SlideShare una empresa de Scribd logo
1 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
ANÁLISIS DE VARIANZA
ANOVA DE UNA VÍA
Elaboró: Dr. Primitivo Reyes Aguilar
Septiembre de 2007
Mail: primitivo_reyes@yahoo.com
Tel. 58 83 41 67 / Cel. 044 55 52 17 49 12
Página 1 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
CONTENIDO
1. ANOVA
2. Ejercicios
3. Teoría de experimentos de un solo factor
Página 2 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
ANALISIS DE VARIANZA DE UN FACTOR (ANOVA 1 VIA)
El análisis de la varianza de un factor (ANOVA) es una metodología para analizar la variación
entre muestras y la variación al interior de las mismas mediante la determinación de varianzas.
Es llamado de una vía porque analiza un variable independiente o Factor ej: Velocidad. Como
tal, es un método estadístico útil para comparar dos o más medias poblacionales. El ANOVA de
un criterio nos permite poner a prueba hipótesis tales como:
kH µµµµ ===== ....3210
.:1 diferentessonlespoblacionamediasdosmenosAlH
Los supuestos en que se basa la prueba t de dos muestras que utiliza muestras independientes
son:
1. Ambas poblaciones son normales.
2. Las varianzas poblacionales son iguales, esto es, .2
2
2
1 σσ =
El estadístico tiene una distribución muestral resultando:
2
2
w
b
s
s
Fc =
El valor crítico para la prueba F es:
))1(,1( −− nkkFα
Donde el número de grados de libertad para el numerador es k-1 y para el denominador es k(n-
1), siendo α el nivel de significancia.
k = número de muestras.
Por ejemplo:
Ejemplo: Se tienen 14 empleados seleccionados al azar que se someten a
3 diferentes cursos de entrenamiento: Programa 1, Programa 2 y Programa 3.
Página 3 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Como los empleados se seleccionan aleatoriamente para cada programa
el diseño se denomina DISEÑO COMPLETAMENTE ALEATORIZADO
Se observa el aprovechamiento de los empleados en los programas:
TRATAMIENTOS
I c=1 c=2 c=3 J
Programa 1
Programa
2 Programa 3
r=1 85 80 82
r=2 72 84 80
r=3 83 81 85
r=4 80 78 90
r=5 ** 82 88
Medias 80.00 81.00 85.00 Xj
Media de medias o media
total 82.14
TIPOS DE VARIACIÓN Y SUMAS DE CUADRADOS
1. Variación total entre los 14 empleados, su puntuación no fue igual con todos
VARIACIÓN TOTAL RESPECTO A LA MEDIA GENERAL
SCT = (85-82.14)2 + (72-82.14)2+(83-82.14)2+.....+(88-82.14)2
SCT = 251.7
2. Variación entre los diferentes tratamientos o Variación entre muestras o variación
entre programa 1, programa 2 y programa 3
EFECTO DE LA MEDIA DE CADA TRATAMIENTO RESPECTO A LA MEDIA GENERAL
Página 4 de 25
2
11
)(∑∑ ==
−=
c
j
r
i
XXijSCT
2
1
)( XXrSCTR j
r
j
j −= ∑=
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
SCTR = 4(79.5 - 81.3333)2 + 5(81 - 81.3333)2 + 5(85 - 81.333)2
SCTR = 65.71
3. Variación dentro de un tratamiento o muestra o programa dado que no todos los
empleados dentro de un mismo programa obtuvieron los mismos puntajes. Se denomina
Variación dentro de los tratamientos.
VARIACIÓN DENTRO DEL TRATAMIENTO O VARIACIÓN DEL ERROR
CADA VALOR RESPECTO A LA MEDIA DE SU TRATAMIENTO
SCE = SCT - SCTR = 186
4. GRADOS DE LIBERTAD
Grados de libertad totales = n - 1 = 14-1 = 13
Grados de libertad de los tratamientos = c - 1 = 3 - 1 = 2
Grados de libertad del error = gl. Totales - gl. Tratamientos = 13 - 2 = 11
gl SCT = gl SCTR + gl SCE
gl SCE = gl SCT - gl SCTR = (n -1) - (c - 1) = n -c
5. CUADRADOS MEDIOS (Suma Cuadrados/ Grados libertad)
CMT = Cuadrado medio total = SCT / (n-1) = 19.4
CMTR = Cuadrado medio del tratamiento = SCTR / (c -1) = 32.9
CME = Cuadrado medio del error = SCE/ gle.= 16.9
6. ESTADÍSTICO DE PRUEBA Fc Y ESTADÍSTICO F CRÍTICO DE ALFA
Fc = CMTR / CME= 1.946745562
Página 5 de 25
2
11
)( j
c
j
ij
r
i
XXSCE −= ∑∑ ==
cncadordenoglnumeradorglalfa FF −−= ,1,min.,., α
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Cálculo de F con Excel
=DISTR.F.INV(ALFA, GL. TR, GL. ERR) =DISTR.F.INV(0.05, 2, 11) = 3.982297957
NO RECHAZAR
ZONA DE
RECHAZO
Distr. F
Como Fc es menor a Falfa no se rechaza Ho y las medias son iguales.
7. VALOR P DE Fc
P = distr.f(Fc, gl. SCTr, gl. SCE) = distr.f(1.946, 2, 11) = 0.18898099
Como P es mayor a alfa no se rechaza Ho
CONCLUSION: NO HAY SUFICIENTE EVIDENCIA PARA RECHAZAR HO, LAS MEDIAS DE
LOS TRATAMIENTOS SON IGUALES
Página 6 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
TABLA DE ANOVA
FUENTE DE VARIACIÓN SUMA DE GRADOS DE CUADRADO
CUADRADOS LIBERTAD MEDIO VALOR F
Entre muestras (tratam.) SCTR c-1 CMTR CMTR/CME
Dentro de muestras (err.) SCE n-c CME
Variación total SCT n-1 CMT
Regla: No rechazar si la F de la muestra es menor que la F de Excel para una cierta alfa
USO DE EXCEL:
 En el menú herramientas seleccione la opción Análisis de datos, en funciones para
análisis seleccione Análisis de varianza de un factor.
 En Rango de entrada seleccionar la matriz de datos (todas las columnas a la vez).
 Alfa = 0.05
 En Rango de salida indicar la celda donde se iniciará la presentación de resultados.
RESUMEN Análisis de varianza de un factor
Grupos Cuenta Suma Promedio Varianza
Programa 1 4 320 80 32.666667
Programa 2 5 405 81 5
Programa 3 5 425 85 17
ANÁLISIS DE VARIANZA
Grados
de Promedio de
Variaciones
Suma
cuadrados libertad Cuadrados Fc
Probabilida
d F crítica
Entre grupos 65.71428571 2 32.85714286 1.9431644 0.18937731 3.98229796
Dentro de
grupos 186 11 16.90909091
Total 251.7142857 13
USO DE MINITAB
 Stat > ANOVA > One Way (Unstacked)
 en Responses in separate columns Indicar las columnas de datos
 En Confidence Level 95%
Página 7 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
 Seleccionar Comparisons Tukey 5%
 OK
One-way ANOVA: Programa 1, Programa 2, Programa 3
Source DF SS MS F P
Factor 2 65.7 32.9 1.94 0.189
Error 11 186.0 16.9
Total 13 251.7
S = 4.112 R-Sq = 26.11% R-Sq(adj) = 12.67%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev ----+---------+---------+---------+-----
Programa 1 4 80.000 5.715 (------------*------------)
Programa 2 5 81.000 2.236 (----------*-----------)
Programa 3 5 85.000 4.123 (-----------*----------)
----+---------+---------+---------+-----
77.0 80.5 84.0 87.5
Pooled StDev = 4.112
NOTA: Si los Intervalos de confianza se traslapan, las medias son iguales estadísticamente
Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons
Individual confidence level = 97.94%
Programa 1 subtracted from:
Lower Center Upper --------+---------+---------+---------+-
Programa 2 -6.451 1.000 8.451 (------------*-----------)
Programa 3 -2.451 5.000 12.451 (-----------*------------)
--------+---------+---------+---------+-
-6.0 0.0 6.0 12.0
Programa 2 subtracted from:
Lower Center Upper --------+---------+---------+---------+-
Programa 3 -3.025 4.000 11.025 (-----------*----------)
