a su vez
nodos de transbordo.
• Al igual que el modelo de transporte, puede haber desequilibrio,
en ese caso se agregan fuentes o destinos ficticios con costo cero.
• El numero total del sistema está dado por el total de la oferta o de
la demanda.
• A cada nodo de transbordo se asigna un suministro (demanda)
igual a su suministro (demanda) original (cero, si no coincide
originalmente con un destino) más el total de unidades del
sistema. Esto permite que todas las unidades puedan pasar por un
empalme dado.
99
Ejemplo 1:
Determínese un programa de embarque que cubra todas las
demandas a un costo mínimo total para los datos
correspondientes al siguiente grafo (costo en $).
3 4
2
4
3
7 2
1 3 5
2 4 6
+95 -30
+70
+15
-30 -45
8
100
Solución
• Los sitios 1 y 2 son orígenes
• Los sitios 5 y 6 son destinos
• El sitio 3 es origen y empalme
• El sitio 4 es destino y empalme
• La oferta es mayor que la demanda por tanto se requiere un
destino ficticio que demande 75 unidades
• Agregar 180 unidades a cada empalme (oferta y demanda)
• El costo de las unidades que van de un empalme (como origen)
a él mismo (como destino) y de cualquier origen al sitio ficticio
es cero.
• A las rutas no permitidas se les asocia un valor relativamente
alto (por 1.000)
101
La tabla inicial es:
3 4 5 6 F Oferta
1 95
3 1000 8 1000 0
2 70
2 7 1000 1000 0
3 195
0 3 4 4 0
4 180
1000 0 1000 2 0
Demanda 180 210 30 45 75
Orígenes
Destinos
102
La tabla final es:
3 4 5 6 F Oferta
1 20 75 95
3 1000 8 1000 0
2 70 70
2 7 1000 1000 0
3 90 30 30 45 195
0 3 4 4 0
4 180 180
1000 0 1000 2 0
Demanda 180 210 30 45 75
Destinos
Orígenes
Costo = 20*3+75*0+70*2+90*0+30*3+30*4+45*4+180*0=$590
103
Ejemplo 2:
Una corporación necesita transportar 70 unidades de un producto, del sitio 1 a
los sitios 2 y 3 en cantidades de 45 y 25 unidades, respectivamente. Las tarifas
cij (en miles de pesos por unidad) de carga aérea entre los sitios comunicados
por carguero se dan en la tabla, en la cual las líneas punteadas indica que no hay
servicio disponible. Determínese un programa de embarque que asigne el
número requerido de artículos a cada destino, a un costo mínimo de transporte.
Ningún embarque requiere de vuelo directo, se permiten los envíos empleando
puntos intermedios.
1 2 3 4
1 .... 38 56 34
2 38 ... 27 ...
3 56 27 ... 19
4 34 ... 19 ...
104
Ejemplo 3:
1
2
3
4
5 7
6
8
9
10
11
100
200
150
120
80
70
110
2
3
4
4
4
5
5
6
6
6
7
7
7
8
8
Nodos de transbordo
105
Planteamiento del modelo PL :
Plantear el modelo de PL para el ejemplo mostrado en el
grafo anterior.
106
2.4. Modelos de Redes
2.4.1 Teoría de Grafos
2.4.2 Modelo de la Ruta más corta
2.4.3 Modelo del Árbol Expandido Mínimo
2.4.4 Problema del Flujo Máximo
107
2.4.1 Introducción a la Teoría de Grafos
Grafo no dirigido:
Un grafo no dirigido G consiste en un conjunto V de vértices
(o nodos) y un conjunto E de lados (ramas o enlaces) tales que
cada lado e ε E está asociado a un par no ordenado de vértices
v y w. Si un lado e está asociado a un único par de vértices v y
w, entonces e= (v,w) o e=(w,v).
Grafo dirigido:
Un grafo dirigido (o digrafo) G consiste en un conjunto V de
vértices (o nodos) y un conjunto E de lados (o ramas) tales que
cada lado e ε E está asociado a un par ordenado de vértices. Si
un lado e está asociado a un par ordenado único de vértices v y
w, se escribe e = (v,w).
108
2.4.1 Introducción a la Teoría de Grafos
Se dice que un lado e = (v,w) de un grafo (dirigido o no dirigido) es
incidente en v y w. Se dice que los vértices v y w son incidentes
en e y también son vértices adyacentes.
Si G es un grafo (dirigido o no dirigido) con un conjunto de vértices
V y un conjunto de lados E, se escribe G = (V,E)
Nodo (Vértice):
Un círculo de una red utilizada para representar una planta,
almacén o tienda.
Nodo de Suministro:
Nodo desde le cual los productos se van a enviar.
109
2.4.1 Introducción a la Teoría de Grafos
Nodo de demanda:
Nodo que va a recibir los productos para cumplir con una
demanda conocida.
Nodo de transbordo:
Nodo que recibe productos desde otros nodos para su
distribución.
Arco (enlace):
Línea de una red que conecta un par de nodos. Se le utiliza para
representar una ruta válida desde el nodo origen al nodo de
distribución.
110
2.4.1 Introducción a la Teoría de Grafos
Arco dirigido:
Indica el sentido de movimiento de los productos.
Camino:
Una secuencia de nodos en una red unidos por arcos (dirigidos o
no dirigidos)
Trayectoria (lazo):
Es un camino cerrado (ciclo) donde el primer nodo es a su vez el
último.
111
2.4.1 Introducción a la Teoría de Grafos
Representación Matricial
i) Matriz de Adyacencia
ii) Matriz de costo (beneficio)
Representación de un grafo:
Un grafo se puede representar matemáticamente como:
a) Una matriz
b) Una lista enlazada
c) Árbol
112
2.4.1 Introducción a la Teoría de Grafos (cont.)
Matriz de Adyacencia:
Para un grafo G, es una matriz A de dimensión NxN,
donde A[i,j] es verdadero (1) si, y sólo si, existe un arco
que vaya del vértice i al vértice j. En ausencia de arco
directo se representa generalmente por 0.
Ejemplo:Dado el siguiente grafo encontrar su matriz de
adyacencia
113
2.4.1 Introducción a la Teoría de Grafos (cont.)
2
3
4
1
1 2 3 4
1 1 1
2 1
3 1
4 1
114
2.4.1 Introducción a la Teoría de Grafos (cont.)
Matriz de Costo:
Para un grafo G etiquetado, es una matriz C de dimensión
NxN, donde A[i,j] es el costo (valor de la etiqueta) si, y
sólo si, existe un arco que vaya del vértice i al vértice j.
En ausencia de arco directo se representa generalmente
por infinito (costo extremadamente alto, para la
simulación se hace uso de un valor fuera de contexto).
Ejemplo:Dado el siguiente grafo encontrar su matriz de costo
115
2.4.1 Introducción a la Teoría de Grafos (cont.)
2
3
4
1
1 2 3 4
1 10 15
2 12
3 20
4 5
10
15 20 12
5
116
2.4.1 Introducción a la Teoría de Grafos (cont.)
Para un grafo no dirigido, tanto la matriz de adyacencia
como la matriz de costo son simétricas, esto es:
A[i,j] = A[j,i]
ó
C[i,j] = C[j,i]
117
Ejemplo Introductorio
Seymour Miles es el gerente de distribución de Zigwell. Zigwell
distribuye sus motores oruga en cinco estados del medio oeste. Por lo
regular, Seymour Miles tiene 10 aparatos E-9 in situ en lo que
designaremos como local 1. Estos tractores deben ser enviados a los
dos locales de construcción más importantes designados como 3 y 4.
Se necesitan tres E-9 en el local 3 y siete en el local 4. Debido a
itinerarios arreglados con anterioridad, relativos a la disponibilidad
de conductores, los tractores solo pueden ser distribuidos de acuerdo
con las rutas alternativas que se muestran en el grafo de la figura.
La figura tiene un número +10 en el nodo 1, esto significa que hay 10
aparatos E-9 disponibles (oferta). Los indicadores -3 y -7 asociados a
los locales 3 y 4, respectivamente, denotan los requerimientos
(demandas) de éstos.
118
1 2 4
5
3
c12
c34
c24
c25 c54
u43
c53
c23
+10
-3
-7
Rutas alternativas para el destino 3
1-2-3, 1-2-4-3, 1-2-5-4-3, 1-2-5-3
u12
u23
u34
c43
u53
c54
u25
u24
119
Los costos cij son unitarios. Por ejemplo el costo de
recorrer el arco (5,3) es c53 por cada tractor.
Debido a los acuerdos sostenidos con los conductores,
Zigwell debe cambiarlos en cada local que se encuentre
sobre la ruta. Las limitaciones en la disponibilidad de
conductores ocasionan que haya una cota superior en el
número de tractores que pueden recorrer cualquier arco
dado.
Por ejemplo: u53 es la cota superior o capacidad en el arco
(5,3).
El problema de Sygmour consiste en encontrar un plan de
embarque que satisfaga la demanda y las restricciones de
capacidad a costo mínimo.
120
El problema en particular se conoce como modelo
de transbordo con capacidades.
Expresar el problema como un PL
a) Variables de decisión
xij = número total de E-9 que se enviarán a través
del arco (i,j).
= flujo del nodo i al nodo j
121
b) Función Objetivo
MIN Z =C12X12+C23X23+C24X24+C25X25+C34X34+C43X43+C53X53+C54X54
la red(i,j) deartodos loscx ijij cos,0 ≤≤
c) Restricciones
s a
+ X12 = 10
- X12+X23+X24+X25 = 0
-X23 -X43 -X53 +X34 = -3
-X24 +X43 -X34 -X54 = -7
-X25 +X53 +X54 = 0
Balance
de
flujo
122
Matriz Incidencia nodo-arco
a r c o
Nodo (1,2) (2,3) (2,4) (2,5) (4,3) (5,3) (3,4) (5,4) LD
1 +1 0 0 0 0 0 0 0 10
2 -1 +1 +1 +1 0 0 0 0 0
3 0 -1 0 0 -1 -1 +1 0 -3
4 0 0 -1 0 +1 0 -1 -1 -7
5 0 0 0 -1 0 +1 0 +1 0
123
Formulación General del Modelo de Transbordo con Capacidades
Xij denotan el flujo del nodo i al nodo j a lo largo del arco que
conecta esos nodos.
Lj representa la oferta en el nodo j
ijij ij xc∑
s.a.
minimice
njLxx jk kjk jk ,....,2,1, ==− ∑∑
la red(i,j) deartodos loscx ijij cos,0 ≤≤
124
Resolver para las siguientes capacidades y costos
Capacidad
dea Sitio 1 Sitio 2 Sitio 3 Sitio 4 Sitio 5
Sitio 1 10
Sitio 2 4 3 3
Sitio 3 2
Sitio 4 4
Sitio 5 3 5
Costo Unitario
dea Sitio 1 Sitio 2 Sitio 3 Sitio 4 Sitio 5
Sitio 1 $100
Sitio 2 $45 $50 $20
Sitio 3 $60
Sitio 4 $85
Sitio 5 $10 $55
Ver transbordo con capacidades
125
2.4.2 Modelo de la Ruta más corta
Se pueden dar dos casos para representar la red:
Como grafo no dirigido
Como grafo dirigido
Situaciones:
a
b
Cualquiera que sea el caso corresponde
a grafos ponderados (con peso)
126
2.4.2 Modelo de la Ruta más corta
Considerénse todos los nodos que estén directamente
conectados con el origen. Etiquetarlos con la distancia al
origen y su nodo predecesor. Etiquetas temporales,
[distancia, nodo].
De entre todos los nodos con etiquetas temporales,
escoger el que tenga la distancia menor y se marca como
permanente. Si todos están con etiquetas permanentes se
va al paso cuatro.
a) Algoritmo: Grafo no dirigido
1
2
127
2.4.2 Modelo de la Ruta más corta (GND)
Todo nodo que no tenga etiqueta permanente, tendrá etiqueta
temporal o estará sin etiqueta. Sea L el último nodo con
etiqueta permanente. Considerénse todas las etiquetas de los
vecinos de L (directamente conectados a L mediante un
arco). Para cada uno de estos nodos calcúlese la suma de su
distancia a L. Si el nodo en cuestión no está etiquetado,
asígnese una etiqueta temporal que conste de esta distancia y
de L como predecesor. Si el nodo en cuestión ya tiene
etiqueta temporal, cámbiese sólo si la distancia recién
calculada es menor que la componente de distancia de la
etiqueta actual. En este caso, la etiqueta contendrá esta
distancia y a L como predecesor. Regresar al paso 2
3
Algoritmo:
128
2.4.2 Modelo de la Ruta más corta (GND)
Las etiquetas permanentes indican la distancia más corta
entre el nodo origen a cada nodo de la red. También indican
el nodo predecesor en la ruta más corta hacia cada nodo. Para
encontrar el camino más corto de un nodo dado, comiéncese
en él y retroceda al nodo anterior. Continuar con el recorrido
hasta llegar al origen.
Algoritmo:
4
129
2.4.2 Modelo de la Ruta más corta (GND)
Ejemplo: Para el siguiente grafo encontrar la distancia más corta
desde el nodo H al resto de los nodos.
H
1
2
3
4
5
6
7
8
4
1
1
1
1
2
2
7
6
3
3
3
130
2.4.2 Modelo de la Ruta más corta (GND)
Solución:
H
1
2
3
4
5
6
7
8
4
1
1
1
1
2
2
7
6
3
3
3
(8,H)
(4,H)
(5,1)
(6,3)
(8,2)
(6,3)
(9,4)
(9,7)
ó
1:Ver ejemplo 1 Ruta mas corta 2: Hacer problema 19 guía 2 (Ejemplo 2 Ruta mas corta
131
A
7
1
3
B
C
D
E
F
G
1
4
2
10
8
10
5
7
4
3
Para su práctica y ejercitación neuronal
132
2.4.2 Modelo de la Ruta más corta (GD)
Es una técnica exhaustiva, esto es, prueba todas las alternativas
posibles.
Opera a partir de un conjunto S de vértices cuya distancia más
corta desde el origen ya es conocida. Inicialmente S contiene sólo
el nodo de origen. En cada paso se agrega algún vértice restante v
a S, cuya distancia desde el origen es la más corta posible.
Para cada paso del algoritmo, se utiliza una matriz D para
registrar la longitud del camino más corto a cada vértice.
b) Algoritmo de Dijkstra
133
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
INICIO
0) V = {1, 2, 3, 4, ..., n}
1) S = {1} // nodo 1 se supone que es el origen
2) Para i=2 Hasta n Hacer
3) Di = C1i
4) Para i=1 Hasta n-1 Hacer
5) Elegir un vértice w en V-S tal que Dw sea un mínimo
6) agregar w a S
7) Para cada vértice v en V-S Hacer
SI ((Dw+Cwv)<Dv)
//Pv = w
Dv = Dw+Cwv
8) //Dv=mínimo(Dv,Dw+Cwv)
FIN
134
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
Ejemplo: Aplicar el algoritmo al siguiente grafo dirigido
10
100
60
50
30
10
2
1
3 4
5
20
135
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
Inicial
0) V = {1, 2, 3, 4, 5}
1) S = {1}
2)
3) D2 = 10, D3 = inf, D4=30, D5 = 100
4) Iterar 4 veces
5) Seleccionar nodo con distancia más corta de V-S,
En el ejemplo es el nodo 2
Iteración S w D2 D3 D4 D5
Inicial {1} -- 10 inf 30 100
136
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
6) Agregar el nodo 2 a S : S = {1,2}
7) Iterar |V-S|, (V-S = {3,4,5})
D3=mínimo(D3,D2+C23) =mínimo(inf,10+50) = 60
D4=mínimo(D4,D2+C24) =mínimo(30,10+inf) = 30
D5=mínimo(D5,D2+C25) =mínimo(100,10+inf) = 100
Iteración S w D2 D3 D4 D5
Inicial {1} -- 10 inf 30 100
1 {1,2} 2 10 60 30 100
137
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
2a Iteración
V-S = {3,4,5}
5) w = 4
6) S = {1,2,4}
7) Iterar |V-S| V-S = {3,5}
D3=mínimo(D3,D4+C43) =mínimo(60,30+20) = 50
D5=mínimo(D5,D4+C45) =mínimo(100,30+60) = 90
Iteración S w D2 D3 D4 D5
Inicial {1} -- 10 inf 30 100
1 {1,2} 2 10 60 30 100
2 {1,2,4} 4 10 50 30 90
138
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
3a Iteración
V-S = {3,5}
5) w = 3
6) S = {1,2,4,3}
7) Iterar |V-S| (V-S = {5})
D5=mínimo(D5,D3+C35) =mínimo(90,50+10) = 60
Iteración S w D2 D3 D4 D5
Inicial {1} -- 10 inf 30 100
1 {1,2} 2 10 60 30 100
2 {1,2,4} 4 10 50 30 90
3 {1,2,4,3} 3 10 50 30 60
139
2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra
4a Iteración
V-S = {5}
5) w = 5
6) S = {1,2,4,3,5}
7) Iterar |V-S| (V-S = {})
Iteración S w D2 D3 D4 D5
Inicial {1} -- 10 inf 30 100
1 {1,2} 2 10 60 30 100
2 {1,2,4} 4 10 50 30 90
3 {1,2,4,3} 3 10 50 30 60
4 {1,2,4,3,5} 5 10 50 30 60
Tabla Final
140
¿Cuál es el camino?
Para conocer el camino hay que incluir otra matriz P de
vértices, tal que Pv contenga el vértice inmediato anterior a v
en el camino más corto.
Se asigna a Pv valor inicial 1 para todo v ≠ 1
La matriz P se actualiza después de la línea 8.
Si Dw + Cwv < Dv en la línea 8, después se hace Pv = w
Al término de la corrida del algoritmo, el camino a cada
vértice puede encontrarse regresando por los vértices
predecesores de la matriz P
141
¿Cuál es el camino?
Para el ejemplo, la matriz P debe tener los valores
P2 =1, P3 = 4, P4 = 1, P5 = 3
Para encontrar el camino más corto del vértice 1 al 5, se siguen
los predecesores en orden inverso.
3 es el predecesor de 5
4 es el predecesor de 3
1 es el predecesor de 4
142
Problema de los caminos más cortos entre
todos los pares de nodos
Para visualizar el problema se emplea un grafo dirigido G =
(V,A) en el que cada arco v→ w tiene un costo no negativo
Cv,w. El problema consiste en encontrar el camino de longitud
más corta (menor costo) entre v y w para cada par ordenado de
vértices (v,w).
Algoritmo de Floyd
Se utiliza una matriz A, donde Aij = Cij para toda i≠ j, si no
existe camino directo entre i y j se supone que Cij = inf. Cada
elemento de la diagonal se hace cero.
143
Problema de los caminos más cortos entre todos los pares de nodos
Después se hacen n iteraciones en la matriz A.
Al final de la k-ésima iteración Aij tendrá por valor la longitud
más pequeña de cualquier camino que vaya desde el vértice i
hasta el vértice j y que no pase por un vértice mayor que k.
Esto es, i y j, los vértice extremos del camino, pueden ser
cualquier vértice, pero todo vértice intermedio debe ser menor
o igual a k.
En la k-ésima iteración se aplica la siguiente fórmula para
calcular A
k-1Aij
kAij = min
k-1Aik + k-1Akj
144
Problema de los caminos más cortos entre todos los pares de nodos
Para calcular Aij, se compara k-1Aij, el costo de ir de i a j sin
pasar por k o cualquier otro nodo con numeración mayor, con
k-1Aik + k-1Akj, el costo de ir primero de i a k y después de k a j,
sin pasar a través de un vértice mayor que k. Si el paso por el
vértice k produce un camino más económico que el de k-1Aij, se
elige ese costo para kAij.
k-1
Aik
k-1Aij
k-1
Akj
i
k
j
145
Problema de los caminos más cortos entre todos los pares de nodos
Algoritmo de Floyd // Se supone que se cuenta con la matriz de costo C
0) INICIO
1) Desde i = 1 Hasta N
2) Desde j = 1 Hasta N
3) Aij ← Cij
4) Desde i = 1 Has ta N
5) Aii = 0
6) Desde k = 1 Hasta N
7) Desde i = 1 Hasta N
8) Desde j = 1 Hasta N
9) SI (Aik + Akj < Aij)
10) Aij = Aik + Akj
11) FIN
146
Problema de los caminos más cortos entre todos los pares de nodos
Recuperación de caminos para el Algoritmo de Floyd
Cuando es de interés conocer el camino más corto
entre dos vértices, hay que consignarlo en una matriz
P, donde Pij tiene el vértice k que permitió a Floyd
encontrar el valor menor de Aij. Si Pij es cero, el
camino de i a j es directo.
147
Problema de los caminos más cortos entre todos los pares de nodos
Algoritmo de Floyd Modificado
0) INICIO
1) Desde i = 1 Hasta N
2) Desde j = 1 Hasta N
3) Aij ← Cij
3) Pij ← 0
4) Desde i = 1 Has ta N
5) Aii = 0
6) Desde k = 1 Hasta N
7) Desde i = 1 Hasta N
8) Desde j = 1 Hasta N
9) SI (Aik + Akj < Aij)
10) Aij ← Aik + Akj
10) Pij ← k
11) FIN
148
Problema de los caminos más cortos entre todos los pares de nodos
Ejemplo: Aplique Floyd al grafo ponderado mostrado en la
figura
1 2 3
2
8
3
2
5
149
Problema de los caminos más cortos entre todos los pares de nodos
Solución:
Tabla Inicial
Nodos 1 2 3
1 0 8 5
2 3 0 inf
3 inf 2 0
0Aij
150
Problema de los caminos más cortos entre todos los pares de nodos
Solución:
Después de la primera iteración
1Aij
Nodos 1 2 3
1 0 8 5
2 3 0 8
3 inf 2 0
151
Problema de los caminos más cortos entre todos los pares de nodos
Solución:
Después de la segunda iteración
2Aij
Nodos 1 2 3
1 0 8 5
2 3 0 8
3 5 2 0
152
Problema de los caminos más cortos entre todos los pares de nodos
Solución:
Después de la tercera iteración
3Aij
Nodos 1 2 3
1 0 7 5
2 3 0 8
3 5 2 0
153
2.4.3 Modelo de árbol extensión mínima
Un árbol es un grafo que tiene sus n nodos (vértices)
conectados (conexo) con n-1 arcos (aristas), no
existiendo ciclos (caminos cerrados)
Definición 1
Definición 2 Un árbol de expansión de costo mínimo es aquel en que
todos los enlaces tienen longitudes (costos) mínimas
154
Algoritmo para el problema del árbol de expansión mínima.
Método Gráfico
Se selecciona un nodo cualquiera y se conecta al
nodo más cercano a éste.
Se identifica el nodo no conectado más cercano a
un nodo conectado y se conectan estos dos nodos
Empates se deciden en forma arbitraria. Los
empates indican que existen soluciones
alternativas para la construcción.
1
2
Nota:
155
H
1
2
3
4
5
6
7
8
4
1
1
1
1
2
2
7
6
3
3
3
Ejemplo: Encontrar el AEM para el siguiente grafo
156
H
1
2
3
4
5
6
7
1
1
1
1
Solución :
2
2
4
157
Algoritmo tabular
Paso Acción
0 Se construye la tabla de costos de enlaces
1 Se comienza arbitrariamente con cualquier nodo. Se designa a
este nodo como conectado y se pone una marca al lado de la
fila correspondiente al nodo. Se tacha el índice de la columna
que corresponde a él.
2 Considerando todas las filas marcadas, buscar el mínimo en las
columnas cuyo índice aún no haya sido tachado encerrándolo
en un círculo. Designándose de esta manera el nuevo nodo
conectado. Se tacha el índice de la columna y pone una marca
en la fila correspondiente a este nodo. Se repite este paso hasta
que todos los nodos estén conectados.
3 Los nodos encerrados en círculo identifican el árbol.
158
Aplicación Algoritmo tabular
Nodo H 1 2 3 4 5 6 7
H 4 7 8
1 4 6 1
2 6 1 2
3 1 1 1
4 7 1 3 3 2
5 2 3 3
6 3 3 1
7 8 2 1
Tabla inicial
159
Aplicación Algoritmo tabular
Inicio: Nodo H
Nodo H 1 2 3 4 5 6 7
* H 4 7 8
* 1 4 6 1
2 6 1 2
3 1 1 1
4 7 1 3 3 2
5 2 3 3
6 3 3 1
7 8 2 1
a)
b)
160
Aplicación Algoritmo tabular
Nodo 1
Nodo H 1 2 3 4 5 6 7
* H 4 7 8
* 1 4 6 1
2 6 1 2
* 3 1 1 1
4 7 1 3 3 2
5 2 3 3
6 3 3 1
7 8 2 1
a)
b)
c)
161
Aplicación Algoritmo tabular
Nodo H 1 2 3 4 5 6 7
* H 4 7 8
* 1 4 6 1
* 2 6 1 2
* 3 1 1 1
* 4 7 1 3 3 2
* 5 2 3 3
* 6 3 3 1
* 7 8 2 1
Tabla final
a)
b)
c)
162
H
1
2
3
4
5
6
7
1
1
1
1
Arbol de expansión mínima :
2
2
4
163
2.4.4 Problema del Flujo Máximo
En este problema hay un solo nodo fuente (nodo de
entrada) y un solo nodo destino (nodo de salida), y el
resto son nodos de transbordo. El problema consiste en
encontrar la máxima cantidad de flujo total (petróleo,
gas, efectivo, mensajes, tránsito, etc.) en una unidad de
tiempo.
La cantidad de flujo por unidad de tiempo en cada arco
está limitada por las restricciones de capacidad.
Este problema se puede representar como una red
dirigida y conexa.
Descripción
164
Para cada nodo interno debe cumplirse que:
flujo que sale del nodo = flujo que entra al nodo
En términos formales, siendo 1 la fuente y n el
destino el problema consiste en:
MAX f
f si i = 1
sujeto a si i = n
0 en otro caso
0 ≤ xij ≤ uij, para todos (i,j) de la red
xij : flujo por unidad de tiempo por el arco (i,j)
uij : capacidad del arco (i,j)
f : flujo total a través de la red
Descripción
fxx
j
ji
j
ij −=− ∑∑
165
Considérese la i-ésima restricción, para algún
valor fijo de i, La suma se considera
sobre toda j para la cual el arco (i,j) con i fijo,
pertenezca a la red. Entonces, será el flujo
total que sale del nodo i. En forma semejante, la
suma se considera sobre toda j para la cual
exista el arco (j,i) en la red, (i fijo). De modo que
es el flujo que entra al nodo i
Descripción
∑j
ijx
∑j
jix
∑j
ijx
166
Antes de hacer la presentación formal del
algoritmo, revisemos el siguiente ejemplo.
Algoritmo
6
6
6
2
4
4
3
2
1
6
1
2
3
4
5
167
Grafo inicial: Inicialización delos flujos en cada nodoAlgoritmo
Consideremos un camino desde el nodo 1 al nodo 6
Ejemplo: 1-2-5-6
4
0
0
0
0
0
0
0
0
6
4
1
6
2
3
2
6
0
2
3
4
5
61
168
Se dice que la cantidad de flujo a lo largo de dicho
recorrido es factible si:
No excede la capacidad de ningún arco del camino
Con excepción de los nodos 1 y 6, el flujo en cada nodo
debe satisfacer la condición de conservación
1
2
La cantidad máxima que puede fluir desde la fuente a lo
largo de un camino es igual a la menor de las
capacidades de los arcos de dicho camino
Al asignar un flujo a un arco nos atendremos a las reglas:
1
2
Se reduce la capacidad en la dirección del flujo (cantidad de flujo)
Se aumenta la capacidad en sentido opuesto (cantidad de flujo)
169
Ejemplo: Considerar el arco 1-2
Asignar dos unidades a este arco:
Aplicando las reglas 1 y 2 se tiene
Se generó una capacidad ficticia en la dirección 2-1
Enviar una unidad de 2 a 1
1 2
(2 )
22
1 2
4 0
1 2
(1 )
13
170
Algoritmo
Inicializar cada nodo del grafo con capacidades uij en
la dirección del flujo y cero en la dirección opuesta.
Encontrar cualquier camino de la fuente a destino que
tenga capacidad de flujo positiva, si no los hay, se
habrá encontrado la solución óptima.
Sea cmin la capacidad mínima de flujo entre los arcos
seleccionados en el paso 1, se aumenta el flujo
existente a través de la red al enviar un flujo adicional
cmin para todos los arcos del camino.
Para todos los arcos del camino, disminúyanse las
capacidades en la dirección del flujo y auméntese las
capacidades en la dirección opuesta en cmin. Volver al
paso 1
Inicial
1
2
3
171
Aplicar el algoritmo al grafo del ejemplo:
4
0
0
0
0
0
0
0
0
6
4
1
6
2
3
2
6
0
2
3
4
5
61
Paso Inicial
172
Iteración 1:
4
0
0
0
0
0
0
0
0
6
4
1
6
2
3
2
6
0
2
3
4
5
61
Elegir arbitrariamente el camino 1-3-5-6
cmin = MIN(6,4,2)=2; actualizando la red se tiene
4
2
2 2
0
2
2
2
173
Iteración 2:
4
0
0
0
0
0
0
0
0
6
4
1
2
2
3
2
2
0
2
3
4
5
61
4
2
0
2
2
6
Elegir arbitrariamente el camino 1-2-4-6
cmin = MIN(4,6,6)=4; actualizando la red se tiene
4
0
6
4
6
4
2
6
22
174
Iteración 3:
4
0
0
0
0
0
2
0
0
6
4
1
0
2
1
2
0
0
2
3
4
5
61
2
4
0
2
2
8
Elegir arbitrariamente el camino 1-3-2-4-6
cmin = MIN(4,3,2,2)=2; actualizando la red se tiene
4
0
6
4
6 6
2
8
22
4
2
3
0
2
6
2
4
6
6
175
Cálculo de la cantidad de flujo en cada arco
Se determina comparando la capacidad inicial de cada arco
con la capacidad inicial. Para cada arco la regla es:
Si la capacidad final es menor que la capacidad inicial,
calcular la diferencia. Esta es la cantidad del flujo a través
del arco.
Ejemplo: Arco 3-5
Inicial
Final 22
3 5
04
3 5
Final < inicial entonces el flujo es 4-2=2
176
Aplicando la regla anterior a todos los arcos se tiene el
siguiente grafo:
6
6
6
2
4
2
8
2
8
4
1
2
3
4
5
177
Unidad 3
Administración de Proyectos
PERT y CPM
178
3 Administración de Proyectos (PERT y CPM)
1. ¿Cuándo sería lo más pronto que el proyecto pudiera estar
terminado?
2. Para cumplir con este tiempo de conclusión, ¿qué tareas son
críticas, en el sentido de que un retraso en cualquiera de esas
tareas provoca un retraso en la conclusión del proyecto?
3. Es posible acelerar ciertas tareas para terminar todo el proyecto
más pronto?. Si es así, ¿qué tareas serán éstas y cuál sería el
costo adicional?
Todo proyecto debe ser comprobado y controlado, dado que éste
tiene involucrado numerosas tareas interrelacionadas.
A través de algunas técnicas se puede responder a preguntas como:
179
Técnica de Evaluación de Proyectos (PERT,
Program Evaluation and Review Technique): Método
utilizado para administrar proyectos en que los
tiempos requeridos para terminar las tareas
individuales son inciertos (probabilísticos).
Método de la Ruta Crítica (CPM, Critical Path
Method): Método utilizado para administrar
proyectos en que los tiempos requeridos para
terminar las tareas individuales se conocen con
relativa certeza (determinísticos).
180
3.1 Desarrollo de la Red de Proyectos
1. Identifique las tareas individuales que componen el proyecto
2. Obtenga una estimación del tiempo de conclusión de cada
tarea.
3. Identifique las relaciones entre las tareas. ¿Qué tareas deben
concluirse antes de que otras puedan iniciarse?
4. Dibuje un diagrama de red de proyecto para reflejar la
información de los pasos 1 y 3
Para determinar el tiempo de conclusión de un proyecto puede
usar los siguientes pasos:
181
Ejemplo:
Traslado de las oficinas de una ciudad a otra
El directorio ha fijado un plazo máximo de 22
semanas para la mudanza
Actividad Descripción
Prdecesoras
inmediatas
Tiempo Recursos
A Elegir local de oficinas -
B Crear el plan financiero y de -
C
Determinar requerimientos
de personal
B
D Diseño de local A, C
E Construir el interior D
F Elegir personal a mudar C
G
Contratar nuevos
empleados
F
H
Mudar registros, personal
