SlideShare una empresa de Scribd logo
1 de 75
Descargar para leer sin conexión
MEMORIA DE
CALCULO ESTRUCTURAL
PROYECTO: “NUEVA PLANTA DE ENVASADO DE
GLP DE TRUJILLO"
DEPARTAMENTO: LA LIBERTAD
PROVINCIA: TRUJILLO
DISTRITO: TRUJILLO
PROPIETARIO: “REPSOL YPF COMERCIAL DEL PERU S.A. ”
CONSULTOR: INSPECTRA S.A.
Ing. .........................
C.I.P. ..................
ABRIL – 2012
Abril 2012 pág. 2 pág. 2
CONTENIDO
pág.
I. GENERALIDADES 3
1.1 NORMAS EMPLEADAS
1.2 ESPECIFICACIONES – MATERIALES EMPLEADOS
1.3 CARACTERISTICAS DEL TERRENO Y CONSIDERACIONES DE CIMENTACION
II. IDENTIFICACION
1.00 REFERENCIAS
1.1 ARQUITECTURA Y CONFIGURACION GEOMETRICA 4
1.2 ESTRUCTURACION 6
2.00 ESTADOS DE CARGAS Y COMBINACIONES DE CARGAS
2.1 ESTADOS DE CARGAS 10
2.2 COMBINACIONES DE CARGAS 11
2.3 ALTERNANCIAS DE CARGAS - DIAFRAGMAS (PLANTAS Y 3D) 12
3.00 ANALISIS SISMICOS
3.1 FACTORES PARA EL ANALISIS 17
3.1.1 FUERZAS SISMICAS VERTICALES
3.2 ANALISIS DINAMICO 17
3.2.1 ESPECTRO DE PSEUDO ACELERACIONES
3.2.2 PERIODOS Y MASA PARTICIPANTE
3.3 ANALISIS ESTATICO 24
3.3.1 PESO DE LA ESTRUCTURA (P)
3.3.2 FACTOR DE AMPLIFICACIÓN SÍSMICA (C) y PERIODO FUNDAMENTAL (T)
3.3.3 FUERZA CORTANTE EN LA BASE (V)
3.3.4 DISTRIBUCIÓN DE FUERZA CORTANTE EN ELEVACIÓN
3.4 FUERZA CORTANTE PARA EL DISEÑO DE COMPONENTES ESTRUCTURALES 29
III. FORMULACION Y EVALUACION
4.00 CONTROL DE DESPLAZAMIENTOS LATERALES 33
4.1 DESPLAZAMIENTOS DECENTROS DEMASA DE DIAFRAGMAS (PORNIVELES)
4.2 DESPLAZAMIENTOS MAXIMOS DEEXTREMOSDEDIAFRAGMAS(PORNIVELES)
5.00 DISEÑO DE COMPONENTES DE C° A°
5.1 DISEÑO DE VIGAS Y COLUMNAS 46
5.2 DISEÑO DE LOSAS ALIGERADAS 61
5.3 DISEÑO DE CIMENTACION
5.3.1 PARAMETROS DE DIMENCIONAMIENTO DE CIMENTACION 62
ESTADO DE CARGA MUERTA
ESTADOS DE CARGA VIVA
ESTADOS DE CARGA DE SISMO
5.3.2 VERIFICACION DE ESFUERZOS Y ASENTAMIENTOS EN EL TERRENO 70
5.3.3 VERIFICACION DE DISEÑO DE REFUERZO DE ZAPATAS 71
Abril 2012 pág. 3 pág. 3
I.
I.
I.
I. GENERALIDADES
GENERALIDADES
GENERALIDADES
GENERALIDADES.
.
.
.-
-
-
-
La presente Memoria corresponde al análisis sísmico y calculo estructural del proyecto “NUEVA PLANTA DE ENVASADO
DE GLP DE TRUJILLO”, de Propietario “REPSOL YPF COMERCIAL DEL PERU S.A.”; Edificación de 2 niveles + azotea
(proyectada a 3 niveles) con ubicación en ......................................, distrito y provincia de Trujillo, departamento de La
Libertad.
