SlideShare una empresa de Scribd logo
1 de 41
3.- Geología Estructural
3.1 Modelos tectónicos de la corteza terrestre
 Movimiento de placas
 Tipos de bordes entre placas
 Bloques tectónicos intrusivos
 Orogénesis
 Estructura interna de la tierra
 Estructuras geológicas
3.2 Deformación elástica
 Pliegues Anticlinales
 Pliegues Sinclinales
 Pliegues Monoclinales
 Fallas
 Diaclasas
 Cabalgamiento
 Foliaciones
3.3 Concepto de Rumbo, manteo, inclinación
3.4 Tipos y uso de brújulas geológicas
3.0 Geología Estructural
 Es parte de la ciencia de la geología que estudia la arquitectura de la tierra.
 Estudia el desarrollo, los procesos mecánicos, y los movimientos de la
corteza terrestre.
 Estudia las deformaciones y las causas que originaron
3.1 Modelos tectónicos de la corteza terrestre
La teoría de la deriva continental evolucionó dando lugar a la teoría de La Tectónica de
Placas.
Denominamos placas a cada una de las porciones de la litosfera terrestre que se mueve
de forma independiente. Poseen forma de casquete esférico y unos límites definidos por
procesos intensos de sismicidad y volcanismo.
Se les denomina litosféricas pues afectan tanto a la corteza, cómo a la parte superior del
manto que se desplaza de forma solidaria con esta.
PLACAS TECTONICAS DEL MUNDO
Los movimientos que afectan a la corteza de la tierra provienen de las siguientes fuerzas:
a) Movimientos tectónicos o de placas
b) Movimientos ascensionales del magma
c) Presión litostática ejercidas sobre los fondos marinos, debido a la acumulación de
grandes masas de sedimentos
d) La acción de corrientes de convección del manto terrestre
a) Movimientos tectónicos o de placas convergentes: Son los movimientos
orogénicos.
OCEANICA vs CONTINENTAL
Ejemplo: Nazca vs Sudamericana
OCEANICA VS OCEANICA
Ejemplo Japón
CONTINENTE VS CONTINENTE
Ejemplo: India vs Asia
EJEMPLO DE COLISION CONTINENTE VS CONTINENTE: INDIA VS ASIA
b) Movimientos ascensionales del magma
El magma al ser más ligero y más móvil que la roca sólida, tiende a elevarse en la corteza
de la tierra, forzado por la presión excesivamente grande de la roca circundante. Con las
condiciones que prevalecen durante la formación de montaña, simplemente el magma es
comprimido hacia arriba. Cuando llega a muy cerca de la superficies, donde pueden
existir extensas fracturas adyacentes, el magma comienza a moverse con mayor facilidad,
irrumpe como lava cuando alcanza la superficie, existe la posibilidad que el magma pueda
solidificarse a lo largo de su acenso.
c) Como consecuencia de la posición de los estratos después de haber sufrido
grandes presiones tectónicas: las presiones tectónicas se dieron en zonas
profundas de la corteza terrestre
d) Celdas convectivas desarrolladas en el manto
Como la Tierra no tiene una temperatura uniforme, sino que está más caliente en la
parte central que en la superficie, existe también gradientes de temperatura en el
manto superior, con lo que éste se halla más caliente en la parte baja y más frío en la
parte superior, donde pierde calor por conducción a través de la litosfera. Por ello, y
gracias a su capacidad de actuar como un fluido, se originan unas corrientes de
convección que transportan el material más caliente, y por lo tanto menos denso,
hacia arriba. Este material fluye horizontalmente y, en contacto con la litosfera,
va perdiendo calor y aumentado su densidad hasta que, por último, cuando esta
suficientemente frío y denso, empieza a descender. Durante el descenso y el recorrido
horizontal en contacto con el manto inferior, el material se calienta de nuevo, hasta que
finalmente vuelve a ascender, cerrando la celda de convección.
TIPOS DE BORDES O LIMITES DE PLACAS
Pueden ser de tres tipos según el movimiento relativo de las placas:
Límites divergentes o dorsales: el movimiento es de separación.
Límites convergentes o fosas: el movimiento es de aproximación.
Límites o fallas transformantes: el movimiento es paralelo.
Límites divergentes
Cuando el movimiento de las placas es de separación, se crea un "hueco" en la litosfera,
aprovechado por rocas magmáticas para generar nueva corteza oceánica. También se
denominan zonas de Dorsal o límites constructivos.
Limites Convergentes
s
El ciclo de Wilson
Tuzo Wilson realizó un modelo teórico que resume la posible evolución de las placas.
Divide las posibles situaciones en etapas nombradas con el nombre de la zona donde
actualmente podemos encontrar esta situación.
Movimiento de Bloques Tectónicos Intrusivos
Cuerpos intrusivos o plutónicos
El término plutón es el nombre genérico para los cuerpos intrusivos y las rocas que los
envuelven, se denominan rocas de campo o rocas de caja. El tamaño y forma de los
plutones es generalmente especulativo, porque la erosión expone sólo una pequeña parte
del cuerpo, aunque se ha logrado considerable información de cuerpos profundamente
erosionados, mediante observaciones de campo, estudios geofísicos y trabajos mineros.
Estos han permitido, según su forma específica, agrupar a los cuerpos plutónicos en:
1. laminares
2. Globosos
En las clasificaciones también se tienen en cuenta las relaciones con la roca de campo,
ya sea que corten a la estructura, o que se adapten a ella se los llama discordantes o
concordantes, respectivamente.
1. Cuerpos laminares
Los cuerpos laminares se caracterizan por tener una relación longitud/espesor >>>1 y sus
lados son superficies con tendencias planas y subparalelas. Poseen alta relación
superficie/ volumen, que permite la perdida rápida del calor y por ende su enfriamiento.
Entre los cuerpos plutónicos, se incluyen: lacolitos, facolitos y lopolitos (Fig. 1-1).
Lacolitos: son cuerpos concordantes con un piso plano y un techo arqueado. Las rocas
que los constituyen son viscosas (silícicas) lo que limitan el flujo magmático a lo largo de
la superficie horizontal y son suficientemente someros como para que puedan levantar las
rocas del techo.
Facolitos: son cuerpos de pequeñas dimensiones que se ubican en las charnelas de los
pliegues y se adelgazan paulatinamente en los flancos hasta desaparecer. Los tamaños
varían desde pocos centímetros a algunos kilómetros. Los ejemplos más característicos
se observan en las rocas metamórficas inyectadas Esto permite la formación de texturas
características para las rocas de estos cuerpos.
Lopolitos: son cuerpos concordantes intruidos en una cuenca estructural. Son de gran
extensión, con forma de “plato” y característicamente están formados por rocas básicas
de baja viscosidad.
Figura 1-1. Formas de cuerpos plutónicos. A- Lacolito. B- Facolito. C- Lopolito. D- Stock
Entre los cuerpos laminares, los principales son:
a) Diques, diques anulares, diques cónicos
b) Filones capa o Sills
c) Chimeneas volcánicas
El dique es una franja de magma casi vertical o vertical que empuja hacia arriba dentro
de las rocas preexistentes. Es quizás el tipo de vulcanismo intrusivo más común. Es
discordante,(Fig. 1-3). Un dique es un relleno de fractura que corta al bandeado o a las
estructuras de las rocas preexistentes. Las fracturas son conductos ideales para el
magma porque le permiten penetrar fácilmente. Estos cuerpos tabulares se presentan
donde las rocas son suficientemente frágiles para fracturarse.
Diques maficos (dioríticos) sector de Chañaral, límite del dique con la roca de caja
Fig. 1-3. Dique de pegmatita cortando la estructura de un granito equigranular. Dique de
cuarzo y feldespatos alcalinos
Los sills o filones capas son plutones concordantes que se forman cuando el
magma intruye en un ambiente cercano a la superficie. Son plutones tabulares formados
cuando el magma es inyectado a lo largo de superficies de estratificación. Un cuerpo
tabular intrusivo es simplemente magma que ha rellenado una fractura. Si el cuerpo es
concordante con la estructura los sills con disposición horizontal son los más comunes,
aunque se sabe ahora que existe todo tipo de orientaciones, incluso verticales. Debido a
su grosor relativamente uniforme y a su gran extensión lateral, los Sills son
probablemente el producto de lavas muy fluidas. Los magmas que tienen un bajo
contenido de sílice son más fluidos, por eso la mayoría de los Sills está compuesta por
basaltos. Un filón capa o Sills se desarrolla cuando el magma aprovecha los planos de
debilidad de sedimentos, u otras foliaciones y se inyecta en las mismas.
El emplazamiento de un sill exige que la roca sedimentaria situada encima de él sea
levantada hasta una altura equivalente al grosor de la masa intrusiva. Aunque esto es una
tarea formidable, en ambientes superficiales a menudo requiere menos energía que la
necesaria para forzar el ascenso del magma a la distancia que falta hasta alcanzar la
superficie. Por consiguiente, los Sills se forman sólo a poca profundidad, donde la presión
ejercida por el peso de las capas de rocas situadas encima es pequeña. Aunque los sills
se introducen entre capas, pueden ser localmente discordantes. Los grandes sills
atraviesan con frecuencia las capas sedimentarias y retoman su naturaleza concordante
en un nivel más alto.
Fig. 1-2. Filones capa (sills) de pegmatitas. Observar la concordancia con la estructura
metamórfica, así como las deformaciones plásticas sufridas.
Los diques y filones capas pueden tener espesores desde pocos milímetros a más de un
kilómetro, aunque comúnmente los observamos en el rango de las decenas de metros.
Aunque la mayoría de los diques y filones capa se emplazan durante un único evento,
algunos presentan inyecciones múltiples, que puede tener lugar porque las rocas al
enfriarse se contraen y desarrollan zonas de debilidad que permiten el ingreso de un
nuevo pulso de magma. Un cuerpo se describe como múltiple, si las fases de inyección
son todas de la misma composición y compuesto si más de un tipo de roca está
presente.
Los diques y filones capa, puede presentarse como cuerpos solitarios, pero los diques en
especial, típicamente se presentan en series, que reflejan los esfuerzos regionales que
desarrollan fracturas en las cuales se inyecta el magma y se los denomina enjambre de
diques, los que suelen tener desarrollo subparalelo. Los diques, también suelen
desarrollarse como enjambres radiales en los alrededores de las chimeneas volcánicas,
que en su ascenso producen fracturas radiales, por las que puede ascender el magma.
Otra forma de presentarse es con formas concéntricas, que se desarrollan por encima de
los plutones. Los cuales se manifiestan como diques anulares y diques cónicos.
Los diques anulares se producen cuando la presión ejercida por el magma es menor que
la presión de material sobreyacente.
Los diques cónicos, se forman cuando la presión del magma es mayor que la presión
confinante de las rocas sobrepuestas.
Los diques anulares y los diques cónicos pueden ocurrir conjuntamente y serían el
resultado de diferentes fases de una intrusión.
Fig. 1-4. Esquema de desarrollo de diques anulares en un cuerpo plutónico diferenciado.
Cuerpos globosos
Los cuerpos globosos, tienden a desarrollar formas groseramente equidimensionales,
poseen en general baja relación superficie/volumen, por lo que la irradiación de calor
tiende a ser baja, permitiendo un enfriamiento lento y de larga duración. Entre los cuerpos
globosos describimos: plutones, stocks y batolitos.