clave, etc.
F
I
Hacer arreglos finacieros de
la organización
B
J Entrenar personal nuevo H, E, G
182
Construcción del diagrama de Red:
1
2
3
4
A
B C
¿Cómo agregamos la actividad D?. Sus
predecesoras inmediatas son A y C,
además C es predecesora directa de F
183
Actividades Ficticias (figurada):
Es una actividad artificial que no requiere tiempo y que se
incluye en una red de proyecto para asegurar la relación de
precedencia correcta entre ciertas tareas.
Generalmente se representan por líneas segmentadas.
Se usan sólo para reflejar las relaciones de precedencia
adecuadas
2
4
A
C
184
Volviendo al ejemplo: Agregando el resto de las actividades a la red
finalmente se tiene
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
I
J
185
Siguiendo con el ejemplo: G y H tienen como predecesora inmediata
F, además ambas son predecesoras de J, agregar actividad ficticia.
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
I
J
9
Red Final
Fic
186
Ruta Crítica: Dar cumplimiento al plazo límite
Se requiere de las estimaciones de tiempo de cada actividad (supuestos)
Actividad Descripción
Prdecesoras
inmediatas
Tiempo Recursos
A Elegir local de oficinas - 3
B
Crear el plan financiero y de
organización
- 5
C
Determinar requerimientos
de personal
B 3
D Diseño de local A, C 4
E Construir el interior D 8
F Elegir personal a mudar C 2
G
Contratar nuevos
empleados
F 4
H
Mudar registros, personal
clave, etc.
F 2
I
Hacer arreglos finacieros de
la organización
B 5
J Entrenar personal nuevo H, E, G 3
187
Retomando el ejemplo: Agregando los tiempos a las actividades
1
2
3
4
5
6
7
9
A
B
C
D
E
F
G
H
I
J
(3)
(5)
(3)
(4)
(8)
(2)
(4)
(2)
(5)
(3)
8
Fic
188
Cálculo de la ruta crítica: Tiempo de término del proyecto
Definiciones
Tiempo de inicio más inmediato: El tiempo
más cercano en que una tarea posiblemente
pueda iniciarse (TI)
Tiempo de término más breve: El tiempo más
corto en el que una tarea posiblemente pueda
concluir (TT)
189
Reglas a cumplir: Dado que en el proyecto existen tareas
predecesoras es necesario conocer cuando
termina una y cuando empieza la otra:
Regla
1. Para calcular el TI de una tarea se debe conocer los TT de cada
tarea predecesora inmediata
2. El TI más inmediato de una tarea de la que se conocen los
tiempos de término más breves de todas sus tareas
predecesoras inmediatas es el máximo de todos esos tiempos
de término más breves.
3. Tiempo de término más breve = (tiempo de inicio más
inmediato) + (tiempo de tarea(t))
190
Pasos para determinar los TI y TT más inmediatos:
Paso
0
1
Identificar el nodo de inicio de la red del proyecto
Calcule y escriba en cada arco saliente
a) TI más cercano, esto es, 0
b) El TT más breve de acuerdo a la regla 3
TT más breve = (TI más inmediato) + (t)
= 0 + t
Seleccionar cualquier nodo donde todos los arcos
entrantes han sido etiquetados con sus TI y TT
191
Pasos para determinar los TI y TT más inmediatos:
Paso
2 Para el nodo seleccionado en el paso 1 calcule y registre
en cada arco saliente
a) El TI más breve de acuerdo a la regla 2
TI más breve = MAXIMO(TT de los arcos entrantes)
b) El TT más breve de acuerdo a la regla 3
TT más breve = TI más inmediato + t
192
Cálculo de TI y TT:
1
2
3
4
5
6
7
9
A[0,3]
B[0,5]
C[5,8]
D[8,12]
E[12,20]
F[8,10]
G[10,14]
H[10,12]
I[5,10]
J[20,23]
8
Fic
193
Identificación de las tareas críticas:
Para identificar las tareas críticas hay que realizar un
recorrido hacia atrás hasta el inicio del proyecto,
analizando cada tarea.
1. Último Tiempo de término: Lo más tarde que puede
concluirse una tarea, en tanto permita que el proyecto se
complete lo más pronto posible
2. Último tiempo de inicio: Lo más tarde que pueda
iniciarse una tarea, pero finalizando dentro de su tiempo
de término.
3. Tarea sucesora: Una tarea para la que la tarea de interés
es una predecesora
194
Identificación de las tareas críticas:
Para calcular el último tiempo de término (UTT) de una
tarea particular, debe conocer los últimos tiempos de
inicio (UTI) de cada tarea sucesora inmediata.
Respecto a una tarea de la que se conocen los últimos
tiempos de inicio de todas sus tareas sucesoras
inmediatas, el último tiempo de término (UTT) de esa
tarea es el mínimo de los últimos tiempos de inicio de
todas las tareas sucesoras inmediatas
UTI = UTT- t
Regla
4
5
6
195
Identificación de las tareas críticas:
Pasos para calcular los últimos tiempos de inicio y término
0
1
2
3
Identificar el final del proyecto. Calcular y escribir en cada arco
entrante:
a) Último tiempo de término del proyecto
b) Último tiempo de inicio (Regla 6): UTI=UTT-t
Seleccione un nodo, cuyos arcos salientes hayan sido etiquetados
todos con sus UTI y UTT
Para el nodo seleccionado (paso 1) calcule y escriba lo siguiente
a) UTT= MIN(UTI arcos salientes), (regla 5)
b) UTI=UTT - t (regla 6)
Repetir pasos 1 y 2 hasta cubrir toda la red del proyecto
196
Identificación de las tareas críticas:
Cálculo de UTT y UTI para cada actividad
Iteración 2
Actividad ficticia UTT = 20
UTI = 20-0 = 20
Actividad I UTT = 23
UTI = 23-5 = 18
Nodo 7 Actividad E UTT = 20
UTI = 20-8 = 12
UTT = 20
UTI = 20-2 = 18
Iteración 1
Actividad H
Nodo 9 Actividad J UTT = 23
UTI = 23-3 = 20
197
1
2
3
4
5
6
7
9
A[0,3]
B[0,5]
C[5,8]
[20,23]
E[12,20]
F[8,10]
G[10,14]
H[10,12]
I[5,10]
J[20,23]
8
Identificación de las tareas críticas:
Cálculo de UTT y UTI para cada actividad . Finalmente se tiene
D[8,12]
[8,12] [12,20]
[5,8]
[18,23]
[16,20]
[18,20]
[14,16]
[5,8]
[0,5]
Fic
198
Identificación de las tareas críticas:
Holgura: Es la cantidad de tiempo que puede demorar una
actividad sin afectar la fecha de término del proyecto.
El valor de la holgura para cada actividad está dada por:
holgura = TI - UTI = TT - UTT
Ejemplo:
Actividad C: TI = 5, UTI = 5, TT = 8, UTT = 8
Holgura = 5 - 5 = 8 - 8 = 0
Actividad I: TI = 5, UTI = 18, TT = 10, UTT = 23
La actividad C tiene holgura 0, por tanto no puede
retrasarse, en cambio la actividad I tiene 13 semanas de
holgura que permite retrasar su inicio.
199
Identificación de las tareas críticas:
Resumen de los tiempos de las actividades del proyecto:
Actividad Tiempo Inicio Término Inicio Término Holgura
A 3 0 3 5 8 5
B 5 0 5 0 5 0
C 3 5 8 5 8 0
D 4 8 12 8 12 0
E 8 12 20 12 20 0
F 2 8 10 14 16 6
G 4 10 14 16 20 6
H 2 10 12 18 20 8
I 5 5 10 18 23 13
J 3 20 23 20 23 0
Tiempo más próximo de: Tiempo más lejano de:
Tiempo de ejecución del proyecto: 23 semanas
200
Identificación de las tareas críticas:
Actividad crítica es aquella que tiene holgura cero
Ruta crítica es una secuencia de tareas (actividades) críticas que
conecta el principio del proyecto con el fin
En nuestro ejemplo:
Actividades críticas: B, C, D, E y J
Ruta crítica: Nodos 1-3-2-5-7-9
Actividades B-C-D-E-J
201
Formas de Reducir la duración del proyecto:
1. Análisis Estratégico
Aquí el analista se pregunta: “¿Este proyecto tiene que
desarrollarse en la forma programada actualmente?”. En
concreto, “¿Todas las actividades de la ruta crítica tienen que
realizarse en el orden especificado?”. ¿Podemos hacer arreglos
para efectuar algunas de estas actividades en forma distinta de
cómo aparecen en la ruta crítica?.
2. Enfoque Táctico
El analista presupone que el diagrama en curso es adecuado y
trabaja para reducir el tiempo de ciertas actividades de la ruta
crítica asignando mayores recursos. Por ejemplo tiempo, aumento
de mano de obra, etc.
202
Formas de Reducir la duración del proyecto:
Para el ejemplo en estudio, el directorio estimó un
tiempo máximo de 22 semanas para realizar el
proyecto, y según el estudio se ha determinado que se
requieren 23 semanas, ¿Cómo soluciona Ud. el
problema?. Realice distintos supuestos válidos para su
solución. ¿Es única?.
203
Formas de Reducir la duración del proyecto:
Alternativa de solución
Realizados algunos estudios los responsables de la mudanza, se
dan cuenta que la actividad J (entrenamiento de los nuevos
empleados) debe realizarse en el nuevo edificio (después de
completar la actividad E) y después de que el personal clave y
de registros se haya mudado (al completar la actividad H).
Estos requerimientos se podrían cambiar:
• Realizar J independientemente de H
• El entrenamiento realizarlo en otras dependencias a un costo
reducido y que estén listos para cuando se termine la
construcción. Esto requiere agregar otra actividad: Garantizar
recursos de entrenamiento, actividad K
204
Formas de Reducir la duración del proyecto:
Con los cambios anteriores, es posible que la red
redefinida tenga una nueva ruta crítica con un tiempo
menor, aunque todavía insatisfactorio (mayor a las 22
semanas establecidas).
205
Diagrama de red para el proyecto redefinido
1
2
3
4
5
6
7
9
A
B
C
D
E
F G
H
I
J
(3)
(5)
(3)
(4)
(8)
(2) (4)
(2)
(5)
(3)
8
K(3)
Fic
206
Actualización de los tiempos para el proyecto redefinido
Actividad Tiempo Inicio Término Inicio Término Holgura
A 3 0 3 5 8 5
B 5 0 5 0 5 0
C 3 5 8 5 8 0
D 4 8 12 8 12 0
E 8 12 20 12 20 0
F 2 8 10 11 13 3
G 4 10 14 13 17 3
H 2 10 12 18 20 8
I 5 5 10 15 20 10
J 3 14 17 17 20 3
K 3 10 13 14 17 4
Tiempo más próximo de: Tiempo más lejano de:
Actividades ruta crítica: B-C-D-E
Duración del proyecto: 20 semanas
207
3.3 PERT: Variabilidad en los tiempos de Actividades
Hasta ahora hemos trabajado asumiendo que los
tiempos de duración de las actividades eran
determinísticos, en consecuencia TI, TT, UTI y UTT
también fueron deducidos como deterministas. Como
este supuesto no siempre es correcto, PERT emplea
una fórmula especial para estimar los tiempos de las
actividades.
PERT requiere de alguien que conozca bien una
actividad en cuestión, para producir tres estimaciones
del tiempo de ésta.
208
PERT: Variabilidad en los tiempos de Actividades
1. Tiempo optimista (denotado por a): el tiempo
mínimo. Todo tiene que marchar a la perfección.
2. Tiempo más probable (denotado por m): el tiempo
que se necesita en circunstancias ordinarias.
3. Tiempo pesimista (denotado por b): el tiempo
máximo. Situación que se da en el peor caso.
209
PERT: Variabilidad en los tiempos de Actividades
Ejemplo: Para la actividad E (8 semanas). Al
examinar en detalle el proyecto de construcción del
interior se llegó a las siguientes estimaciones:
a = 4
m = 7
b = 16
Para estimar el valor esperado y la desviación estándar de
los tiempos de la actividad, se asume que el tiempo de la
actividad es una variable aleatoria que tiene una
distribución de probabilidad unimodal beta.
210
PERT: Variabilidad en los tiempos de Actividades
4 7 8 16
a m b
Estimación del tiempo esperado
de actividad o tiempo promedio 6
4 bma
te
++
=
Estimación de la desviación
estándar del tiempo de la actividad 6
ab −
=σ
Distribución beta
211
PERT: Variabilidad en los tiempos de Actividades
Estimación de tiempo
Actividad a m b te desv est varianza
A 1,0 3,0 5,0 3,0 0,667 0,444
B 3,0 4,5 9,0 5,0 1,000 1,000
C 2,0 3,0 4,0 3,0 0,333 0,111
D 2,0 4,0 6,0 4,0 0,667 0,444
E 4,0 7,0 16,0 8,0 2,000 4,000
F 1,0 1,5 5,0 2,0 0,667 0,444
G 2,5 3,5 7,5 4,0 0,833 0,694
H 1,0 2,0 3,0 2,0 0,333 0,111
I 4,0 5,0 6,0 5,0 0,333 0,111
J 1,5 3,0 4,5 3,0 0,500 0,250
K 1,0 3,0 5,0 3,0 0,667 0,444
212
PERT: Variabilidad en los tiempos de Actividades
Cálculo del tiempo esperado de finalización de proyectos
Una vez determinado el tiempo promedio de cada
actividad, se puede calcular el tiempo de finalización
más temprano esperado para el proyecto completo.
Se determinan los tiempos de inicio y de término más
cercano, como también los tiempos de término y de
inicio más lejano. Con estos tiempos se determina la
holgura en cada actividad, para finalmente determinar la
ruta crítica, exactamente igual como se hizo para tiempo
determinista.
213
PERT: Variabilidad en los tiempos de Actividades
Probabilidad de concluir el proyecto a tiempo
El análisis procede de la siguiente forma:
1. Sea T el tiempo total que durarán las actividades de la ruta
crítica.
2. Encuéntrese la probabilidad de que el valor de T resulte menor
o igual que cualquier valor específico de interés. Para el
ejemplo en estudio buscaríamos T ≤ 22 semanas.
Una buena aproximación de esta probabilidad se encuentra
aceptando dos supuestos:
a) Los tiempos de actividad son variables aleatorias
independientes.
b) La variable T tiene una distribución aproximadamente
normal.
214
PERT: Variabilidad en los tiempos de Actividades
La meta es encontrar P{T ≤ 22}, donde T es el tiempo a lo largo
de la ruta crítica.
Estadísticas de la ruta crítica:
22
2
2
1 ... nT σσσσ +++=Desviación estándar
iσ
:iσ Desviación estándar de i-ésima
actividad de la ruta crítica
T : es el tiempo esperado (promedio)
215
Estimación de terminación del proyecto
Uso de la tabla de distribución normal, entonces
debemos calcular Z para llegar a determinar la
probabilidad.
σ
µ−
=
x
Z
216
Cálculos caso en estudio
Ruta crítica: B- C- D y E
T = 20 (tiempo esperado, promedio calculado, µ)
x = 22 (tiempo exigido)
357,2
555,5
4444,0111,01
2
2
22222
=
=
+++=
+++=
T
T
T
EDCBT
σ
σ
σ
σσσσσ
217
Cálculos caso en estudio
Z = 0,8485
En la tabla de Z
P(Z≤ 0,8485) = 0,80
357,2
2022 −
=Z
218
Matriz de Encadenamiento
Una matriz de encadenamiento, es una matriz de NxN (N es la
cantidad de actividades) donde cada celda se marca con una X si
la actividad de la fila requiere que esté terminada la actividad de
la columna. Esta matriz ayuda a la construcción de la red CPM
Para el ejemplo en estudio es:
A B C D E F G H I J
A
B
C X
D X X
F X
G X
H X
I X
J X X X
219
3.4 CPM: TRUEQUE ENTRE TIEMPO Y COSTO
CPM considera que el tiempo extra (costo) puede reducir el
tiempo de término de una actividad, y en consecuencia reducir el
tiempo total del proyecto
Compra de tiempo:
CPM usa dos estimaciones: tiempo y costo normal, a lo que se
agregará tiempo y costo intensivo
Se asume que estas estimaciones son lineales:
Tiempo
Esfuerzo normal
Esfuerzo intensivo
Costo
220
Debido a las estimaciones de CPM se puede obtener dos redes
extremas:
1. Red de costo normal
2. Red de costo intensivo
¿Todas las actividades deben realizarse en forma intensiva?
3. Red de tiempo mínimo—costo mínimo
CPM: Trueque entre el costo y el tiempo
Red de tiempo mínimo – costo mínimo
221
1. Comenzar con la red normal e ir reduciendo los tiempos de
término hasta un mínimo.
2. Comenzar con la red de todo intensivo y “desintensificar”
actividades para reducir el costo sin afectar el tiempo total.
3. Comenzar con la ruta crítica de la red de todo intensivo con
un tiempo mínimo, pero con todas la demás actividades
normales. Después reducir las otras trayectorias como sea
necesario.
¿Todos son igualmente eficaces?
CPM: Trueque entre el costo y el tiempo
Enfoques para encontrar red de tiempo mínimo – costo
mínimo
222
CPM: Trueque entre el costo y el tiempo
Enfoque: Red normal y reducción de tiempos
Proyecto: Construcción de una casa
Actividad Precedencia Normal Intensivo Normal Intensivo ∆ Costo
A (1,2) ninguna 4 3 1.400 2.000 600
B (2,3) A 2 1 1.500 2.000 500
C (2,4) A 3 1 1.500 2.500 1.000
D (2,7) A 1 1 600 600 --
Fic(3,4) 0 0 -- -- --
E (4,5) B, C 3 2 1.300 2.000 700
F (4,6) B, C 2 1 300 500 200
G (5,7) E 2 1 800 1.200 400
H (6,7) F 2 1 600 1.000 400
Tiempo (semanas) Costo (miles $)
223
CPM: Trueque entre el costo y el tiempo
Paso 1: Red del proyecto
2
3
6
5
7
E(3)
G(2)
H(2)
D(1)
1
F(2)
4
C(3)
Si consideramos la convención actividad-flecha, el grafo del
proyecto es:
B(2)
A(4)
224
CPM: Trueque entre el costo y el tiempo
Paso 2: Tiempos de Inicio y de Término, holgura y ruta crítica
2
3
6
5
7
B(2)[4,6]
(0)[6,6]
G(2)[10,12]
H(2)[9,11]
[10,12]
1
F(2)[7,9]
4
C(3)[4,7]
En el grafo se muestran los tiempos de inicio y de término más
próximos y los más lejanos, y la ruta crítica. El tiempo mínimo
para la ruta crítica es de 12 semanas a un costo normal de $8.000.
A(4)[0,4]
0
0 0
E(3)[7,10]
0
12 12
D(1)[4,5]
[8,10][4,7]
[5,7]
[7,7]
[0,4]
[7,10]
[10,12]
[11,12]
225
CPM: Trueque entre el costo y el tiempo
Paso 2: Tabla de tiempos próximos y lejanos
Tiempo Tiempo más próximo de: Tiempo más lejano de:
Actividad Normal Inicio Término Inicio Término Holgura
A (1,2) 4 0 4 4 4 0
B (2,3) 2 4 6 5 7 1
C (2,4) 3 4 7 4 7 0
D (2,7) 1 4 5 1 12 7
E (4,5) 3 7 10 7 10 0
F (4,6) 2 7 9 8 10 1
G (5,7) 2 10 12 10 12 0
H (6,7) 2 9 11 10 12 1
Actividades
críticas
226
CPM: Trueque entre el costo y el tiempo
Paso 3: “Intensificar” actividades ruta crítica
a) Actividad A: de 4 a 3 semanas ( 600)
b) Actividad C: de 3 a 1 semana (1.000)
c) Actividad E: de 3 a 2 semanas ( 700)
d) Actividad G: de 2 a 1 semana ( 400)
¿Es posible hacer estas reducciones?
227
CPM: Trueque entre el costo y el tiempo
Reducción de Actividades ruta crítica
2
3
6
5
7
B(2)[4,6]
G(2
1)
H(2)[9,11]
1
F(2)[7,9]
4
C(3 1)
La ruta crítica disminuyó a 7 semanas, ¿seguirá manteniéndose
como tal?. No
Hay que ver si es posible reducir las actividades paralelas a la ruta
crítica inicial, sólo hasta igualar tiempos.
A(4 3)
0
0 0
E(3
2)
0
D(1)[4,5]
228
CPM: Trueque entre el costo y el tiempo
Paso 4: “Intensificar” actividades que no están en la
ruta crítica (“paralelas”)
a) Actividad B (paralela a C): de 2 a 1 semana (500)
b) ¿Actividad F o H? (¿o ambas?). En este caso sólo F: de 2 a 1
semana (200)
c) Actividad D: No requiere reducción
229
CPM: Trueque entre el costo y el tiempo
Paso 4: Resumen de las reducciones
Costo
Actividad Acción Adicional Normal Total
A (1,2) 1 semana 600 1.400 2.000
B (2,3) 1 semana 500 1.500 2.000
C (2,4) 2 semanas 1000 1.500 2.500
D (2,7) ----- 600 600
E (4,5) 1 semana 700 1.300 2.000
F (4,6) 1 semana 200 300 500
G (5,7) 1 semana 400 800 1.200
H (6,7) ----- 600 600
$ 8.000 $ 11.400
230
CPM: Trueque entre el costo y el tiempo
Grafo final
2
3
6
5
7
B(1)[3,4]
(0)[4,4]
G(1)[6,7]
H(2)[5,7]
[5,7]
1
F(1)[4,5]
4
C(1)[3,4]
En el grafo se muestran los tiempos de inicio y de término más
próximos y los más lejanos, y la ruta crítica. El tiempo mínimo
para la ruta crítica es de 7 semanas a un costo normal de $11.400.
A(3)[0,3]
0
0 0
E(2)[4,6]
0
7 7
D(1)[3,4]
[4,5][3,4]
[5,7]
[7,7]
[0,3]
[4,6]
[6,7]
[6,7]
231
¿Qué sucede si un proyecto lleva más tiempo del especificado?
¿Conviene hacer más “intensivo” el proyecto o pagar la
penalización por atraso?
Ejemplo:
Suponga que en el proyecto de la casa hay una penalización de
$450 por cada semana de tiempo extra después de ocho semanas.
¿Cuál es la red óptima?.
Solución: Reducir la red en una semana cada vez e ir
comparando si los costos por intensificar son menores a los
costos por penalización. Se termina cuando los costos de
penalización son mayor a los costos de intensificar.
CPM: Trueque entre el costo y el tiempo
Red óptima
232
1. Reducir una semana (de 12 a 11 semanas)
De la red normal analizar ruta crítica
Actividades Incremento de Costo
A 600
C 500
E 700
G 400
Conclusión: Intensificar 1 semana la actividad G
(400<450).
2. Intentar reducir una segunda semana (de 11 a 10)
Todos los costos incrementales de la ruta son mayores a la
penalización. Intentar por las vías paralelas.
No hay rutas alternativas cuya reducción implique un costo
menor al de penalización.
CPM: Trueque entre el costo y el tiempo
Red óptima
233
CPM: Trueque entre el costo y el tiempo
Solución
2
3
6
5
7
B(2)
G(1)
H(2)
1
F(2)
4
C(3)
Grafo resultante
A(4)
E(3)
D(1)
Conviene hacer intensivo el proyecto hasta la semana 11 y
pagar las penalizaciones por las semanas de atraso
Costo total = Costo intensivo + costo penalización
= (8.000 + 400) + 3*450 = $9.650
234
CPM: Trueque entre el costo y el tiempo
Ejemplo
a) Dibuje la red. Con los tiempos normales de las actividades,
encuéntrese la duración total del proyecto y la ruta crítica.
b) Supóngase que el proyecto se debe completar en un tiempo mínimo.
¿Cuál es el menor costo para el proyecto, es decir, cuál es la red de
tiempo mínimo—costo mínimo?
c) ¿Cuál es el costo mínimo para terminar el proyecto en 17 meses?
d) El departamento de comercialización dice que cada mes que el
proyecto se pase de 15 meses le cuesta a la firma $5.000. ¿Cuál es el
costo y duración óptimo del proyecto?
Suponga que un proyecto de investigación tiene las siguientes
estimaciones:
Actividad Normal Intensivo Normal Intensivo
A (1,2) 8 4 20.000 30.000
B (1,3) 9 6 18.000 27.000
C (2,3) 3 2 12.000 17.000
D (2,4) 10 7 25.000 34.000
E(3,4) 6 4 15.000 23.000
Tiempo (meses) Costo (miles $)
235
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
a) Identificación de Variables de decisión
Están relacionadas directamente con el tiempo a reducir en
cada tarea
Yi: Tiempo (horas, días, ..) a reducir de la i-ésima actividad
YA: Número de semanas en las cuales acortar la actividad A
b) Función Objetivo
El objetivo es minimizar los recursos adicionales totales
requeridos para satisfacer el tiempo de término del proyecto.
Para el ejemplo en estudio, en la tabla de especificaciones
agregamos dos columnas: Tiempo máximo a reducir por tarea
y el costo adicional por semana intensiva
236
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Por lo tanto la función es:
MIN Z = 600YA+500YB+500YC+700YE+200YF+400YG+400YH
Actividad Precedencia Normal Intensivo Normal Intensivo
A (1,2) ninguna 4 3 1.400 2.000 1 600
B (2,3) A 2 1 1.500 2.000 1 500
C (2,4) A 3 1 1.500 2.500 2 500
D (2,7) A 1 1 600 600 0 --
Fic(3,4) 0 0 -- -- 0 --
E (4,5) B, C 3 2 1.300 2.000 1 700
F (4,6) B, C 2 1 300 500 1 200
G (5,7) E 2 1 800 1.200 1 400
H (6,7) F 2 1 600 1.000 1 400
Tiempo (semanas) Costo (miles $) Reducción
máxima
Costo por
semana
237
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
c) Identificación de las restricciones
Para el ejemplo, se pueden agrupar en dos grupos
1. La cantidad máxima de tiempo en el cual se puede acortar
cada actividad.
2. El tiempo de término del proyecto (en este caso 12 semanas)
Para el grupo 1, lo que se necesita son las cotas superiores
sobre las variables de decisión (YA, YB, YC, YE, YF, YG, YH)
dada por la columna “Reducción máxima) de la tabla anterior.
238
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Restricciones de Límite
0<=YA<= 1 (límite de A)
0<=YB<= 1 (límite de B)
0<=YC<= 2 (límite de C)
0<=YD<= 0 (límite de D)
0<=YE<= 1 (límite de E)
0<=YF<= 1 (límite de F)
0<=YG<= 1 (límite de G)
0<=YH<= 1 (límite de H)
239
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Restricciones del grupo 2 están en función de nuevas variables que
expresan cuando las actividades que salen de un determinado
evento pueden comenzar. Requiere conocer cuando terminan
todas las actividades que llegan al evento. Dependen de Yi
X1 : tiempo en que todas las actividades que salen del evento 1 pueden comenzar
X2 : tiempo en que todas las actividades que salen del evento 2 pueden comenzar
......
X7 : tiempo en que todas las actividades que salen del evento 7 pueden comenzar
Además el proyecto debe comenzar en el tiempo 1 y terminar a lo más en 12
semanas
X1 = 0
X7 ≤ 12
240
CPM: Trueque entre el costo y el tiempo
2
3
6
5
7
E(3)
G(2)
H(2)
D(1)
1
F(2)
4
C(3)
Asociando las variables a la red tenemos:
(2-YB)
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
A(4)
B(2)
(4-YA) (3-YC) (2-YF)
(1-YD)
(2-YH)
(3-YE) (2-YG)(0)
X1 X2
X3
X4
X5
X6
X7
241
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Nodo 2
Tiempo de inicio de las tareas que salen del nodo 2 ≥ tiempo de
terminación de todas las tareas que entran al nodo 2
Tiempo de inicio de las tareas B, C y D ≥ (tiempo de terminación
de la tarea A + (tiempo acortado de la tarea A)
X2 ≥ X1 + (4-YA)
Nodo 3
Tiempo de inicio de las tareas que salen del nodo 3 ≥ tiempo de
terminación de todas las tareas que entran al nodo 3
Tiempo de inicio de la tarea Ficticia ≥ (tiempo de terminación de
la tarea B + (tiempo acortado de la tarea B)
X3 ≥ X2 + (2-YB)
242
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Nodo 4
Tiempo de inicio de las tareas que salen del nodo 4 ≥ tiempo de
terminación de todas las tareas que entran al nodo 4.
Hay dos arcos que entran al nodo, las actividades E y F deben
comenzar sólo cuando las tareas que entran (C y la ficticia) hayan
terminado. Dando origen así a dos restricciones (una por cada
actividad)
Restricción de la actividad C
Tiempo de inicio de las tareas E y F ≥ tiempo de terminación de
la tarea C
Tiempo de inicio de las tareas E y F ≥ (tiempo de terminación de
la tarea C + (tiempo acortado de la tarea C)
X4 ≥ X2 + (3-Yc) (tarea C)
243
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Nodo 4
Restricción de la actividad Ficticia
Tiempo de inicio de las tareas E y F ≥ tiempo de terminación de
la tarea figurada
Tiempo de inicio de las tareas E y F ≥ (tiempo de terminación de
la tarea Figurada + (tiempo acortado de la tarea Figurada)
X4 ≥ X3 + 0 (tarea Figurada)
Aplicando sistemáticamente el procedimiento y se escribe una
restricción para cada actividad se obtienen las siguientes
restricciones para los nodos 5 al 7
244
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
Nodo 5
X5 ≥ X4 + (3-YE) (actividad E)
Nodo 6
X6 ≥ X4 + (2-YF) (actividad F)
Nodo 7
X7 ≥ X5 + (2-YG) (actividad G)
X7 ≥ X6 + (2-YH) (actividad H)
245
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
MIN Z = 600YA+500YB+500YC+700YE+200YF+400YG+400YH
Sujeto a:
Restricciones de Límite
0<=YA<= 1 (límite de A)
0<=YB<= 1 (límite de B)
0<=YC<= 2 (límite de C)
0<=YD<= 0 (límite de D)
0<=YE<= 1 (límite de E)
0<=YF<= 1 (límite de F)
0<=YG<= 1 (límite de G)
0<=YH<= 1 (límite de H)
246
CPM: Trueque entre el costo y el tiempo
Modelo de PL para CPM (Tiempo mínimo—costo mínimo)
X1 = 0
X7 ≤ 12
X2 ≥ X1 + (4-YA) (tarea C)
X3 ≥ X2 + (2-YB) (tarea B)
X4 ≥ X2 + (3-Yc) (tarea C)
X4 ≥ X3 + 0 (tarea Figurada)
X5 ≥ X4 + (3-YE) (actividad E)
X6 ≥ X4 + (2-YF) (actividad F)
X7 ≥ X5 + (2-YG) (actividad G)
X7 ≥ X6 + (2-YH) (actividad H)
X1, ..., X7 ≥ 0
247
Para su entretención
Ejercicios:
a) Existen 7 trayectorias en esta red. Encuéntrense todas.
b) Con tiempos normales, encuéntrese la longitud de cada trayectoria. ¿Cuál
es la ruta crítica?
c) ¿Cuál es el costo mínimo intensivo para reducir el proyecto a 39 días? ¿a
38 días? ¿a 37 días?
d) Encuéntrese la red de tiempo mínimo—costo mínimo.
La complejidad de las redes CPM está más afectada por las interrelaciones que
el número de nodos. Por ejemplo, considérese el proyecto siguiente:
Actividad Normal Intensivo Normal Intensivo
A (1,2) 8 7 10.000 12.000
B (1,3) 15 10 12.000 17.000
C (1,4) 12 6 13.000 14.000
D (2,3) 9 9 7.000 7.000
E (2,5) 11 9 2.000 4.000
F (3,6) 9 8 5.000 7.000
G (4,3) 9 7 14.000 16.000
H (4,7) 13 12 8.000 10.000
I (5,6) 7 5 6.000 10.000
J (5,8) 15 11 9.000 10.000
K (6,8) 10 5 3.000 8.000
L (7,6) 4 3 7.000 8.000
M (7,8) 12 9 5.000 6.000