1.1NORMAS EMPLEADAS
Se sigue las disposiciones de los Reglamentos y Normas Nacionales e Internacionales descritos a continuación.
-Reglamento Nacional de Edificaciones (Perú) – Normas Técnicas de Edificación (N.T.E.):
-NTE E.020 “CARGAS” -NTE E.060 “CONCRETO ARMADO”
-NTE E.030 “DISEÑO SISMORRESISTENTE” -NTE E.070 “ALBAÑILERIA”
-NTE E.050 “SUELOS Y CIMENTACIONES”
- A.C.I. 318 – 2008 (American Concrete Institute) - Building Code Requirements for Structural Concrete
- UBC 1997 Uniform Building Code
Se entiende que todos los Reglamentos y Normas están en vigencia y/o son de la última edición.
1.2ESPECIFICACIONES – MATERIALES EMPLEADOS
CONCRETO:
-Resistencia (f´c): 175 Kg/cm2 (zapatas, cimientos armados)
280 Kg/cm2 (columnas, placas, vigas y losas)
-Módulo de Elasticidad (E) : 217,000 Kg/cm2 (f´c = 210 Kg/cm2)
-Módulo de Poisson (u) : 0.20
-Peso Específico (γC): 2300 Kg/m3 (concreto simple); 2400 Kg/m3 (concreto armado)
ACERO CORRUGADO (ASTM A605):
-Resistencia a la fluencia (fy) : 4,200 Kg/cm2 (Gº 60): “E”: 2’100,000 Kg/cm2
LADRILLOS DE ARCILLA (Techos Aligerados): “γ”: 90 Kg/m2 (unidades de .30x.30x.15m)
RECUBRIMIENTOS MÍNIMOS (R):
-Cimientos, zapatas, vigas de cimentación 7.50 cm
-Columnas, Vigas, Placas, Muros (Cisternas, Tanques) 4.00 cm
-Losas Aligeradas, Vigas chatas, Vigas de borde 3.00cm
-Losas macizas, Escaleras 2.50 cm
1.3CARACTERISTICAS DEL TERRENO Y CONSIDERACIONES DE CIMENTACION
Según especificaciones del Estudio de Mecánica de Suelos con fines de Cimentación Ing.
......................................................, de fecha ..............................:
-Peso Específico (γS): 2000 Kg/m3 -Nivel freático: No encontrado
CIMIENTO SUPERFICIAL CUADRADO (para ancho B= 2.00 m)
-Capacidad portante (σ´T) : 1.35 Kg/cm2 -Desplante de cimiento (DF): 1.20 m
CIMIENTO SUPERFICIAL CORRIDO (para ancho B= 1.00 m)
-Capacidad portante (σ´T) : 1.35 Kg/cm2 -Desplante de cimiento (DF): 1.20 m
La cimentación considerada está conformada básicamente por zapatas conectadas y por cimientos corridos. En caso de no
encontrar terreno firme se colocaran sub-zapatas, con la finalidad de llegar a este.
Abril 2012 pág. 4 pág. 4
Diafragma - Techo 1º Nivel
P1
C-A1
P1
1Ø1/2"
1Ø1/2" 1Ø1/2"
1Ø1/2"
1Ø1/2" 1Ø1/2"
P1
1Ø1/2"
1Ø1/2" 1Ø1/2"
P2
1Ø1/2"
1Ø1/2" 1Ø1/2"
C-A1
C-C1
C-C1
C-B1
C-B2
C-C4
C-C4
C-C4
C-C3
C-B1
C-B2
C-B1
C-B2
C-B1
C-B2
C-C3
C-C1
C-B1
C-B1
C-B1
C-B1
C-C2
C-B1
C-D1
C-C2
C-C2
C-C4
C-B2
C-B1
C-C4
C-C3
C-B2
C-B3
1Ø1/2"
1Ø1/2"
1Ø1/2"
P3
P4
P4
1Ø1/2"
1Ø1/2"
1Ø1/2"
1Ø1/2"
BLOCK
"A"
BLOCK
"B"
BLOCK
"C"
BLOCK"D"
I
I
I
II.