--------+---------+---------+---------+-
-6.0 0.0 6.0 12.0
NOTA: Si el cero se encuentra en el intervalo de confianza de la diferencia entre medias, este
par de medias no son diferentes.
Página 8 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
2. EJERCICIOS:
1. Cuatro catalizadores que pueden afectar la concentración de un componente en una mezcla
líquida de tres componentes están siendo investigado.
Se obtienen las siguientes concentraciones:
Catalizador
A B C D
58.2 56.3 50.1 52.9
57.2 54.5 54.2 49.9
58.4 57 55.4 50
55.8 55.3 51.7
54.9
2. Para determinar si existe diferencia significativa en el nivel de Matemáticas de 4 grupos de
estudiantes de Ingeniería se realizó un examen aleatorio a 6 individuos por grupo. Determine
cuales son los grupos en los cuales existen diferencias a un 95% de nivel de confianza.
A B C D
75 78 55 64
93 91 66 72
78 97 49 68
71 82 64 77
63 85 70 56
76 77 68 95
3. Las calificaciones en el examen a 18 empleados de tres unidades de negocio
Se muestran a continuación:
Probar si no hay diferencia entre las unidades a un 5% de nivel de significancia.
A B C
85 71 59
75 75 64
82 73 62
76 74 69
71 69 75
85 82 67
4. Probar si hay diferencia en los tiempos de servicio de 4 unidades de negocio para el mismo
servicio a un nivel de significancia del 5%.
Página 9 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
A B C D
5.4 8.7 11.1 9.9
7.8 7.4 10.3 12.8
5.3 9.4 9.7 12.1
7.4 10.1 10.3 10.8
8.4 9.2 9.2 11.3
7.3 9.8 8.8 11.5
Página 10 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
3. TEORÍA DE EXPERIMENTOS DE UN SOLO FACTOR
n esta parte se analiza el caso en que se desea conocer el efecto de un solo factor o
variable independiente sobre la característica de calidad que sé esta analizando. Esto
implica que a fin de poder detectar su efecto, este factor se debe de variar manteniendo el resto
de los factores en un valor fijo.
E
Experimentos sin restricciones en la aleatoriedad.
uando se desea analizar el efecto de un factor sobre una variable dependiente o
característica de calidad es necesario el variar el "nivel” valor de ese factor. A cada
diferente nivel al cual se realiza el experimento se le conoce como tratamiento. Por ejemplo si el
factor es el proveedor los diferentes niveles o serian proveedor A, proveedor B, proveedor C, etc.
, si el factor es el tipo de proceso los tratamientos serian proceso 1, proceso 2. Si el factor es
temperatura los diferentes niveles serian por ejemplo 10, 20, 30 y 40 °C,etc.
C
Por otro lado en cada nivel del factor se efectúan una serie de pruebas, a cada una de estas
pruebas se les conoce como replicaciones. EL factor se considera fijo.
Ejemplo 1: Suponga que se desea saber si los ejes que surten cuatro proveedores tienen
diferente resistencia a la tracción. Para ello se decide llevar a cabo un experimento de un solo
factor donde la variable dependiente es la resistencia a la tracción del eje medida en Kgs/cm2
y el
factor es el proveedor. El factor tiene cuatro niveles o tratamientos diferentes. Uno para cada
proveedor (llámelos I, II, III, IV) se decide probar 5 ejes de cada proveedor haciendo un total de
20 pruebas ejecutadas en la misma maquina de prueba y con él mismo operario (recuerde que el
resto de los factores se deben de mantener a un nivel fijo).
Para que el experimento sea aleatorio se numeran los ejes del 1 al 20 y se selecciona al azar un
número entre 1 y 20. Según él numero seleccionado es el siguiente eje que se prueba. De esta
manera, el siguiente eje a probar es seleccionado sin ninguna restricción. Suponga. que los
resultados de experimento se muestran en la tabla siguiente:
Página 11 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Proveedor
I II III IV
5
6
6
4
4
5
42
5
5
6
1
4
6
39
6
2
5
0
4
5
45
5
9
5
5
3
9
43
6
0
5
6
4
3
41
El proveedor = factor
Tratamiento = I, II, III, IV
Con cinco replicaciones en cada tratamiento.
Observando la tabla se "ve" que existen evidentemente diferencias entre la resistencia de los
ejes de un proveedor a otro. Pero también existen entre los ejes de un mismo proveedor,
entonces, ¿la diferencia detectada entre, los ejes de un proveedor y otro existe realmente? O ¿la
diferencia es debida al azar?, La herramienta estadística conocida como análisis de varianza
(ANOVA) puede ayudar a despejar esta duda.
Para esto suponga un caso general como sigue: Si define Yij como el valor correspondiente
de la variable dependiente o característica de calidad de la i-ésima observación o replicación
bajo el tratamiento j, los resultados de un experimento de un solo factor con k tratamientos y n
replicas u observaciones por tratamiento seria:
Tratamiento
(nivel)
Observaciones Totales Promedios
1 Y11 Y12 ... Y1n Y1. ..Y
2 Y21 Y22 ... Y2n Y2. .Y2
3 Y31 Y32 ... Y3n Y3. .Y3
... ... ... ... ... ... ...
K Yk1 Yk2 ... Ykn Yk. .Yk
Página 12 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Este caso se puede representar mediante el modelo estadístico lineal:
ijjij ετμY ++=
Donde µ representa la media general, τj representa el efecto del tratamiento j, y εij es el error
aleatorio al hacer la observación ij.
Esto es, se supone que todos los datos en general pertenecen a una misma población con
media µ excepto que existan desviaciones para diferentes tratamientos del mismo factor. Por
su parte εij representa el error aleatorio o medida de la variabilidad natural dentro de cada
tratamiento.
Generalmente se supone que:
;0τ
n
1j
j∑=
=
Y que el error aleatorio sigue una distribución normal con media cero y varianza σ2
, esto denota:
)σ,0(Nijε 2
≈
Sean Yi. El total de las observaciones bajo el i-esimo tratamiento, y .iY el promedio de las
observaciones bajo el i-esimo tratamiento. Similarmente sean Y.. La suma de todas las
observaciones y ..Y la media general de todas las observaciones.
Expresado matemáticamente esto es:
Y../n..Y
YY..
n1,2,...,icon./nY.Y
Y.Y
n
1i
k
1j
ij
ii
n
1i
iji
=
=
==
=
∑∑
∑
= =
=
N = kn es él numero total de observaciones
Las hipótesis en este caso son:
Página 13 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Ho: τj = 0; para todo valor de j.
H1: τj ≠ 0; para al menos un valor de j.
Ho significa que el factor (los niveles bajo estudio) no tiene efecto sobre la variable dependiente
y H1 que si lo tiene, esto es que existe diferencia, estadística. Recuerde también que la hipótesis
nula se asume como cierta a menos que los datos indiquen lo contrario.
Descomposición de la suma total de cuadrados
a denominación de análisis de varianza resulta de descomponer la variabilidad total de los
datos en sus partes componentes. La suma total de cuadrados corregida es:L
( ) ( )
ET
k
1j
n
1i
2k
1j
2k
1j
n
1i
2
SSSStrSS
.iYYij..Yi.Yn..YYij
+=