Más contenido relacionado

La actualidad más candente

El problema del transporte diapositivas
El problema del transporte diapositivasEl problema del transporte diapositivas
El problema del transporte diapositivas
mariandrearias
 
METODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACION
METODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACIONMETODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACION
METODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACION
Raul Garcia Hernandez
 
Problemas resueltos-de-metodos-de-transporte
Problemas resueltos-de-metodos-de-transporteProblemas resueltos-de-metodos-de-transporte
Problemas resueltos-de-metodos-de-transporte
Alexander Chunhuay Ruiz
 
Metodo de transporte
Metodo de transporteMetodo de transporte
Metodo de transporte
Ana Damage
 
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
Ecuaciones  Parabola, Recta , Hiperbola, EclipseEcuaciones  Parabola, Recta , Hiperbola, Eclipse
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
Giancarlos Juan
 
Aplicación de la linea recta a la economia
Aplicación de la linea recta a la economiaAplicación de la linea recta a la economia
Aplicación de la linea recta a la economia
Luis Joya
 
Ejercicios tema 4
Ejercicios tema 4 Ejercicios tema 4
Ejercicios tema 4
Miguel Rosas
 

La actualidad más candente (17)

Solución del modelo de transporte
Solución del modelo de transporteSolución del modelo de transporte
Solución del modelo de transporte
 
Modelo transporte
Modelo transporteModelo transporte
Modelo transporte
 
Problema de transporte
Problema de transporteProblema de transporte
Problema de transporte
 