I.
I.
I. IDENTIFICACION
IDENTIFICACION
IDENTIFICACION
IDENTIFICACION.
.
.
.-
-
-
-
. REFERENCIAS.-
1.1. ARQUITECTURA Y CONFIGURACION GEOMETRICA.-
Abril 2012 pág. 5 pág. 5
Diafragma - Techo 2º Nivel (Azotea) y
3º nivel (proyectado)
C-C3
C-C2
C-C2
C-B1
C-B1
C-B1
C-C1
C-B1
C-B1
C-C1
C-B1
C-B1
C-B1
C-B2
C-C1
C-D1
C-C2
C-C1
C-B1
C-B2
C-C2
C-C3
C-B1
C-B2
C-B2
C-B2
C-C1
C-C3
C-C1
C-B1
C-B2
C-C2
P1
1Ø1/2"
1Ø1/2" 1Ø1/2"
P1
P1
P2
P3
P4
P4
1Ø1/2"
1Ø1/2" 1Ø1/2"
1Ø1/2"
1Ø1/2" 1Ø1/2"
1Ø1/2"
1Ø1/2" 1Ø1/2"
1Ø1/2"
1Ø1/2"
1Ø1/2"
1Ø1/2"
1Ø1/2"
1Ø1/2"
1Ø1/2"
BLOCK
"A"
BLOCK
"B"
BLOCK
"C"
BLOCK"D"
Abril 2012 pág. 6 pág. 6
BLOCK “A”
1.2 ESTRUCTURACION.- CONFIGURACION - DIAFRAGMAS 1º al 3º NIVEL
Abril 2012 pág. 7 pág. 7
BLOCK “B”
Abril 2012 pág. 8 pág. 8
BLOCK “C”
Abril 2012 pág. 9 pág. 9
BLOCK “D”
Abril 2012 pág. 10 pág. 10
En Sala Tecnología:
Falso piso: (.30m)*(2300kg/m3) = 690 kg/m2
Acabados: = 70 kg/m2
760 kg/m2
En azoteas:
Tabiquería – media altura: 50 kg/m2
Ladrillo pastelero: 70 kg/m2
120 kg/m2
Barandas y parapetos:
Carga vertical (gravedad) 60 kg/m
Carga horizontal (hacia fuera del parapeto) 60 kg/m
La altura proyectada de los sectores es 3.45m del 1º nivel y 3.25m del 2º, 3º y 4º nivel con un techo máximo de +13.20m
sobre la vía pública. El sistema estructural planteado consiste en:
BLOCK “A”.-
- En la dirección X-X: Un Sistema de Albañilería Confinada (irregular), es decir, una combinación de columnas y muros de
Albañilería Confinados entre si.
- En la dirección Y-Y: Un Sistema de Albañilería Confinada (regular), es decir, una combinación de columnas y muros de
Albañilería Confinados entre si.
BLOCK “B”.-
- En la dirección X-X: Un Sistema de Albañilería Confinada (irregular).
- En la dirección Y-Y: Un Sistema de Albañilería Confinada (regular).
BLOCK “C”.-
- En la dirección X-X: Un Sistema de Albañilería Confinada (irregular).
- En la dirección Y-Y: Un Sistema de Albañilería Confinada (irregular).
BLOCK “D”.-
- En la dirección X-X: Un Sistema de Albañilería Confinada (regular).
- En la dirección Y-Y: Un Sistema de Albañilería Confinada (irregular).
Se tiene 4 secciones de columna: rectangulares de .25x.30m, .25x.45m. y en “L” de .45x.45x.25. Mientras que las vigas
son VP .25x.50m, .25x.40m, .15x.50m,.15x.40m y VS .15x.20m.
El diafragma rígido lo conforma una losa aligerada de 20cm, según se indica en los planos.
