Instituto Universitario De Tecnología.
“Antonio José De Sucre”.
Extensión Barquisimeto.
Departamento De Investigación.
Rel...
Relaciones binarias
Sean X e Y dos conjuntos. Una relación de X en Y es un subconjunto R del producto
cartesiano X x Y. El...
Dominio y Rango
Definición: Sea R una relación de X en Y
El Dominio de R es el conjunto
Dom(R) = { xÎ X / (x,y) Î R, para ...
Representación gráfica de relaciones
Existen varias formas de representar gráficamente una relación. Las más usuales son l...
Matriz binaria
La representación matricial se usa cuando los conjuntos de partida y de llegada de la
relación son conjunto...
Relación Inversa
Sea R una relación de X en Y. Se llama relación inversa de R a la relación R-1 de Y en X
dada por:
R-1 = ...
Sea R una relación de X a Y y S una relación de Y en Z. Se llama composiciónde R con
S a la siguiente relación de X en Z:
...
Û x ( ( T o S ) o R )w
Luego, T o ( S o R ) = ( T o S ) o R
Teorema: Si R es una relación de X en Y y S en una relación de...
Próxima SlideShare
Cargando en…5
×

Instituto universitario de tecnologí1

119 visualizaciones

Publicado el

relaciones binarias

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
119
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Instituto universitario de tecnologí1