Algoritmo de transporte
Algoritmo de transporteAlgoritmo de transporte
Algoritmo de transporte
 
El problema del transporte diapositivas
El problema del transporte diapositivasEl problema del transporte diapositivas
El problema del transporte diapositivas
 
METODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACION
METODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACIONMETODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACION
METODO CUANTITATIVO PARA LA LOCALIZACION DE UNA SOLA INSTALACION
 
Problemas resueltos-de-metodos-de-transporte
Problemas resueltos-de-metodos-de-transporteProblemas resueltos-de-metodos-de-transporte
Problemas resueltos-de-metodos-de-transporte
 
Modelo De Transporte
Modelo De TransporteModelo De Transporte
Modelo De Transporte
 
Carriel
CarrielCarriel
Carriel
 
Método vogel
Método vogelMétodo vogel
Método vogel
 
Solución del modelo de transporte
Solución del modelo de transporteSolución del modelo de transporte
Solución del modelo de transporte
 
UNA - Metodos cuantitativos (Transporte y Asignacion)
UNA - Metodos cuantitativos (Transporte y Asignacion)UNA - Metodos cuantitativos (Transporte y Asignacion)
UNA - Metodos cuantitativos (Transporte y Asignacion)
 
Metodo de transporte
Metodo de transporteMetodo de transporte
Metodo de transporte
 
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
Ecuaciones  Parabola, Recta , Hiperbola, EclipseEcuaciones  Parabola, Recta , Hiperbola, Eclipse
Ecuaciones Parabola, Recta , Hiperbola, Eclipse
 
Administracion De Operaciones Ii Metodo De Transporte
Administracion De Operaciones Ii Metodo De TransporteAdministracion De Operaciones Ii Metodo De Transporte
Administracion De Operaciones Ii Metodo De Transporte
 
Aplicación de la linea recta a la economia
Aplicación de la linea recta a la economiaAplicación de la linea recta a la economia
Aplicación de la linea recta a la economia
 
Ejercicios tema 4
Ejercicios tema 4 Ejercicios tema 4
Ejercicios tema 4
 

Similar a Iopertiva2 (20)

Iopertivab
IopertivabIopertivab
Iopertivab
 
Materia
MateriaMateria
Materia
 
Materia
MateriaMateria
Materia
 
Materia
MateriaMateria
Materia
 
Materia operativa subir
Materia operativa subirMateria operativa subir
Materia operativa subir
 
480074202-SEMANA-7.pdf
480074202-SEMANA-7.pdf480074202-SEMANA-7.pdf
480074202-SEMANA-7.pdf
 
Asignacion y Transporte - Diapositivas Clase.pdf
Asignacion y Transporte - Diapositivas Clase.pdfAsignacion y Transporte - Diapositivas Clase.pdf
Asignacion y Transporte - Diapositivas Clase.pdf
 
Memmetpp
MemmetppMemmetpp
Memmetpp
 
Martes 5 mayo del 2015 (2) (1)
Martes 5 mayo del 2015 (2) (1)Martes 5 mayo del 2015 (2) (1)
Martes 5 mayo del 2015 (2) (1)
 
Martes 5 mayo del 2015
Martes 5 mayo del 2015Martes 5 mayo del 2015
Martes 5 mayo del 2015
 
Martes 5 mayo del 2015
Martes 5 mayo del 2015Martes 5 mayo del 2015
Martes 5 mayo del 2015
 
Martes 5 mayo del 2015
Martes 5 mayo del 2015Martes 5 mayo del 2015
Martes 5 mayo del 2015
 
Modelos de transporte
Modelos de transporteModelos de transporte
Modelos de transporte
 
Modelotransporte y-asignacion
Modelotransporte y-asignacionModelotransporte y-asignacion
Modelotransporte y-asignacion
 
Tema 6 Transporte y Asignacion.pdf
Tema 6 Transporte y Asignacion.pdfTema 6 Transporte y Asignacion.pdf
Tema 6 Transporte y Asignacion.pdf
 
Io 3ra modelo de transporte
Io 3ra modelo de transporteIo 3ra modelo de transporte
Io 3ra modelo de transporte
 
Operativa II
Operativa IIOperativa II
Operativa II
 
MÉTODO DE TRANSPORTE
MÉTODO DE TRANSPORTEMÉTODO DE TRANSPORTE
MÉTODO DE TRANSPORTE
 
Operativa ii 2015 (1)
Operativa ii 2015 (1)Operativa ii 2015 (1)
Operativa ii 2015 (1)
 
UNIDAD I
UNIDAD IUNIDAD I
UNIDAD I
 

Último

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 

Último (20)