2. ESTADOS DE CARGAS Y COMBINACIONES DE CARGAS.-
2.1ESTADOS DE CARGAS.- De acuerdo a
las Normas NTE. E.020, E060 y al reglamento
ACI 318-08, se consideran los siguientes
estados de Carga en la estructura según valores
definidos en el Ítem 2.2.1, además del Espectro
definido en el Ítem 2.1:
Donde: - L1 alternancias consideradas para
la carga viva total (L).
- SX y SXNEG son Fuerza Sísmica en direcc. X-X, con excentricidad accidental de 5% en direcc. “+Y” y “–Y”
respectivamente,en cadablock ynivel, calculadaenelItem2.2.3
- SY y SYNEG son Fuerza Sísmica en direcc. Y-Y, con una excentricidad accidental de 5% en direcc. “+X” y “–X”
respectivamente,en cadablocky nivel,calculadaenelItem2.2.3
2.1.1 CARGAS MUERTAS
En entrepisos:
Tabiquería – altura completa: 100 kg/m2
Acabados : 100 kg/m2
200 kg/m2
En pasadizos:
Tabiquería – media altura: 50 kg/m2
Acabados: 70 kg/m2
120 kg/m2
2.1.2 CARGAS VIVAS
Oficinas, Salas: 250 kg/m2
Pasadizos, escaleras: 400 kg/m2
SS.HH.: 300 kg/m2
Almacenes, depósitos: 500 kg/m2
Sala Tecnologica: 400 kg/m2
Azoteas: 150 kg/m2
Abril 2012 pág. 11 pág. 11
2.2 COMBINACIONES DE CARGAS.- Definiendo primero las combinaciones auxiliares “envL” y “envS”:
-“envL”eslaEnvolventedelas2alternanciasdelacargavivayla
totaldeesta,segúncuadrodeabajo
De dichos Estados de Cargas se considera las siguientes combinaciones en cuadro “Define Load Combinations”:
De dichas combinaciones, el diseño Estructural se efectúa → con la
“ENVOLVENTE” definida según cuadro “Load Combination Data”:
-“envS” es la Envolvente de los 4 estados de carga sísmica
definidosanteriormenteydelEspectro,segúncuadrodeabajo
Abril 2012 pág. 12 pág. 12
BLOCK “A”
BLOCK “B”
2.3 ALTERNANCIA DE CARGAS
DIAFRAGMAS 1º NIVEL: Seindicanvaloresdela1º alternanciadelacargaviva
(L1)y2ºalternancia(L2)enkg/m2;ademásdelCentrodeMasadecadadiafragma.
Program Name Version ProgLevel
ETABS Nonlinear 9.7.3 Advanced
Abril 2012 pág. 13 pág. 13
BLOCK “C”
BLOCK “D”
Abril 2012 pág. 14 pág. 14
BLOCK “A”
BLOCK “B”
DIAFRAGMAS 2º NIVEL : Seindican valoresdela 1º alternancia de la carga viva (L1) y 2º alternancia (L2) en kg/m2
Abril 2012 pág. 15 pág. 15
BLOCK “C”
BLOCK “D”
Abril 2012 pág. 16 pág. 16
BLOCK “A”
BLOCK “B”
DIAFRAGMAS 3º NIVEL (AZOTEAS) : Seindican valoresdela 1º alternancia de la carga viva (L1) y 2º alternancia (L2) en kg/m2
Abril 2012 pág. 17 pág. 17
BLOCK “C”
BLOCK “D”
Abril 2012 pág. 18 pág. 18
3. ANALISIS SISMICOS.-
3.1 FACTORES PARA EL ANALISIS
El Análisis Sísmico se realiza utilizando un modelo matemático tridimensional en donde los elementos verticales están
conectados con diafragmas horizontales, los cuales se suponen infinitamente rígidos en sus planos. Además, para cada
dirección, se ha considerado una excentricidad accidental de 0.05 veces la dimensión del edificio en la dirección
perpendicular a la acción de la fuerza. Los parámetros sísmicos que estipula la Norma de Diseño Sismorresistente (NTE
E.030) considerados para el Análisis en el Edificio son los siguientes:
Factor Nomenclatura
Clasificación
Categórica Tipo
Valor Justificación
Zona Z 3 0.4 Zona Sísmica 1: Lima
Uso U B 1.3 Oficinas - Industria
Suelo S
S1
Tp (s)
1.0
0.4
Suelo GL – Grava Limo Arenosa
(de E.M.S.)