  1. 1. Instituto Universitario De Tecnología. “Antonio José De Sucre”. Extensión Barquisimeto. Departamento De Investigación. Relaciones binarias Autor: Keiber Herrera C.I:22.182.384
  2. 2. Relaciones binarias Sean X e Y dos conjuntos. Una relación de X en Y es un subconjunto R del producto cartesiano X x Y. El conjunto X es llamado conjunto de partida de la relación R; e Y es el conjunto de llegada. En el caso de que Y = X, en lugar de decir que R es una relación de X en X, diremos que R es una relación en X. Los elementos de R son pares ordenados. Si (x, y) es un elemento de R, en lugar de escribir (x, y) Î R, escribiremos X R Y y leeremos: "X está relacionado con Y", según la relación R". Nota: Usaremos las letras R, S, T, etc., para representar relaciones. Ejemplos 1. Si X = {a, b, c, d} e Y = {1, 2, 3, 4, 5}, una relación de X en Y es R = {(a, 2), (b, 1), (b, 4), (c, 5)} 2. La siguiente relación S de R en R S = { (X, Y) Î R x R / X £ Y } es la relación "menor o igual" en R. En este caso X S Y Û X £ Y 3. Sea U el conjunto referencial. La relación de inclusión en P(U) es la relación R = { (A, B) Î P(U) x P(U) / A Ì B }
  3. 3. Dominio y Rango Definición: Sea R una relación de X en Y El Dominio de R es el conjunto Dom(R) = { xÎ X / (x,y) Î R, para algún y Î Y} El Rango o imagen de R es el conjunto Rang(R) = { y Î Y / (x, y) Î R, para algún x Î X } En otros términos, el dominio y la imagen de una relación están constituidos por los primeros y segundos componentes respectivamente de los pares ordenados que constituyen la relación. Ejemplo: La relación R= { (a, 2) , (b, 1) , (b, 4) , (c, 5) } tiene como dominio el conjunto Dom (R) = { a, b, c} y rango a rang (R) = { 1, 2, 4, 5 }, ya que a,b y c están en el primer componente de los pares ordenados y 1,2,4,5 están en el segund componente de cada par.
  4. 4. Representación gráfica de relaciones Existen varias formas de representar gráficamente una relación. Las más usuales son las siguientes: Representación Cartesiana, Matricial y Sagitaria. Representación Cartesiana Para obtener una representación cartesiana de una relación, se toman como abscisas los elementos del conjunto de partida; y como ordenadas, el conjunto de llegada. En el plano se marcan los pares ordenados que conforma la relación. Esta representación alcanza su mayor importancia cuando el conjunto de partida y el de llegada son subconjuntos de R. Ejemplo 1 1. si X={ a, b, c, d} e Y={ 1, 2, 3, 4, 5} una relación de X en Y 2. R={ (a, 2), (b, 1), (b, 4), (c, 5) } La representación cartesiana es el diagrama adjunto. Representación Sagital La representación sagital es la más popular de las representaciones. Ésta, igual que la matricial, se usa cuando los conjuntos de partida y llegada son finitos. La representación sagital se obtiene representando mediante diagramas de Venn el conjunto de partida y el de llegada; uniendo luego, con flechas, los elementos relacionados. Así, la representación sagital de la relación del ejemplo 1 es el siguiente diagrama: Si el conjunto de partida y el de llegada coinciden, se usa un solo diagrama de Venn y las flechas se representan interiormente. Así, el diagrama siguiente representa a la siguiente relación en X={ a, b, c, d } S= { (a, b), (b, b), (a, d), (b, c), ( d, d) }
  5. 5. Matriz binaria La representación matricial se usa cuando los conjuntos de partida y de llegada de la relación son conjuntos finitos con pocos elementos. Para obtener tal representación, se asigna a cada elemento del conjunto de llegada una columna; y a cada elemento del conjunto de partida, una fila. Si (x, y) está en la relación, en la intersección de la fila que corresponde a x con la columna que corresponde a Y, escribimos 1; y escribiremos 0 en caso contrario. La configuración rectangular de ceros y unos que se obtiene se llama matriz binaria de la relación. Así, la matriz de la relación. R={(a, 2), (b, 1), (b, 4), (c, 5)}
  6. 6. Relación Inversa Sea R una relación de X en Y. Se llama relación inversa de R a la relación R-1 de Y en X dada por: R-1 = { (y, x) Î Y x X / (x, y) Î R} O sea, Y R-1 X Û X R Y Es evidente que se verifica que: dom(R-1)= rang(R) 2. Rang( R-1)= dom( R) Ejemplo Si X= { a, b, c } Y= { 1, 2, 3, 4 } y R Ì X x Y es dado por R= { (a, 3) , (a, 1) , (b, 1) , (c, 4) } R-1= { (3, a) , ( 1, a) , (1, b) , (4, c) } Además domR-1= { 1, 3, 4 } = rang( R) Rang(R-1)= { a, b, c } = dom( R) El siguiente teorema nos dice que la inversa de la inversa de una relación es la misma relación. Teorema: Sea R una relación de X en Y. Entonces (R-1)-1 = R Demostración X(R-1)-1 Y Û Y R-1 X definición de relación inversa Û X R Y Luego, (R-1)-1 = R Composición de relaciones
  7. 7. Sea R una relación de X a Y y S una relación de Y en Z. Se llama composiciónde R con S a la siguiente relación de X en Z: X(S o R) Z Û $ YÎ Y, X R Y Ù Y S Z Observación En la composición de R con S, es necesario que el conjunto de llegada de R sea igual al conjunto de partida de S. Este requisito puede ser aligerado exigiendo solamente que el conjunto de llegada de R esté contenido en el conjunto de partida de S. Observar también que el orden en que se escriben R y S en la composición S o R es inverso al orden en que se dan R y S. Ejemplo 1. Sean X={ 2, 3, 5 } , Y= { a, b, c, d } y Z= { 1, 4, 9 } Si R y S son las relaciones de X en Y y de Y en Z respectivamente, dadas por R= { (2, a) , (2, d) , (3, c) , (5, a) } , S= { (a, 9) , (b, 1) , (d, 4) } Entonces: SoR = { (2, 9) , (2, 4) , (5, 9) } Teorema: Si R es una relación de X en Y, S es una relación de Y en Z y T es una relación de Z en W, entonces: T o ( S o R ) = ( T o S ) o R Demostración X( T o ( S o R ) W Û $ z Î Z , x(S o R)z Ù z T w Û $ z Î Z, ( $ y Î Y, x R y Ù y S z) Ù z T w Û $ y Î Y, x R y Ù ($ z Î Z, y S z Ù z T w )$ y Î Y, x R y Ù y(T o S) w
  8. 8. Û x ( ( T o S ) o R )w Luego, T o ( S o R ) = ( T o S ) o R Teorema: Si R es una relación de X en Y y S en una relación de Y en Z, entonces (S o R)-1 = R-1 o S-1 Demostración z ( S o R )-1 x Û x ( S o R )z Û $ y Î Y , x R y Ù y S z Û $ y Î Y , y R-1 x Ù z S-1 y Û $ y Î Y, z S-1 y Ù y R-1 x Û z( R-1 o S-1)x Luego, ( S o R )-1 = R-1 o S-1 Problemas Propuestos 1. Sea X={2, 3, 4} e Y= {4, 5, 6, 7} y R la relación de X en Y dada por: X R Y Û X divide a Y 1. Hallar los elementos de R. 2. Representar a R matricialmente y sagitalmente. 3. Hallar la relación inversa R-1 . 2. Sean X= {1, 2, 3, 4, 5} , Y= {1, 4, 6, 9, 16, 25} y Z= {2, 3, 8, 25/2} Si R es la relación de X en Y dada por Hallar 1. S o R b. R-1 o S-1

×