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 

Iopertiva2

  • 2. 2 El objetivo general es encontrar el mejor plan de distribución, es decir, la cantidad que se debe enviar por cada una de las rutas desde los puntos de suministro hasta los puntos de demanda. El “mejor plan” es aquel que minimiza los costos totales de envío, produzca la mayor ganancia u optimice algún objetivo corporativo. Se debe contar con: i) Nivel de oferta en cada fuente y la cantidad de demanda en cada destino. ii) Costo de transporte unitario de mercadería desde cada fuente a cada destino. 2.1 Modelo de Transporte
  • 3. 3 También es necesario satisfacer ciertas restricciones: 1. No enviar más de la capacidad especificada desde cada punto de suministro (oferta). 2. Enviar bienes solamente por las rutas válidas. 3. Cumplir (o exceder) los requerimientos de bienes en los puntos de demanda. 2.1 Modelo de Transporte
  • 4. 4 2.1 Modelo de Transporte Esquemáticamente se podría ver como se muestra en la siguiente figura DestinosFuentes 1 1 22 n m Unidadesdedemanda Unidadesdeoferta s2 sm d2 s1 d1 dn Xij: cantidad transportada desde la fuente i al destino j C11, X11 Cmn, Xmn Cij: Costo del transporte unitario desde la fuente i al destino j donde Gráficamente: Para m fuentes y n destinos
  • 5. 5 Modelo general de PL que representa al modelo de Transporte ox dx sx xcZ ij j m i ij i n j ij m i n j ijij ≥ ≥ ≤ = ∑ ∑ ∑∑ = = = = 1 1 1 1 j=1,2,...,n i=1,2,...,m El modelo implica que al menos la oferta debe ser igual a la demanda para toda i y j minimizar s aa 2.1 Modelo de Transporte
  • 6. 6 Modelo general de PL que representa al modelo de Transporte Modelo de transporte equilibrado: Oferta = Demanda i n j ij Sx =∑=1 j=1, 2, 3,....,nj m i ij Dx =∑=1 i=1, 2, 3,....,m 0≥ijx para toda i y j 2.1 Modelo de Transporte
  • 7. Solución del Modelo de Transporte 2.1 Modelo de Transporte
  • 8. 8 Algoritmos Específicos 2.1.1 Regla de la esquina noroeste (MEN) 2.1.2 Método por aproximación de Vogel (MAV) 2.1.3 Método del costo mínimo (MCM) 2.1.4 Método del paso secuencial y 2.1.5 DIMO (método de distribución modificada) 2.1 Modelo de Transporte
  • 9. 9 Descripción de los algoritmos La regla de la esquina noroeste, el método de aproximación de Vogel y el método del costo mínimo son alternativas para encontrar una solución inicial factible. El método del escalón y el DIMO son alternativas para proceder de una solución inicial factible a la óptima. Por tanto, el primer paso es encontrar una solución inicial factible, que por definición es cualquier distribución de ofertas que satisfaga todas las demandas 2.1 Modelo de Transporte
  • 10. 10 Descripción de los algoritmos Una vez obtenida una solución básica factible, el algoritmo procede paso a paso para encontrar un mejor valor para la función objetivo. La solución óptima es una solución factible de costo mínimo Para aplicar los algoritmos, primero hay que construir una tabla de transporte. 2.1 Modelo de Transporte
  • 11. 11 Tabla Inicial Destinos Origen 1 2 3 4 n Ofertas 1 C11 C12 C13 C14 .... C1n 2 C21 C22 C23 C24 .... C2n 3 C31 C32 C33 C34 .... C3n ... .... ..... .... .... .... m Cm1 Cm2 Cm3 Cm4 .... Cmn Demanda 2.1 Modelo de Transporte
  • 12. 12 Tabla Inicial del Ejemplo Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 500 2 6 4 10 11 700 3 10 9 12 4 800 Demanda 400 900 200 500 2000 2.1 Modelo de Transporte
  • 13. 13 2.1.1 Regla de la esquina Noroeste Se inicia el proceso desde la esquina izquierda superior Se ubican tantas unidades como sea posible en la ruta Cantidad de Unidades = Mínimo(disponibilidad, demanda) Las siguientes asignaciones se hacen o bien recorriendo hacia la derecha o bien hacia abajo. Las demandas se satisfacen recorriendo sucesivamente de izquierda a derecha y las ofertas se destinan recorriendo de arriba hacia abajo. 2.1 Modelo de Transporte
  • 14. 14 Primera asignación Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 500 2 6 4 10 11 700 3 10 9 12 4 800 Demanda 0 400 900 200 500 2000 2.1 Modelo de Transporte
  • 15. 15 Hasta cuarta asignación Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 700 800 Demanda 0 400 0 900 200 500 2000 2.1 Modelo de Transporte
  • 16. 16 Esquina Noroeste: Solución final factible Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 200 500 0 800 Demanda 0 400 0 900 200 500 2000 Valor FO: 400*12+100*13+700*4+100*9+200*12+500*4= $14.200 2.1 Modelo de Transporte
  • 17. 17 2.1.2 Método de aproximación de Vogel (MAV) MAV usa información de costos mediante el concepto de costo de oportunidad para determinar una solución inicial factible. Seleccionar en una fila la ruta más barata y la que le sigue. Hacer su diferencia (penalidad), que es el costo adicional por enviar una unidad desde el origen actual al segundo destino y no al primero. En nuestro caso, para el puerto1, C13 y C14; Penalidad = 6 - 4 MAV asigna un costo de penalidad por no usar la mejor ruta en esta fila. 2.1 Modelo de Transporte
  • 18. 18 2.1.2 Método de aproximación de Vogel Lo anterior se repite para cada fila y cada columna, esto es, determinar todas las penalidades Los pasos iterativos de MAV son los siguientes: 1. Identificar la fila o columna con la máxima penalidad. 2.Colocar la máxima asignación posible a la ruta no usada que tenga menor costo en la fila o columna seleccionada en el punto 1 (los empates se resuelven arbitrariamente) 3. Reajustar la oferta y demanda en vista de esta asignación. 4. Eliminar la columna en la que haya quedado una demanda 0 (o la fila con oferta 0), de consideraciones posteriores. 5. Calcular los nuevos costos de penalidad. 2.1 Modelo de Transporte
  • 19. 19 2.1.2 Método de aproximación de Vogel El MAV continúa aplicando este proceso en forma sucesiva hasta que se haya obtenido una solución factible. Los resultados obtenidos se muestran en las siguientes tablas 2.1 Modelo de Transporte
  • 20. 20 2.1.2 Método de aproximación de Vogel Plantas Puertos 1 2 3 4 Oferta Penalidades 1 12 13 4 6 2 500 2 6 4 10 11 2 700 3 10 9 12 4 5 800 Demanda 400 900 200 500 2000 Penalidades 4 5 6 2 Calculadas todas las penalidades, la mayor corresponde a la columna 3 (penalidad = 6) Paso 1: Identificar máxima penalidad (fila o columna) Paso 0: Cálculo de penalidades 2.1 Modelo de Transporte
  • 21. 21 2.1.2 Método de aproximación de Vogel Paso 2: Asignación de unidades (MIN(oferta,demanda)) Paso 3:Reajuste de oferta y demanda Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 11 700 3 10 9 12 4 800 Demanda 400 900 0 200 500 2000 2.1 Modelo de Transporte
  • 22. 22 2.1.2 Método de aproximación de Vogel Paso 4: Eliminar columna (fila) con demanda (oferta) 0Paso 4: Eliminar columna (fila) con demanda (oferta) 0 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 11 700 3 10 9 12 4 800 Demanda 400 900 0 200 500 2000 2.1 Modelo de Transporte
  • 23. 23 2.1.2 Método de aproximación de Vogel Paso 5: Calcular los nuevos costos de penalidad Plantas Puertos 1 2 3 4 Oferta Penalidades 1 12 13 4 6 6 200 300 500 2 6 4 10 11 2 700 3 10 9 12 4 5 800 Demanda 400 900 0 200 500 2000 Penalidades 4 5 2 2.1 Modelo de Transporte
  • 24. 24 2.1.2 Método de aproximación de Vogel Repitiendo los pasos anteriores, finalmente se llega a la siguiente solución Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 300 500 2 6 4 10 11 700 0 700 3 10 9 12 4 400 200 200 600 800 Demanda 400 900 0 200 200 500 2000 ¿Es solución factible? ¿m + n - 1 = 6? SI Costo: 200*4+300*6+700*4+400*10+200*9+200*4 = $12.000 2.1 Modelo de Transporte
  • 25. 25 2.1.3. Método del Costo Mínimo 1. Dada una tabla de transporte 2. Asignar la mayor cantidad de unidades a la variable (ruta) con el menor costo unitario de toda la tabla. 3. Tachar la fila o columna satisfecha. 4. Ajustar oferta y demanda de todas las filas y columnas 5. Si hay más de una fila o columna no tachada repetir los puntos 2, 3 y 4 Algoritmo Fundamento Asignar la mayor cantidad de unidades a una ruta disponible de costo mínimo 2.1 Modelo de Transporte
  • 26. 26 2.1.3. Método del Costo Mínimo (cont.) Ejemplo: Aplicar MCM a la tabla de transporte Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 500 2 6 4 10 11 700 3 10 9 12 4 800 Demanda 400 900 200 500 2000 Unidades a asignar = MIN(200,400) = 200 Existen tres rutas costo mínimo. Elijamos la 1_3Paso 2 2.1 Modelo de Transporte
  • 27. 27 2.1.3. Método del Costo Mínimo (cont.) Paso 3: Tachar fila o columna (columna 3) Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 11 700 3 10 9 12 4 800 Demanda 400 900 0 200 500 2000 Aún quedan más de una fila o columna sin tachar. Ir a paso 2 Ajustar ofertas y demandas (fila 1 y columna 3) Paso 5 Paso 4 2.1 Modelo de Transporte
  • 28. 28 2.1.3. Método del Costo Mínimo (cont.) Paso 4: Tachar ajustar fila 3 y columna 4 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 11 700 3 10 9 12 4 500 300 800 Demanda 400 900 0 200 0 500 2000 Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5 Paso 2: Ruta de costo menor -> 3_4 (ó 2_2) Unidades = MIN(500,800) = 500 Paso 3: Tachar columna 4 2.1 Modelo de Transporte
  • 29. 29 2.1.3. Método del Costo Mínimo (cont.) Paso 4: Tachar ajustar fila 2 y columna 2 Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 0 700 0 700 3 10 9 12 4 500 300 800 Demanda 400 200 900 0 200 0 500 2000 Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5 Paso 2: Ruta de costo menor -> 2_2 Unidades = MIN(700,900) = 300 Paso 3: Tachar fila2 2.1 Modelo de Transporte
  • 30. 30 2.1.3. Método del Costo Mínimo (cont.) Paso 4: Tachar ajustar fila 3 y columna 2 Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 0 700 0 700 3 10 9 12 4 100 200 500 300 800 Demanda 400 200 900 0 200 0 500 2000 Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5 Paso 2: Ruta de costo menor -> 3_2 Unidades = MIN(200,300) = 200 Paso 3: Tachar columna 2 2.1 Modelo de Transporte
  • 31. 31 2.1.3. Método del Costo Mínimo (cont.) Paso 4: Tachar ajustar fila 3 y columna 1 Puertos 1 2 3 4 Oferta 1 12 13 4 6 200 300 500 2 6 4 10 0 700 0 700 3 10 9 12 4 100 0 100 200 500 300 800 Demanda 300 400 200 900 0 200 0 500 2000 Aún quedan más de una fila o columna sin tachar. Ir a paso 2Paso 5 Paso 2: Ruta de costo menor -> 3_1 Unidades = MIN(400,100) = 100 Paso 3: Tachar fila 3 2.1 Modelo de Transporte
  • 32. 32 2.1.3. Método del Costo Mínimo (cont.) Paso 4: Tachar ajustar fila 1 y columna 1 Puertos 1 2 3 4 Oferta 1 12 13 4 6 0 300 200 300 500 2 6 4 10 0 700 0 700 3 10 9 12 4 100 0 100 200 500 300 800 Demanda 300 400 200 900 0 200 0 500 2000 Queda sólo una fila sin tachar. TerminarPaso 5 Paso 2: Ruta de costo menor -> 1_1 Unidades = MIN(300,300) = 300 Paso 3: Tachar fila 1 ó columna 1 (sólo una de ellas) 2.1 Modelo de Transporte
  • 33. 33 2.1.3. Método del Costo Mínimo (cont.) Comparación de los resultados ¿Es solución factible? ¿m + n - 1 = 6? SI Costo: 300*12+200*4+700*4+100*10+200*9+500*4 = $12.000 Método Rutas Costo MEN 6 $14.200 MAV 6 $12.000 MCM 6 $12.000 Los tres métodos entregan soluciones básicas factibles, pero ninguno asegura que la solución sea óptima. Conclusión 2.1 Modelo de Transporte
  • 34. 34 2.1.4. Método de Pasos Secuenciales Este método comienza con una solución inicial factible. En cada paso se intenta enviar artículos por una ruta que no se haya usado en la solución factible actual, en tanto se elimina una ruta usada actualmente. En cada cambio de ruta debe cumplirse que: 1. La solución siga siendo factible y 2. Que mejore el valor de la función objetivo El procedimiento termina cuando no hay cambio de rutas que mejoren el valor de la función. Fundamento 2.1 Modelo de Transporte
  • 35. 35 2.1.4. Método de pasos secuenciales (cont..) Usar la solución actual (MEN, MAV o MCM) para crear una trayectoria única del paso secuencial. Usar estas trayectorias para calcular el costo marginal de introducir a la solución cada ruta no usada. Si todos los costos marginales son iguales o mayores que cero, terminar; se tendrá la solución óptima. Si no, elegir la celda que tenga el costo marginal más negativo (empates se resuelven arbitrariamente) Usando la trayectoria del paso secuencial, determine el máximo número de artículos que se pueden asignar a la ruta elegida en el punto 2 y ajustar la distribución adecuadamente. Regrese al paso 1 Algoritmo 1 2 3 4 2.1 Modelo de Transporte
  • 36. 36 2.1.4. Método de pasos secuenciales (cont..) a) Ponga un signo + en la celda de interés no ocupada b) Ponga un signo - en una celda usada de la misma fila c) Ponga un + en una celda usada de la misma columna El proceso continúa alternando los signos + y - tanto en las filas como en las columnas hasta que se obtenga una sucesión de celdas (trayectoria) que satisfagan dos condiciones 1. Hay un signo + en la celda desocupada original de interés, y 2. Cualquier fila o columna que tenga un signo + debe tener también un signo - y viceversa. Algoritmo Paso 1 2.1 Modelo de Transporte
  • 37. 37 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 1 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 200 500 0 800 Demanda 0 400 0 900 200 500 2000 Solución básica factible obtenida aplicando el método de la Esquina Noroeste 2.1 Modelo de Transporte
  • 38. 38 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 1 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 - + 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 + 200 - 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 Trayectoria 1: +C13-C12+C32-C33 2.1 Modelo de Transporte
  • 39. 39 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 1 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 - + 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 + 200 - 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 1: +(4)-(13)+(9)-(12)= -12 2: +(6)-(13)+(9)-(4) = -2 3: +(6)-(4)+(13)-(12)= 3 4: +(10)-(4)+(9)-(12) = 3 5: +(11)-(4)+(9)-(4) = 12 6: +(10)-(9)+(13)-(12)= 2 Costos de las Trayectorias 2.1 Modelo de Transporte
  • 40. 40 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 2 1: +(4)-(13)+(9)-(12)= -12 2: +(6)-(13)+(9)-(4) = -2 3: +(6)-(4)+(13)-(12)= 3 4: +(10)-(4)+(9)-(12) = 3 5: +(11)-(4)+(9)-(4) = 2 6: +(10)-(9)+(13)-(12)= 2 La solución factible NO es óptima !! Se selecciona la trayectoria 1 (costo marginal más negativo) 2.1 Modelo de Transporte
  • 41. 41 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 3 (Generación de la nueva tabla) ¿Cuántas unidades se pueden asignar a la ruta elegida? Acción Ruta Unidades disponibles en celdas decrecientes Aumentar 1 unidad 1_3 Disminuir 1 unidad 1_2 100 Aumentar 1 unidad 3_2 Disminuir 1 unidad 3_3 200 2.1 Modelo de Transporte
  • 42. 42 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 - 100 + 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 200 + 100 - 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 Paso 3 (Generación de la nueva tabla) Costo: $13.000Costo: $13.000 2.1 Modelo de Transporte
  • 43. 43 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 4 Volver al Paso 1: Para cada trayectoria evaluar costo marginal Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 200 100 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 2.1 Modelo de Transporte
  • 44. 44 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 2: Elección de CMg menor Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 +12 100 +10 100 500 2 6 4 10 11 -9 700 +3 +12 0 700 3 10 9 12 4 -10 200 100 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 La celda más negativa es c 31 (-10) y la trayectoria es: C31 – C33 + C13 – C11 2.1 Modelo de Transporte
  • 45. 45 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 3 (Generación de la nueva tabla) ¿Cuántas unidades se pueden asignar a la ruta elegida? Acción Ruta Unidades disponibles en celdas decrecientes Aumentar 1 unidad 31 Disminuir 1 unidad 33 100 Aumentar 1 nidad 13 Disminuir 1 unidad 11 400 2.1 Modelo de Transporte
  • 46. 46 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 3 (Generación de la nueva tabla) Costo: $12.000Costo: $12.000 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 300 200 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 200 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 2.1 Modelo de Transporte
  • 47. 47 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 4 Volver al Paso 1: Para cada trayectoria evaluar costo marginal Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 300 200 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 200 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 2.1 Modelo de Transporte
  • 48. 48 2.1.4. Método de pasos secuenciales (cont..) Algoritmo Paso 2: Determinar costos marginales Todas rutas son no negativas (positivas o cero) Solución factible óptima!!! $12.000 Compare esta solución con la obtenida con MAV y MCM ¿ ...? Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 300 +2 200 0 100 500 2 6 4 10 11 +1 700 +13 +12 0 700 3 10 9 12 4 100 200 +10 500 0 800 Demanda 0 400 0 900 0 200 0 500 2000 2.1 Modelo de Transporte
  • 49. 49 2.1.5. Método de Distribución Modificada (DIMO) Algoritmo 1. Usar la solución actual (NE, MAV o MCM) y las siguientes operaciones (a) y (b) para determinar el costo marginal de enviar material para cada una de las rutas no usadas. Asociar a cada fila un índice ui y a cada columna un índice vj a) Hacer u1 = 0. Encuéntrese los índices de las filas u2, ..., um y los índices de las columnas v1, ...., vn tales que cij = ui + vj para cada celda usada. b) Sea eij = cij - (ui+vj) para cada celda no usada; eij será el costo marginal de introducir la celda (ruta) i, j a la solución. Los pasos 2 a 4 son los mismos que en el método secuencial. 2.1 Modelo de Transporte
  • 50. 50 2.1.5. Método de Distribución Modificada (DIMO) Aplicar el algoritmo al problema en estudio y comparar resultados obtenidos con los métodos anteriores Comentar resultados ¿Qué explica que existan dos soluciones óptimas factibles? 2.1 Modelo de Transporte
  • 51. 51 2.1.5. Método de Distribución Modificada (DIMO) Aplicación Costo por Ruta en uso motor ($) Ecuación 11 12 u1 + v1 = 12 12 13 u1 + v2 = 13 22 4 u2 + v2 = 4 32 9 u3 + v2 = 9 33 12 u3 + v3 = 12 34 4 u3 + v4 = 4 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 200 500 700 800 Demanda 0 400 0 900 200 500 2000 Paso 0: Asociar índices ui vj 2.1 Modelo de Transporte
  • 52. 52 2.1.5. Método de Distribución Modificada (DIMO) Paso1.a) Solucionar la ecuación Existen 6 ecuaciones y siete variables entonces se hace u1 = 0 (puede ser cualquiera) y se determina el resto de los índices v1 = 12 v2 = 13 u2 = - 9 u3 = -4 v3 = 16 v4 = 8 Paso 1.b) Calcular los costos marginales para cada celda no usada. eij = cij - (ui + vj) 2.1 Modelo de Transporte
  • 53. 53 2.1.5. Método de Distribución Modificada (DIMO) Costos marginales para las celdas no usadas. eij = cij - (ui + vj) 1) e13 = c13 - (u1 + v3)= 4 - (0 + 16) = -12 2) e14 = c14 - (u1 + v4)= 6 - (0 + 8) = -2 3) e21 = c21 - (u2 + v1)= 6 - (-9 + 13) = 2 4) e23 = c23 - (u2 + v3)= 10 - (-9 + 16) = 3 5) e24 = c24 - (u2 + v4)= 11 - (-9 + 8) = 12 6) e31 = c31 - (u3 + v1)= 10 - (-4 + 12) = 2 2.1 Modelo de Transporte
  • 54. 54 2.1.5. Método de Distribución Modificada (DIMO) Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 -12 -2 100 500 2 6 4 10 11 2 700 3 12 0 700 3 10 9 12 4 2 100 200 500 700 800 Demanda 0 400 0 900 200 500 2000 Paso 2: Prueba de Optimalidad. Hay costos negativos por lo tanto no es óptima La ruta de reasignación es: +C13 -C33 +C32 -C12 (más negativo, -12) 2.1 Modelo de Transporte
  • 55. 55 2.1.5. Método de Distribución Modificada (DIMO) Paso 3: Asignación de unidades a la ruta elegida. Unidades disponibles a mover: Disminuir 1 unidad C12 100 Disminuir 1 unidad C33 200 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 400 100 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 200 100 500 700 800 Demanda 0 400 0 900 200 500 2000 2.1 Modelo de Transporte
  • 56. 56 2.1.5. Método de Distribución Modificada (DIMO) Vuelta al Paso 1: Costo por Ruta en uso motor ($) Ecuación 11 12 u1 + v1 = 12 13 4 u1 + v3 = 4 22 4 u2 + v2 = 4 32 9 u3 + v2 = 9 33 12 u3 + v3 = 12 34 4 u3 + v4 = 4 Paso1.a) Solucionar la ecuación Se hacer u1 = 0 y se determina el resto de los índices v1 = 12 v2 = 1 v3 = 4 v4 = -4 u2 = 3 u3 = 8 Paso 1.b) Calcular los costos marginales para cada celda no usada. eij = cij - (ui + vj) 2.1 Modelo de Transporte
  • 57. 57 2.1.5. Método de Distribución Modificada (DIMO) Costos marginales para las celdas no usadas. eij = cij - (ui + vj) 1) e12 = c12 - (u1 + v2)= 13 - (0 + 1) = 12 2) e14 = c14 - (u1 + v4)= 6 - (0 - 4) = 10 3) e21 = c21 - (u2 + v1)= 6 - (3 + 12) = -9 4) e23 = c23 - (u2 + v3)= 10 - (3 + 4) = 3 5) e24 = c24 - (u2 + v4)= 11 - (3 - 4) = 12 6) e31 = c31 - (u3 + v1)= 10 - (8 + 12) = -10 2.1 Modelo de Transporte
  • 58. 58 2.1.5. Método de Distribución Modificada (DIMO) Paso 2: Prueba de Optimalidad. Hay costos negativos por lo tanto no es óptima La ruta de reasignación es: +C31 -C33 +C13 -C11 Plantas Puertos 1 2 3 4 Oferta 1 - 12 13 + 4 6 400 19 100 1 100 500 2 6 4 10 11 0 700 3 12 0 700 3 + 10 9 - 12 4 -1 200 100 500 700 800 Demanda 0 400 0 900 200 500 2000 2.1 Modelo de Transporte
  • 59. 59 2.1.5. Método de Distribución Modificada (DIMO) Paso 3: Asignación de unidades a la ruta elegida. Unidades disponibles a mover: Disminuir 1 unidad C11 400 Disminuir 1 unidad C33 100 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 300 200 100 500 2 6 4 10 11 700 0 700 3 10 9 12 4 100 200 500 700 800 Demanda 0 400 0 900 200 500 2000 2.1 Modelo de Transporte
  • 60. 60 2.1.5. Método de Distribución Modificada (DIMO) Vuelta al Paso 1: Paso1.a) Solucionar la ecuación u1 = 0 y se determina el resto de los índices v1 = 12 v2 = 11 v3 = 4 v4 = 6 u2 = - 7 u3 = -2 Paso 1.b) Calcular los costos marginales para cada celda no usada. eij = cij - (ui + vj) Costo por Ruta en uso motor ($) Ecuación 11 12 u1 + v1 = 12 13 4 u1 + v3 = 4 22 4 u2 + v2 = 4 31 10 u3 + v1 = 10 32 9 u3 + v2 = 9 34 4 u3 + v4 = 4 2.1 Modelo de Transporte
  • 61. 61 2.1.5. Método de Distribución Modificada (DIMO) Costos marginales para las celdas no usadas. eij = cij - (ui + vj) 1) e12 = c12 - (u1 + v2)= 13 - (0 + 11) = 2 2) e14 = c14 - (u1 + v4)= 6 - (0 + 6) = 0 3) e21 = c21 - (u2 + v1)= 6 - (-7 + 12) = 1 4) e23 = c23 - (u2 + v3)= 10 - (-7 + 4) = 13 5) e24 = c24 - (u2 + v4)= 11 - (-7 + 6) = 12 6) e33 = c33 - (u3 + v3)= 12 - (-2 + 4) = 10 2.1 Modelo de Transporte
  • 62. 62 2.1.5. Método de Distribución Modificada (DIMO) Paso 2: Prueba de Optimalidad. No hay costos negativos por lo tanto es óptima VO = 300*12+200*4+700*4+100*10+200*9+500*4=$12.000 Plantas Puertos 1 2 3 4 Oferta 1 12 13 4 6 300 0 200 0 100 500 2 6 4 10 11 1 700 13 12 0 700 3 10 9 12 4 100 200 10 500 700 800 Demanda 0 400 0 900 200 500 2000 Ver Transporte RPG Equilibrio 2.1 Modelo de Transporte