Plutones: este término fue usado por Pitcher (1993) para cualquier cuerpo grande, no
tabular, y restringe el término batolito para agrupación de múltiples plutones que se
desarrollan en zonas orogénicas.
Stocks: son plutones con forma cilíndrica, que ocupan un área de menos de 100 km2.
Estos conductos plutónicos cilíndricos en Europa son denominados plugs. Y la parte
expuesta de un plug, después de la erosión del material volcánico superior se denomina
neck-volcánico.
Batolitos: son cuerpos plutónicos con superficies de exposición superiores a 100 km2.
Cuando la parte superior de un batolito comienza a ser erosionado, aparecen
afloramientos restringidos de granito, separados entre si por roca de caja, que se
denominan cúpulas, cuando la evidencias geofísicas o el mapeo sugieren que un gran
intrusivo se encuentra por debajo. Los batolitos constituyen los mayores cuerpos
intrusivos y su composición corresponde a rocas silícicas. Los batolitos se forman por la
actividad magmática relativamente continua en espacio y tiempo, con pulsos de variada
magnitud que se suceden en forma intermitente, por lo que no constituyen un tipo de
intrusión. El desarrollo de los batolitos está estrechamente ligado a los procesos
geológicos regionales de tectónica de placas, ya sean procesos de subducción o de
divergencia.
Según la relación con los procesos tectónicos podemos clasificar a los batolitos en:
orogénicos, post-orogénicos y anorogénicos.
Batolitos orogénicos: son los que se desarrollan en los arcos magmáticos desarrollados
en zonas de subducción. Como por ejemplo los batolitos andinos de Chile y Perú.
Composicionalmente se caracterizan por granodioritas y tonalitas, metaluminosas y
calcoalcalinas. Con carácter subordinado también se encuentran granitos, dioritas y
gabros.
Batolitos post-orogénicos: son los que se emplazaron con posterioridad a la orogénesis
y su consolidación es post-deformación. Con posterioridad a un período orogénico se
produce la relajación mecánica, pasando de la compresión a la extensión, lo que produce
el colapso orogénico, en el que la actividad magmática puede ser intensa. Es en este
período en el que se producen los batolitos post-orogénicos. La composición es
monzogranítica y granodiorítica. Los plutones intruyen aprovechando fracturas y los más
tardíos son de sección circular.
Fig. 1-5. Vista afloramiento Batolito
Batolitos anorogénicos: tienen lugar en el interior de las placas y su emplazamiento
tiene lugar en corteza rígida, con bajo gradiente geotérmico. Se asocian con estructuras
de rift, típicas de ambiente divergente. Constituyen complejos intrusivos centrados con
notables diques anulares. Son generalmente de dimensiones menores que las otras dos
categorías citadas. Las composiciones intermedias a silícicas tienen tendencias alcalinas
y peralcalinas, constituyendo a menudo asociaciones bimodales, con participación de
rocas básicas y ácidas. También constituyen complejos alcalinos máficos, que incluyen
carbonatitas y sienitas Los plutones son generalmente de secciones circulares y muestran
abundantes diques anulares.
Intrusivos compuestos. A: Secuencia intrusiva múltiple que va de 1 a 3. Los sucesivos
pulsos aprovechan la zona más caliente para intruirse, mientras que las zonas de bordes
están más frías y rígidas. B: Secuencia intrusiva múltiple que se inicia con un primer pulso
(1), seguido por el 2 y finalmente el 3, ocasionados por colapsos progresivos. C: Intrusivo
con borde de enfriamiento mostrando asimilación parcial de un dique anterior. D:
cristalización centrípeta de un Plutón. (Modificado de Mc Birney 1984).
Orogénesis (Orogenia)
La orogénesis u orogenia es el conjunto de procesos geológicos que se producen en los
bordes de las placas tectónicas y que dan lugar a la formación de una cadena montañosa
(orógeno).
Los orógenos son estructuras lineales, situadas en el límite entre una placa continental y
otra oceánica, o bien en la unión de dos placas continentales. Presentan pliegues, mantos
de corrimiento y fallas inversas. En la capa superficial pueden contener sedimentos de
origen marino. Estas características nos indican cómo se produce la orogénesis.
En una cuenca oceánica, limitada por el continente, se acumulan los sedimentos.
Después, los movimientos convergentes de las placas adyacentes provocan la
deformación y el metamorfismo de los materiales. Mientras una placa se introduce bajo la
otra, la corteza sufre un engrosamiento y emerge la cadena montañosa, que se incorpora
al continente.
Durante la orogénesis descrita puede haber manifestaciones volcánicas, como ocurre en
la formación de los orógenos térmicos; éste es el caso de los Andes. En los orógenos
mecánicos o de colisión, como los Alpes, no aparecen volcanes y sí grandes mantos de
pliegues y zonas de engrosamiento porque una placa continental se sitúa sobre la otra.
Se llama orogenia a la época de la historia de la Tierra en la que se levantan montañas.
La Alpina y la Andina están teniendo lugar en los últimos 65 millones de años. La
Caledoniana y la Herciniana tuvieron lugar hace más de 200 millones de años, al
comienzo y al final de la Era Paleozoica.
ESTRUCTURA INTERNA DE LA TIERRA
Características de la tierra
La rotación es el movimiento que realiza la Tierra girando sobre su propio eje de oeste a
este. Da una vuelta completa en 24 horas que constituyen nuestro día completo.
La velocidad de rotación no es la misma en todos los puntos del planeta:
1.700 km/h en el Ecuador
850 km/h a 60º de latitud.
Nula en los polos.
La traslación es el movimiento que realiza la Tierra girando alrededor del Sol a una
velocidad es de 30 km/seg. Da una vuelta completa en 365 días y 6 horas. Por eso, cada
cuatro años se suman las 6 horas formando un día completo que se agrega al mes de
febrero, obteniéndose un año bisiesto
Estructura en Capas
Capas de composición
Corteza
Manto
Núcleo
Capas Mecánicas:
- Litosfera (corteza y manto)
- Astenosfera (manto)
- Mesosfera (manto)
- Núcleo externo
- Núcleo interno
Masa (1024
kg) 5.9736
Volumen (1010
km3
) 108.321
Radio Ecuatorial (km) 6378
Radio Polar (km) 6356
Radio Medio Volumétrico (km) 6371
Radio del Núcleo (km) 3485
Densidad promedio (kg/m3
) 5520
Gravedad en la superficie (m/s2
) 9.78
Tiene un espesor de unos 100 kilómetros, mas hacia el interior, encontramos el manto,
líquido en su mayor parte y compuesto de elementos como sílice y aluminio. Es el magma
que aflora en los volcanes.
En el centro encontramos el núcleo que se divide en externo de carácter líquido y la parte
más interna sólida, constituida principalmente por hierro y níquel. Esta parte es
fuertemente magnética y es la que origina el campo magnético de la tierra.
Puede observarse que por ser líquido el espacio entre la corteza y el núcleo existe la
posibilidad de desplazamientos relativos entre uno y otro. Nuevos descubrimientos indican
que el núcleo gira libremente y en forma independiente de la corteza, y por razones
desconocidas, con una inclinación de algunos grados con respecto al eje de la corteza. Es
importante anotar que los fenómenos geomagnéticos tienen asiento físico en el núcleo y
no en la corteza.
La inclinación del eje de rotación terrestre permite, al aumentar su ángulo, temperaturas
más extremas en ambos hemisferios (veranos más cálidos e inviernos más fríos).
Actualmente, el eje de la Tierra está desviado 23,44 grados con respecto a la vertical;
esta desviación fluctúa entre 21,5 y 24,5 grados a lo largo de un periodo de 41.000 años.
Desplazamientos del polo
Cuando hablamos de un desplazamiento del polo, en realidad, estamos expresando mal
el asunto. No es que el polo o lugar geográfico donde se interceptan la corteza y el eje de
giro vaya a cambiar de lugar en el espacio. Lo que sucede es que como se dijo
anteriormente, la corteza de la tierra puede desplazarse libremente con respecto al núcleo
y desplazarse a un nuevo lugar donde las fuerzas en equilibrio produzcan una situación
más estable. Las fuerzas que intervienen en este proceso son calculables en cierta forma.
Dependen principalmente del equilibrio de las masas de hielo en ambos polos.
En estos días tenemos un desequilibrio evidente, por la mayor intensidad del invierno en
el hemisferio norte, donde se deposita en la actualidad una gran cantidad de hielo contra
un verano intenso en el hemisferio sur, que reforzado por el agujero en la capa de ozono
ha permitido el deshielo de grandes zonas de la Antártida. Este fenómeno se ha dado ya
varias veces en la anterioridad y es estudiado por una ciencia que se denomina
paleomagnetismo. Mediante el estudio de muestras de lava de volcanes que se
encuentran en erupción en el momento del desplazamiento del polo, es posible
determinar mediante la dirección de cristalización de las partículas magnéticas,
donde se encontraba el polo magnético antes, en y después de la erupción.
El último cambio del polo se dio hace 12500 años, y existen huellas palpables del mismo
en uno de los volcanes de Norte América, (Steen Mountain, Oregon USA. Ver NATURE,
Vol. 374 20 Abril de 1995 pag. 687-692) que coincidentemente se hallaba en erupción. En
esta ocasión, el polo se desplazó 27.5 grados o sea unos 3000 Km. en un espacio de 7
días, para una velocidad promedia de desplazamiento de 17.8 km./hr, habiéndose
registrado cambios tan altos como de 6.2º por día.
Durante los pasados 100.000 años, han habido cuatro desplazamientos grandes del polo
sembrado leyendas de todo tipo en las culturas ancestrales.
Visión dinámica: La tierra como motor térmico
Dinámica del núcleo: magnetismo terrestre
Dinámica del manto: Convección
Dinámica de la litosfera: Movimiento de placas
Objetivo de la geología estructural: Estudio de la estructura de la corteza terrestre o de
una determinada región.
Para que se necesita un levantamiento tectónico?
a) Definir las fuerzas que estaban presente en las rocas, definir la simetría de las
foliaciones o
b) Caracterización de las fuerzas
c) Cronología de los fases tectónicos
Donde se usa la información de la tectónica:
a) Génesis de los yacimientos: Muchos depósitos tienen un origen tectónico - o por lo
menos el ambiente tectónico juego un papel muy importante. La estructura tectónica como
formador de un depósito. En los yacimientos del tipo vetiforme es muy importante,
b) Deformación tectónica de los depósitos después de la génesis: Definición de
desplazamientos - en qué manera y magnitud afectó una fase tectónica el yacimiento ya
formado.
c) Geotécnica: Las estructuras tectónicas también tienen su "cara negra". Derrumbes,
caída de bloques, planchones, zonas de poca estabilidad, cuñas etc. tienen un origen
sumamente tectónico.
Trabajos que se realizan:
a) Levantamiento de las foliaciones (planos geológicos)
b) Análisis de la deformación tectónica de las rocas presentes
c) Reconocimiento de las estructuras tectónicas en un sector (fallas, diaclasas)
d) Interpretación de las estructuras - desarrollo de un modelo tectónico.
1. Planos geológicos
En la mayoría las rocas de la corteza terrestre muestran varios tipos de planos
geológicos. Existen en general dos tipos de planos:
a) Foliaciones primarias
Tienen su origen antes de la litificación, es decir durante la deposición. Ejemplos:
Estratos, Flujo magmático.
b) Foliaciones secundarias
Tienen su origen después de la litificación: Todos los planos cuales se han formado a
causa de fuerzas tectónicas presentes en la corteza terrestre. Ejemplos: Diaclasas, Fallas.
Para estudios en la geología estructural es muy importante diferenciar entre foliaciones
primarias y estructuras generadas por fuerzas tectónicas (foliaciones secundarias).
Foliaciones secundarias: Diaclasas, fallas, esquistosidad
1) Diaclasas (juntas; inglés: joints): Fracturas sin desplazamiento transversal
detectable, solo con poco movimiento extensional. Son las fracturas más
frecuentes en todos los tipos de rocas. En la superficie son más frecuentes como
en altas profundidades. Tienen una extensión de milímetros, centímetros hasta
pocos metros. Normalmente existen en una masa rocosa grupos de diaclasas y/o
sistemas de diaclasas. Los grupos de diaclasas son estructuras paralelas o
subparalelas. Los sistemas de diaclasas se cortan entre sí en ángulos definidos y
tienen una cierta simetría. Algunas diaclasas muestran un relleno (secundario) de
calcita, cuarzo, yeso u otros minerales.
Aparte de diaclasas tectónicas existen diaclasas de origen no-tectónico:
a) Fisuras de enfriamiento: Tienen su origen durante el enfriamiento de una roca
magmática (Materiales o rocas calientes que ocupan más espacio con la misma
cantidad de materia fría).
Foto: Columnas de enfriamiento en rocas volcánicas de la Formación Monardes en el sector "El
Patón", Región Atacama,
b) Grietas de desecación: Durante la desecación de un barro o lodo bajo condiciones
atmosféricas hay una disminución del espacio ocupado y la superficie se rompe en
polígonos.
c) Fisuras de tensión gravitacional: Sobre estratos inclinados se puede observar bajo
algunas condiciones un deslizamiento de las masas rocosas hacia abajo. Al comienzo
de este fenómeno se abren grietas paralelas al talud
2) Fallas: Son la rotura en las rocas a lo largo de la cual ha tenido lugar movimiento
o desplazamiento. Este movimiento produce un plano de falla o una zona de falla.
Las zonas de fallas tienen un ancho que va desde milímetros hasta cientos de
metros. Los movimientos o desplazamientos (salto total) pueden ser pequeño
(milímetros) hasta muy grandes (cientos de kilómetros). Algunas fallas muestran
un relleno de calcita, yeso o sílice.El movimiento en las fallas produce algunas
estructuras o rocas especiales: Estrías, arrastres, brecha de falla, milonitas y
diaclasas plumosas. Estas estructuras se pueden usar como
indicadores directos de fallas.
3) Esquistosidad: En condiciones extremas, por ejemplo, durante el metamorfismo,
las rocas se rompen en tablas. Este fracturamiento se repite en una frecuencia
entre 0,5 hasta 3 centímetros. Las rocas se llaman esquistos, pizarras o filitas.
Durante este proceso generalmente ocurre una orientación de varios minerales,
especialmente de las micas.
Esquistos: Rocas metamórficas con fuerte clivaje producido por un metamorfismo de contacto.
Los esquistos tienen micas de tamaño visible. En contrario en las filitas las micas no alcanzan
tamaños mayores de 0,02mm
3.2 Deformación Elástica
Las Deformaciones: Los Pliegues y las Fallas
Según su naturaleza y condiciones de presión y temperatura, los materiales geológicos
pueden reaccionar de dos formas diferentes ante los esfuerzos (presiones dirigidas) de la
tectónica de placas.
Plástica: Origina la formación de pliegues.
Rígida: Tiene lugar la rotura y formación de una falla.
Los Pliegues
En los pliegues podemos definir una serie de elementos: Los flancos (cada una de las
Superficies que forman el pliegue), la charnela (línea de unión de los dos flancos), y el
plano o superficie axial (plano formado por la unión de las charnelas de todos los
estratos).
En atención a su morfología los pliegues se clasifican como Anticlinales, cuando
presentan en su núcleo materiales más antiguos y Sinclinales cuando presentan en su
núcleo materiales más recientes.
EJEMPLO DEFORMACION SINCLINAL
EJEMPLO DEFORMACION ANTICLINAL
Las Fallas
Cuando se supera la capacidad de deformación plástica de una roca, se fractura, en este
caso, hay dos bloques separados. .
GRAFICO ESFUERZO VS DEFORMACION
Puede ser de dos tipos: fallas y diaclasas
Falla: fractura en las que se produce el desplazamiento de un bloque con respecto a otro.
Por el plano de la falla.
Diaclasa: es cuando los bloques no se desplazan uno con respecto al otro y forman
grietas.
En las fallas podemos definir una serie de elementos geométricos:
Plano de falla: superficie de fractura sobre laque se produce el desplazamiento
Labios de falla: cada una de boques en que queda dividido el terreno
Salto de falla: medida de desplazamiento relativo entre los labios.
En atención a su morfología los fallas se clasifican como:
Normales, inversas, de desgarre o dirección
FALLA NORMAL O DIRECTA
1. El plano de falla buza hacia el labio hundido
2. Se origina por fuerzas de tracción
FALLA INVERSA
1. El plano de falla buza hacia el labio levantado
2. Se origina por esfuerzos de compresión
FALLA DE DESGARRE o DIRECCION
1. No hay labio levantado ni hundido
2. Hay un desplazamiento relativo de los bloques
GRABEN O FOSAS TECTONICAS: Son depresiones elongadas, limitadas por fallas
directas, es decir, por dos fallas normales paralelas con inclinación que se da en un
ambiente de tectónica expansiva.
HORST O PILARES TECTONICOS: Son elevaciones limitadas por fallas, que producen
una topografía de tipo lineal.
FALLAS DE CABALGAMIENTO: Son grandes planos de fallas horizontales con
desplazamientos que pueden alcanzar muchos kilómetros como por ejemplo, Himalaya,
los Alpes, Apalaches, CORDILLERA DE LOS ANDES.
FALLA TRANSFORMANTE: La corteza no se genera ni se destruye solo de desliza, como
ejemplo la Falla de SAN ANDRES.
FALLA NORMAL
FALLA INVERSA
PLIEGUE SINCLINAL Y ANTICLINAL
PLIEGUE MONOCLINAL
3.3 Concepto de Rumbo, manteo, inclinación
Para definir la orientación de un plano (estrato, falla, diaclasa) en la naturaleza
matemáticamente se usan el rumbo, la dirección de inclinación y el manteo.
Para describir la orientación de un plano geológico matemáticamente se necesitan dos (o
tres) propiedades:
a) Dirección de inclinación
b) Rumbo
c) Manteo (o buzamiento)
Manteo: es la Inclinación del plano
El rumbo: Siempre es la línea perpendicular al manteo.
Dirección de inclinación: hacia donde el plano de inclinación
Para definir la orientación de un plano se
necesita la dirección de inclinación y el
manteo; o el rumbo, manteo y la dirección
de inclinación. La dirección de inclinación
(ingl. Dip Direction) marca hacia donde se
inclina el plano, o la proyección horizontal
de la línea del máximo pendiente.
El rumbo es la línea horizontal de un plano
(véase abajo). El manteo o buzamiento
(ingl. dip) mide el ángulo entre el plano y el
plano horizontal.
El rumbo se puede definir como línea que
resulta por la intersección del plano
geológico por un plano horizontal.
Se puede imaginarse una superficie de
agua (que es siempre horizontal), se
hunde el plano hasta la mitad, la línea
hasta donde se mojo el plano será el
rumbo.
Un sencillo, pero muy atractivo dibujo para graficar el rumbo (s-t) y la dirección de
inclinación (f-a) de estratos.
.
3.4 Tipos y uso de brújulas geológicas
Tipos de Brújulas
Para tomar los datos tectónicos de planos geológicos en terreno se usan la brújula.
Existen dos tipos de brújulas para tomar las medidas: La brújula del tipo Brunton
(generalmente para mediciones con el rumbo) y la brújula tipo Freiberger (generalmente
para mediciones con la dirección de inclinación). La brújula "Geo-Brunton" es una
combinación de las dos tipos anteriormente mencionado.
La brújula en general:
Una brújula mide la dirección del campo magnético terrestre. La aguja se orienta de
acuerdo de la orientación del campo magnético del sector donde se ubica. Eso significa
en términos teoréticos que el aparato "brújula" se compone de dos sistemas principales
independientes: Una agua y el "cuerpo" - la cáscara con la escala etc. Interesante es que
(sí pensamos bien) la aguja es la parte fija en una brújula. La aguja siempre marca Norte-
Sur (sin contar movimientos de arreglo). la parte móvil "suelta" en una brújula es el
cuerpo, la cáscara.
La escala de las brújulas normalmente es azimutal - es
decir entre 0º hasta 360º o entre 0g hasta 400g. La
escala azimutal tiene que ser orientada en el sentido
contrarreloj - eso implique que este (E) y oeste (W) se
ve cambiado. La escala del sentido contrarreloj permite
una lectura directa, azimutal. Es decir el valor donde
apunta la aguja es el valor final.
Foto: A= Escala azimutal contrarreloj
La aguja de la brújula necesita generalmente un contrapeso: El campo magnético tiene
una componente vertical de acuerdo a la distancia hacia los polos. Entonces en latitudes
entre 15º hasta 90º del hemisferio norte y sur la aguja muestra una fuerte inclinación hacia
arriba y choca con el vidrio de protección de la brújula. Para que la aguja se ubique
horizontal se usa un contrapeso. Durante viajes del hemisferio norte a sur y viceversa hay
que cambiar el peso de un lado al otro.
En algunas partes del mundo hay que aplicar una permanente corrección azimutal a
causa de la distancia entre polo magnético y polo geográfico. (los polos magnéticos se
ubican bastante lejos del eje rotacional de la tierra). Este corrección se puede hacer
directamente en la brújula - girando la rosa (escala azimutal) de acuerdo del error
(recomendado). El valor normalmente sale en las cartas topográficas correspondientes.
Pero también se puede corregir los valores después - en el programa computacional.
Las brújulas profesionales generalmente tienen un botón para liberar o fijar la aguja.
Una aguja fijada es un poco más protegido y no se suelta de su eje durante fuertes
movimientos. (En la foto "D")
Brújula del tipo Brunton:
La brújula "Brunton" se usa generalmente para mediciones del rumbo y manteo. Es decir
mediciones del tipo "medio circulo" y del " tipo americano". También mediciones del
concepto "circulo completo" son posible. La brújula "Brunton" existe en la versión azimutal
(de 0 hasta 360º) y en la versión de cuadrantes (cada cuadrante tiene un rango entre 0-
90º) el "rumbero".
La brújula Brunton tiene un clinómetro,
un botón para fijar/liberar la aguja. La
escala es azimutal / contrarreloj.
Adentro de la escala un poco
escondido se nota la escala del
clinómetro y las niveles.
Uso de las brújulas para planos geológicos
Brunton normal notación: americano
detallado notación americano
notación circulo
completo
B) Brunton para tipo americano (más detalles)
1. La brújula está en orientación del rumbo, junto a las rocas
2. La burbuja del nivel esférico tiene que ser en el centro
3. La aguja tiene que ser libre
4. Se toma el valor del rumbo N.....E o N.....W (véase especial)
5. Se pone la brújula perpendicular al rumbo
6. Se usa el clinómetro
7. La burbuja del nivel tubular tiene que ser en el centro
8. Se toma la lectura del clinómetro como manteo
9. Se estima la dirección de inclinación en letras (N,NW,E,SE,S,SW,W,NW)
véase fotos: medición del rumbo - medición del manteo - medición de la dirección de inclinación
Apuntes 5 geología estructural
Apuntes 5 geología estructural