 −+−=− ∑∑∑∑∑ = === =
Donde:
La ecuación anterior muestra la variabilidad total de los datos, medida por la suma total corregida
de los cuadrados. SStr se denomina suma de cuadrados debida a los tratamientos (es decir,
entre tratamientos), SSE es la suma de cuadrados debido al error (es decir, dentro de los
tratamientos)
SST = Suma de cuadrados total: con N -1 grados de libertad
SStr = Suma de cuadrados debido a los tratamientos, con k - 1 grados de libertad.
SSE = Suma de cuadrados debido al error aleatorio k grados de libertad.
Para simplificar los cálculos:
SStrSSSS
N
Y..
n
Yi.
SStr
)Y..
n
Y..
(YSS
TE
k
1j
22
2
2k
1j
n
1i
2
ijT
−=






−=
−=
∑
∑∑
=
= =
El análisis de varianza será:
Página 14 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Fuente
De error SS G.L. MS F0
Variación
entre tratamientos
SStr k – 1 MStr MStr/MSE
Variación dentro de
Tratamientos o
error
SS
E
N – k MSE
Total SST N – 1
Si F0 > Fα,k-1,N-k, H0 debe ser rechazada. Donde Fα, k-1,N-k es el valor de la variable F con
un nivel de significancia (error tipo I), k-1 grados de libertad en el numerador y N-k grados de
libertad en el denominador. Bajo la hipótesis nula la relación MStr/MSE sigue una función de
densidad F, por lo tanto si F0 es mayor que Fα, k-1,N-k existirá una diferencia significativa y el factor
afecta la respuesta de la característica de calidad en los niveles bajo estudio.
Si Ho no puede ser rechazada la conclusión es por lo tanto que el factor bajo estudio no
afecta la respuesta. Sin embargo, si Ho es rechazada y existe diferencia significativa entre los
diferentes tratamientos de un solo factor el siguiente paso es el analizar en detalle cual de los
tratamientos es el mejor y cuales son iguales.
Aplicando el ANOVA a los datos del ejemplo 2.2 se tiene:
∑∑= =
=+++=
4
1j
5
1i
2222
5194041...5556Yij
Entonces, calculando las sumas de cuadrados tenemos que:
Página 15 de 25
Totales Promedios
Yi
I 56 55 62 59 60 292 58.4
II 64 61 50 55 56 286 57.2
III 45 46 45 39 43 218 43.6
IV 42 39 45 43 41 210 42
Y..= 1006 40.24 ..Y
.iY
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
SST = 51,940 – (10062
)/20 = 1338.2
SStr = 2922
/5 + 2862
/5 + 2182
/5 + 2102
/5 –10062
/20 = 1,135.0
SSE = SST – SStr = 1338.2 – 1135.0 = 203.2
MStr = SStr/(k-1) = 1135.0/(3 - 1) = 378.2
MSE = SSE/(n-k) = 203.2/(20-4) = 12.70
Esto se resume en la siguiente tabla:
Fuente
De error SS G.L. MS F0
Factor o tratamientos SStr=1135 k – 1 = 3 MStr =378.3
MStr/MSE
= 29.79
Error SSE=203.2 N – k = 16 MSE=12.7
Total SST=1338.2 N – 1 = 19
Donde F0= MStr/MSE = 378.3/12.70=29.79 con 3 grados de libertad en el numerador y 16 grados
de libertad en el denominador.
Si el nivel de aceptación (error tipo I) lo fijamos en 5%, esto es, α = 0.05, de la tabla de la
función F se tiene que:
Fα,3,16 = 3.24
Dado que F0 = 29.79 > 3.24= F0.05,3,16
Se concluye que Ho se rechaza y el factor proveedor afecta la variable resistencia a la
tracción.
Experimentos con un solo factor y diferente número de lecturas por tratamiento (o caso
desbalanceado)
Página 16 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
uando por alguna razón él numero de lecturas que se tienen bajo cada tratamiento es
diferente, digamos Zi observaciones en el tratamiento j, el análisis se puede llevar a cabo
de una manera similar con las siguientes formulas para k tratamientos:
C
libertaddegradosk-NconSStr;-SSTSS
libertaddegrados1-kcon;SS
libertaddegrados1-Ncon;
N
Y..YSS
E
k
1j
tr
k
1j
n
1i
2
-
2
ijT
=
−=
=
∑
∑∑
=
= =
N
Y
n
Y
i
i
22
...
Es, sin embargo, deseable que él numero de muestras sea igual bajo cada tratamiento, puesto
que el poder de la prueba se maximiza cuando él numero de muestras es igual.
Ejemplo 2: El tiempo de respuesta en milisegundos fue determinado para tres tipos diferentes
de circuitos y los resultados son:
Con un nivel de significación de α = 0.05. ¿Tiene los circuitos diferente tiempo de respuesta?
k = 3; n1 = 6; n2 = 3; n3 = 4; N = 6 + 3 + 4 = 13
Página 17 de 25
Totales Promedios
tr Yi
I 9 12 10 8 15 13 67 11.17
II 20 23 30 73 24.33
III 6 5 8 16 35 8.75
Y.. 175 14.75
Observaciones .Yi
..Y=
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
162.29474.98-637.24SS-SSSS
474.98
13
175
4
35
3
73
6
67
/N)Y../n.(YSS
637.242355.762993
13
175
168...129
/N)Y..(YijSS
trTE
2222
k
1j
2
i
2
itr
2
2222
k
1j
n
1i
22
T
===
=−++
=−=
=−
=−++++
=−=
∑
∑∑
=
= =
La tabla ANOVA es:
Fuente
De error
SS G.L. MS
F0
Factor o tratamientos SStr=474.98 k – 1 = 2 MStr =237.49
MStr/MSE
= 14.64
Error SSE=162.29 N – k = 10 MSE=16.22
Total SST=637.24 N – 1 = 12
Dado que F.05,2,10 = 4.10, se concluye que los circuitos muestran diferentes tiempos de
respuesta.
Estimación de parámetros del modelo
continuación, se desarrollan estimadores para los parámetros del modelo de clasificación
en un sentido:A
ijiij ετμY ++=
Usando el método de los mínimos cuadrados, las soluciones de las ecuaciones normales son:
k1,2,3,...,icon
..Y.Yτˆ
..Yμˆ
ii
=
−=
=
Página 18 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Y es posible determinar fácilmente un intervalo de confianza para estimar la media del i-ésimo
tratamiento. Dicha i-ésimo media es:
µi = µ + τi
Un estimador puntual para µi podría ser .Yτˆμˆμˆ iii =+= ahora si se supone que los errores
están distribuidos normalmente, las .Yi son NID(0,σ2
/n), entonces podría usarse la distribución
normal para definir el intervalo de confianza buscado si se conoce σ. Al usar MSE como
estimación de, σ2
, el intervalo de confianza se debe basar en la distribución t., por tanto, un
intervalo de confianza de (1-α)100% para la media del i-ésimo tratamiento, µ es:






± −
n
MS
t.Y
E
kN,2/αi
un intervalo de confianza del (1-α)100% para la diferencia de las medias de dos tratamientos
cualesquiera, por ejemplo µi-µj, será:
.
n
MS2
t.Y.Y
E
kN,2/αji 





±− −
Ejemplo 3: Al usar los datos del ejemplo 2.3, las estimaciones de la media general y de los
efectos de los tratamientos son y;04.1525376μˆ ==
24.404.1580.10..Y.Yτˆ
56.604.1560.21..Y.Yτˆ
56.204.1560.17..Y.Yτˆ
36.004.1540.15..Y.Yτˆ
24.504.1580.9..Y.Yτˆ
55
44
33
22
11
−=−=−=
+=−=−=
−=−=−=
+=−=−=
−=−=−=
usando la formula para calcular el intervalo de confianza del 95% para la media del tratamiento 4
es:
Página 19 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
( )
[ ]65.260.21
.,
5
06.8
086.260.21. ,2/
±
±=





± −
bieno
n
MS
tY
E
kNi α
por tanto, el intervalo deseado es 18.95 ≤ µ ≤ 24.25
Estimación de la variable de respuesta
a descomposición de la variabilidad en las observaciones por medio del análisis de
variancia, es una relación puramente algebraica.L
ijiij ετμY ++=
El residuo de la observación i del tratamiento j se define mediante:
ijijij YˆYe −=
en donde ijYˆ es una estimación de la observación Yij correspondiente calculada por:
.YYˆ
..)Y.Y(..YYˆ
τˆμˆYˆ
iij
iij
iiij
=
−+=
+=
La ecuación anterior muestra un resultado que se intuye fácilmente, ya que la estimación de
cualquier observación del i-ésimo tratamiento es igual al promedio del tratamiento
correspondiente. El examen de los residuos debe ser automático en el análisis de variancia. Si
el modelo es adecuado, los residuos no deben tener estructura.
Comparación de medias de tratamientos individuales
Página 20 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
upongamos que al efectuar un análisis de variancia para un modelo de efectos fijos la:
hipótesis nula es rechazada. Se concluye que existe diferencia entre las medias, aunque no
se especifique exactamente cual de ellas es diferente. En esta situación puede ser útil realizar
comparaciones adicionales entre grupos de medias de los tratamientos. La media del i-ésimo
tratamiento se define mediante µi = µ + τi y su estimación es .Yi . Las comparaciones entre
medias de tratamientos se realizan en términos de los totales de tratamientos Yi. O de los
promedios de tratamientos .Yi . Los procedimientos para efectuar estas comparaciones se
conocen como métodos de comparación múltiple.
S
Método de la Mínima Diferencia Significativa (LSD, del inglés least significant difference)
upongamos que después de haber rechazado la hipótesis nula, con base en una prueba F
de análisis de variancia, se desea probar Ho: µi = µj para toda i ≠ j. Esto puede hacerse
empleando la estadística t:
S






+
−
=
ji
E
ji
o
n
1
n
1
MS
.Y.Y
t
Suponiendo una hipótesis alterna bilateral, la pareja de medias µi, µj se consideran diferentes
Sí jiEkN,2/αji n/1n/1(MSt.Y.Y +>− −
La cantidad:






+= −
ji
EkNα/2,
n
1
n
1
MStLSD
Se denomina mínima diferencia significativa. Si el diseño es balanceado, entonces n1 = n2 = nk =
n.
Para usar el procedimiento de la LSD, simplemente se comparan las diferencias observadas
entre cada par de promedios con el valor correspondiente de la LSD. Si, se concluye que las
medias poblacionales µi = µj son diferentes.
Ejemplo 4: Para ilustrar este procedimiento, si se usan los datos del Ejemplo 2.3 el valor de la
LSD con α = .05 es:
Página 21 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
3.75
5
2(8.06)
2.086
n
1
n
1
MStLSD
ji
EkNα/2,
=
=





+= −
Por tanto, una pareja de medias difieren significativamente si el valor absoluto de la diferencia
de promedios en los tratamientos correspondientes es mayor que 3.75. Los cinco promedios
de tratamiento son:
10.8.Y21.6.Y
16.6.Y15.4.Y9.8.Y
54
321
==
===
Y las diferencias de los promedios son:
*8.108.106.21.Y.Y
*8.68.106.17.Y.Y
*0.46.216.17.Y.Y
*6.48.104.15.Y.Y
*2.66.214.15.Y.Y
2.26.174.15.Y.Y
0.18.108.9.Y.Y
*8.116.218.9.Y.Y
*8.760.178.9.Y.Y
*6.54.158.9.Y.Y
54
53
43
52
42
32
51
41
31
21
=−=−
=−=−
−=−=−
=−=−
−=−=−
−=−=−
−=−=−
−=−=−
−−=−
−=−=−
Los valores marcados con asterisco indican parejas de medias que son significativamente
diferentes. Resulta útil graficar los datos como se muestra en la Fig. 4, subrayando las parejas
de medias que no difieren en forma significativa. Claramente los únicos pares que no difieren
significativamente son 1 y 5, y 2 y 3. El tratamiento 4 produce una resistencia a la tensión de
manera significativamente mayor que los otros tratamientos.
Página 22 de 25
21.617.615.410.88.9
.Y.Y.Y.Y.Y 43251
Figura 4. Resultados del procedimineto LSD
21.617.615.410.88.9
.Y.Y.Y.Y.Y 43251
Figura 4. Resultados del procedimineto LSD
Fig. 4
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
Comparación de Tratamientos con un Control
En muchos experimentos, uno de los tratamientos es un control, y al analista puede interesarle
su comparación con las k -1 medias de tratamiento con el control. Por tanto, sólo deben
realizarse k -1 comparaciones. Un procedimiento para hacerlas fue desarrollado por Dunnett
(1964). Supongamos que el tratamiento k es el control. Se desean probar las hipótesis:
ki1
ki
μμ:H
μμ:Ho
≠
=
Para i = 1, 2,..., k -1. El procedimiento de Dunnett es una modificación de la prueba t. Para cada
hipótesis se calculan las diferencias que se observan en las medias muéstrales:
1-k1,2,...,iconk.Yi.Y =−
La hipótesis nula Ho: µi = µk es rechazada con un nivel de error tipo I según alfa sí:






+−>−
ki
Eα
n
1
n
1
MSf)1,(kdk.Yi.Y
En donde la constante dα (k -1, f) se encuentra en la Tabla IX del Apéndice del texto de Diseño y
Análisis de Experimentos de Douglas C. Montgomery (son posibles tanto pruebas unilaterales
como bilaterales). Hay que notar que alfa constituye el nivel de significación conjunto asociado a
las k -1 pruebas.
Ejemplo 5: Para ilustrar la prueba de Dunnett, considérense los datos del Ejemplo 3, y su
póngase que el tratamiento 5 es el control. En este ejemplo, k = 5, k -1 = 4, f = 20, ni = n = 5, y
con un nivel del 5% se encuentra en la Tabla IX del Apéndice que d0.05 (4,20) = 2.65. Por tanto, la
diferencia crítica es:
4.76
5
2(8.06)
2.65
n
2MSE
d.05(4,20) ==
Página 23 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
(Hay que notar que esta es una simplificación de la Ecuación anterior y que resulta de un diseño
balanceado.) En consecuencia, un tratamiento debe considerarse significativamente diferente del
control si la diferencia es mayor que 4.76. Las diferencias observadas son:
10.810.821.6.Y.Y5;vs4
6.810.817.6.Y.Y5;vs3
4.610.815.4.Y.Y5;vs2
1.010.89.8.Y.Y5;vs1
54
53
52
51
=−=−
=−=−
=−=−
−=−=−
Sólo las diferencias .Y.Y.;Y.Y 5453 −− indican una diferencia significativa al ser
comparadas con el control; por tanto, se concluye que µ3 = µ5 y µ4 = µ5. Es conveniente usar
más observaciones para el tratamiento de control (es decir, nk) que para los otros tratamientos (o
sea, n, suponiendo el mismo número de observaciones en los otros k -1 tratamientos) cuando se
comparan tratamientos con un control. Debe elegirse la razón nk / n aproximadamente igual a la
raíz cuadrada del número total de tratamientos. En otras palabras, se elige nk/n = k
Suposiciones del análisis de varianza
Al aplicar un análisis de varianza se hacen las siguientes suposiciones siguientes:
1. El proceso esta en control estadístico (estable). Esto es, se pueden repetir y las causas
de variación se han eliminado.
2. La distribución de la población que se muestra es normal.
3. La varianza de los errores dentro de los k niveles del factor es la misma: esto es, la
variabilidad natural dentro de cada tratamiento es la misma de un tratamiento a otro.
Grafica de residuos contra el valor ajustado de ijyˆ
i el modelo es correcto y las suposiciones se satisfacen, los residuos no deben tener algún
patrón, ni deben estar relacionados con alguna variable, incluyendo la respuesta Yij. Una
comprobación sencilla consiste en graficar los residuos contra los valores ajustados ijyˆ (debe
recordarse que para el modelo en un sentido i.-ij yyˆ , el promedio del tratamiento i-ésimo). En
esta grafica no debe revelarse ningún patrón obvio en la siguiente figura se grafican los residuos
S
Página 24 de 25
ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007
contra los valores ajustados de los datos de la resistencia a la tensión del ejemplo 2.3 Ningún
patrón inusual es evidente.
Grafica de residuos contra valores ajustados
Un efecto que en ocasiones revela la grafica es el de una varianza variable. Algunas veces la
varianza de las observaciones lo hace. Esto resulta cuando el error es proporcional a la magnitud
de la observación (comúnmente esto sucede en instrumentos de medición – el error es
proporcional a la escala de la lectura). Si este es el caso, los residuos aumenta a medida que Yij
lo hace, y la grafica de los residuos contra ijY parecerá un embudo que se ensancha o un
altavoz. La varianza variable también ocurre en casos cuyos datos no tienen distribución normal
y están sesgados, porque en las distribuciones sesgadas la varianza tiende a ser función de la
media.
Página 25 de 25

Más contenido relacionado

La actualidad más candente

La actualidad más candente (17)

Diseno Completamente al Azar
Diseno Completamente al AzarDiseno Completamente al Azar
Diseno Completamente al Azar
 
Factoriales
FactorialesFactoriales
Factoriales
 
Uso de Software computacional Disenos Estadistica
Uso de Software computacional Disenos EstadisticaUso de Software computacional Disenos Estadistica
Uso de Software computacional Disenos Estadistica
 
Tema 4 calibraciones y regresión
Tema 4 calibraciones y regresiónTema 4 calibraciones y regresión
Tema 4 calibraciones y regresión
 
Curvas de calibrado
Curvas de calibradoCurvas de calibrado
Curvas de calibrado
 
Estadística y diseños experimentales aplicados a la educación superior
Estadística y diseños experimentales  aplicados a la educación superiorEstadística y diseños experimentales  aplicados a la educación superior
Estadística y diseños experimentales aplicados a la educación superior
 
Experimentos+Factoriales
Experimentos+FactorialesExperimentos+Factoriales
Experimentos+Factoriales
 
Anova2
Anova2Anova2
Anova2
 
Anova1
Anova1Anova1
Anova1
 
uso de software Diseños Estadistica
uso de software Diseños Estadisticauso de software Diseños Estadistica
uso de software Diseños Estadistica
 
Experimentos de 2 factores
Experimentos de 2 factoresExperimentos de 2 factores
Experimentos de 2 factores
 
37174981 disenos-factoriales
37174981 disenos-factoriales37174981 disenos-factoriales
37174981 disenos-factoriales
 
Analisis de varianza unam
Analisis de varianza unamAnalisis de varianza unam
Analisis de varianza unam
 
Cap5
Cap5Cap5
Cap5
 
2001 estadística en qa
2001 estadística en qa2001 estadística en qa
2001 estadística en qa
 
Manual completo de diseño
Manual completo de diseño Manual completo de diseño
Manual completo de diseño
 
Problemas Disenos Factoriales
Problemas Disenos FactorialesProblemas Disenos Factoriales
Problemas Disenos Factoriales
 

Similar a An lisis de_varianza

Analisis de varianzaunsolofactor
Analisis de varianzaunsolofactorAnalisis de varianzaunsolofactor
Analisis de varianzaunsolofactorsvasquezr
 
Pres dca analisis interpretacion
Pres dca analisis interpretacionPres dca analisis interpretacion
Pres dca analisis interpretacionluis sandoval
 
Laminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasLaminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasENIS CABRERA
 
Laminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasLaminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasYolanda Colmenares
 
Laminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasLaminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasENIS CABRERA
 
Diseños factoriales 2016
Diseños factoriales 2016Diseños factoriales 2016
Diseños factoriales 2016Petete Yeyo
 
Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7Carmelo Perez
 
4+an%c3%a1lisis+de+varianza
4+an%c3%a1lisis+de+varianza4+an%c3%a1lisis+de+varianza
4+an%c3%a1lisis+de+varianzapedropulecio
 
Sesión 10 (clase)
Sesión 10 (clase)Sesión 10 (clase)
Sesión 10 (clase)Rob Sorian
 

Similar a An lisis de_varianza (20)

Analisis de varianzaunsolofactor
Analisis de varianzaunsolofactorAnalisis de varianzaunsolofactor
Analisis de varianzaunsolofactor
 
Anova 3
Anova 3Anova 3
Anova 3
 
Web
WebWeb
Web
 
Pres dca analisis interpretacion
Pres dca analisis interpretacionPres dca analisis interpretacion
Pres dca analisis interpretacion
 
Mic sesión 8b
Mic sesión 8bMic sesión 8b
Mic sesión 8b
 
Anova
AnovaAnova
Anova
 
La prueba anova1
La prueba  anova1La prueba  anova1
La prueba anova1
 
Laminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasLaminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicas
 
Laminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasLaminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicas
 
Laminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicasLaminas series bidimensionales y cronologicas
Laminas series bidimensionales y cronologicas
 
Diseños factoriales 2016
Diseños factoriales 2016Diseños factoriales 2016
Diseños factoriales 2016
 
ANOVA DE UNO Y DOS FACTORES.pptx
ANOVA DE UNO Y DOS FACTORES.pptxANOVA DE UNO Y DOS FACTORES.pptx
ANOVA DE UNO Y DOS FACTORES.pptx
 
Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7
 
Diseño experimental ortogonal pdf
Diseño experimental ortogonal pdfDiseño experimental ortogonal pdf
Diseño experimental ortogonal pdf
 
4+an%c3%a1lisis+de+varianza
4+an%c3%a1lisis+de+varianza4+an%c3%a1lisis+de+varianza
4+an%c3%a1lisis+de+varianza
 
tabla Anova
tabla Anovatabla Anova
tabla Anova
 
ANOVA.ppt
ANOVA.pptANOVA.ppt
ANOVA.ppt
 
Grupo 02-DBCA.pptx
Grupo 02-DBCA.pptxGrupo 02-DBCA.pptx
Grupo 02-DBCA.pptx
 
Sesión 10 (clase)
Sesión 10 (clase)Sesión 10 (clase)
Sesión 10 (clase)
 
DISEÑO DE BLOQUES COMPLETO AL AZAR 1
DISEÑO DE BLOQUES COMPLETO AL AZAR 1DISEÑO DE BLOQUES COMPLETO AL AZAR 1
DISEÑO DE BLOQUES COMPLETO AL AZAR 1
 

Más de David Espinoza

Estadonacinyterritorio 120829102402-phpapp02
Estadonacinyterritorio 120829102402-phpapp02Estadonacinyterritorio 120829102402-phpapp02
Estadonacinyterritorio 120829102402-phpapp02David Espinoza
 