  • 63. 63 2.1.6. Modelo de Transporte: Situaciones Especiales 1. Solución en problemas de maximización de transporte 2. El caso en que la oferta excede a la demanda. 3. Eliminación de rutas inaceptables. 4. Degeneración en problemas de transporte. 5. Propiedades especiales del modelo de transporte 2.1 Modelo de Transporte
  • 64. 64 2.1.6. Modelo de Transporte: Situaciones Especiales 1. Solución en problemas de maximización de transporte. a) Se utilizan los beneficios marginales en lugar de los costos. Se asignará unidades a la celda que tenga el mayor valor marginal y el procedimiento concluirá cuando todas las rutas tengan valores marginales negativos. b) Convertir la tabla de beneficios en una tabla de costo: Se busca el beneficio mayor, en cada celda se le resta al mayor el beneficio de la celda. Ejemplo: 2.1 Modelo de Transporte
  • 65. 65 2.1.6. Modelo de Transporte: Situaciones Especiales Tabla de beneficios 14 19 12 17 19 15 16 20 11 6 1 8 3 1 5 4 0 9 2 3 Destinos Fuentes 1 2 3 1 Destinos 1 2 3 Fuentes 1 2 3 Mayor = 20 Tabla de costo 2.1 Modelo de Transporte
  • 66. 66 2.1.6. Modelo de Transporte: Situaciones Especiales 2. El caso en que la oferta excede a la demanda. Se utiliza un destino ficticio en la tabla de transporte. Se considera como nulo el costo de enviar una unidad a dicho destino desde cada una de las fuentes (orígenes). Si la demanda es mayor que la oferta el problema no tiene solución factible, sin embargo el administrador podría abastecer toda la demanda que sea posible a un costo mínimo. Se utiliza un origen ficticio. El costo de abastecer cualquier destino desde dicho origen será cero. Sin embargo podría haber un cargo por orden no cubierta. Ver Transporte RPG (O>D) y (O<D 2.1 Modelo de Transporte
  • 67. 67 2.1.6. Modelo de Transporte: Situaciones Especiales 3. Eliminación de rutas inaceptables. Se asocia a una ruta no aceptable un costo lo suficientemente alto para que no sea atrayente la ruta en cuestión. El costo M Por ejemplo: producir en abril para vender en febrero del mismo año. 4. Degeneración en problemas de transporte. Se dice que un problema se degenera cuando hay menos de m + n - 1 rutas ocupadas. Esto puede ocurrir cuando simultáneamente se satisface una demanda y se agota una oferta. Ver Transporte RPG (inaceptable) 2.1 Modelo de Transporte
  • 68. 68 2.1.6. Modelo de Transporte: Situaciones Especiales 5. Propiedades especiales del modelo de transporte Todo problema de transporte es posible resolverlo mediante algoritmos que usan sólo la adición y la sustracción. Si todas las ofertas y demandas tienen valores enteros en un problema de transporte, los valores óptimos de las variables de decisión serán también enteros. 2.1 Modelo de Transporte
  • 69. 69 Ejercicios Suponer que se tienen tres fábricas M1, M2 y M3 que producen 39, 48 y 33 toneladas respectivamente, de un cierto producto que debe llevarse a cuatro destinos, D1, D2, D3 y D4, los cuales requieren 40, 37, 18 y 25 toneladas. Los costos están dados por la siguiente tabla: 2.1 Modelo de Transporte 1 D1 D2 D3 D4 M1 2 3 1 2 M2 1 4 7 6 M3 8 9 4 5
  • 70. 70 Planificación de la producción: 2.1 Modelo de Transporte 2 Periodo Capacidad de Producción Máxima (unidades) Demanda a satisfacer Costo de Producción ($) Costo de Almacenaje ($) 1 1200 900 15 1.2 2 800 800 18 1.4 3 1100 1000 17 1.1 4 900 700 20 1.5 ¿Cuánto hay que producir en cada periodo para satisfacer la demanda al mínimo costo (tanto de producción como de almacenaje)?. Supuesto: No existe inventario inicial ni final. Plantear el problema usando el modelo de transporte. Encuentre las respuestas usando Solver.
  • 71. 71 Situación: Asignar m trabajos (o trabajadores) a n máquinas. Un trabajo i (=1, 2, 3 ,...,m) cuando se asigna a la máquina j (=1,2,....,n) incurre en un costo cij. El objetivo es asignar los trabajos a las máquinas uno a uno al menor costo. La formulación de este problema puede considerarse como un caso especial del modelo de transporte. 2.2 Modelo de Asignación
  • 72. 72 Descripción Los trabajos representan las “fuentes” y las máquinas los “destinos” La oferta disponible en cada fuente es 1 como también lo es la demanda en cada destino. cij es el costo de transportar (asignar) el trabajo i a la máquina j El costo puede representar también características de competencia de cada trabajador
  • 73. 73 Descripción En el caso que un trabajo no deba ser asignado (porque no cumple con los requisitos) a una máquina (actividad) en particular, este costo debe tener un valor alto (M) En el caso de existir desequilibrio, esto es, más trabajos que máquinas o más máquinas que trabajos, hay que equilibrar con máquinas o trabajos figurados (ficticios), logrando de esta forma que m = n
  • 74. 74 Expresión matemática del modelo 0, si el i-ésimo trabajo no se asigna a la j-ésima máquina 1, si el i-ésimo trabajo se asigna a la j-ésima máquina Xij = Máquina 1 2 ….. n C11 C12 ….. C1n C21 C22 ….. C2n ….. ….. ….. ….. Cn1 Cn2 ….. Cnn 1 2 ….. n Trabajo 1 1 ….. 1 1 1 ….. 1
  • 75. 75 Por lo tanto el modelo está dado por: minimizar z = ∑∑= = n i n j ijij xc 1 1 sujeto a 1 1 =∑= n j ijx i=1,2, ...,n 1 1 =∑= n i ijx j=1,2,..n xij = 0 ó bien 1
  • 76. 76 Ejemplo: La gerencia general de RPG (ejemplo de transporte) con sede en Bruselas, este año, como parte de su auditoría anual, decidió que cada uno de sus cuatro vicepresidentes visite e inspeccione cada una de sus plantas de ensamblaje durante las primeras dos semanas de junio. Las plantas están ubicadas en Leipzig (Alemania), Nancy (Francia, Lieja (Bélgica) y Tilburgo (Holanda). Para decidir a que vicepresidente enviar a una planta determinada, se asignaron puntospuntos (costos) a cada uno de ellos de acuerdo a su experiencia, habilidades lenguísticas, tiempo que durará la inspección y otros. Estos datos se muestran en la siguiente tabla:
  • 77. 77 Ejemplo PLANTA Leipzig (1) Nancy(2) Lieja (3) Tilburgo(4) Finanzas (F) (1) 24 10 21 11 Mercadotecnia(M) (2) 14 22 10 15 Operaciones (O) (3) 15 17 20 19 Personal(P) (4) 11 19 14 13 Plantear el modelo de PL
  • 78. 78 Ejemplo: Modelo de PL MIN Z = 24 X11 + 10 X12 + ... + 14 X43 + 13 X44 sujeto a: a) Oferta X11 + X12 + X13 + X14 = 1 X21 + X22 + X23 + X24 = 1 X31 + X32 + X33 + X34 = 1 X41 + X42 + X43 + X44 = 1 b) Demanda X11 + X21 + X31 + X41 = 1 X12 + X22 + X32 + X42 = 1 X13 + X23 + X33 + X43 = 1 X14 + X24 + X34 + X44 = 1 c) No negatividad Xij >= 0 i=1,...,4, j=1,....,4
  • 79. 79 Métodos de Solución Existen varias formas de obtener la solución: a) Listar todas las alternativas posibles con sus costos y seleccionar la de menor costo (algoritmo exhaustivo) b) Método Húngaro: método iterativo a) Listar todas las alternativas: ¿Cuántas alternativas posibles existen? - El primer trabajo se puede asignar de n formas formas posibles - El segundo de n-1 formas - El último sólo de 1 forma En total existen n! formas de hacer la asignación completa
  • 80. 80 Método Húngaro: Paso 0: Construir la matriz de asignación Para obtener la solución óptima cada nueva matriz de asignación debe satisfacer: Propiedad 1: Todos los números son no negativos Propiedad 2: Cada fila y cada columna tiene al menos una celda con un valor cero Paso 1: a) Reducción de filas:a) Reducción de filas: Restar el costo menor de cada fila a la fila correspondiente y/o b) Reducción de columnas:b) Reducción de columnas: Restar el costo menor de cada columna a la columna correspondiente Con esto se crea una nueva matriz con las propiedades 1 y 2
  • 81. 81 Método Húngaro: Paso 2: Determinar si la matriz es reducida (Prueba de Optimalidad). Trazar el menor número de líneas rectas sobre las filas y columnas para cubrir todos los ceros. Si el número de rectas es igual al número de filas o columnas se dice que esta matriz es reducida. Si la matriz no es reducida pasar al paso 3, sino pasar al paso 4
  • 82. 82 Método Húngaro: Paso 3: Movimiento De todas las celdas no cruzadas identifique una con el menor valor y haga lo siguiente: a) Restar el valor a cada celda no cruzada b) Sumar el valor a cada celda de intersección de rectas Volver al paso 2
  • 83. 83 Método Húngaro: Paso 4: Solución óptima (Asignación) Primero se asigna a las que tengan sólo una alternativa, se van marcando y así sucesivamente Determinar el costo: Se suman todos los costos correspondientes a las asignaciones (o sumar todos los pi y qj). ¿Qué valor se obtiene al sumar todos los valores que se restaron en las reducciones de filas y columnas?
  • 84. 84 Ejemplo: Aplique el método Húngaro al ejemplo 1 2 3 4 pi F 24 10 21 11 M 14 22 10 15 O 15 17 20 19 P 11 19 14 13 qj Paso 0: Matriz de Asignación Nota: En negrita los menores de cada fila
  • 85. 85 Paso 1: Reducción de filas y columnas 1 2 3 4 pi F 14 0 11 1 10 M 4 12 0 5 10 O 0 2 5 4 15 P 0 8 3 2 11 qj 1 1 2 3 4 pi F 14 0 11 0 10 M 4 12 0 4 10 O 0 2 5 3 15 P 0 8 3 1 11 qj 1 Filas Columnas
  • 86. 86 Paso 2: Determinar si la matriz es reducida 1 2 3 4 pi F 14 0 11 0 10 M 4 12 0 4 10 O 0 2 5 3 15 P 0 8 3 1 11 qj 1 No es reducida: sólo tres rectas (para ser reducida deben ser 4) Ir al paso 3
  • 87. 87 Paso 3: Movimiento (Seleccionar el menor: restar a las no tachadas, sumar a las intersecciones) 1 2 3 4 pi F 14 0 11 0 10 M 4 12 0 4 10 O 0 2 5 3 15 P 0 8 3 1 11 qj 1 1 2 3 4 pi F 15 0 12 0 10 M 4 11 0 3 10 O 0 1 5 2 15 P 0 7 3 0 11 qj 1 + 1 Volver al paso 2 !!
  • 88. 88 Iteración paso 2: 1 2 3 4 pi F 15 0 12 0 10 M 4 11 0 3 10 O 0 1 5 2 15 P 0 7 3 0 11 qj 1 + 1 Se tachan todos los ceros con cuatro rectas, por tanto es óptima Ir al paso 4 !!
  • 89. 89 Paso 4: Asignación 1 2 3 4 pi F 15 0 12 0 10 M 4 11 0 3 10 O 0 1 5 2 15 P 0 7 3 0 11 qj 1 + 1 Costo = c12 + c23 + c31 +c44 = 10+10+15+13 = 48 ∑∑ += ji qpCosto =10 + 10 + 15 + 11 + 1 + 1 = 48 Ver Asignación RPG
  • 90. 90 Modelo de Asignación: Otras consideraciones El modelo de asignación de RPG es un modelo de minimización en el cual el número de vicepresidentes es igual al número de plantas, y todas las asignaciones posibles son aceptables. Consideremos ahora modelos tipo asignación donde no todas las condiciones anteriores se cumplen. En particular se considerarán situaciones en las que: 1 Hay una desigualdad entre el número de “personas” por asignar y el número de “destinos” que requieren personas asignadas. 2 Hay un modelo de maximización 3 Existen asignaciones inaceptables
  • 91. 91 Modelo de Asignación: Otras consideraciones 1. Ofertas y demandas desiguales a) Oferta mayor que la demanda Suponer que el presidente de RPG quiere auditar a la planta de Tilburgo, por tanto tendrá que decidir cual de los cuatro vicepresidentes debe asignar a cada una de las tres plantas restantes. Solución: Se elimina la restricción que requería un vicepresidente para Tilburgo. El resultado de este cambio es que la holgura para uno de los cuatro vicepresidentes será 1 en la nueva solución óptima Ver Asignación RPG (O>D)
  • 92. 92 Modelo de Asignación: Otras consideraciones 1. Ofertas y demandas desiguales b) Demanda mayor que la oferta Suponer que el vicepresidente de Personal tiene que viajar a Illinois durante la primer semana de junio, por lo tanto no puede participar en la auditoría en Europa. Solución: Se agrega un vicepresidente ficticio (igual al modelo de transporte) para obtener una solución factible, pero es claro que una de las plantas quedará sin auditar.
  • 93. 93 Modelo de Asignación: Otras consideraciones 2. Hay un modelo de maximización La respuesta de asignación es un beneficio y no un costo Ejemplo: Suponga que RPG tiene que asignar vendedores a sus territorios de venta. Existen cuatro personas bien capacitadas listas para ser asignadas y tres territorios requieren un nuevo vendedor. Uno de los vendedores no será asignado. En este caso la asignación de un vendedor cualquiera a un territorio se mide por el incremento marginal esperado en la contribución de dicha asignación a las ganancias.
  • 94. 94 Modelo de Asignación: Otras consideraciones 2. Hay un modelo de maximización La matriz de ganancia es la siguiente Contribución del Vendedora Territorio 1 Territorio 2 Territorio 3 A 40$ 30$ 20$ B 18$ 28$ 22$ C 12$ 16$ 20$ D 25$ 24$ 27$ Ver Asignación Vendedores RPG
  • 95. 95 Modelo de Asignación: Otras consideraciones 3. Situaciones con asignaciones inaceptables Ejemplo: Suponga que el presidente de RPG no tiene el menor deseo de que el vicepresidente de Operaciones realice una auditoría a la Planta Nancy. Solución: Asignar un costo arbitrariamente alto a esta “ruta”, de tal modo que al restar de él cualquier número finito se obtiene siempre un valor mayor que otros números relevantes Ver Asignación RPG inaceptable
  • 96. 96 2.3 Modelo de Transbordo Este modelo permite que las unidades no vayan directamente desde un origen a un destino, sino que pasen por nodos intermedios o transitorios. Cada origen, punto intermedio y destino final se representan como nodos y se conectan a través de arcos dirigidos Restricción en cada nodo transitorio: suma flujos entrantes = suma flujos saliente También se puede representar por medio de una matriz donde un mij = 1 cuando existe un enlace directo entre el nodo i y el nodo j; y mij = 0 cuando no hay enlace directo entre estos nodos
  • 97. 97 Modelo de Transbordo: Algoritmo Inicialización: Encuentre un plan de embarque factible que satisfaga todas las restricciones de suministro y demanda, al mismo tiempo que mantiene un equilibrio en todos los nodos de transbordo. Prueba de Optimalidad: Pruebe el plan de embarque actual para ver si es óptimo, es decir, si es el plan que incurre en los costos totales mínimos. Si es así, deténgase con la solución óptima, sino vaya al paso 3. Movimientos: Use el hecho de que el plan de embarque actual no es óptimo para crear un nuevo plan de embarque factible con menos costo total que el actual. Vaya al paso 2. 1 2 3
  • 98. 98 Consideraciones: • Los pasos del algoritmo son análogos a los del algoritmo de pasos sucesivos (escalón). • Tanto los nodos origen como los destinos pueden ser a su vez nodos de transbordo. • Al igual que el modelo de transporte, puede haber desequilibrio, en ese caso se agregan fuentes o destinos ficticios con costo cero. • El numero total del sistema está dado por el total de la oferta o de la demanda. • A cada nodo de transbordo se asigna un suministro (demanda) igual a su suministro (demanda) original (cero, si no coincide originalmente con un destino) más el total de unidades del sistema. Esto permite que todas las unidades puedan pasar por un empalme dado.
  • 99. 99 Ejemplo 1: Determínese un programa de embarque que cubra todas las demandas a un costo mínimo total para los datos correspondientes al siguiente grafo (costo en $). 3 4 2 4 3 7 2 1 3 5 2 4 6 +95 -30 +70 +15 -30 -45 8
  • 100. 100 Solución • Los sitios 1 y 2 son orígenes • Los sitios 5 y 6 son destinos • El sitio 3 es origen y empalme • El sitio 4 es destino y empalme • La oferta es mayor que la demanda por tanto se requiere un destino ficticio que demande 75 unidades • Agregar 180 unidades a cada empalme (oferta y demanda) • El costo de las unidades que van de un empalme (como origen) a él mismo (como destino) y de cualquier origen al sitio ficticio es cero. • A las rutas no permitidas se les asocia un valor relativamente alto (por 1.000)
  • 101. 101 La tabla inicial es: 3 4 5 6 F Oferta 1 95 3 1000 8 1000 0 2 70 2 7 1000 1000 0 3 195 0 3 4 4 0 4 180 1000 0 1000 2 0 Demanda 180 210 30 45 75 Orígenes Destinos
  • 102. 102 La tabla final es: 3 4 5 6 F Oferta 1 20 75 95 3 1000 8 1000 0 2 70 70 2 7 1000 1000 0 3 90 30 30 45 195 0 3 4 4 0 4 180 180 1000 0 1000 2 0 Demanda 180 210 30 45 75 Destinos Orígenes Costo = 20*3+75*0+70*2+90*0+30*3+30*4+45*4+180*0=$590
  • 103. 103 Ejemplo 2: Una corporación necesita transportar 70 unidades de un producto, del sitio 1 a los sitios 2 y 3 en cantidades de 45 y 25 unidades, respectivamente. Las tarifas cij (en miles de pesos por unidad) de carga aérea entre los sitios comunicados por carguero se dan en la tabla, en la cual las líneas punteadas indica que no hay servicio disponible. Determínese un programa de embarque que asigne el número requerido de artículos a cada destino, a un costo mínimo de transporte. Ningún embarque requiere de vuelo directo, se permiten los envíos empleando puntos intermedios. 1 2 3 4 1 .... 38 56 34 2 38 ... 27 ... 3 56 27 ... 19 4 34 ... 19 ...
  • 105. 105 Planteamiento del modelo PL : Plantear el modelo de PL para el ejemplo mostrado en el grafo anterior.
  • 106. 106 2.4. Modelos de Redes 2.4.1 Teoría de Grafos 2.4.2 Modelo de la Ruta más corta 2.4.3 Modelo del Árbol Expandido Mínimo 2.4.4 Problema del Flujo Máximo
  • 107. 107 2.4.1 Introducción a la Teoría de Grafos Grafo no dirigido: Un grafo no dirigido G consiste en un conjunto V de vértices (o nodos) y un conjunto E de lados (ramas o enlaces) tales que cada lado e ε E está asociado a un par no ordenado de vértices v y w. Si un lado e está asociado a un único par de vértices v y w, entonces e= (v,w) o e=(w,v). Grafo dirigido: Un grafo dirigido (o digrafo) G consiste en un conjunto V de vértices (o nodos) y un conjunto E de lados (o ramas) tales que cada lado e ε E está asociado a un par ordenado de vértices. Si un lado e está asociado a un par ordenado único de vértices v y w, se escribe e = (v,w).
  • 108. 108 2.4.1 Introducción a la Teoría de Grafos Se dice que un lado e = (v,w) de un grafo (dirigido o no dirigido) es incidente en v y w. Se dice que los vértices v y w son incidentes en e y también son vértices adyacentes. Si G es un grafo (dirigido o no dirigido) con un conjunto de vértices V y un conjunto de lados E, se escribe G = (V,E) Nodo (Vértice): Un círculo de una red utilizada para representar una planta, almacén o tienda. Nodo de Suministro: Nodo desde le cual los productos se van a enviar.
  • 109. 109 2.4.1 Introducción a la Teoría de Grafos Nodo de demanda: Nodo que va a recibir los productos para cumplir con una demanda conocida. Nodo de transbordo: Nodo que recibe productos desde otros nodos para su distribución. Arco (enlace): Línea de una red que conecta un par de nodos. Se le utiliza para representar una ruta válida desde el nodo origen al nodo de distribución.
  • 110. 110 2.4.1 Introducción a la Teoría de Grafos Arco dirigido: Indica el sentido de movimiento de los productos. Camino: Una secuencia de nodos en una red unidos por arcos (dirigidos o no dirigidos) Trayectoria (lazo): Es un camino cerrado (ciclo) donde el primer nodo es a su vez el último.
  • 111. 111 2.4.1 Introducción a la Teoría de Grafos Representación Matricial i) Matriz de Adyacencia ii) Matriz de costo (beneficio) Representación de un grafo: Un grafo se puede representar matemáticamente como: a) Una matriz b) Una lista enlazada c) Árbol
  • 112. 112 2.4.1 Introducción a la Teoría de Grafos (cont.) Matriz de Adyacencia: Para un grafo G, es una matriz A de dimensión NxN, donde A[i,j] es verdadero (1) si, y sólo si, existe un arco que vaya del vértice i al vértice j. En ausencia de arco directo se representa generalmente por 0. Ejemplo:Dado el siguiente grafo encontrar su matriz de adyacencia
  • 113. 113 2.4.1 Introducción a la Teoría de Grafos (cont.) 2 3 4 1 1 2 3 4 1 1 1 2 1 3 1 4 1
  • 114. 114 2.4.1 Introducción a la Teoría de Grafos (cont.) Matriz de Costo: Para un grafo G etiquetado, es una matriz C de dimensión NxN, donde A[i,j] es el costo (valor de la etiqueta) si, y sólo si, existe un arco que vaya del vértice i al vértice j. En ausencia de arco directo se representa generalmente por infinito (costo extremadamente alto, para la simulación se hace uso de un valor fuera de contexto). Ejemplo:Dado el siguiente grafo encontrar su matriz de costo
  • 115. 115 2.4.1 Introducción a la Teoría de Grafos (cont.) 2 3 4 1 1 2 3 4 1 10 15 2 12 3 20 4 5 10 15 20 12 5
  • 116. 116 2.4.1 Introducción a la Teoría de Grafos (cont.) Para un grafo no dirigido, tanto la matriz de adyacencia como la matriz de costo son simétricas, esto es: A[i,j] = A[j,i] ó C[i,j] = C[j,i]
  • 117. 117 Ejemplo Introductorio Seymour Miles es el gerente de distribución de Zigwell. Zigwell distribuye sus motores oruga en cinco estados del medio oeste. Por lo regular, Seymour Miles tiene 10 aparatos E-9 in situ en lo que designaremos como local 1. Estos tractores deben ser enviados a los dos locales de construcción más importantes designados como 3 y 4. Se necesitan tres E-9 en el local 3 y siete en el local 4. Debido a itinerarios arreglados con anterioridad, relativos a la disponibilidad de conductores, los tractores solo pueden ser distribuidos de acuerdo con las rutas alternativas que se muestran en el grafo de la figura. La figura tiene un número +10 en el nodo 1, esto significa que hay 10 aparatos E-9 disponibles (oferta). Los indicadores -3 y -7 asociados a los locales 3 y 4, respectivamente, denotan los requerimientos (demandas) de éstos.
  • 118. 118 1 2 4 5 3 c12 c34 c24 c25 c54 u43 c53 c23 +10 -3 -7 Rutas alternativas para el destino 3 1-2-3, 1-2-4-3, 1-2-5-4-3, 1-2-5-3 u12 u23 u34 c43 u53 c54 u25 u24
  • 119. 119 Los costos cij son unitarios. Por ejemplo el costo de recorrer el arco (5,3) es c53 por cada tractor. Debido a los acuerdos sostenidos con los conductores, Zigwell debe cambiarlos en cada local que se encuentre sobre la ruta. Las limitaciones en la disponibilidad de conductores ocasionan que haya una cota superior en el número de tractores que pueden recorrer cualquier arco dado. Por ejemplo: u53 es la cota superior o capacidad en el arco (5,3). El problema de Sygmour consiste en encontrar un plan de embarque que satisfaga la demanda y las restricciones de capacidad a costo mínimo.
  • 120. 120 El problema en particular se conoce como modelo de transbordo con capacidades. Expresar el problema como un PL a) Variables de decisión xij = número total de E-9 que se enviarán a través del arco (i,j). = flujo del nodo i al nodo j
  • 121. 121 b) Función Objetivo MIN Z =C12X12+C23X23+C24X24+C25X25+C34X34+C43X43+C53X53+C54X54 la red(i,j) deartodos loscx ijij cos,0 ≤≤ c) Restricciones s a + X12 = 10 - X12+X23+X24+X25 = 0 -X23 -X43 -X53 +X34 = -3 -X24 +X43 -X34 -X54 = -7 -X25 +X53 +X54 = 0 Balance de flujo
  • 122. 122 Matriz Incidencia nodo-arco a r c o Nodo (1,2) (2,3) (2,4) (2,5) (4,3) (5,3) (3,4) (5,4) LD 1 +1 0 0 0 0 0 0 0 10 2 -1 +1 +1 +1 0 0 0 0 0 3 0 -1 0 0 -1 -1 +1 0 -3 4 0 0 -1 0 +1 0 -1 -1 -7 5 0 0 0 -1 0 +1 0 +1 0