Más contenido relacionado

La actualidad más candente

Texturas de las rocas
Texturas de las rocasTexturas de las rocas
Texturas de las rocasLuyne
 
Clasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en MasaClasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en MasaJUANCA650
 
MAGMA Y PROCESOS MAGMÁTICOS
MAGMA Y PROCESOS MAGMÁTICOSMAGMA Y PROCESOS MAGMÁTICOS
MAGMA Y PROCESOS MAGMÁTICOSThe Inka Perú
 
Bloque 3. rocas metamórficas
Bloque 3. rocas metamórficasBloque 3. rocas metamórficas
Bloque 3. rocas metamórficassaragalanbiogeo
 
Tema 3 tectónica la deformación de las rocas y formación de cordilleras
Tema 3 tectónica la deformación de las rocas y formación de cordillerasTema 3 tectónica la deformación de las rocas y formación de cordilleras
Tema 3 tectónica la deformación de las rocas y formación de cordillerasAlberto Hernandez
 
Metamorfismo y-rocas-metamórficas
Metamorfismo y-rocas-metamórficasMetamorfismo y-rocas-metamórficas
Metamorfismo y-rocas-metamórficaseinerxd
 
Dunas, estratificación cruzada planar y transversal, restricciones de formaci...
Dunas, estratificación cruzada planar y transversal, restricciones de formaci...Dunas, estratificación cruzada planar y transversal, restricciones de formaci...
Dunas, estratificación cruzada planar y transversal, restricciones de formaci...ChrisTian Romero
 
Sedimentación geologia
Sedimentación geologiaSedimentación geologia
Sedimentación geologiazuledi
 
Paleocorrientes en Sistemas Fluviales por Christian Romero
Paleocorrientes en Sistemas Fluviales por Christian RomeroPaleocorrientes en Sistemas Fluviales por Christian Romero
Paleocorrientes en Sistemas Fluviales por Christian RomeroChrisTian Romero
 
Ambientes y rocas sedimentarias
Ambientes y rocas sedimentariasAmbientes y rocas sedimentarias
Ambientes y rocas sedimentariaspedrohp19
 
Cap.2 elementos geologia estructural
Cap.2   elementos geologia estructuralCap.2   elementos geologia estructural
Cap.2 elementos geologia estructuralroder sanchez cortez
 
Rocas igneas
Rocas igneasRocas igneas
Rocas igneaslobi7o
 
Tema4. deformaciones de la corteza terrestre
Tema4. deformaciones de la corteza terrestreTema4. deformaciones de la corteza terrestre
Tema4. deformaciones de la corteza terrestreBelén Ruiz González
 
Introduccion a la sedimentologia y estratigrafia por Christian romero
Introduccion a la sedimentologia y estratigrafia por Christian romeroIntroduccion a la sedimentologia y estratigrafia por Christian romero
Introduccion a la sedimentologia y estratigrafia por Christian romeroChrisTian Romero
 

La actualidad más candente (20)

Texturas de las rocas
Texturas de las rocasTexturas de las rocas
Texturas de las rocas
 
Clasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en MasaClasificacion deslizamientos, Movimientos en Masa
Clasificacion deslizamientos, Movimientos en Masa
 
MAGMA Y PROCESOS MAGMÁTICOS
MAGMA Y PROCESOS MAGMÁTICOSMAGMA Y PROCESOS MAGMÁTICOS
MAGMA Y PROCESOS MAGMÁTICOS
 
Tema 03 mg-estudio rocas
Tema 03 mg-estudio rocasTema 03 mg-estudio rocas
Tema 03 mg-estudio rocas
 
Textura rocas igneas
Textura rocas igneasTextura rocas igneas
Textura rocas igneas
 
Bloque 3. rocas metamórficas
Bloque 3. rocas metamórficasBloque 3. rocas metamórficas
Bloque 3. rocas metamórficas
 
Esfuerzos geológicos y rocas
Esfuerzos geológicos y rocasEsfuerzos geológicos y rocas
Esfuerzos geológicos y rocas
 
Tema 3 tectónica la deformación de las rocas y formación de cordilleras
Tema 3 tectónica la deformación de las rocas y formación de cordillerasTema 3 tectónica la deformación de las rocas y formación de cordilleras
Tema 3 tectónica la deformación de las rocas y formación de cordilleras
 
Metamorfismo y-rocas-metamórficas
Metamorfismo y-rocas-metamórficasMetamorfismo y-rocas-metamórficas
Metamorfismo y-rocas-metamórficas
 
Dunas, estratificación cruzada planar y transversal, restricciones de formaci...
Dunas, estratificación cruzada planar y transversal, restricciones de formaci...Dunas, estratificación cruzada planar y transversal, restricciones de formaci...
Dunas, estratificación cruzada planar y transversal, restricciones de formaci...
 