Coeficiente de
reducción
Rx
Albañilería
Sistema Confinada
3.00
Muros de Albañilería confinados
a columnas (irregular)
Ry
Albañilería
Sistema Confinada
3.00
Muros de Albañilería confinados
a columnas (irregular)
Para los casos de configuración irregular, según configuración estructural descrita en el Item 1.2 de cada Block y en cada
dirección, el valor “R” se tomara como los 3/4 del valor de la tabla anterior: R= 2.25
3.2 ANALISIS DINAMICO
3.2.1 ESPECTRO DE PSEUDO ACELERACIONES
Para el Análisis Dinámico de la Estructura se utiliza un Espectro de respuesta según la NTE - E.030, para comparar la
fuerza cortante mínima en la base y compararlos con los resultados de un análisis estático. Todo esto para cada dirección
de la Edificación en planta (X e Y)
BLOCK “A”:
Sa = ZUSC.g ; g = 9.81 m/s2
y C=2.5(Tp/T) < 2.5
R
Abril 2012 pág. 19 pág. 19
T C=2.5(Tp/T)
"C"
correg Sa X Sa Y
0.05 20.000 2.500 0.578 0.433
0.10 10.000 2.500 0.578 0.433
0.15 6.667 2.500 0.578 0.433
0.20 5.000 2.500 0.578 0.433
0.25 4.000 2.500 0.578 0.433
0.30 3.333 2.500 0.578 0.433
0.35 2.857 2.500 0.578 0.433
0.40 2.500 2.500 0.578 0.433
0.45 2.222 2.222 0.514 0.385
0.50 2.000 2.000 0.462 0.347
0.55 1.818 1.818 0.420 0.315
0.60 1.667 1.667 0.385 0.289
0.65 1.538 1.538 0.356 0.267
0.70 1.429 1.429 0.330 0.248
0.75 1.333 1.333 0.308 0.231
0.80 1.250 1.250 0.289 0.217
0.85 1.176 1.176 0.272 0.204
0.90 1.111 1.111 0.257 0.193
1.05 0.952 0.952 0.220 0.165
1.10 0.909 0.909 0.210 0.158
1.15 0.870 0.870 0.201 0.151
1.20 0.833 0.833 0.193 0.144
1.25 0.800 0.800 0.185 0.139
1.30 0.769 0.769 0.178 0.133
1.35 0.741 0.741 0.171 0.128
1.40 0.714 0.714 0.165 0.124
1.45 0.690 0.690 0.159 0.120
1.50 0.667 0.667 0.154 0.116
1.55 0.645 0.645 0.149 0.112
1.60 0.625 0.625 0.144 0.108
1.65 0.606 0.606 0.140 0.105
1.70 0.588 0.588 0.136 0.102
1.75 0.571 0.571 0.132 0.099
1.80 0.556 0.556 0.128 0.096
1.85 0.541 0.541 0.125 0.094
1.90 20.000 2.500 0.578 0.433
1.95 10.000 2.500 0.578 0.433
2.00 6.667 2.500 0.578 0.433
2.05 5.000 2.500 0.578 0.433
→ Espectro similar para Block “B”, “C” y “D”, según
configuración estructural de cada block y en cada
dirección descrita en el Item 1.2
Abril 2012 pág. 20 pág. 20
3.2.2 PERIODOS Y MASA PARTICIPANTE
Los periodos y la masa participante calculados mediante un análisis dinámico para 12 modos de vibración (3 modos por
cada nivel), se presentan a continuación:
BLOCK “A”:
TABLE: Modal Participating Mass Ratios