  • 123. 123 Formulación General del Modelo de Transbordo con Capacidades Xij denotan el flujo del nodo i al nodo j a lo largo del arco que conecta esos nodos. Lj representa la oferta en el nodo j ijij ij xc∑ s.a. minimice njLxx jk kjk jk ,....,2,1, ==− ∑∑ la red(i,j) deartodos loscx ijij cos,0 ≤≤
  • 124. 124 Resolver para las siguientes capacidades y costos Capacidad dea Sitio 1 Sitio 2 Sitio 3 Sitio 4 Sitio 5 Sitio 1 10 Sitio 2 4 3 3 Sitio 3 2 Sitio 4 4 Sitio 5 3 5 Costo Unitario dea Sitio 1 Sitio 2 Sitio 3 Sitio 4 Sitio 5 Sitio 1 $100 Sitio 2 $45 $50 $20 Sitio 3 $60 Sitio 4 $85 Sitio 5 $10 $55 Ver transbordo con capacidades
  • 125. 125 2.4.2 Modelo de la Ruta más corta Se pueden dar dos casos para representar la red: Como grafo no dirigido Como grafo dirigido Situaciones: a b Cualquiera que sea el caso corresponde a grafos ponderados (con peso)
  • 126. 126 2.4.2 Modelo de la Ruta más corta Considerénse todos los nodos que estén directamente conectados con el origen. Etiquetarlos con la distancia al origen y su nodo predecesor. Etiquetas temporales, [distancia, nodo]. De entre todos los nodos con etiquetas temporales, escoger el que tenga la distancia menor y se marca como permanente. Si todos están con etiquetas permanentes se va al paso cuatro. a) Algoritmo: Grafo no dirigido 1 2
  • 127. 127 2.4.2 Modelo de la Ruta más corta (GND) Todo nodo que no tenga etiqueta permanente, tendrá etiqueta temporal o estará sin etiqueta. Sea L el último nodo con etiqueta permanente. Considerénse todas las etiquetas de los vecinos de L (directamente conectados a L mediante un arco). Para cada uno de estos nodos calcúlese la suma de su distancia a L. Si el nodo en cuestión no está etiquetado, asígnese una etiqueta temporal que conste de esta distancia y de L como predecesor. Si el nodo en cuestión ya tiene etiqueta temporal, cámbiese sólo si la distancia recién calculada es menor que la componente de distancia de la etiqueta actual. En este caso, la etiqueta contendrá esta distancia y a L como predecesor. Regresar al paso 2 3 Algoritmo:
  • 128. 128 2.4.2 Modelo de la Ruta más corta (GND) Las etiquetas permanentes indican la distancia más corta entre el nodo origen a cada nodo de la red. También indican el nodo predecesor en la ruta más corta hacia cada nodo. Para encontrar el camino más corto de un nodo dado, comiéncese en él y retroceda al nodo anterior. Continuar con el recorrido hasta llegar al origen. Algoritmo: 4
  • 129. 129 2.4.2 Modelo de la Ruta más corta (GND) Ejemplo: Para el siguiente grafo encontrar la distancia más corta desde el nodo H al resto de los nodos. H 1 2 3 4 5 6 7 8 4 1 1 1 1 2 2 7 6 3 3 3
  • 130. 130 2.4.2 Modelo de la Ruta más corta (GND) Solución: H 1 2 3 4 5 6 7 8 4 1 1 1 1 2 2 7 6 3 3 3 (8,H) (4,H) (5,1) (6,3) (8,2) (6,3) (9,4) (9,7) ó 1:Ver ejemplo 1 Ruta mas corta 2: Hacer problema 19 guía 2 (Ejemplo 2 Ruta mas corta
  • 132. 132 2.4.2 Modelo de la Ruta más corta (GD) Es una técnica exhaustiva, esto es, prueba todas las alternativas posibles. Opera a partir de un conjunto S de vértices cuya distancia más corta desde el origen ya es conocida. Inicialmente S contiene sólo el nodo de origen. En cada paso se agrega algún vértice restante v a S, cuya distancia desde el origen es la más corta posible. Para cada paso del algoritmo, se utiliza una matriz D para registrar la longitud del camino más corto a cada vértice. b) Algoritmo de Dijkstra
  • 133. 133 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra INICIO 0) V = {1, 2, 3, 4, ..., n} 1) S = {1} // nodo 1 se supone que es el origen 2) Para i=2 Hasta n Hacer 3) Di = C1i 4) Para i=1 Hasta n-1 Hacer 5) Elegir un vértice w en V-S tal que Dw sea un mínimo 6) agregar w a S 7) Para cada vértice v en V-S Hacer SI ((Dw+Cwv)<Dv) //Pv = w Dv = Dw+Cwv 8) //Dv=mínimo(Dv,Dw+Cwv) FIN
  • 134. 134 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra Ejemplo: Aplicar el algoritmo al siguiente grafo dirigido 10 100 60 50 30 10 2 1 3 4 5 20
  • 135. 135 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra Inicial 0) V = {1, 2, 3, 4, 5} 1) S = {1} 2) 3) D2 = 10, D3 = inf, D4=30, D5 = 100 4) Iterar 4 veces 5) Seleccionar nodo con distancia más corta de V-S, En el ejemplo es el nodo 2 Iteración S w D2 D3 D4 D5 Inicial {1} -- 10 inf 30 100
  • 136. 136 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra 6) Agregar el nodo 2 a S : S = {1,2} 7) Iterar |V-S|, (V-S = {3,4,5}) D3=mínimo(D3,D2+C23) =mínimo(inf,10+50) = 60 D4=mínimo(D4,D2+C24) =mínimo(30,10+inf) = 30 D5=mínimo(D5,D2+C25) =mínimo(100,10+inf) = 100 Iteración S w D2 D3 D4 D5 Inicial {1} -- 10 inf 30 100 1 {1,2} 2 10 60 30 100
  • 137. 137 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra 2a Iteración V-S = {3,4,5} 5) w = 4 6) S = {1,2,4} 7) Iterar |V-S| V-S = {3,5} D3=mínimo(D3,D4+C43) =mínimo(60,30+20) = 50 D5=mínimo(D5,D4+C45) =mínimo(100,30+60) = 90 Iteración S w D2 D3 D4 D5 Inicial {1} -- 10 inf 30 100 1 {1,2} 2 10 60 30 100 2 {1,2,4} 4 10 50 30 90
  • 138. 138 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra 3a Iteración V-S = {3,5} 5) w = 3 6) S = {1,2,4,3} 7) Iterar |V-S| (V-S = {5}) D5=mínimo(D5,D3+C35) =mínimo(90,50+10) = 60 Iteración S w D2 D3 D4 D5 Inicial {1} -- 10 inf 30 100 1 {1,2} 2 10 60 30 100 2 {1,2,4} 4 10 50 30 90 3 {1,2,4,3} 3 10 50 30 60
  • 139. 139 2.4.2 Modelo de la Ruta más corta (GD) Algoritmo de Dijkstra 4a Iteración V-S = {5} 5) w = 5 6) S = {1,2,4,3,5} 7) Iterar |V-S| (V-S = {}) Iteración S w D2 D3 D4 D5 Inicial {1} -- 10 inf 30 100 1 {1,2} 2 10 60 30 100 2 {1,2,4} 4 10 50 30 90 3 {1,2,4,3} 3 10 50 30 60 4 {1,2,4,3,5} 5 10 50 30 60 Tabla Final
  • 140. 140 ¿Cuál es el camino? Para conocer el camino hay que incluir otra matriz P de vértices, tal que Pv contenga el vértice inmediato anterior a v en el camino más corto. Se asigna a Pv valor inicial 1 para todo v ≠ 1 La matriz P se actualiza después de la línea 8. Si Dw + Cwv < Dv en la línea 8, después se hace Pv = w Al término de la corrida del algoritmo, el camino a cada vértice puede encontrarse regresando por los vértices predecesores de la matriz P
  • 141. 141 ¿Cuál es el camino? Para el ejemplo, la matriz P debe tener los valores P2 =1, P3 = 4, P4 = 1, P5 = 3 Para encontrar el camino más corto del vértice 1 al 5, se siguen los predecesores en orden inverso. 3 es el predecesor de 5 4 es el predecesor de 3 1 es el predecesor de 4
  • 142. 142 Problema de los caminos más cortos entre todos los pares de nodos Para visualizar el problema se emplea un grafo dirigido G = (V,A) en el que cada arco v→ w tiene un costo no negativo Cv,w. El problema consiste en encontrar el camino de longitud más corta (menor costo) entre v y w para cada par ordenado de vértices (v,w). Algoritmo de Floyd Se utiliza una matriz A, donde Aij = Cij para toda i≠ j, si no existe camino directo entre i y j se supone que Cij = inf. Cada elemento de la diagonal se hace cero.
  • 143. 143 Problema de los caminos más cortos entre todos los pares de nodos Después se hacen n iteraciones en la matriz A. Al final de la k-ésima iteración Aij tendrá por valor la longitud más pequeña de cualquier camino que vaya desde el vértice i hasta el vértice j y que no pase por un vértice mayor que k. Esto es, i y j, los vértice extremos del camino, pueden ser cualquier vértice, pero todo vértice intermedio debe ser menor o igual a k. En la k-ésima iteración se aplica la siguiente fórmula para calcular A k-1Aij kAij = min k-1Aik + k-1Akj
  • 144. 144 Problema de los caminos más cortos entre todos los pares de nodos Para calcular Aij, se compara k-1Aij, el costo de ir de i a j sin pasar por k o cualquier otro nodo con numeración mayor, con k-1Aik + k-1Akj, el costo de ir primero de i a k y después de k a j, sin pasar a través de un vértice mayor que k. Si el paso por el vértice k produce un camino más económico que el de k-1Aij, se elige ese costo para kAij. k-1 Aik k-1Aij k-1 Akj i k j
  • 145. 145 Problema de los caminos más cortos entre todos los pares de nodos Algoritmo de Floyd // Se supone que se cuenta con la matriz de costo C 0) INICIO 1) Desde i = 1 Hasta N 2) Desde j = 1 Hasta N 3) Aij ← Cij 4) Desde i = 1 Has ta N 5) Aii = 0 6) Desde k = 1 Hasta N 7) Desde i = 1 Hasta N 8) Desde j = 1 Hasta N 9) SI (Aik + Akj < Aij) 10) Aij = Aik + Akj 11) FIN
  • 146. 146 Problema de los caminos más cortos entre todos los pares de nodos Recuperación de caminos para el Algoritmo de Floyd Cuando es de interés conocer el camino más corto entre dos vértices, hay que consignarlo en una matriz P, donde Pij tiene el vértice k que permitió a Floyd encontrar el valor menor de Aij. Si Pij es cero, el camino de i a j es directo.
  • 147. 147 Problema de los caminos más cortos entre todos los pares de nodos Algoritmo de Floyd Modificado 0) INICIO 1) Desde i = 1 Hasta N 2) Desde j = 1 Hasta N 3) Aij ← Cij 3) Pij ← 0 4) Desde i = 1 Has ta N 5) Aii = 0 6) Desde k = 1 Hasta N 7) Desde i = 1 Hasta N 8) Desde j = 1 Hasta N 9) SI (Aik + Akj < Aij) 10) Aij ← Aik + Akj 10) Pij ← k 11) FIN
  • 148. 148 Problema de los caminos más cortos entre todos los pares de nodos Ejemplo: Aplique Floyd al grafo ponderado mostrado en la figura 1 2 3 2 8 3 2 5
  • 149. 149 Problema de los caminos más cortos entre todos los pares de nodos Solución: Tabla Inicial Nodos 1 2 3 1 0 8 5 2 3 0 inf 3 inf 2 0 0Aij
  • 150. 150 Problema de los caminos más cortos entre todos los pares de nodos Solución: Después de la primera iteración 1Aij Nodos 1 2 3 1 0 8 5 2 3 0 8 3 inf 2 0
  • 151. 151 Problema de los caminos más cortos entre todos los pares de nodos Solución: Después de la segunda iteración 2Aij Nodos 1 2 3 1 0 8 5 2 3 0 8 3 5 2 0
  • 152. 152 Problema de los caminos más cortos entre todos los pares de nodos Solución: Después de la tercera iteración 3Aij Nodos 1 2 3 1 0 7 5 2 3 0 8 3 5 2 0
  • 153. 153 2.4.3 Modelo de árbol extensión mínima Un árbol es un grafo que tiene sus n nodos (vértices) conectados (conexo) con n-1 arcos (aristas), no existiendo ciclos (caminos cerrados) Definición 1 Definición 2 Un árbol de expansión de costo mínimo es aquel en que todos los enlaces tienen longitudes (costos) mínimas
  • 154. 154 Algoritmo para el problema del árbol de expansión mínima. Método Gráfico Se selecciona un nodo cualquiera y se conecta al nodo más cercano a éste. Se identifica el nodo no conectado más cercano a un nodo conectado y se conectan estos dos nodos Empates se deciden en forma arbitraria. Los empates indican que existen soluciones alternativas para la construcción. 1 2 Nota:
  • 157. 157 Algoritmo tabular Paso Acción 0 Se construye la tabla de costos de enlaces 1 Se comienza arbitrariamente con cualquier nodo. Se designa a este nodo como conectado y se pone una marca al lado de la fila correspondiente al nodo. Se tacha el índice de la columna que corresponde a él. 2 Considerando todas las filas marcadas, buscar el mínimo en las columnas cuyo índice aún no haya sido tachado encerrándolo en un círculo. Designándose de esta manera el nuevo nodo conectado. Se tacha el índice de la columna y pone una marca en la fila correspondiente a este nodo. Se repite este paso hasta que todos los nodos estén conectados. 3 Los nodos encerrados en círculo identifican el árbol.
  • 158. 158 Aplicación Algoritmo tabular Nodo H 1 2 3 4 5 6 7 H 4 7 8 1 4 6 1 2 6 1 2 3 1 1 1 4 7 1 3 3 2 5 2 3 3 6 3 3 1 7 8 2 1 Tabla inicial
  • 159. 159 Aplicación Algoritmo tabular Inicio: Nodo H Nodo H 1 2 3 4 5 6 7 * H 4 7 8 * 1 4 6 1 2 6 1 2 3 1 1 1 4 7 1 3 3 2 5 2 3 3 6 3 3 1 7 8 2 1 a) b)
  • 160. 160 Aplicación Algoritmo tabular Nodo 1 Nodo H 1 2 3 4 5 6 7 * H 4 7 8 * 1 4 6 1 2 6 1 2 * 3 1 1 1 4 7 1 3 3 2 5 2 3 3 6 3 3 1 7 8 2 1 a) b) c)
  • 161. 161 Aplicación Algoritmo tabular Nodo H 1 2 3 4 5 6 7 * H 4 7 8 * 1 4 6 1 * 2 6 1 2 * 3 1 1 1 * 4 7 1 3 3 2 * 5 2 3 3 * 6 3 3 1 * 7 8 2 1 Tabla final a) b) c)
  • 163. 163 2.4.4 Problema del Flujo Máximo En este problema hay un solo nodo fuente (nodo de entrada) y un solo nodo destino (nodo de salida), y el resto son nodos de transbordo. El problema consiste en encontrar la máxima cantidad de flujo total (petróleo, gas, efectivo, mensajes, tránsito, etc.) en una unidad de tiempo. La cantidad de flujo por unidad de tiempo en cada arco está limitada por las restricciones de capacidad. Este problema se puede representar como una red dirigida y conexa. Descripción
  • 164. 164 Para cada nodo interno debe cumplirse que: flujo que sale del nodo = flujo que entra al nodo En términos formales, siendo 1 la fuente y n el destino el problema consiste en: MAX f f si i = 1 sujeto a si i = n 0 en otro caso 0 ≤ xij ≤ uij, para todos (i,j) de la red xij : flujo por unidad de tiempo por el arco (i,j) uij : capacidad del arco (i,j) f : flujo total a través de la red Descripción fxx j ji j ij −=− ∑∑
  • 165. 165 Considérese la i-ésima restricción, para algún valor fijo de i, La suma se considera sobre toda j para la cual el arco (i,j) con i fijo, pertenezca a la red. Entonces, será el flujo total que sale del nodo i. En forma semejante, la suma se considera sobre toda j para la cual exista el arco (j,i) en la red, (i fijo). De modo que es el flujo que entra al nodo i Descripción ∑j ijx ∑j jix ∑j ijx
  • 166. 166 Antes de hacer la presentación formal del algoritmo, revisemos el siguiente ejemplo. Algoritmo 6 6 6 2 4 4 3 2 1 6 1 2 3 4 5
  • 167. 167 Grafo inicial: Inicialización delos flujos en cada nodoAlgoritmo Consideremos un camino desde el nodo 1 al nodo 6 Ejemplo: 1-2-5-6 4 0 0 0 0 0 0 0 0 6 4 1 6 2 3 2 6 0 2 3 4 5 61
  • 168. 168 Se dice que la cantidad de flujo a lo largo de dicho recorrido es factible si: No excede la capacidad de ningún arco del camino Con excepción de los nodos 1 y 6, el flujo en cada nodo debe satisfacer la condición de conservación 1 2 La cantidad máxima que puede fluir desde la fuente a lo largo de un camino es igual a la menor de las capacidades de los arcos de dicho camino Al asignar un flujo a un arco nos atendremos a las reglas: 1 2 Se reduce la capacidad en la dirección del flujo (cantidad de flujo) Se aumenta la capacidad en sentido opuesto (cantidad de flujo)
  • 169. 169 Ejemplo: Considerar el arco 1-2 Asignar dos unidades a este arco: Aplicando las reglas 1 y 2 se tiene Se generó una capacidad ficticia en la dirección 2-1 Enviar una unidad de 2 a 1 1 2 (2 ) 22 1 2 4 0 1 2 (1 ) 13
  • 170. 170 Algoritmo Inicializar cada nodo del grafo con capacidades uij en la dirección del flujo y cero en la dirección opuesta. Encontrar cualquier camino de la fuente a destino que tenga capacidad de flujo positiva, si no los hay, se habrá encontrado la solución óptima. Sea cmin la capacidad mínima de flujo entre los arcos seleccionados en el paso 1, se aumenta el flujo existente a través de la red al enviar un flujo adicional cmin para todos los arcos del camino. Para todos los arcos del camino, disminúyanse las capacidades en la dirección del flujo y auméntese las capacidades en la dirección opuesta en cmin. Volver al paso 1 Inicial 1 2 3
  • 171. 171 Aplicar el algoritmo al grafo del ejemplo: 4 0 0 0 0 0 0 0 0 6 4 1 6 2 3 2 6 0 2 3 4 5 61 Paso Inicial
  • 172. 172 Iteración 1: 4 0 0 0 0 0 0 0 0 6 4 1 6 2 3 2 6 0 2 3 4 5 61 Elegir arbitrariamente el camino 1-3-5-6 cmin = MIN(6,4,2)=2; actualizando la red se tiene 4 2 2 2 0 2 2 2
  • 173. 173 Iteración 2: 4 0 0 0 0 0 0 0 0 6 4 1 2 2 3 2 2 0 2 3 4 5 61 4 2 0 2 2 6 Elegir arbitrariamente el camino 1-2-4-6 cmin = MIN(4,6,6)=4; actualizando la red se tiene 4 0 6 4 6 4 2 6 22
  • 174. 174 Iteración 3: 4 0 0 0 0 0 2 0 0 6 4 1 0 2 1 2 0 0 2 3 4 5 61 2 4 0 2 2 8 Elegir arbitrariamente el camino 1-3-2-4-6 cmin = MIN(4,3,2,2)=2; actualizando la red se tiene 4 0 6 4 6 6 2 8 22 4 2 3 0 2 6 2 4 6 6
  • 175. 175 Cálculo de la cantidad de flujo en cada arco Se determina comparando la capacidad inicial de cada arco con la capacidad inicial. Para cada arco la regla es: Si la capacidad final es menor que la capacidad inicial, calcular la diferencia. Esta es la cantidad del flujo a través del arco. Ejemplo: Arco 3-5 Inicial Final 22 3 5 04 3 5 Final < inicial entonces el flujo es 4-2=2
  • 176. 176 Aplicando la regla anterior a todos los arcos se tiene el siguiente grafo: 6 6 6 2 4 2 8 2 8 4 1 2 3 4 5
  • 177. 177 Unidad 3 Administración de Proyectos PERT y CPM
  • 178. 178 3 Administración de Proyectos (PERT y CPM) 1. ¿Cuándo sería lo más pronto que el proyecto pudiera estar terminado? 2. Para cumplir con este tiempo de conclusión, ¿qué tareas son críticas, en el sentido de que un retraso en cualquiera de esas tareas provoca un retraso en la conclusión del proyecto? 3. Es posible acelerar ciertas tareas para terminar todo el proyecto más pronto?. Si es así, ¿qué tareas serán éstas y cuál sería el costo adicional? Todo proyecto debe ser comprobado y controlado, dado que éste tiene involucrado numerosas tareas interrelacionadas. A través de algunas técnicas se puede responder a preguntas como:
  • 179. 179 Técnica de Evaluación de Proyectos (PERT, Program Evaluation and Review Technique): Método utilizado para administrar proyectos en que los tiempos requeridos para terminar las tareas individuales son inciertos (probabilísticos). Método de la Ruta Crítica (CPM, Critical Path Method): Método utilizado para administrar proyectos en que los tiempos requeridos para terminar las tareas individuales se conocen con relativa certeza (determinísticos).
  • 180. 180 3.1 Desarrollo de la Red de Proyectos 1. Identifique las tareas individuales que componen el proyecto 2. Obtenga una estimación del tiempo de conclusión de cada tarea. 3. Identifique las relaciones entre las tareas. ¿Qué tareas deben concluirse antes de que otras puedan iniciarse? 4. Dibuje un diagrama de red de proyecto para reflejar la información de los pasos 1 y 3 Para determinar el tiempo de conclusión de un proyecto puede usar los siguientes pasos:
  • 181. 181 Ejemplo: Traslado de las oficinas de una ciudad a otra El directorio ha fijado un plazo máximo de 22 semanas para la mudanza Actividad Descripción Prdecesoras inmediatas Tiempo Recursos A Elegir local de oficinas - B Crear el plan financiero y de - C Determinar requerimientos de personal B D Diseño de local A, C E Construir el interior D F Elegir personal a mudar C G Contratar nuevos empleados F H Mudar registros, personal clave, etc. F I Hacer arreglos finacieros de la organización B J Entrenar personal nuevo H, E, G
  • 182. 182 Construcción del diagrama de Red: 1 2 3 4 A B C ¿Cómo agregamos la actividad D?. Sus predecesoras inmediatas son A y C, además C es predecesora directa de F
  • 183. 183 Actividades Ficticias (figurada): Es una actividad artificial que no requiere tiempo y que se incluye en una red de proyecto para asegurar la relación de precedencia correcta entre ciertas tareas. Generalmente se representan por líneas segmentadas. Se usan sólo para reflejar las relaciones de precedencia adecuadas 2 4 A C
  • 184. 184 Volviendo al ejemplo: Agregando el resto de las actividades a la red finalmente se tiene 1 2 3 4 5 6 7 8 A B C D E F G H I J
  • 185. 185 Siguiendo con el ejemplo: G y H tienen como predecesora inmediata F, además ambas son predecesoras de J, agregar actividad ficticia. 1 2 3 4 5 6 7 8 A B C D E F G H I J 9 Red Final Fic
  • 186. 186 Ruta Crítica: Dar cumplimiento al plazo límite Se requiere de las estimaciones de tiempo de cada actividad (supuestos) Actividad Descripción Prdecesoras inmediatas Tiempo Recursos A Elegir local de oficinas - 3 B Crear el plan financiero y de organización - 5 C Determinar requerimientos de personal B 3 D Diseño de local A, C 4 E Construir el interior D 8 F Elegir personal a mudar C 2 G Contratar nuevos empleados F 4 H Mudar registros, personal clave, etc. F 2 I Hacer arreglos finacieros de la organización B 5 J Entrenar personal nuevo H, E, G 3
  • 187. 187 Retomando el ejemplo: Agregando los tiempos a las actividades 1 2 3 4 5 6 7 9 A B C D E F G H I J (3) (5) (3) (4) (8) (2) (4) (2) (5) (3) 8 Fic
  • 188. 188 Cálculo de la ruta crítica: Tiempo de término del proyecto Definiciones Tiempo de inicio más inmediato: El tiempo más cercano en que una tarea posiblemente pueda iniciarse (TI) Tiempo de término más breve: El tiempo más corto en el que una tarea posiblemente pueda concluir (TT)
  • 189. 189 Reglas a cumplir: Dado que en el proyecto existen tareas predecesoras es necesario conocer cuando termina una y cuando empieza la otra: Regla 1. Para calcular el TI de una tarea se debe conocer los TT de cada tarea predecesora inmediata 2. El TI más inmediato de una tarea de la que se conocen los tiempos de término más breves de todas sus tareas predecesoras inmediatas es el máximo de todos esos tiempos de término más breves. 3. Tiempo de término más breve = (tiempo de inicio más inmediato) + (tiempo de tarea(t))
  • 190. 190 Pasos para determinar los TI y TT más inmediatos: Paso 0 1 Identificar el nodo de inicio de la red del proyecto Calcule y escriba en cada arco saliente a) TI más cercano, esto es, 0 b) El TT más breve de acuerdo a la regla 3 TT más breve = (TI más inmediato) + (t) = 0 + t Seleccionar cualquier nodo donde todos los arcos entrantes han sido etiquetados con sus TI y TT
  • 191. 191 Pasos para determinar los TI y TT más inmediatos: Paso 2 Para el nodo seleccionado en el paso 1 calcule y registre en cada arco saliente a) El TI más breve de acuerdo a la regla 2 TI más breve = MAXIMO(TT de los arcos entrantes) b) El TT más breve de acuerdo a la regla 3 TT más breve = TI más inmediato + t
  • 192. 192 Cálculo de TI y TT: 1 2 3 4 5 6 7 9 A[0,3] B[0,5] C[5,8] D[8,12] E[12,20] F[8,10] G[10,14] H[10,12] I[5,10] J[20,23] 8 Fic
  • 193. 193 Identificación de las tareas críticas: Para identificar las tareas críticas hay que realizar un recorrido hacia atrás hasta el inicio del proyecto, analizando cada tarea. 1. Último Tiempo de término: Lo más tarde que puede concluirse una tarea, en tanto permita que el proyecto se complete lo más pronto posible 2. Último tiempo de inicio: Lo más tarde que pueda iniciarse una tarea, pero finalizando dentro de su tiempo de término. 3. Tarea sucesora: Una tarea para la que la tarea de interés es una predecesora
  • 194. 194 Identificación de las tareas críticas: Para calcular el último tiempo de término (UTT) de una tarea particular, debe conocer los últimos tiempos de inicio (UTI) de cada tarea sucesora inmediata. Respecto a una tarea de la que se conocen los últimos tiempos de inicio de todas sus tareas sucesoras inmediatas, el último tiempo de término (UTT) de esa tarea es el mínimo de los últimos tiempos de inicio de todas las tareas sucesoras inmediatas UTI = UTT- t Regla 4 5 6