Sedimentación geologia
Sedimentación geologiaSedimentación geologia
Sedimentación geologia
 
Paleocorrientes en Sistemas Fluviales por Christian Romero
Paleocorrientes en Sistemas Fluviales por Christian RomeroPaleocorrientes en Sistemas Fluviales por Christian Romero
Paleocorrientes en Sistemas Fluviales por Christian Romero
 
Teoria clase 6_geo
Teoria clase 6_geoTeoria clase 6_geo
Teoria clase 6_geo
 
Series magmaticas exposicion
Series magmaticas exposicionSeries magmaticas exposicion
Series magmaticas exposicion
 
Ambientes y rocas sedimentarias
Ambientes y rocas sedimentariasAmbientes y rocas sedimentarias
Ambientes y rocas sedimentarias
 
Cap.2 elementos geologia estructural
Cap.2   elementos geologia estructuralCap.2   elementos geologia estructural
Cap.2 elementos geologia estructural
 
Rocas igneas
Rocas igneasRocas igneas
Rocas igneas
 
Tema4. deformaciones de la corteza terrestre
Tema4. deformaciones de la corteza terrestreTema4. deformaciones de la corteza terrestre
Tema4. deformaciones de la corteza terrestre
 
Introduccion a la sedimentologia y estratigrafia por Christian romero
Introduccion a la sedimentologia y estratigrafia por Christian romeroIntroduccion a la sedimentologia y estratigrafia por Christian romero
Introduccion a la sedimentologia y estratigrafia por Christian romero
 
tipos de fallas geológicas,
tipos de fallas geológicas, tipos de fallas geológicas,
tipos de fallas geológicas,
 

Destacado

Tema 09 mg-ley mineral-valor económico
Tema 09 mg-ley mineral-valor económicoTema 09 mg-ley mineral-valor económico
Tema 09 mg-ley mineral-valor económicojesus hurtado quinto
 
muestreo preparacion-mecanica-de-minerales-unidad-i
muestreo preparacion-mecanica-de-minerales-unidad-imuestreo preparacion-mecanica-de-minerales-unidad-i
muestreo preparacion-mecanica-de-minerales-unidad-iLuis Gerardo Garza Barrera
 
330017830 informe-de-la-mina-caudalosa-planeamiento
330017830 informe-de-la-mina-caudalosa-planeamiento330017830 informe-de-la-mina-caudalosa-planeamiento
330017830 informe-de-la-mina-caudalosa-planeamientofrancisco cabrera
 
Informe comercializaci minerales
Informe comercializaci mineralesInforme comercializaci minerales
Informe comercializaci mineralesEBSgt
 
Informe de gelogia estructural
Informe de gelogia estructuralInforme de gelogia estructural
Informe de gelogia estructuralgerson14-2
 
Manual de geología estructural mjllanes
Manual de geología estructural mjllanesManual de geología estructural mjllanes
Manual de geología estructural mjllanesMarjorie Llanes
 
19343670 calculo-de-la-ley-de-corte
19343670 calculo-de-la-ley-de-corte19343670 calculo-de-la-ley-de-corte
19343670 calculo-de-la-ley-de-corteGustavo Ruiz
 
1.2 Densidad y peso específico
1.2 Densidad y peso específico1.2 Densidad y peso específico
1.2 Densidad y peso específicoVictor Tapia
 

Destacado (12)

Tema 09 mg-ley mineral-valor económico
Tema 09 mg-ley mineral-valor económicoTema 09 mg-ley mineral-valor económico
Tema 09 mg-ley mineral-valor económico
 
Geologia estructural
Geologia estructuralGeologia estructural
Geologia estructural
 
muestreo preparacion-mecanica-de-minerales-unidad-i
muestreo preparacion-mecanica-de-minerales-unidad-imuestreo preparacion-mecanica-de-minerales-unidad-i
muestreo preparacion-mecanica-de-minerales-unidad-i
 
Estereogramas
EstereogramasEstereogramas
Estereogramas
 
Geologia estructural. esfuerzos_y_deform
Geologia estructural. esfuerzos_y_deformGeologia estructural. esfuerzos_y_deform
Geologia estructural. esfuerzos_y_deform
 
Estimación de reservas
Estimación de reservasEstimación de reservas
Estimación de reservas
 
330017830 informe-de-la-mina-caudalosa-planeamiento
330017830 informe-de-la-mina-caudalosa-planeamiento330017830 informe-de-la-mina-caudalosa-planeamiento
330017830 informe-de-la-mina-caudalosa-planeamiento
 
Informe comercializaci minerales
Informe comercializaci mineralesInforme comercializaci minerales
Informe comercializaci minerales
 
Informe de gelogia estructural
Informe de gelogia estructuralInforme de gelogia estructural
Informe de gelogia estructural
 
Manual de geología estructural mjllanes
Manual de geología estructural mjllanesManual de geología estructural mjllanes
Manual de geología estructural mjllanes
 
19343670 calculo-de-la-ley-de-corte
19343670 calculo-de-la-ley-de-corte19343670 calculo-de-la-ley-de-corte
19343670 calculo-de-la-ley-de-corte
 
1.2 Densidad y peso específico
1.2 Densidad y peso específico1.2 Densidad y peso específico
1.2 Densidad y peso específico
 

Similar a Apuntes 5 geología estructural

Similar a Apuntes 5 geología estructural (20)

Geologia libro web
Geologia libro webGeologia libro web
Geologia libro web
 
GEOTECNIA
GEOTECNIAGEOTECNIA
GEOTECNIA
 
Vcb.específico geo física
Vcb.específico geo físicaVcb.específico geo física
Vcb.específico geo física
 
Deformacionesdelacortezat
DeformacionesdelacortezatDeformacionesdelacortezat
Deformacionesdelacortezat
 
Geología
GeologíaGeología
Geología
 
Hundimiento de suelos
Hundimiento de suelosHundimiento de suelos
Hundimiento de suelos
 
Tectónica de placas
Tectónica de placasTectónica de placas
Tectónica de placas
 
Placas
PlacasPlacas
Placas
 
La corteza terrestre
La corteza terrestreLa corteza terrestre
La corteza terrestre
 
Geologia de yacimientos
Geologia de yacimientosGeologia de yacimientos
Geologia de yacimientos
 
GUIA GEOLOGIA.docx
GUIA GEOLOGIA.docxGUIA GEOLOGIA.docx
GUIA GEOLOGIA.docx
 
geologia semana 1.docx
geologia semana 1.docxgeologia semana 1.docx
geologia semana 1.docx
 
La Litosfera y las Placas Tectónicas
La Litosfera y las Placas TectónicasLa Litosfera y las Placas Tectónicas
La Litosfera y las Placas Tectónicas
 
Bordes de placas litosféricas
Bordes de placas litosféricasBordes de placas litosféricas
Bordes de placas litosféricas
 
Tectónica de placas
Tectónica de placasTectónica de placas
Tectónica de placas
 
Diastrofismo
DiastrofismoDiastrofismo
Diastrofismo
 
Tectónica de placas
Tectónica de placasTectónica de placas
Tectónica de placas
 
Teoría de la tectónica de placas
Teoría de la tectónica de placasTeoría de la tectónica de placas
Teoría de la tectónica de placas
 
Lageosfera
LageosferaLageosfera
Lageosfera
 
diastrofismo - secuencia didactica 3-fuerzas-internas.pdf
diastrofismo - secuencia didactica 3-fuerzas-internas.pdfdiastrofismo - secuencia didactica 3-fuerzas-internas.pdf
diastrofismo - secuencia didactica 3-fuerzas-internas.pdf
 

Último

MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
Libro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdfLibro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdferick82709
 
Tema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaTema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaLissetteMorejonLeon
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industriesbarom
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesjohannyrmnatejeda
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasAhmedMontaoSnchez1
 
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxI LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxPATRICIAKARIMESTELAL
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...humberto espejo
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......dianamontserratmayor
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdffredyflores58
 
Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----AdministracionSSTGru
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALESMAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALESjhosselinvargas
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 

Último (20)

MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
Libro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdfLibro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdf
 
Tema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaTema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieria
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industries
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajes
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnas
 
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxI LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
 
POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......POBLACIONES CICLICAS Y NO CICLICAS ......
POBLACIONES CICLICAS Y NO CICLICAS ......
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
 
Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALESMAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 