Compendio diversidad cultural 2013 i uarm
Compendio diversidad cultural  2013 i uarmCompendio diversidad cultural  2013 i uarm
Compendio diversidad cultural 2013 i uarmDavid Espinoza
 
Mineria formal (conflicto minero)
Mineria formal (conflicto minero)Mineria formal (conflicto minero)
Mineria formal (conflicto minero)David Espinoza
 
La minería ilegal en el perú
La minería ilegal en el perúLa minería ilegal en el perú
La minería ilegal en el perúDavid Espinoza
 
Tecnicas de estudio presentacion
Tecnicas de estudio   presentacionTecnicas de estudio   presentacion
Tecnicas de estudio presentacionDavid Espinoza
 
Aproveche las clases y tome notas
Aproveche las clases y tome notasAproveche las clases y tome notas
Aproveche las clases y tome notasDavid Espinoza
 
Condiciones para el aprendizaje
Condiciones para el aprendizajeCondiciones para el aprendizaje
Condiciones para el aprendizajeDavid Espinoza
 
Autoevaluación 2015 1
Autoevaluación 2015 1Autoevaluación 2015 1
Autoevaluación 2015 1David Espinoza
 
Estrategia enumerativa envio 2 nov
Estrategia enumerativa envio 2 novEstrategia enumerativa envio 2 nov
Estrategia enumerativa envio 2 novDavid Espinoza
 
Fuentes soluciones al problema del pandillaje
Fuentes soluciones al problema del pandillajeFuentes soluciones al problema del pandillaje
Fuentes soluciones al problema del pandillajeDavid Espinoza
 
Fuentes sobre causas del bullying
Fuentes sobre causas del bullyingFuentes sobre causas del bullying
Fuentes sobre causas del bullyingDavid Espinoza
 
Manual de normas_ortograficas_y_gramaticales
Manual de normas_ortograficas_y_gramaticalesManual de normas_ortograficas_y_gramaticales
Manual de normas_ortograficas_y_gramaticalesDavid Espinoza
 
Pã¡rrafos de introducciã³n y cierre
Pã¡rrafos de introducciã³n y cierrePã¡rrafos de introducciã³n y cierre
Pã¡rrafos de introducciã³n y cierreDavid Espinoza
 
Etapas de redacciã³n del trabajo final clase prã¡ctica - abril 2014
Etapas de redacciã³n del trabajo final   clase prã¡ctica -  abril 2014Etapas de redacciã³n del trabajo final   clase prã¡ctica -  abril 2014
Etapas de redacciã³n del trabajo final clase prã¡ctica - abril 2014David Espinoza
 
U3.5. estructuras especã ficas, nexo causal-05-oct
U3.5. estructuras especã ficas, nexo causal-05-octU3.5. estructuras especã ficas, nexo causal-05-oct
U3.5. estructuras especã ficas, nexo causal-05-octDavid Espinoza
 
U3.3. introducciã³n y cierre
U3.3. introducciã³n y cierreU3.3. introducciã³n y cierre
U3.3. introducciã³n y cierreDavid Espinoza
 

Más de David Espinoza (20)

Estadonacinyterritorio 120829102402-phpapp02
Estadonacinyterritorio 120829102402-phpapp02Estadonacinyterritorio 120829102402-phpapp02
Estadonacinyterritorio 120829102402-phpapp02
 
Compendio diversidad cultural 2013 i uarm
Compendio diversidad cultural  2013 i uarmCompendio diversidad cultural  2013 i uarm
Compendio diversidad cultural 2013 i uarm
 
Realidad nacional 4
Realidad nacional 4Realidad nacional 4
Realidad nacional 4
 
Canon y regalias
Canon y regaliasCanon y regalias
Canon y regalias
 
Mineria formal (conflicto minero)
Mineria formal (conflicto minero)Mineria formal (conflicto minero)
Mineria formal (conflicto minero)
 
La minería ilegal en el perú
La minería ilegal en el perúLa minería ilegal en el perú
La minería ilegal en el perú
 
Tecnicas de estudio presentacion
Tecnicas de estudio   presentacionTecnicas de estudio   presentacion
Tecnicas de estudio presentacion
 
Aproveche las clases y tome notas
Aproveche las clases y tome notasAproveche las clases y tome notas
Aproveche las clases y tome notas
 
Condiciones para el aprendizaje
Condiciones para el aprendizajeCondiciones para el aprendizaje
Condiciones para el aprendizaje
 
Autoevaluación 2015 1
Autoevaluación 2015 1Autoevaluación 2015 1
Autoevaluación 2015 1
 
Estrategia enumerativa envio 2 nov
Estrategia enumerativa envio 2 novEstrategia enumerativa envio 2 nov
Estrategia enumerativa envio 2 nov
 
Fuentes soluciones al problema del pandillaje
Fuentes soluciones al problema del pandillajeFuentes soluciones al problema del pandillaje
Fuentes soluciones al problema del pandillaje
 
Fuentes sobre causas del bullying
Fuentes sobre causas del bullyingFuentes sobre causas del bullying
Fuentes sobre causas del bullying
 
Ejercicio esquema
Ejercicio esquemaEjercicio esquema
Ejercicio esquema
 
Manual de normas_ortograficas_y_gramaticales
Manual de normas_ortograficas_y_gramaticalesManual de normas_ortograficas_y_gramaticales
Manual de normas_ortograficas_y_gramaticales
 
Pã¡rrafos de introducciã³n y cierre
Pã¡rrafos de introducciã³n y cierrePã¡rrafos de introducciã³n y cierre
Pã¡rrafos de introducciã³n y cierre
 
Etapas de redacciã³n del trabajo final clase prã¡ctica - abril 2014
Etapas de redacciã³n del trabajo final   clase prã¡ctica -  abril 2014Etapas de redacciã³n del trabajo final   clase prã¡ctica -  abril 2014
Etapas de redacciã³n del trabajo final clase prã¡ctica - abril 2014
 
U3.5. estructuras especã ficas, nexo causal-05-oct
U3.5. estructuras especã ficas, nexo causal-05-octU3.5. estructuras especã ficas, nexo causal-05-oct
U3.5. estructuras especã ficas, nexo causal-05-oct
 
U3.3. introducciã³n y cierre
U3.3. introducciã³n y cierreU3.3. introducciã³n y cierre
U3.3. introducciã³n y cierre
 