  • 195. 195 Identificación de las tareas críticas: Pasos para calcular los últimos tiempos de inicio y término 0 1 2 3 Identificar el final del proyecto. Calcular y escribir en cada arco entrante: a) Último tiempo de término del proyecto b) Último tiempo de inicio (Regla 6): UTI=UTT-t Seleccione un nodo, cuyos arcos salientes hayan sido etiquetados todos con sus UTI y UTT Para el nodo seleccionado (paso 1) calcule y escriba lo siguiente a) UTT= MIN(UTI arcos salientes), (regla 5) b) UTI=UTT - t (regla 6) Repetir pasos 1 y 2 hasta cubrir toda la red del proyecto
  • 196. 196 Identificación de las tareas críticas: Cálculo de UTT y UTI para cada actividad Iteración 2 Actividad ficticia UTT = 20 UTI = 20-0 = 20 Actividad I UTT = 23 UTI = 23-5 = 18 Nodo 7 Actividad E UTT = 20 UTI = 20-8 = 12 UTT = 20 UTI = 20-2 = 18 Iteración 1 Actividad H Nodo 9 Actividad J UTT = 23 UTI = 23-3 = 20
  • 197. 197 1 2 3 4 5 6 7 9 A[0,3] B[0,5] C[5,8] [20,23] E[12,20] F[8,10] G[10,14] H[10,12] I[5,10] J[20,23] 8 Identificación de las tareas críticas: Cálculo de UTT y UTI para cada actividad . Finalmente se tiene D[8,12] [8,12] [12,20] [5,8] [18,23] [16,20] [18,20] [14,16] [5,8] [0,5] Fic
  • 198. 198 Identificación de las tareas críticas: Holgura: Es la cantidad de tiempo que puede demorar una actividad sin afectar la fecha de término del proyecto. El valor de la holgura para cada actividad está dada por: holgura = TI - UTI = TT - UTT Ejemplo: Actividad C: TI = 5, UTI = 5, TT = 8, UTT = 8 Holgura = 5 - 5 = 8 - 8 = 0 Actividad I: TI = 5, UTI = 18, TT = 10, UTT = 23 La actividad C tiene holgura 0, por tanto no puede retrasarse, en cambio la actividad I tiene 13 semanas de holgura que permite retrasar su inicio.
  • 199. 199 Identificación de las tareas críticas: Resumen de los tiempos de las actividades del proyecto: Actividad Tiempo Inicio Término Inicio Término Holgura A 3 0 3 5 8 5 B 5 0 5 0 5 0 C 3 5 8 5 8 0 D 4 8 12 8 12 0 E 8 12 20 12 20 0 F 2 8 10 14 16 6 G 4 10 14 16 20 6 H 2 10 12 18 20 8 I 5 5 10 18 23 13 J 3 20 23 20 23 0 Tiempo más próximo de: Tiempo más lejano de: Tiempo de ejecución del proyecto: 23 semanas
  • 200. 200 Identificación de las tareas críticas: Actividad crítica es aquella que tiene holgura cero Ruta crítica es una secuencia de tareas (actividades) críticas que conecta el principio del proyecto con el fin En nuestro ejemplo: Actividades críticas: B, C, D, E y J Ruta crítica: Nodos 1-3-2-5-7-9 Actividades B-C-D-E-J
  • 201. 201 Formas de Reducir la duración del proyecto: 1. Análisis Estratégico Aquí el analista se pregunta: “¿Este proyecto tiene que desarrollarse en la forma programada actualmente?”. En concreto, “¿Todas las actividades de la ruta crítica tienen que realizarse en el orden especificado?”. ¿Podemos hacer arreglos para efectuar algunas de estas actividades en forma distinta de cómo aparecen en la ruta crítica?. 2. Enfoque Táctico El analista presupone que el diagrama en curso es adecuado y trabaja para reducir el tiempo de ciertas actividades de la ruta crítica asignando mayores recursos. Por ejemplo tiempo, aumento de mano de obra, etc.
  • 202. 202 Formas de Reducir la duración del proyecto: Para el ejemplo en estudio, el directorio estimó un tiempo máximo de 22 semanas para realizar el proyecto, y según el estudio se ha determinado que se requieren 23 semanas, ¿Cómo soluciona Ud. el problema?. Realice distintos supuestos válidos para su solución. ¿Es única?.
  • 203. 203 Formas de Reducir la duración del proyecto: Alternativa de solución Realizados algunos estudios los responsables de la mudanza, se dan cuenta que la actividad J (entrenamiento de los nuevos empleados) debe realizarse en el nuevo edificio (después de completar la actividad E) y después de que el personal clave y de registros se haya mudado (al completar la actividad H). Estos requerimientos se podrían cambiar: • Realizar J independientemente de H • El entrenamiento realizarlo en otras dependencias a un costo reducido y que estén listos para cuando se termine la construcción. Esto requiere agregar otra actividad: Garantizar recursos de entrenamiento, actividad K
  • 204. 204 Formas de Reducir la duración del proyecto: Con los cambios anteriores, es posible que la red redefinida tenga una nueva ruta crítica con un tiempo menor, aunque todavía insatisfactorio (mayor a las 22 semanas establecidas).
  • 205. 205 Diagrama de red para el proyecto redefinido 1 2 3 4 5 6 7 9 A B C D E F G H I J (3) (5) (3) (4) (8) (2) (4) (2) (5) (3) 8 K(3) Fic
  • 206. 206 Actualización de los tiempos para el proyecto redefinido Actividad Tiempo Inicio Término Inicio Término Holgura A 3 0 3 5 8 5 B 5 0 5 0 5 0 C 3 5 8 5 8 0 D 4 8 12 8 12 0 E 8 12 20 12 20 0 F 2 8 10 11 13 3 G 4 10 14 13 17 3 H 2 10 12 18 20 8 I 5 5 10 15 20 10 J 3 14 17 17 20 3 K 3 10 13 14 17 4 Tiempo más próximo de: Tiempo más lejano de: Actividades ruta crítica: B-C-D-E Duración del proyecto: 20 semanas
  • 207. 207 3.3 PERT: Variabilidad en los tiempos de Actividades Hasta ahora hemos trabajado asumiendo que los tiempos de duración de las actividades eran determinísticos, en consecuencia TI, TT, UTI y UTT también fueron deducidos como deterministas. Como este supuesto no siempre es correcto, PERT emplea una fórmula especial para estimar los tiempos de las actividades. PERT requiere de alguien que conozca bien una actividad en cuestión, para producir tres estimaciones del tiempo de ésta.
  • 208. 208 PERT: Variabilidad en los tiempos de Actividades 1. Tiempo optimista (denotado por a): el tiempo mínimo. Todo tiene que marchar a la perfección. 2. Tiempo más probable (denotado por m): el tiempo que se necesita en circunstancias ordinarias. 3. Tiempo pesimista (denotado por b): el tiempo máximo. Situación que se da en el peor caso.
  • 209. 209 PERT: Variabilidad en los tiempos de Actividades Ejemplo: Para la actividad E (8 semanas). Al examinar en detalle el proyecto de construcción del interior se llegó a las siguientes estimaciones: a = 4 m = 7 b = 16 Para estimar el valor esperado y la desviación estándar de los tiempos de la actividad, se asume que el tiempo de la actividad es una variable aleatoria que tiene una distribución de probabilidad unimodal beta.
  • 210. 210 PERT: Variabilidad en los tiempos de Actividades 4 7 8 16 a m b Estimación del tiempo esperado de actividad o tiempo promedio 6 4 bma te ++ = Estimación de la desviación estándar del tiempo de la actividad 6 ab − =σ Distribución beta
  • 211. 211 PERT: Variabilidad en los tiempos de Actividades Estimación de tiempo Actividad a m b te desv est varianza A 1,0 3,0 5,0 3,0 0,667 0,444 B 3,0 4,5 9,0 5,0 1,000 1,000 C 2,0 3,0 4,0 3,0 0,333 0,111 D 2,0 4,0 6,0 4,0 0,667 0,444 E 4,0 7,0 16,0 8,0 2,000 4,000 F 1,0 1,5 5,0 2,0 0,667 0,444 G 2,5 3,5 7,5 4,0 0,833 0,694 H 1,0 2,0 3,0 2,0 0,333 0,111 I 4,0 5,0 6,0 5,0 0,333 0,111 J 1,5 3,0 4,5 3,0 0,500 0,250 K 1,0 3,0 5,0 3,0 0,667 0,444
  • 212. 212 PERT: Variabilidad en los tiempos de Actividades Cálculo del tiempo esperado de finalización de proyectos Una vez determinado el tiempo promedio de cada actividad, se puede calcular el tiempo de finalización más temprano esperado para el proyecto completo. Se determinan los tiempos de inicio y de término más cercano, como también los tiempos de término y de inicio más lejano. Con estos tiempos se determina la holgura en cada actividad, para finalmente determinar la ruta crítica, exactamente igual como se hizo para tiempo determinista.
  • 213. 213 PERT: Variabilidad en los tiempos de Actividades Probabilidad de concluir el proyecto a tiempo El análisis procede de la siguiente forma: 1. Sea T el tiempo total que durarán las actividades de la ruta crítica. 2. Encuéntrese la probabilidad de que el valor de T resulte menor o igual que cualquier valor específico de interés. Para el ejemplo en estudio buscaríamos T ≤ 22 semanas. Una buena aproximación de esta probabilidad se encuentra aceptando dos supuestos: a) Los tiempos de actividad son variables aleatorias independientes. b) La variable T tiene una distribución aproximadamente normal.
  • 214. 214 PERT: Variabilidad en los tiempos de Actividades La meta es encontrar P{T ≤ 22}, donde T es el tiempo a lo largo de la ruta crítica. Estadísticas de la ruta crítica: 22 2 2 1 ... nT σσσσ +++=Desviación estándar iσ :iσ Desviación estándar de i-ésima actividad de la ruta crítica T : es el tiempo esperado (promedio)
  • 215. 215 Estimación de terminación del proyecto Uso de la tabla de distribución normal, entonces debemos calcular Z para llegar a determinar la probabilidad. σ µ− = x Z
  • 216. 216 Cálculos caso en estudio Ruta crítica: B- C- D y E T = 20 (tiempo esperado, promedio calculado, µ) x = 22 (tiempo exigido) 357,2 555,5 4444,0111,01 2 2 22222 = = +++= +++= T T T EDCBT σ σ σ σσσσσ
  • 217. 217 Cálculos caso en estudio Z = 0,8485 En la tabla de Z P(Z≤ 0,8485) = 0,80 357,2 2022 − =Z
  • 218. 218 Matriz de Encadenamiento Una matriz de encadenamiento, es una matriz de NxN (N es la cantidad de actividades) donde cada celda se marca con una X si la actividad de la fila requiere que esté terminada la actividad de la columna. Esta matriz ayuda a la construcción de la red CPM Para el ejemplo en estudio es: A B C D E F G H I J A B C X D X X F X G X H X I X J X X X
  • 219. 219 3.4 CPM: TRUEQUE ENTRE TIEMPO Y COSTO CPM considera que el tiempo extra (costo) puede reducir el tiempo de término de una actividad, y en consecuencia reducir el tiempo total del proyecto Compra de tiempo: CPM usa dos estimaciones: tiempo y costo normal, a lo que se agregará tiempo y costo intensivo Se asume que estas estimaciones son lineales: Tiempo Esfuerzo normal Esfuerzo intensivo Costo
  • 220. 220 Debido a las estimaciones de CPM se puede obtener dos redes extremas: 1. Red de costo normal 2. Red de costo intensivo ¿Todas las actividades deben realizarse en forma intensiva? 3. Red de tiempo mínimo—costo mínimo CPM: Trueque entre el costo y el tiempo Red de tiempo mínimo – costo mínimo
  • 221. 221 1. Comenzar con la red normal e ir reduciendo los tiempos de término hasta un mínimo. 2. Comenzar con la red de todo intensivo y “desintensificar” actividades para reducir el costo sin afectar el tiempo total. 3. Comenzar con la ruta crítica de la red de todo intensivo con un tiempo mínimo, pero con todas la demás actividades normales. Después reducir las otras trayectorias como sea necesario. ¿Todos son igualmente eficaces? CPM: Trueque entre el costo y el tiempo Enfoques para encontrar red de tiempo mínimo – costo mínimo
  • 222. 222 CPM: Trueque entre el costo y el tiempo Enfoque: Red normal y reducción de tiempos Proyecto: Construcción de una casa Actividad Precedencia Normal Intensivo Normal Intensivo ∆ Costo A (1,2) ninguna 4 3 1.400 2.000 600 B (2,3) A 2 1 1.500 2.000 500 C (2,4) A 3 1 1.500 2.500 1.000 D (2,7) A 1 1 600 600 -- Fic(3,4) 0 0 -- -- -- E (4,5) B, C 3 2 1.300 2.000 700 F (4,6) B, C 2 1 300 500 200 G (5,7) E 2 1 800 1.200 400 H (6,7) F 2 1 600 1.000 400 Tiempo (semanas) Costo (miles $)
  • 223. 223 CPM: Trueque entre el costo y el tiempo Paso 1: Red del proyecto 2 3 6 5 7 E(3) G(2) H(2) D(1) 1 F(2) 4 C(3) Si consideramos la convención actividad-flecha, el grafo del proyecto es: B(2) A(4)
  • 224. 224 CPM: Trueque entre el costo y el tiempo Paso 2: Tiempos de Inicio y de Término, holgura y ruta crítica 2 3 6 5 7 B(2)[4,6] (0)[6,6] G(2)[10,12] H(2)[9,11] [10,12] 1 F(2)[7,9] 4 C(3)[4,7] En el grafo se muestran los tiempos de inicio y de término más próximos y los más lejanos, y la ruta crítica. El tiempo mínimo para la ruta crítica es de 12 semanas a un costo normal de $8.000. A(4)[0,4] 0 0 0 E(3)[7,10] 0 12 12 D(1)[4,5] [8,10][4,7] [5,7] [7,7] [0,4] [7,10] [10,12] [11,12]
  • 225. 225 CPM: Trueque entre el costo y el tiempo Paso 2: Tabla de tiempos próximos y lejanos Tiempo Tiempo más próximo de: Tiempo más lejano de: Actividad Normal Inicio Término Inicio Término Holgura A (1,2) 4 0 4 4 4 0 B (2,3) 2 4 6 5 7 1 C (2,4) 3 4 7 4 7 0 D (2,7) 1 4 5 1 12 7 E (4,5) 3 7 10 7 10 0 F (4,6) 2 7 9 8 10 1 G (5,7) 2 10 12 10 12 0 H (6,7) 2 9 11 10 12 1 Actividades críticas
  • 226. 226 CPM: Trueque entre el costo y el tiempo Paso 3: “Intensificar” actividades ruta crítica a) Actividad A: de 4 a 3 semanas ( 600) b) Actividad C: de 3 a 1 semana (1.000) c) Actividad E: de 3 a 2 semanas ( 700) d) Actividad G: de 2 a 1 semana ( 400) ¿Es posible hacer estas reducciones?
  • 227. 227 CPM: Trueque entre el costo y el tiempo Reducción de Actividades ruta crítica 2 3 6 5 7 B(2)[4,6] G(2 1) H(2)[9,11] 1 F(2)[7,9] 4 C(3 1) La ruta crítica disminuyó a 7 semanas, ¿seguirá manteniéndose como tal?. No Hay que ver si es posible reducir las actividades paralelas a la ruta crítica inicial, sólo hasta igualar tiempos. A(4 3) 0 0 0 E(3 2) 0 D(1)[4,5]
  • 228. 228 CPM: Trueque entre el costo y el tiempo Paso 4: “Intensificar” actividades que no están en la ruta crítica (“paralelas”) a) Actividad B (paralela a C): de 2 a 1 semana (500) b) ¿Actividad F o H? (¿o ambas?). En este caso sólo F: de 2 a 1 semana (200) c) Actividad D: No requiere reducción
  • 229. 229 CPM: Trueque entre el costo y el tiempo Paso 4: Resumen de las reducciones Costo Actividad Acción Adicional Normal Total A (1,2) 1 semana 600 1.400 2.000 B (2,3) 1 semana 500 1.500 2.000 C (2,4) 2 semanas 1000 1.500 2.500 D (2,7) ----- 600 600 E (4,5) 1 semana 700 1.300 2.000 F (4,6) 1 semana 200 300 500 G (5,7) 1 semana 400 800 1.200 H (6,7) ----- 600 600 $ 8.000 $ 11.400
  • 230. 230 CPM: Trueque entre el costo y el tiempo Grafo final 2 3 6 5 7 B(1)[3,4] (0)[4,4] G(1)[6,7] H(2)[5,7] [5,7] 1 F(1)[4,5] 4 C(1)[3,4] En el grafo se muestran los tiempos de inicio y de término más próximos y los más lejanos, y la ruta crítica. El tiempo mínimo para la ruta crítica es de 7 semanas a un costo normal de $11.400. A(3)[0,3] 0 0 0 E(2)[4,6] 0 7 7 D(1)[3,4] [4,5][3,4] [5,7] [7,7] [0,3] [4,6] [6,7] [6,7]
  • 231. 231 ¿Qué sucede si un proyecto lleva más tiempo del especificado? ¿Conviene hacer más “intensivo” el proyecto o pagar la penalización por atraso? Ejemplo: Suponga que en el proyecto de la casa hay una penalización de $450 por cada semana de tiempo extra después de ocho semanas. ¿Cuál es la red óptima?. Solución: Reducir la red en una semana cada vez e ir comparando si los costos por intensificar son menores a los costos por penalización. Se termina cuando los costos de penalización son mayor a los costos de intensificar. CPM: Trueque entre el costo y el tiempo Red óptima
  • 232. 232 1. Reducir una semana (de 12 a 11 semanas) De la red normal analizar ruta crítica Actividades Incremento de Costo A 600 C 500 E 700 G 400 Conclusión: Intensificar 1 semana la actividad G (400<450). 2. Intentar reducir una segunda semana (de 11 a 10) Todos los costos incrementales de la ruta son mayores a la penalización. Intentar por las vías paralelas. No hay rutas alternativas cuya reducción implique un costo menor al de penalización. CPM: Trueque entre el costo y el tiempo Red óptima
  • 233. 233 CPM: Trueque entre el costo y el tiempo Solución 2 3 6 5 7 B(2) G(1) H(2) 1 F(2) 4 C(3) Grafo resultante A(4) E(3) D(1) Conviene hacer intensivo el proyecto hasta la semana 11 y pagar las penalizaciones por las semanas de atraso Costo total = Costo intensivo + costo penalización = (8.000 + 400) + 3*450 = $9.650
  • 234. 234 CPM: Trueque entre el costo y el tiempo Ejemplo a) Dibuje la red. Con los tiempos normales de las actividades, encuéntrese la duración total del proyecto y la ruta crítica. b) Supóngase que el proyecto se debe completar en un tiempo mínimo. ¿Cuál es el menor costo para el proyecto, es decir, cuál es la red de tiempo mínimo—costo mínimo? c) ¿Cuál es el costo mínimo para terminar el proyecto en 17 meses? d) El departamento de comercialización dice que cada mes que el proyecto se pase de 15 meses le cuesta a la firma $5.000. ¿Cuál es el costo y duración óptimo del proyecto? Suponga que un proyecto de investigación tiene las siguientes estimaciones: Actividad Normal Intensivo Normal Intensivo A (1,2) 8 4 20.000 30.000 B (1,3) 9 6 18.000 27.000 C (2,3) 3 2 12.000 17.000 D (2,4) 10 7 25.000 34.000 E(3,4) 6 4 15.000 23.000 Tiempo (meses) Costo (miles $)
  • 235. 235 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) a) Identificación de Variables de decisión Están relacionadas directamente con el tiempo a reducir en cada tarea Yi: Tiempo (horas, días, ..) a reducir de la i-ésima actividad YA: Número de semanas en las cuales acortar la actividad A b) Función Objetivo El objetivo es minimizar los recursos adicionales totales requeridos para satisfacer el tiempo de término del proyecto. Para el ejemplo en estudio, en la tabla de especificaciones agregamos dos columnas: Tiempo máximo a reducir por tarea y el costo adicional por semana intensiva
  • 236. 236 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Por lo tanto la función es: MIN Z = 600YA+500YB+500YC+700YE+200YF+400YG+400YH Actividad Precedencia Normal Intensivo Normal Intensivo A (1,2) ninguna 4 3 1.400 2.000 1 600 B (2,3) A 2 1 1.500 2.000 1 500 C (2,4) A 3 1 1.500 2.500 2 500 D (2,7) A 1 1 600 600 0 -- Fic(3,4) 0 0 -- -- 0 -- E (4,5) B, C 3 2 1.300 2.000 1 700 F (4,6) B, C 2 1 300 500 1 200 G (5,7) E 2 1 800 1.200 1 400 H (6,7) F 2 1 600 1.000 1 400 Tiempo (semanas) Costo (miles $) Reducción máxima Costo por semana
  • 237. 237 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) c) Identificación de las restricciones Para el ejemplo, se pueden agrupar en dos grupos 1. La cantidad máxima de tiempo en el cual se puede acortar cada actividad. 2. El tiempo de término del proyecto (en este caso 12 semanas) Para el grupo 1, lo que se necesita son las cotas superiores sobre las variables de decisión (YA, YB, YC, YE, YF, YG, YH) dada por la columna “Reducción máxima) de la tabla anterior.
  • 238. 238 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Restricciones de Límite 0<=YA<= 1 (límite de A) 0<=YB<= 1 (límite de B) 0<=YC<= 2 (límite de C) 0<=YD<= 0 (límite de D) 0<=YE<= 1 (límite de E) 0<=YF<= 1 (límite de F) 0<=YG<= 1 (límite de G) 0<=YH<= 1 (límite de H)
  • 239. 239 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Restricciones del grupo 2 están en función de nuevas variables que expresan cuando las actividades que salen de un determinado evento pueden comenzar. Requiere conocer cuando terminan todas las actividades que llegan al evento. Dependen de Yi X1 : tiempo en que todas las actividades que salen del evento 1 pueden comenzar X2 : tiempo en que todas las actividades que salen del evento 2 pueden comenzar ...... X7 : tiempo en que todas las actividades que salen del evento 7 pueden comenzar Además el proyecto debe comenzar en el tiempo 1 y terminar a lo más en 12 semanas X1 = 0 X7 ≤ 12
  • 240. 240 CPM: Trueque entre el costo y el tiempo 2 3 6 5 7 E(3) G(2) H(2) D(1) 1 F(2) 4 C(3) Asociando las variables a la red tenemos: (2-YB) Modelo de PL para CPM (Tiempo mínimo—costo mínimo) A(4) B(2) (4-YA) (3-YC) (2-YF) (1-YD) (2-YH) (3-YE) (2-YG)(0) X1 X2 X3 X4 X5 X6 X7
  • 241. 241 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Nodo 2 Tiempo de inicio de las tareas que salen del nodo 2 ≥ tiempo de terminación de todas las tareas que entran al nodo 2 Tiempo de inicio de las tareas B, C y D ≥ (tiempo de terminación de la tarea A + (tiempo acortado de la tarea A) X2 ≥ X1 + (4-YA) Nodo 3 Tiempo de inicio de las tareas que salen del nodo 3 ≥ tiempo de terminación de todas las tareas que entran al nodo 3 Tiempo de inicio de la tarea Ficticia ≥ (tiempo de terminación de la tarea B + (tiempo acortado de la tarea B) X3 ≥ X2 + (2-YB)
  • 242. 242 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Nodo 4 Tiempo de inicio de las tareas que salen del nodo 4 ≥ tiempo de terminación de todas las tareas que entran al nodo 4. Hay dos arcos que entran al nodo, las actividades E y F deben comenzar sólo cuando las tareas que entran (C y la ficticia) hayan terminado. Dando origen así a dos restricciones (una por cada actividad) Restricción de la actividad C Tiempo de inicio de las tareas E y F ≥ tiempo de terminación de la tarea C Tiempo de inicio de las tareas E y F ≥ (tiempo de terminación de la tarea C + (tiempo acortado de la tarea C) X4 ≥ X2 + (3-Yc) (tarea C)
  • 243. 243 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Nodo 4 Restricción de la actividad Ficticia Tiempo de inicio de las tareas E y F ≥ tiempo de terminación de la tarea figurada Tiempo de inicio de las tareas E y F ≥ (tiempo de terminación de la tarea Figurada + (tiempo acortado de la tarea Figurada) X4 ≥ X3 + 0 (tarea Figurada) Aplicando sistemáticamente el procedimiento y se escribe una restricción para cada actividad se obtienen las siguientes restricciones para los nodos 5 al 7
  • 244. 244 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) Nodo 5 X5 ≥ X4 + (3-YE) (actividad E) Nodo 6 X6 ≥ X4 + (2-YF) (actividad F) Nodo 7 X7 ≥ X5 + (2-YG) (actividad G) X7 ≥ X6 + (2-YH) (actividad H)
  • 245. 245 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) MIN Z = 600YA+500YB+500YC+700YE+200YF+400YG+400YH Sujeto a: Restricciones de Límite 0<=YA<= 1 (límite de A) 0<=YB<= 1 (límite de B) 0<=YC<= 2 (límite de C) 0<=YD<= 0 (límite de D) 0<=YE<= 1 (límite de E) 0<=YF<= 1 (límite de F) 0<=YG<= 1 (límite de G) 0<=YH<= 1 (límite de H)
  • 246. 246 CPM: Trueque entre el costo y el tiempo Modelo de PL para CPM (Tiempo mínimo—costo mínimo) X1 = 0 X7 ≤ 12 X2 ≥ X1 + (4-YA) (tarea C) X3 ≥ X2 + (2-YB) (tarea B) X4 ≥ X2 + (3-Yc) (tarea C) X4 ≥ X3 + 0 (tarea Figurada) X5 ≥ X4 + (3-YE) (actividad E) X6 ≥ X4 + (2-YF) (actividad F) X7 ≥ X5 + (2-YG) (actividad G) X7 ≥ X6 + (2-YH) (actividad H) X1, ..., X7 ≥ 0
  • 247. 247 Para su entretención Ejercicios: a) Existen 7 trayectorias en esta red. Encuéntrense todas. b) Con tiempos normales, encuéntrese la longitud de cada trayectoria. ¿Cuál es la ruta crítica? c) ¿Cuál es el costo mínimo intensivo para reducir el proyecto a 39 días? ¿a 38 días? ¿a 37 días? d) Encuéntrese la red de tiempo mínimo—costo mínimo. La complejidad de las redes CPM está más afectada por las interrelaciones que el número de nodos. Por ejemplo, considérese el proyecto siguiente: Actividad Normal Intensivo Normal Intensivo A (1,2) 8 7 10.000 12.000 B (1,3) 15 10 12.000 17.000 C (1,4) 12 6 13.000 14.000 D (2,3) 9 9 7.000 7.000 E (2,5) 11 9 2.000 4.000 F (3,6) 9 8 5.000 7.000 G (4,3) 9 7 14.000 16.000 H (4,7) 13 12 8.000 10.000 I (5,6) 7 5 6.000 10.000 J (5,8) 15 11 9.000 10.000 K (6,8) 10 5 3.000 8.000 L (7,6) 4 3 7.000 8.000 M (7,8) 12 9 5.000 6.000