Apuntes 5 geología estructural

  • 1. 3.- Geología Estructural 3.1 Modelos tectónicos de la corteza terrestre  Movimiento de placas  Tipos de bordes entre placas  Bloques tectónicos intrusivos  Orogénesis  Estructura interna de la tierra  Estructuras geológicas 3.2 Deformación elástica  Pliegues Anticlinales  Pliegues Sinclinales  Pliegues Monoclinales  Fallas  Diaclasas  Cabalgamiento  Foliaciones 3.3 Concepto de Rumbo, manteo, inclinación 3.4 Tipos y uso de brújulas geológicas 3.0 Geología Estructural  Es parte de la ciencia de la geología que estudia la arquitectura de la tierra.  Estudia el desarrollo, los procesos mecánicos, y los movimientos de la corteza terrestre.  Estudia las deformaciones y las causas que originaron 3.1 Modelos tectónicos de la corteza terrestre La teoría de la deriva continental evolucionó dando lugar a la teoría de La Tectónica de Placas. Denominamos placas a cada una de las porciones de la litosfera terrestre que se mueve de forma independiente. Poseen forma de casquete esférico y unos límites definidos por procesos intensos de sismicidad y volcanismo. Se les denomina litosféricas pues afectan tanto a la corteza, cómo a la parte superior del manto que se desplaza de forma solidaria con esta.
  • 3. Los movimientos que afectan a la corteza de la tierra provienen de las siguientes fuerzas: a) Movimientos tectónicos o de placas b) Movimientos ascensionales del magma c) Presión litostática ejercidas sobre los fondos marinos, debido a la acumulación de grandes masas de sedimentos d) La acción de corrientes de convección del manto terrestre a) Movimientos tectónicos o de placas convergentes: Son los movimientos orogénicos. OCEANICA vs CONTINENTAL Ejemplo: Nazca vs Sudamericana OCEANICA VS OCEANICA Ejemplo Japón CONTINENTE VS CONTINENTE Ejemplo: India vs Asia
  • 4. EJEMPLO DE COLISION CONTINENTE VS CONTINENTE: INDIA VS ASIA b) Movimientos ascensionales del magma El magma al ser más ligero y más móvil que la roca sólida, tiende a elevarse en la corteza de la tierra, forzado por la presión excesivamente grande de la roca circundante. Con las condiciones que prevalecen durante la formación de montaña, simplemente el magma es comprimido hacia arriba. Cuando llega a muy cerca de la superficies, donde pueden existir extensas fracturas adyacentes, el magma comienza a moverse con mayor facilidad, irrumpe como lava cuando alcanza la superficie, existe la posibilidad que el magma pueda solidificarse a lo largo de su acenso.
  • 5. c) Como consecuencia de la posición de los estratos después de haber sufrido grandes presiones tectónicas: las presiones tectónicas se dieron en zonas profundas de la corteza terrestre d) Celdas convectivas desarrolladas en el manto Como la Tierra no tiene una temperatura uniforme, sino que está más caliente en la parte central que en la superficie, existe también gradientes de temperatura en el manto superior, con lo que éste se halla más caliente en la parte baja y más frío en la parte superior, donde pierde calor por conducción a través de la litosfera. Por ello, y gracias a su capacidad de actuar como un fluido, se originan unas corrientes de convección que transportan el material más caliente, y por lo tanto menos denso, hacia arriba. Este material fluye horizontalmente y, en contacto con la litosfera,
  • 6. va perdiendo calor y aumentado su densidad hasta que, por último, cuando esta suficientemente frío y denso, empieza a descender. Durante el descenso y el recorrido horizontal en contacto con el manto inferior, el material se calienta de nuevo, hasta que finalmente vuelve a ascender, cerrando la celda de convección. TIPOS DE BORDES O LIMITES DE PLACAS Pueden ser de tres tipos según el movimiento relativo de las placas: Límites divergentes o dorsales: el movimiento es de separación. Límites convergentes o fosas: el movimiento es de aproximación. Límites o fallas transformantes: el movimiento es paralelo.
  • 7. Límites divergentes Cuando el movimiento de las placas es de separación, se crea un "hueco" en la litosfera, aprovechado por rocas magmáticas para generar nueva corteza oceánica. También se denominan zonas de Dorsal o límites constructivos.
  • 9.
  • 10. El ciclo de Wilson Tuzo Wilson realizó un modelo teórico que resume la posible evolución de las placas. Divide las posibles situaciones en etapas nombradas con el nombre de la zona donde actualmente podemos encontrar esta situación.
  • 11. Movimiento de Bloques Tectónicos Intrusivos Cuerpos intrusivos o plutónicos El término plutón es el nombre genérico para los cuerpos intrusivos y las rocas que los envuelven, se denominan rocas de campo o rocas de caja. El tamaño y forma de los plutones es generalmente especulativo, porque la erosión expone sólo una pequeña parte del cuerpo, aunque se ha logrado considerable información de cuerpos profundamente erosionados, mediante observaciones de campo, estudios geofísicos y trabajos mineros. Estos han permitido, según su forma específica, agrupar a los cuerpos plutónicos en: 1. laminares 2. Globosos En las clasificaciones también se tienen en cuenta las relaciones con la roca de campo, ya sea que corten a la estructura, o que se adapten a ella se los llama discordantes o concordantes, respectivamente.
  • 12. 1. Cuerpos laminares Los cuerpos laminares se caracterizan por tener una relación longitud/espesor >>>1 y sus lados son superficies con tendencias planas y subparalelas. Poseen alta relación superficie/ volumen, que permite la perdida rápida del calor y por ende su enfriamiento. Entre los cuerpos plutónicos, se incluyen: lacolitos, facolitos y lopolitos (Fig. 1-1). Lacolitos: son cuerpos concordantes con un piso plano y un techo arqueado. Las rocas que los constituyen son viscosas (silícicas) lo que limitan el flujo magmático a lo largo de la superficie horizontal y son suficientemente someros como para que puedan levantar las rocas del techo. Facolitos: son cuerpos de pequeñas dimensiones que se ubican en las charnelas de los pliegues y se adelgazan paulatinamente en los flancos hasta desaparecer. Los tamaños varían desde pocos centímetros a algunos kilómetros. Los ejemplos más característicos se observan en las rocas metamórficas inyectadas Esto permite la formación de texturas características para las rocas de estos cuerpos. Lopolitos: son cuerpos concordantes intruidos en una cuenca estructural. Son de gran extensión, con forma de “plato” y característicamente están formados por rocas básicas de baja viscosidad. Figura 1-1. Formas de cuerpos plutónicos. A- Lacolito. B- Facolito. C- Lopolito. D- Stock Entre los cuerpos laminares, los principales son: a) Diques, diques anulares, diques cónicos b) Filones capa o Sills c) Chimeneas volcánicas
  • 13. El dique es una franja de magma casi vertical o vertical que empuja hacia arriba dentro de las rocas preexistentes. Es quizás el tipo de vulcanismo intrusivo más común. Es discordante,(Fig. 1-3). Un dique es un relleno de fractura que corta al bandeado o a las estructuras de las rocas preexistentes. Las fracturas son conductos ideales para el magma porque le permiten penetrar fácilmente. Estos cuerpos tabulares se presentan donde las rocas son suficientemente frágiles para fracturarse. Diques maficos (dioríticos) sector de Chañaral, límite del dique con la roca de caja Fig. 1-3. Dique de pegmatita cortando la estructura de un granito equigranular. Dique de cuarzo y feldespatos alcalinos
  • 14. Los sills o filones capas son plutones concordantes que se forman cuando el magma intruye en un ambiente cercano a la superficie. Son plutones tabulares formados cuando el magma es inyectado a lo largo de superficies de estratificación. Un cuerpo tabular intrusivo es simplemente magma que ha rellenado una fractura. Si el cuerpo es concordante con la estructura los sills con disposición horizontal son los más comunes, aunque se sabe ahora que existe todo tipo de orientaciones, incluso verticales. Debido a su grosor relativamente uniforme y a su gran extensión lateral, los Sills son probablemente el producto de lavas muy fluidas. Los magmas que tienen un bajo contenido de sílice son más fluidos, por eso la mayoría de los Sills está compuesta por basaltos. Un filón capa o Sills se desarrolla cuando el magma aprovecha los planos de debilidad de sedimentos, u otras foliaciones y se inyecta en las mismas. El emplazamiento de un sill exige que la roca sedimentaria situada encima de él sea levantada hasta una altura equivalente al grosor de la masa intrusiva. Aunque esto es una tarea formidable, en ambientes superficiales a menudo requiere menos energía que la necesaria para forzar el ascenso del magma a la distancia que falta hasta alcanzar la superficie. Por consiguiente, los Sills se forman sólo a poca profundidad, donde la presión ejercida por el peso de las capas de rocas situadas encima es pequeña. Aunque los sills se introducen entre capas, pueden ser localmente discordantes. Los grandes sills atraviesan con frecuencia las capas sedimentarias y retoman su naturaleza concordante en un nivel más alto. Fig. 1-2. Filones capa (sills) de pegmatitas. Observar la concordancia con la estructura metamórfica, así como las deformaciones plásticas sufridas.
  • 15. Los diques y filones capas pueden tener espesores desde pocos milímetros a más de un kilómetro, aunque comúnmente los observamos en el rango de las decenas de metros. Aunque la mayoría de los diques y filones capa se emplazan durante un único evento, algunos presentan inyecciones múltiples, que puede tener lugar porque las rocas al enfriarse se contraen y desarrollan zonas de debilidad que permiten el ingreso de un nuevo pulso de magma. Un cuerpo se describe como múltiple, si las fases de inyección son todas de la misma composición y compuesto si más de un tipo de roca está presente. Los diques y filones capa, puede presentarse como cuerpos solitarios, pero los diques en especial, típicamente se presentan en series, que reflejan los esfuerzos regionales que desarrollan fracturas en las cuales se inyecta el magma y se los denomina enjambre de diques, los que suelen tener desarrollo subparalelo. Los diques, también suelen desarrollarse como enjambres radiales en los alrededores de las chimeneas volcánicas, que en su ascenso producen fracturas radiales, por las que puede ascender el magma. Otra forma de presentarse es con formas concéntricas, que se desarrollan por encima de los plutones. Los cuales se manifiestan como diques anulares y diques cónicos. Los diques anulares se producen cuando la presión ejercida por el magma es menor que la presión de material sobreyacente. Los diques cónicos, se forman cuando la presión del magma es mayor que la presión confinante de las rocas sobrepuestas. Los diques anulares y los diques cónicos pueden ocurrir conjuntamente y serían el resultado de diferentes fases de una intrusión. Fig. 1-4. Esquema de desarrollo de diques anulares en un cuerpo plutónico diferenciado.