Lengua conversacion
Lengua conversacionLengua conversacion
Lengua conversacion
 

An lisis de_varianza

  • 1. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 ANÁLISIS DE VARIANZA ANOVA DE UNA VÍA Elaboró: Dr. Primitivo Reyes Aguilar Septiembre de 2007 Mail: primitivo_reyes@yahoo.com Tel. 58 83 41 67 / Cel. 044 55 52 17 49 12 Página 1 de 25
  • 2. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 CONTENIDO 1. ANOVA 2. Ejercicios 3. Teoría de experimentos de un solo factor Página 2 de 25
  • 3. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 ANALISIS DE VARIANZA DE UN FACTOR (ANOVA 1 VIA) El análisis de la varianza de un factor (ANOVA) es una metodología para analizar la variación entre muestras y la variación al interior de las mismas mediante la determinación de varianzas. Es llamado de una vía porque analiza un variable independiente o Factor ej: Velocidad. Como tal, es un método estadístico útil para comparar dos o más medias poblacionales. El ANOVA de un criterio nos permite poner a prueba hipótesis tales como: kH µµµµ ===== ....3210 .:1 diferentessonlespoblacionamediasdosmenosAlH Los supuestos en que se basa la prueba t de dos muestras que utiliza muestras independientes son: 1. Ambas poblaciones son normales. 2. Las varianzas poblacionales son iguales, esto es, .2 2 2 1 σσ = El estadístico tiene una distribución muestral resultando: 2 2 w b s s Fc = El valor crítico para la prueba F es: ))1(,1( −− nkkFα Donde el número de grados de libertad para el numerador es k-1 y para el denominador es k(n- 1), siendo α el nivel de significancia. k = número de muestras. Por ejemplo: Ejemplo: Se tienen 14 empleados seleccionados al azar que se someten a 3 diferentes cursos de entrenamiento: Programa 1, Programa 2 y Programa 3. Página 3 de 25
  • 4. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Como los empleados se seleccionan aleatoriamente para cada programa el diseño se denomina DISEÑO COMPLETAMENTE ALEATORIZADO Se observa el aprovechamiento de los empleados en los programas: TRATAMIENTOS I c=1 c=2 c=3 J Programa 1 Programa 2 Programa 3 r=1 85 80 82 r=2 72 84 80 r=3 83 81 85 r=4 80 78 90 r=5 ** 82 88 Medias 80.00 81.00 85.00 Xj Media de medias o media total 82.14 TIPOS DE VARIACIÓN Y SUMAS DE CUADRADOS 1. Variación total entre los 14 empleados, su puntuación no fue igual con todos VARIACIÓN TOTAL RESPECTO A LA MEDIA GENERAL SCT = (85-82.14)2 + (72-82.14)2+(83-82.14)2+.....+(88-82.14)2 SCT = 251.7 2. Variación entre los diferentes tratamientos o Variación entre muestras o variación entre programa 1, programa 2 y programa 3 EFECTO DE LA MEDIA DE CADA TRATAMIENTO RESPECTO A LA MEDIA GENERAL Página 4 de 25 2 11 )(∑∑ == −= c j r i XXijSCT 2 1 )( XXrSCTR j r j j −= ∑=
  • 5. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 SCTR = 4(79.5 - 81.3333)2 + 5(81 - 81.3333)2 + 5(85 - 81.333)2 SCTR = 65.71 3. Variación dentro de un tratamiento o muestra o programa dado que no todos los empleados dentro de un mismo programa obtuvieron los mismos puntajes. Se denomina Variación dentro de los tratamientos. VARIACIÓN DENTRO DEL TRATAMIENTO O VARIACIÓN DEL ERROR CADA VALOR RESPECTO A LA MEDIA DE SU TRATAMIENTO SCE = SCT - SCTR = 186 4. GRADOS DE LIBERTAD Grados de libertad totales = n - 1 = 14-1 = 13 Grados de libertad de los tratamientos = c - 1 = 3 - 1 = 2 Grados de libertad del error = gl. Totales - gl. Tratamientos = 13 - 2 = 11 gl SCT = gl SCTR + gl SCE gl SCE = gl SCT - gl SCTR = (n -1) - (c - 1) = n -c 5. CUADRADOS MEDIOS (Suma Cuadrados/ Grados libertad) CMT = Cuadrado medio total = SCT / (n-1) = 19.4 CMTR = Cuadrado medio del tratamiento = SCTR / (c -1) = 32.9 CME = Cuadrado medio del error = SCE/ gle.= 16.9 6. ESTADÍSTICO DE PRUEBA Fc Y ESTADÍSTICO F CRÍTICO DE ALFA Fc = CMTR / CME= 1.946745562 Página 5 de 25 2 11 )( j c j ij r i XXSCE −= ∑∑ == cncadordenoglnumeradorglalfa FF −−= ,1,min.,., α
  • 6. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Cálculo de F con Excel =DISTR.F.INV(ALFA, GL. TR, GL. ERR) =DISTR.F.INV(0.05, 2, 11) = 3.982297957 NO RECHAZAR ZONA DE RECHAZO Distr. F Como Fc es menor a Falfa no se rechaza Ho y las medias son iguales. 7. VALOR P DE Fc P = distr.f(Fc, gl. SCTr, gl. SCE) = distr.f(1.946, 2, 11) = 0.18898099 Como P es mayor a alfa no se rechaza Ho CONCLUSION: NO HAY SUFICIENTE EVIDENCIA PARA RECHAZAR HO, LAS MEDIAS DE LOS TRATAMIENTOS SON IGUALES Página 6 de 25
  • 7. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 TABLA DE ANOVA FUENTE DE VARIACIÓN SUMA DE GRADOS DE CUADRADO CUADRADOS LIBERTAD MEDIO VALOR F Entre muestras (tratam.) SCTR c-1 CMTR CMTR/CME Dentro de muestras (err.) SCE n-c CME Variación total SCT n-1 CMT Regla: No rechazar si la F de la muestra es menor que la F de Excel para una cierta alfa USO DE EXCEL:  En el menú herramientas seleccione la opción Análisis de datos, en funciones para análisis seleccione Análisis de varianza de un factor.  En Rango de entrada seleccionar la matriz de datos (todas las columnas a la vez).  Alfa = 0.05  En Rango de salida indicar la celda donde se iniciará la presentación de resultados. RESUMEN Análisis de varianza de un factor Grupos Cuenta Suma Promedio Varianza Programa 1 4 320 80 32.666667 Programa 2 5 405 81 5 Programa 3 5 425 85 17 ANÁLISIS DE VARIANZA Grados de Promedio de Variaciones Suma cuadrados libertad Cuadrados Fc Probabilida d F crítica Entre grupos 65.71428571 2 32.85714286 1.9431644 0.18937731 3.98229796 Dentro de grupos 186 11 16.90909091 Total 251.7142857 13 USO DE MINITAB  Stat > ANOVA > One Way (Unstacked)  en Responses in separate columns Indicar las columnas de datos  En Confidence Level 95% Página 7 de 25
  • 8. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007  Seleccionar Comparisons Tukey 5%  OK One-way ANOVA: Programa 1, Programa 2, Programa 3 Source DF SS MS F P Factor 2 65.7 32.9 1.94 0.189 Error 11 186.0 16.9 Total 13 251.7 S = 4.112 R-Sq = 26.11% R-Sq(adj) = 12.67% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev ----+---------+---------+---------+----- Programa 1 4 80.000 5.715 (------------*------------) Programa 2 5 81.000 2.236 (----------*-----------) Programa 3 5 85.000 4.123 (-----------*----------) ----+---------+---------+---------+----- 77.0 80.5 84.0 87.5 Pooled StDev = 4.112 NOTA: Si los Intervalos de confianza se traslapan, las medias son iguales estadísticamente Tukey 95% Simultaneous Confidence Intervals All Pairwise Comparisons Individual confidence level = 97.94% Programa 1 subtracted from: Lower Center Upper --------+---------+---------+---------+- Programa 2 -6.451 1.000 8.451 (------------*-----------) Programa 3 -2.451 5.000 12.451 (-----------*------------) --------+---------+---------+---------+- -6.0 0.0 6.0 12.0 Programa 2 subtracted from: Lower Center Upper --------+---------+---------+---------+- Programa 3 -3.025 4.000 11.025 (-----------*----------) --------+---------+---------+---------+- -6.0 0.0 6.0 12.0 NOTA: Si el cero se encuentra en el intervalo de confianza de la diferencia entre medias, este par de medias no son diferentes. Página 8 de 25
  • 9. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 2. EJERCICIOS: 1. Cuatro catalizadores que pueden afectar la concentración de un componente en una mezcla líquida de tres componentes están siendo investigado. Se obtienen las siguientes concentraciones: Catalizador A B C D 58.2 56.3 50.1 52.9 57.2 54.5 54.2 49.9 58.4 57 55.4 50 55.8 55.3 51.7 54.9 2. Para determinar si existe diferencia significativa en el nivel de Matemáticas de 4 grupos de estudiantes de Ingeniería se realizó un examen aleatorio a 6 individuos por grupo. Determine cuales son los grupos en los cuales existen diferencias a un 95% de nivel de confianza. A B C D 75 78 55 64 93 91 66 72 78 97 49 68 71 82 64 77 63 85 70 56 76 77 68 95 3. Las calificaciones en el examen a 18 empleados de tres unidades de negocio Se muestran a continuación: Probar si no hay diferencia entre las unidades a un 5% de nivel de significancia. A B C 85 71 59 75 75 64 82 73 62 76 74 69 71 69 75 85 82 67 4. Probar si hay diferencia en los tiempos de servicio de 4 unidades de negocio para el mismo servicio a un nivel de significancia del 5%. Página 9 de 25
  • 10. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 A B C D 5.4 8.7 11.1 9.9 7.8 7.4 10.3 12.8 5.3 9.4 9.7 12.1 7.4 10.1 10.3 10.8 8.4 9.2 9.2 11.3 7.3 9.8 8.8 11.5 Página 10 de 25