  • 16. Cuerpos globosos Los cuerpos globosos, tienden a desarrollar formas groseramente equidimensionales, poseen en general baja relación superficie/volumen, por lo que la irradiación de calor tiende a ser baja, permitiendo un enfriamiento lento y de larga duración. Entre los cuerpos globosos describimos: plutones, stocks y batolitos. Plutones: este término fue usado por Pitcher (1993) para cualquier cuerpo grande, no tabular, y restringe el término batolito para agrupación de múltiples plutones que se desarrollan en zonas orogénicas. Stocks: son plutones con forma cilíndrica, que ocupan un área de menos de 100 km2. Estos conductos plutónicos cilíndricos en Europa son denominados plugs. Y la parte expuesta de un plug, después de la erosión del material volcánico superior se denomina neck-volcánico. Batolitos: son cuerpos plutónicos con superficies de exposición superiores a 100 km2. Cuando la parte superior de un batolito comienza a ser erosionado, aparecen afloramientos restringidos de granito, separados entre si por roca de caja, que se denominan cúpulas, cuando la evidencias geofísicas o el mapeo sugieren que un gran intrusivo se encuentra por debajo. Los batolitos constituyen los mayores cuerpos intrusivos y su composición corresponde a rocas silícicas. Los batolitos se forman por la actividad magmática relativamente continua en espacio y tiempo, con pulsos de variada magnitud que se suceden en forma intermitente, por lo que no constituyen un tipo de intrusión. El desarrollo de los batolitos está estrechamente ligado a los procesos geológicos regionales de tectónica de placas, ya sean procesos de subducción o de divergencia. Según la relación con los procesos tectónicos podemos clasificar a los batolitos en: orogénicos, post-orogénicos y anorogénicos. Batolitos orogénicos: son los que se desarrollan en los arcos magmáticos desarrollados en zonas de subducción. Como por ejemplo los batolitos andinos de Chile y Perú. Composicionalmente se caracterizan por granodioritas y tonalitas, metaluminosas y calcoalcalinas. Con carácter subordinado también se encuentran granitos, dioritas y gabros. Batolitos post-orogénicos: son los que se emplazaron con posterioridad a la orogénesis y su consolidación es post-deformación. Con posterioridad a un período orogénico se produce la relajación mecánica, pasando de la compresión a la extensión, lo que produce el colapso orogénico, en el que la actividad magmática puede ser intensa. Es en este período en el que se producen los batolitos post-orogénicos. La composición es monzogranítica y granodiorítica. Los plutones intruyen aprovechando fracturas y los más tardíos son de sección circular.
  • 17. Fig. 1-5. Vista afloramiento Batolito Batolitos anorogénicos: tienen lugar en el interior de las placas y su emplazamiento tiene lugar en corteza rígida, con bajo gradiente geotérmico. Se asocian con estructuras de rift, típicas de ambiente divergente. Constituyen complejos intrusivos centrados con notables diques anulares. Son generalmente de dimensiones menores que las otras dos categorías citadas. Las composiciones intermedias a silícicas tienen tendencias alcalinas y peralcalinas, constituyendo a menudo asociaciones bimodales, con participación de rocas básicas y ácidas. También constituyen complejos alcalinos máficos, que incluyen carbonatitas y sienitas Los plutones son generalmente de secciones circulares y muestran abundantes diques anulares. Intrusivos compuestos. A: Secuencia intrusiva múltiple que va de 1 a 3. Los sucesivos pulsos aprovechan la zona más caliente para intruirse, mientras que las zonas de bordes están más frías y rígidas. B: Secuencia intrusiva múltiple que se inicia con un primer pulso (1), seguido por el 2 y finalmente el 3, ocasionados por colapsos progresivos. C: Intrusivo con borde de enfriamiento mostrando asimilación parcial de un dique anterior. D: cristalización centrípeta de un Plutón. (Modificado de Mc Birney 1984).
  • 18. Orogénesis (Orogenia) La orogénesis u orogenia es el conjunto de procesos geológicos que se producen en los bordes de las placas tectónicas y que dan lugar a la formación de una cadena montañosa (orógeno). Los orógenos son estructuras lineales, situadas en el límite entre una placa continental y otra oceánica, o bien en la unión de dos placas continentales. Presentan pliegues, mantos de corrimiento y fallas inversas. En la capa superficial pueden contener sedimentos de origen marino. Estas características nos indican cómo se produce la orogénesis. En una cuenca oceánica, limitada por el continente, se acumulan los sedimentos. Después, los movimientos convergentes de las placas adyacentes provocan la deformación y el metamorfismo de los materiales. Mientras una placa se introduce bajo la otra, la corteza sufre un engrosamiento y emerge la cadena montañosa, que se incorpora al continente. Durante la orogénesis descrita puede haber manifestaciones volcánicas, como ocurre en la formación de los orógenos térmicos; éste es el caso de los Andes. En los orógenos mecánicos o de colisión, como los Alpes, no aparecen volcanes y sí grandes mantos de pliegues y zonas de engrosamiento porque una placa continental se sitúa sobre la otra. Se llama orogenia a la época de la historia de la Tierra en la que se levantan montañas. La Alpina y la Andina están teniendo lugar en los últimos 65 millones de años. La Caledoniana y la Herciniana tuvieron lugar hace más de 200 millones de años, al comienzo y al final de la Era Paleozoica.
  • 19. ESTRUCTURA INTERNA DE LA TIERRA Características de la tierra La rotación es el movimiento que realiza la Tierra girando sobre su propio eje de oeste a este. Da una vuelta completa en 24 horas que constituyen nuestro día completo. La velocidad de rotación no es la misma en todos los puntos del planeta: 1.700 km/h en el Ecuador 850 km/h a 60º de latitud. Nula en los polos. La traslación es el movimiento que realiza la Tierra girando alrededor del Sol a una velocidad es de 30 km/seg. Da una vuelta completa en 365 días y 6 horas. Por eso, cada cuatro años se suman las 6 horas formando un día completo que se agrega al mes de febrero, obteniéndose un año bisiesto Estructura en Capas Capas de composición Corteza Manto Núcleo Capas Mecánicas: - Litosfera (corteza y manto) - Astenosfera (manto) - Mesosfera (manto) - Núcleo externo - Núcleo interno Masa (1024 kg) 5.9736 Volumen (1010 km3 ) 108.321 Radio Ecuatorial (km) 6378 Radio Polar (km) 6356 Radio Medio Volumétrico (km) 6371 Radio del Núcleo (km) 3485 Densidad promedio (kg/m3 ) 5520 Gravedad en la superficie (m/s2 ) 9.78
  • 20. Tiene un espesor de unos 100 kilómetros, mas hacia el interior, encontramos el manto, líquido en su mayor parte y compuesto de elementos como sílice y aluminio. Es el magma que aflora en los volcanes. En el centro encontramos el núcleo que se divide en externo de carácter líquido y la parte más interna sólida, constituida principalmente por hierro y níquel. Esta parte es fuertemente magnética y es la que origina el campo magnético de la tierra. Puede observarse que por ser líquido el espacio entre la corteza y el núcleo existe la posibilidad de desplazamientos relativos entre uno y otro. Nuevos descubrimientos indican que el núcleo gira libremente y en forma independiente de la corteza, y por razones desconocidas, con una inclinación de algunos grados con respecto al eje de la corteza. Es importante anotar que los fenómenos geomagnéticos tienen asiento físico en el núcleo y no en la corteza. La inclinación del eje de rotación terrestre permite, al aumentar su ángulo, temperaturas más extremas en ambos hemisferios (veranos más cálidos e inviernos más fríos). Actualmente, el eje de la Tierra está desviado 23,44 grados con respecto a la vertical; esta desviación fluctúa entre 21,5 y 24,5 grados a lo largo de un periodo de 41.000 años. Desplazamientos del polo Cuando hablamos de un desplazamiento del polo, en realidad, estamos expresando mal el asunto. No es que el polo o lugar geográfico donde se interceptan la corteza y el eje de giro vaya a cambiar de lugar en el espacio. Lo que sucede es que como se dijo anteriormente, la corteza de la tierra puede desplazarse libremente con respecto al núcleo y desplazarse a un nuevo lugar donde las fuerzas en equilibrio produzcan una situación más estable. Las fuerzas que intervienen en este proceso son calculables en cierta forma. Dependen principalmente del equilibrio de las masas de hielo en ambos polos. En estos días tenemos un desequilibrio evidente, por la mayor intensidad del invierno en el hemisferio norte, donde se deposita en la actualidad una gran cantidad de hielo contra un verano intenso en el hemisferio sur, que reforzado por el agujero en la capa de ozono ha permitido el deshielo de grandes zonas de la Antártida. Este fenómeno se ha dado ya varias veces en la anterioridad y es estudiado por una ciencia que se denomina paleomagnetismo. Mediante el estudio de muestras de lava de volcanes que se encuentran en erupción en el momento del desplazamiento del polo, es posible determinar mediante la dirección de cristalización de las partículas magnéticas, donde se encontraba el polo magnético antes, en y después de la erupción. El último cambio del polo se dio hace 12500 años, y existen huellas palpables del mismo en uno de los volcanes de Norte América, (Steen Mountain, Oregon USA. Ver NATURE,
  • 21. Vol. 374 20 Abril de 1995 pag. 687-692) que coincidentemente se hallaba en erupción. En esta ocasión, el polo se desplazó 27.5 grados o sea unos 3000 Km. en un espacio de 7 días, para una velocidad promedia de desplazamiento de 17.8 km./hr, habiéndose registrado cambios tan altos como de 6.2º por día. Durante los pasados 100.000 años, han habido cuatro desplazamientos grandes del polo sembrado leyendas de todo tipo en las culturas ancestrales. Visión dinámica: La tierra como motor térmico Dinámica del núcleo: magnetismo terrestre Dinámica del manto: Convección Dinámica de la litosfera: Movimiento de placas
  • 22. Objetivo de la geología estructural: Estudio de la estructura de la corteza terrestre o de una determinada región. Para que se necesita un levantamiento tectónico? a) Definir las fuerzas que estaban presente en las rocas, definir la simetría de las foliaciones o b) Caracterización de las fuerzas c) Cronología de los fases tectónicos Donde se usa la información de la tectónica: a) Génesis de los yacimientos: Muchos depósitos tienen un origen tectónico - o por lo menos el ambiente tectónico juego un papel muy importante. La estructura tectónica como formador de un depósito. En los yacimientos del tipo vetiforme es muy importante, b) Deformación tectónica de los depósitos después de la génesis: Definición de desplazamientos - en qué manera y magnitud afectó una fase tectónica el yacimiento ya formado. c) Geotécnica: Las estructuras tectónicas también tienen su "cara negra". Derrumbes, caída de bloques, planchones, zonas de poca estabilidad, cuñas etc. tienen un origen sumamente tectónico. Trabajos que se realizan: a) Levantamiento de las foliaciones (planos geológicos) b) Análisis de la deformación tectónica de las rocas presentes c) Reconocimiento de las estructuras tectónicas en un sector (fallas, diaclasas) d) Interpretación de las estructuras - desarrollo de un modelo tectónico. 1. Planos geológicos En la mayoría las rocas de la corteza terrestre muestran varios tipos de planos geológicos. Existen en general dos tipos de planos: a) Foliaciones primarias Tienen su origen antes de la litificación, es decir durante la deposición. Ejemplos: Estratos, Flujo magmático. b) Foliaciones secundarias Tienen su origen después de la litificación: Todos los planos cuales se han formado a causa de fuerzas tectónicas presentes en la corteza terrestre. Ejemplos: Diaclasas, Fallas.
  • 23. Para estudios en la geología estructural es muy importante diferenciar entre foliaciones primarias y estructuras generadas por fuerzas tectónicas (foliaciones secundarias). Foliaciones secundarias: Diaclasas, fallas, esquistosidad 1) Diaclasas (juntas; inglés: joints): Fracturas sin desplazamiento transversal detectable, solo con poco movimiento extensional. Son las fracturas más frecuentes en todos los tipos de rocas. En la superficie son más frecuentes como en altas profundidades. Tienen una extensión de milímetros, centímetros hasta pocos metros. Normalmente existen en una masa rocosa grupos de diaclasas y/o sistemas de diaclasas. Los grupos de diaclasas son estructuras paralelas o subparalelas. Los sistemas de diaclasas se cortan entre sí en ángulos definidos y tienen una cierta simetría. Algunas diaclasas muestran un relleno (secundario) de calcita, cuarzo, yeso u otros minerales. Aparte de diaclasas tectónicas existen diaclasas de origen no-tectónico: a) Fisuras de enfriamiento: Tienen su origen durante el enfriamiento de una roca magmática (Materiales o rocas calientes que ocupan más espacio con la misma cantidad de materia fría). Foto: Columnas de enfriamiento en rocas volcánicas de la Formación Monardes en el sector "El Patón", Región Atacama,
  • 24. b) Grietas de desecación: Durante la desecación de un barro o lodo bajo condiciones atmosféricas hay una disminución del espacio ocupado y la superficie se rompe en polígonos. c) Fisuras de tensión gravitacional: Sobre estratos inclinados se puede observar bajo algunas condiciones un deslizamiento de las masas rocosas hacia abajo. Al comienzo de este fenómeno se abren grietas paralelas al talud 2) Fallas: Son la rotura en las rocas a lo largo de la cual ha tenido lugar movimiento o desplazamiento. Este movimiento produce un plano de falla o una zona de falla. Las zonas de fallas tienen un ancho que va desde milímetros hasta cientos de metros. Los movimientos o desplazamientos (salto total) pueden ser pequeño (milímetros) hasta muy grandes (cientos de kilómetros). Algunas fallas muestran un relleno de calcita, yeso o sílice.El movimiento en las fallas produce algunas estructuras o rocas especiales: Estrías, arrastres, brecha de falla, milonitas y diaclasas plumosas. Estas estructuras se pueden usar como indicadores directos de fallas.
  • 25. 3) Esquistosidad: En condiciones extremas, por ejemplo, durante el metamorfismo, las rocas se rompen en tablas. Este fracturamiento se repite en una frecuencia entre 0,5 hasta 3 centímetros. Las rocas se llaman esquistos, pizarras o filitas. Durante este proceso generalmente ocurre una orientación de varios minerales, especialmente de las micas. Esquistos: Rocas metamórficas con fuerte clivaje producido por un metamorfismo de contacto. Los esquistos tienen micas de tamaño visible. En contrario en las filitas las micas no alcanzan tamaños mayores de 0,02mm 3.2 Deformación Elástica Las Deformaciones: Los Pliegues y las Fallas Según su naturaleza y condiciones de presión y temperatura, los materiales geológicos pueden reaccionar de dos formas diferentes ante los esfuerzos (presiones dirigidas) de la tectónica de placas. Plástica: Origina la formación de pliegues. Rígida: Tiene lugar la rotura y formación de una falla. Los Pliegues En los pliegues podemos definir una serie de elementos: Los flancos (cada una de las Superficies que forman el pliegue), la charnela (línea de unión de los dos flancos), y el plano o superficie axial (plano formado por la unión de las charnelas de todos los estratos).
  • 26. En atención a su morfología los pliegues se clasifican como Anticlinales, cuando presentan en su núcleo materiales más antiguos y Sinclinales cuando presentan en su núcleo materiales más recientes. EJEMPLO DEFORMACION SINCLINAL
  • 28. Las Fallas Cuando se supera la capacidad de deformación plástica de una roca, se fractura, en este caso, hay dos bloques separados. . GRAFICO ESFUERZO VS DEFORMACION Puede ser de dos tipos: fallas y diaclasas Falla: fractura en las que se produce el desplazamiento de un bloque con respecto a otro. Por el plano de la falla. Diaclasa: es cuando los bloques no se desplazan uno con respecto al otro y forman grietas. En las fallas podemos definir una serie de elementos geométricos: Plano de falla: superficie de fractura sobre laque se produce el desplazamiento Labios de falla: cada una de boques en que queda dividido el terreno Salto de falla: medida de desplazamiento relativo entre los labios.
  • 29. En atención a su morfología los fallas se clasifican como: Normales, inversas, de desgarre o dirección FALLA NORMAL O DIRECTA 1. El plano de falla buza hacia el labio hundido 2. Se origina por fuerzas de tracción FALLA INVERSA 1. El plano de falla buza hacia el labio levantado 2. Se origina por esfuerzos de compresión
  • 30. FALLA DE DESGARRE o DIRECCION 1. No hay labio levantado ni hundido 2. Hay un desplazamiento relativo de los bloques GRABEN O FOSAS TECTONICAS: Son depresiones elongadas, limitadas por fallas directas, es decir, por dos fallas normales paralelas con inclinación que se da en un ambiente de tectónica expansiva. HORST O PILARES TECTONICOS: Son elevaciones limitadas por fallas, que producen una topografía de tipo lineal. FALLAS DE CABALGAMIENTO: Son grandes planos de fallas horizontales con desplazamientos que pueden alcanzar muchos kilómetros como por ejemplo, Himalaya, los Alpes, Apalaches, CORDILLERA DE LOS ANDES. FALLA TRANSFORMANTE: La corteza no se genera ni se destruye solo de desliza, como ejemplo la Falla de SAN ANDRES.
  • 31.
  • 33. PLIEGUE SINCLINAL Y ANTICLINAL PLIEGUE MONOCLINAL
  • 34.
  • 35.
  • 36. 3.3 Concepto de Rumbo, manteo, inclinación Para definir la orientación de un plano (estrato, falla, diaclasa) en la naturaleza matemáticamente se usan el rumbo, la dirección de inclinación y el manteo. Para describir la orientación de un plano geológico matemáticamente se necesitan dos (o tres) propiedades: a) Dirección de inclinación b) Rumbo c) Manteo (o buzamiento) Manteo: es la Inclinación del plano El rumbo: Siempre es la línea perpendicular al manteo. Dirección de inclinación: hacia donde el plano de inclinación Para definir la orientación de un plano se necesita la dirección de inclinación y el manteo; o el rumbo, manteo y la dirección de inclinación. La dirección de inclinación (ingl. Dip Direction) marca hacia donde se inclina el plano, o la proyección horizontal de la línea del máximo pendiente. El rumbo es la línea horizontal de un plano (véase abajo). El manteo o buzamiento (ingl. dip) mide el ángulo entre el plano y el plano horizontal. El rumbo se puede definir como línea que resulta por la intersección del plano geológico por un plano horizontal. Se puede imaginarse una superficie de agua (que es siempre horizontal), se hunde el plano hasta la mitad, la línea hasta donde se mojo el plano será el rumbo.
  • 37. Un sencillo, pero muy atractivo dibujo para graficar el rumbo (s-t) y la dirección de inclinación (f-a) de estratos. . 3.4 Tipos y uso de brújulas geológicas Tipos de Brújulas Para tomar los datos tectónicos de planos geológicos en terreno se usan la brújula. Existen dos tipos de brújulas para tomar las medidas: La brújula del tipo Brunton (generalmente para mediciones con el rumbo) y la brújula tipo Freiberger (generalmente para mediciones con la dirección de inclinación). La brújula "Geo-Brunton" es una combinación de las dos tipos anteriormente mencionado. La brújula en general: Una brújula mide la dirección del campo magnético terrestre. La aguja se orienta de acuerdo de la orientación del campo magnético del sector donde se ubica. Eso significa en términos teoréticos que el aparato "brújula" se compone de dos sistemas principales independientes: Una agua y el "cuerpo" - la cáscara con la escala etc. Interesante es que (sí pensamos bien) la aguja es la parte fija en una brújula. La aguja siempre marca Norte- Sur (sin contar movimientos de arreglo). la parte móvil "suelta" en una brújula es el cuerpo, la cáscara. La escala de las brújulas normalmente es azimutal - es decir entre 0º hasta 360º o entre 0g hasta 400g. La escala azimutal tiene que ser orientada en el sentido contrarreloj - eso implique que este (E) y oeste (W) se ve cambiado. La escala del sentido contrarreloj permite una lectura directa, azimutal. Es decir el valor donde apunta la aguja es el valor final. Foto: A= Escala azimutal contrarreloj
  • 38. La aguja de la brújula necesita generalmente un contrapeso: El campo magnético tiene una componente vertical de acuerdo a la distancia hacia los polos. Entonces en latitudes entre 15º hasta 90º del hemisferio norte y sur la aguja muestra una fuerte inclinación hacia arriba y choca con el vidrio de protección de la brújula. Para que la aguja se ubique horizontal se usa un contrapeso. Durante viajes del hemisferio norte a sur y viceversa hay que cambiar el peso de un lado al otro. En algunas partes del mundo hay que aplicar una permanente corrección azimutal a causa de la distancia entre polo magnético y polo geográfico. (los polos magnéticos se ubican bastante lejos del eje rotacional de la tierra). Este corrección se puede hacer directamente en la brújula - girando la rosa (escala azimutal) de acuerdo del error (recomendado). El valor normalmente sale en las cartas topográficas correspondientes. Pero también se puede corregir los valores después - en el programa computacional. Las brújulas profesionales generalmente tienen un botón para liberar o fijar la aguja. Una aguja fijada es un poco más protegido y no se suelta de su eje durante fuertes movimientos. (En la foto "D") Brújula del tipo Brunton: La brújula "Brunton" se usa generalmente para mediciones del rumbo y manteo. Es decir mediciones del tipo "medio circulo" y del " tipo americano". También mediciones del concepto "circulo completo" son posible. La brújula "Brunton" existe en la versión azimutal (de 0 hasta 360º) y en la versión de cuadrantes (cada cuadrante tiene un rango entre 0- 90º) el "rumbero". La brújula Brunton tiene un clinómetro, un botón para fijar/liberar la aguja. La escala es azimutal / contrarreloj. Adentro de la escala un poco escondido se nota la escala del clinómetro y las niveles. Uso de las brújulas para planos geológicos Brunton normal notación: americano detallado notación americano notación circulo completo
  • 39. B) Brunton para tipo americano (más detalles) 1. La brújula está en orientación del rumbo, junto a las rocas 2. La burbuja del nivel esférico tiene que ser en el centro 3. La aguja tiene que ser libre 4. Se toma el valor del rumbo N.....E o N.....W (véase especial) 5. Se pone la brújula perpendicular al rumbo 6. Se usa el clinómetro 7. La burbuja del nivel tubular tiene que ser en el centro 8. Se toma la lectura del clinómetro como manteo 9. Se estima la dirección de inclinación en letras (N,NW,E,SE,S,SW,W,NW) véase fotos: medición del rumbo - medición del manteo - medición de la dirección de inclinación