  • 11. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 3. TEORÍA DE EXPERIMENTOS DE UN SOLO FACTOR n esta parte se analiza el caso en que se desea conocer el efecto de un solo factor o variable independiente sobre la característica de calidad que sé esta analizando. Esto implica que a fin de poder detectar su efecto, este factor se debe de variar manteniendo el resto de los factores en un valor fijo. E Experimentos sin restricciones en la aleatoriedad. uando se desea analizar el efecto de un factor sobre una variable dependiente o característica de calidad es necesario el variar el "nivel” valor de ese factor. A cada diferente nivel al cual se realiza el experimento se le conoce como tratamiento. Por ejemplo si el factor es el proveedor los diferentes niveles o serian proveedor A, proveedor B, proveedor C, etc. , si el factor es el tipo de proceso los tratamientos serian proceso 1, proceso 2. Si el factor es temperatura los diferentes niveles serian por ejemplo 10, 20, 30 y 40 °C,etc. C Por otro lado en cada nivel del factor se efectúan una serie de pruebas, a cada una de estas pruebas se les conoce como replicaciones. EL factor se considera fijo. Ejemplo 1: Suponga que se desea saber si los ejes que surten cuatro proveedores tienen diferente resistencia a la tracción. Para ello se decide llevar a cabo un experimento de un solo factor donde la variable dependiente es la resistencia a la tracción del eje medida en Kgs/cm2 y el factor es el proveedor. El factor tiene cuatro niveles o tratamientos diferentes. Uno para cada proveedor (llámelos I, II, III, IV) se decide probar 5 ejes de cada proveedor haciendo un total de 20 pruebas ejecutadas en la misma maquina de prueba y con él mismo operario (recuerde que el resto de los factores se deben de mantener a un nivel fijo). Para que el experimento sea aleatorio se numeran los ejes del 1 al 20 y se selecciona al azar un número entre 1 y 20. Según él numero seleccionado es el siguiente eje que se prueba. De esta manera, el siguiente eje a probar es seleccionado sin ninguna restricción. Suponga. que los resultados de experimento se muestran en la tabla siguiente: Página 11 de 25
  • 12. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Proveedor I II III IV 5 6 6 4 4 5 42 5 5 6 1 4 6 39 6 2 5 0 4 5 45 5 9 5 5 3 9 43 6 0 5 6 4 3 41 El proveedor = factor Tratamiento = I, II, III, IV Con cinco replicaciones en cada tratamiento. Observando la tabla se "ve" que existen evidentemente diferencias entre la resistencia de los ejes de un proveedor a otro. Pero también existen entre los ejes de un mismo proveedor, entonces, ¿la diferencia detectada entre, los ejes de un proveedor y otro existe realmente? O ¿la diferencia es debida al azar?, La herramienta estadística conocida como análisis de varianza (ANOVA) puede ayudar a despejar esta duda. Para esto suponga un caso general como sigue: Si define Yij como el valor correspondiente de la variable dependiente o característica de calidad de la i-ésima observación o replicación bajo el tratamiento j, los resultados de un experimento de un solo factor con k tratamientos y n replicas u observaciones por tratamiento seria: Tratamiento (nivel) Observaciones Totales Promedios 1 Y11 Y12 ... Y1n Y1. ..Y 2 Y21 Y22 ... Y2n Y2. .Y2 3 Y31 Y32 ... Y3n Y3. .Y3 ... ... ... ... ... ... ... K Yk1 Yk2 ... Ykn Yk. .Yk Página 12 de 25
  • 13. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Este caso se puede representar mediante el modelo estadístico lineal: ijjij ετμY ++= Donde µ representa la media general, τj representa el efecto del tratamiento j, y εij es el error aleatorio al hacer la observación ij. Esto es, se supone que todos los datos en general pertenecen a una misma población con media µ excepto que existan desviaciones para diferentes tratamientos del mismo factor. Por su parte εij representa el error aleatorio o medida de la variabilidad natural dentro de cada tratamiento. Generalmente se supone que: ;0τ n 1j j∑= = Y que el error aleatorio sigue una distribución normal con media cero y varianza σ2 , esto denota: )σ,0(Nijε 2 ≈ Sean Yi. El total de las observaciones bajo el i-esimo tratamiento, y .iY el promedio de las observaciones bajo el i-esimo tratamiento. Similarmente sean Y.. La suma de todas las observaciones y ..Y la media general de todas las observaciones. Expresado matemáticamente esto es: Y../n..Y YY.. n1,2,...,icon./nY.Y Y.Y n 1i k 1j ij ii n 1i iji = = == = ∑∑ ∑ = = = N = kn es él numero total de observaciones Las hipótesis en este caso son: Página 13 de 25
  • 14. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Ho: τj = 0; para todo valor de j. H1: τj ≠ 0; para al menos un valor de j. Ho significa que el factor (los niveles bajo estudio) no tiene efecto sobre la variable dependiente y H1 que si lo tiene, esto es que existe diferencia, estadística. Recuerde también que la hipótesis nula se asume como cierta a menos que los datos indiquen lo contrario. Descomposición de la suma total de cuadrados a denominación de análisis de varianza resulta de descomponer la variabilidad total de los datos en sus partes componentes. La suma total de cuadrados corregida es:L ( ) ( ) ET k 1j n 1i 2k 1j 2k 1j n 1i 2 SSSStrSS .iYYij..Yi.Yn..YYij +=      −+−=− ∑∑∑∑∑ = === = Donde: La ecuación anterior muestra la variabilidad total de los datos, medida por la suma total corregida de los cuadrados. SStr se denomina suma de cuadrados debida a los tratamientos (es decir, entre tratamientos), SSE es la suma de cuadrados debido al error (es decir, dentro de los tratamientos) SST = Suma de cuadrados total: con N -1 grados de libertad SStr = Suma de cuadrados debido a los tratamientos, con k - 1 grados de libertad. SSE = Suma de cuadrados debido al error aleatorio k grados de libertad. Para simplificar los cálculos: SStrSSSS N Y.. n Yi. SStr )Y.. n Y.. (YSS TE k 1j 22 2 2k 1j n 1i 2 ijT −=       −= −= ∑ ∑∑ = = = El análisis de varianza será: Página 14 de 25
  • 15. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Fuente De error SS G.L. MS F0 Variación entre tratamientos SStr k – 1 MStr MStr/MSE Variación dentro de Tratamientos o error SS E N – k MSE Total SST N – 1 Si F0 > Fα,k-1,N-k, H0 debe ser rechazada. Donde Fα, k-1,N-k es el valor de la variable F con un nivel de significancia (error tipo I), k-1 grados de libertad en el numerador y N-k grados de libertad en el denominador. Bajo la hipótesis nula la relación MStr/MSE sigue una función de densidad F, por lo tanto si F0 es mayor que Fα, k-1,N-k existirá una diferencia significativa y el factor afecta la respuesta de la característica de calidad en los niveles bajo estudio. Si Ho no puede ser rechazada la conclusión es por lo tanto que el factor bajo estudio no afecta la respuesta. Sin embargo, si Ho es rechazada y existe diferencia significativa entre los diferentes tratamientos de un solo factor el siguiente paso es el analizar en detalle cual de los tratamientos es el mejor y cuales son iguales. Aplicando el ANOVA a los datos del ejemplo 2.2 se tiene: ∑∑= = =+++= 4 1j 5 1i 2222 5194041...5556Yij Entonces, calculando las sumas de cuadrados tenemos que: Página 15 de 25 Totales Promedios Yi I 56 55 62 59 60 292 58.4 II 64 61 50 55 56 286 57.2 III 45 46 45 39 43 218 43.6 IV 42 39 45 43 41 210 42 Y..= 1006 40.24 ..Y .iY
  • 16. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 SST = 51,940 – (10062 )/20 = 1338.2 SStr = 2922 /5 + 2862 /5 + 2182 /5 + 2102 /5 –10062 /20 = 1,135.0 SSE = SST – SStr = 1338.2 – 1135.0 = 203.2 MStr = SStr/(k-1) = 1135.0/(3 - 1) = 378.2 MSE = SSE/(n-k) = 203.2/(20-4) = 12.70 Esto se resume en la siguiente tabla: Fuente De error SS G.L. MS F0 Factor o tratamientos SStr=1135 k – 1 = 3 MStr =378.3 MStr/MSE = 29.79 Error SSE=203.2 N – k = 16 MSE=12.7 Total SST=1338.2 N – 1 = 19 Donde F0= MStr/MSE = 378.3/12.70=29.79 con 3 grados de libertad en el numerador y 16 grados de libertad en el denominador. Si el nivel de aceptación (error tipo I) lo fijamos en 5%, esto es, α = 0.05, de la tabla de la función F se tiene que: Fα,3,16 = 3.24 Dado que F0 = 29.79 > 3.24= F0.05,3,16 Se concluye que Ho se rechaza y el factor proveedor afecta la variable resistencia a la tracción. Experimentos con un solo factor y diferente número de lecturas por tratamiento (o caso desbalanceado) Página 16 de 25
  • 17. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 uando por alguna razón él numero de lecturas que se tienen bajo cada tratamiento es diferente, digamos Zi observaciones en el tratamiento j, el análisis se puede llevar a cabo de una manera similar con las siguientes formulas para k tratamientos: C libertaddegradosk-NconSStr;-SSTSS libertaddegrados1-kcon;SS libertaddegrados1-Ncon; N Y..YSS E k 1j tr k 1j n 1i 2 - 2 ijT = −= = ∑ ∑∑ = = = N Y n Y i i 22 ... Es, sin embargo, deseable que él numero de muestras sea igual bajo cada tratamiento, puesto que el poder de la prueba se maximiza cuando él numero de muestras es igual. Ejemplo 2: El tiempo de respuesta en milisegundos fue determinado para tres tipos diferentes de circuitos y los resultados son: Con un nivel de significación de α = 0.05. ¿Tiene los circuitos diferente tiempo de respuesta? k = 3; n1 = 6; n2 = 3; n3 = 4; N = 6 + 3 + 4 = 13 Página 17 de 25 Totales Promedios tr Yi I 9 12 10 8 15 13 67 11.17 II 20 23 30 73 24.33 III 6 5 8 16 35 8.75 Y.. 175 14.75 Observaciones .Yi ..Y=
  • 18. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 162.29474.98-637.24SS-SSSS 474.98 13 175 4 35 3 73 6 67 /N)Y../n.(YSS 637.242355.762993 13 175 168...129 /N)Y..(YijSS trTE 2222 k 1j 2 i 2 itr 2 2222 k 1j n 1i 22 T === =−++ =−= =− =−++++ =−= ∑ ∑∑ = = = La tabla ANOVA es: Fuente De error SS G.L. MS F0 Factor o tratamientos SStr=474.98 k – 1 = 2 MStr =237.49 MStr/MSE = 14.64 Error SSE=162.29 N – k = 10 MSE=16.22 Total SST=637.24 N – 1 = 12 Dado que F.05,2,10 = 4.10, se concluye que los circuitos muestran diferentes tiempos de respuesta. Estimación de parámetros del modelo continuación, se desarrollan estimadores para los parámetros del modelo de clasificación en un sentido:A ijiij ετμY ++= Usando el método de los mínimos cuadrados, las soluciones de las ecuaciones normales son: k1,2,3,...,icon ..Y.Yτˆ ..Yμˆ ii = −= = Página 18 de 25
  • 19. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Y es posible determinar fácilmente un intervalo de confianza para estimar la media del i-ésimo tratamiento. Dicha i-ésimo media es: µi = µ + τi Un estimador puntual para µi podría ser .Yτˆμˆμˆ iii =+= ahora si se supone que los errores están distribuidos normalmente, las .Yi son NID(0,σ2 /n), entonces podría usarse la distribución normal para definir el intervalo de confianza buscado si se conoce σ. Al usar MSE como estimación de, σ2 , el intervalo de confianza se debe basar en la distribución t., por tanto, un intervalo de confianza de (1-α)100% para la media del i-ésimo tratamiento, µ es:       ± − n MS t.Y E kN,2/αi un intervalo de confianza del (1-α)100% para la diferencia de las medias de dos tratamientos cualesquiera, por ejemplo µi-µj, será: . n MS2 t.Y.Y E kN,2/αji       ±− − Ejemplo 3: Al usar los datos del ejemplo 2.3, las estimaciones de la media general y de los efectos de los tratamientos son y;04.1525376μˆ == 24.404.1580.10..Y.Yτˆ 56.604.1560.21..Y.Yτˆ 56.204.1560.17..Y.Yτˆ 36.004.1540.15..Y.Yτˆ 24.504.1580.9..Y.Yτˆ 55 44 33 22 11 −=−=−= +=−=−= −=−=−= +=−=−= −=−=−= usando la formula para calcular el intervalo de confianza del 95% para la media del tratamiento 4 es: Página 19 de 25
  • 20. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 ( ) [ ]65.260.21 ., 5 06.8 086.260.21. ,2/ ± ±=      ± − bieno n MS tY E kNi α por tanto, el intervalo deseado es 18.95 ≤ µ ≤ 24.25 Estimación de la variable de respuesta a descomposición de la variabilidad en las observaciones por medio del análisis de variancia, es una relación puramente algebraica.L ijiij ετμY ++= El residuo de la observación i del tratamiento j se define mediante: ijijij YˆYe −= en donde ijYˆ es una estimación de la observación Yij correspondiente calculada por: .YYˆ ..)Y.Y(..YYˆ τˆμˆYˆ iij iij iiij = −+= += La ecuación anterior muestra un resultado que se intuye fácilmente, ya que la estimación de cualquier observación del i-ésimo tratamiento es igual al promedio del tratamiento correspondiente. El examen de los residuos debe ser automático en el análisis de variancia. Si el modelo es adecuado, los residuos no deben tener estructura. Comparación de medias de tratamientos individuales Página 20 de 25
  • 21. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 upongamos que al efectuar un análisis de variancia para un modelo de efectos fijos la: hipótesis nula es rechazada. Se concluye que existe diferencia entre las medias, aunque no se especifique exactamente cual de ellas es diferente. En esta situación puede ser útil realizar comparaciones adicionales entre grupos de medias de los tratamientos. La media del i-ésimo tratamiento se define mediante µi = µ + τi y su estimación es .Yi . Las comparaciones entre medias de tratamientos se realizan en términos de los totales de tratamientos Yi. O de los promedios de tratamientos .Yi . Los procedimientos para efectuar estas comparaciones se conocen como métodos de comparación múltiple. S Método de la Mínima Diferencia Significativa (LSD, del inglés least significant difference) upongamos que después de haber rechazado la hipótesis nula, con base en una prueba F de análisis de variancia, se desea probar Ho: µi = µj para toda i ≠ j. Esto puede hacerse empleando la estadística t: S       + − = ji E ji o n 1 n 1 MS .Y.Y t Suponiendo una hipótesis alterna bilateral, la pareja de medias µi, µj se consideran diferentes Sí jiEkN,2/αji n/1n/1(MSt.Y.Y +>− − La cantidad:       += − ji EkNα/2, n 1 n 1 MStLSD Se denomina mínima diferencia significativa. Si el diseño es balanceado, entonces n1 = n2 = nk = n. Para usar el procedimiento de la LSD, simplemente se comparan las diferencias observadas entre cada par de promedios con el valor correspondiente de la LSD. Si, se concluye que las medias poblacionales µi = µj son diferentes. Ejemplo 4: Para ilustrar este procedimiento, si se usan los datos del Ejemplo 2.3 el valor de la LSD con α = .05 es: Página 21 de 25
  • 22. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 3.75 5 2(8.06) 2.086 n 1 n 1 MStLSD ji EkNα/2, = =      += − Por tanto, una pareja de medias difieren significativamente si el valor absoluto de la diferencia de promedios en los tratamientos correspondientes es mayor que 3.75. Los cinco promedios de tratamiento son: 10.8.Y21.6.Y 16.6.Y15.4.Y9.8.Y 54 321 == === Y las diferencias de los promedios son: *8.108.106.21.Y.Y *8.68.106.17.Y.Y *0.46.216.17.Y.Y *6.48.104.15.Y.Y *2.66.214.15.Y.Y 2.26.174.15.Y.Y 0.18.108.9.Y.Y *8.116.218.9.Y.Y *8.760.178.9.Y.Y *6.54.158.9.Y.Y 54 53 43 52 42 32 51 41 31 21 =−=− =−=− −=−=− =−=− −=−=− −=−=− −=−=− −=−=− −−=− −=−=− Los valores marcados con asterisco indican parejas de medias que son significativamente diferentes. Resulta útil graficar los datos como se muestra en la Fig. 4, subrayando las parejas de medias que no difieren en forma significativa. Claramente los únicos pares que no difieren significativamente son 1 y 5, y 2 y 3. El tratamiento 4 produce una resistencia a la tensión de manera significativamente mayor que los otros tratamientos. Página 22 de 25 21.617.615.410.88.9 .Y.Y.Y.Y.Y 43251 Figura 4. Resultados del procedimineto LSD 21.617.615.410.88.9 .Y.Y.Y.Y.Y 43251 Figura 4. Resultados del procedimineto LSD Fig. 4
  • 23. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 Comparación de Tratamientos con un Control En muchos experimentos, uno de los tratamientos es un control, y al analista puede interesarle su comparación con las k -1 medias de tratamiento con el control. Por tanto, sólo deben realizarse k -1 comparaciones. Un procedimiento para hacerlas fue desarrollado por Dunnett (1964). Supongamos que el tratamiento k es el control. Se desean probar las hipótesis: ki1 ki μμ:H μμ:Ho ≠ = Para i = 1, 2,..., k -1. El procedimiento de Dunnett es una modificación de la prueba t. Para cada hipótesis se calculan las diferencias que se observan en las medias muéstrales: 1-k1,2,...,iconk.Yi.Y =− La hipótesis nula Ho: µi = µk es rechazada con un nivel de error tipo I según alfa sí:       +−>− ki Eα n 1 n 1 MSf)1,(kdk.Yi.Y En donde la constante dα (k -1, f) se encuentra en la Tabla IX del Apéndice del texto de Diseño y Análisis de Experimentos de Douglas C. Montgomery (son posibles tanto pruebas unilaterales como bilaterales). Hay que notar que alfa constituye el nivel de significación conjunto asociado a las k -1 pruebas. Ejemplo 5: Para ilustrar la prueba de Dunnett, considérense los datos del Ejemplo 3, y su póngase que el tratamiento 5 es el control. En este ejemplo, k = 5, k -1 = 4, f = 20, ni = n = 5, y con un nivel del 5% se encuentra en la Tabla IX del Apéndice que d0.05 (4,20) = 2.65. Por tanto, la diferencia crítica es: 4.76 5 2(8.06) 2.65 n 2MSE d.05(4,20) == Página 23 de 25
  • 24. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 (Hay que notar que esta es una simplificación de la Ecuación anterior y que resulta de un diseño balanceado.) En consecuencia, un tratamiento debe considerarse significativamente diferente del control si la diferencia es mayor que 4.76. Las diferencias observadas son: 10.810.821.6.Y.Y5;vs4 6.810.817.6.Y.Y5;vs3 4.610.815.4.Y.Y5;vs2 1.010.89.8.Y.Y5;vs1 54 53 52 51 =−=− =−=− =−=− −=−=− Sólo las diferencias .Y.Y.;Y.Y 5453 −− indican una diferencia significativa al ser comparadas con el control; por tanto, se concluye que µ3 = µ5 y µ4 = µ5. Es conveniente usar más observaciones para el tratamiento de control (es decir, nk) que para los otros tratamientos (o sea, n, suponiendo el mismo número de observaciones en los otros k -1 tratamientos) cuando se comparan tratamientos con un control. Debe elegirse la razón nk / n aproximadamente igual a la raíz cuadrada del número total de tratamientos. En otras palabras, se elige nk/n = k Suposiciones del análisis de varianza Al aplicar un análisis de varianza se hacen las siguientes suposiciones siguientes: 1. El proceso esta en control estadístico (estable). Esto es, se pueden repetir y las causas de variación se han eliminado. 2. La distribución de la población que se muestra es normal. 3. La varianza de los errores dentro de los k niveles del factor es la misma: esto es, la variabilidad natural dentro de cada tratamiento es la misma de un tratamiento a otro. Grafica de residuos contra el valor ajustado de ijyˆ i el modelo es correcto y las suposiciones se satisfacen, los residuos no deben tener algún patrón, ni deben estar relacionados con alguna variable, incluyendo la respuesta Yij. Una comprobación sencilla consiste en graficar los residuos contra los valores ajustados ijyˆ (debe recordarse que para el modelo en un sentido i.-ij yyˆ , el promedio del tratamiento i-ésimo). En esta grafica no debe revelarse ningún patrón obvio en la siguiente figura se grafican los residuos S Página 24 de 25
  • 25. ANÁLISIS DE VARIANZA – ANOVA DE UNA VÍA P. Reyes / Sept. 2007 contra los valores ajustados de los datos de la resistencia a la tensión del ejemplo 2.3 Ningún patrón inusual es evidente. Grafica de residuos contra valores ajustados Un efecto que en ocasiones revela la grafica es el de una varianza variable. Algunas veces la varianza de las observaciones lo hace. Esto resulta cuando el error es proporcional a la magnitud de la observación (comúnmente esto sucede en instrumentos de medición – el error es proporcional a la escala de la lectura). Si este es el caso, los residuos aumenta a medida que Yij lo hace, y la grafica de los residuos contra ijY parecerá un embudo que se ensancha o un altavoz. La varianza variable también ocurre en casos cuyos datos no tienen distribución normal y están sesgados, porque en las distribuciones sesgadas la varianza tiende a ser función de la media. Página 25 de 25