StepType Period UX UY UZ SumUX SumUY SumUZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.239882 18.3321 16.5799 0.0977 18.3321 16.5799 0.0977
Mode 2 0.173818 13.7543 54.6612 0.2294 32.0864 71.2411 0.3271
Mode 3 0.094674 51.6391 3.2801 0.0289 83.7255 74.5212 0.356
Mode 4 0.084968 0.1455 6.406 0.8161 83.871 80.9272 1.1721
Mode 5 0.08331 0.3833 3.2244 0.503 84.2543 84.1516 1.6751
Mode 6 0.080698 0.0488 1.097 0.3464 84.303 85.2486 2.0216
Mode 7 0.078393 0.7367 0.0009 0.5447 85.0398 85.2495 2.5662
Mode 8 0.071102 0.2887 0.0001 1.3471 85.3285 85.2496 3.9133
Mode 9 0.070833 0.3391 0.3115 1.3042 85.6675 85.5611 5.2176
Mode 10 0.069841 0.2972 0.1165 0.1997 85.9648 85.6776 5.4173
Mode 11 0.065056 1.4722 3.9007 7.7393 87.4369 89.5783 13.1566
Mode 12 0.062485 0.0619 0.1451 0.0479 87.4989 89.7234 13.2045
TABLE: Modal Participating Mass Ratios
StepType Period RX RY RZ SumRX SumRY SumRZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.239882 22.902 18.967 21.037 22.902 18.967 21.037
Mode 2 0.173818 68.450 11.730 17.230 91.352 30.696 38.266
Mode 3 0.094674 1.874 44.987 14.324 93.226 75.683 52.590
Mode 4 0.084968 0.294 0.158 2.266 93.521 75.841 54.856
Mode 5 0.08331 0.363 0.093 3.897 93.884 75.934 58.753
Mode 6 0.080698 0.170 2.020 24.086 94.053 77.954 82.839
Mode 7 0.078393 0.025 0.214 0.008 94.078 78.168 82.848
Mode 8 0.071102 0.197 0.067 0.256 94.275 78.235 83.103
Mode 9 0.070833 0.037 0.202 0.003 94.311 78.437 83.107
Mode 10 0.069841 0.003 0.001 0.977 94.315 78.437 84.083
Mode 11 0.065056 0.394 0.442 1.601 94.708 78.880 85.685
Mode 12 0.062485 0.032 0.022 0.008 94.740 78.902 85.693
ProgramName Versión ProgLevel
ETABS Nonlinear 9.7.3 Advanced
TABLE: Modal Load Participation Ratios
Item Type Item Static Dynamic
Text Text Percent Percent
Accel UX 98.7819 87.4989
Accel UY 98.9095 89.7234
Accel UZ 40.1874 13.2045
Accel RX 96.6666 94.7398
Accel RY 97.5615 78.9016
Accel RZ 84.8768 85.6926
TABLE: Modal Periods And Frequencies
StepType Period Frequency CircFreq
Text Sec Cyc/sec rad/sec
Mode 1 0.23988 4.1687 26.1929
Mode 2 0.17382 5.7531 36.1482
Mode 3 0.09467 10.5626 66.3667
Mode 4 0.08497 11.7691 73.9478
Mode 5 0.08331 12.0034 75.4195
Mode 6 0.08070 12.3919 77.8607
Mode 7 0.07839 12.7562 80.1500
Mode 8 0.07110 14.0643 88.3688
Mode 9 0.07083 14.1177 88.7044
Mode 10 0.06984 14.3182 89.9643
Mode 11 0.06506 15.3714 96.5814
Mode 12 0.06249 16.0038 100.5553
Abril 2012 pág. 21 pág. 21
BLOCK “B”:
TABLE: Modal Participating Mass Ratios
StepType Period UX UY UZ SumUX SumUY SumUZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.21184 50.8566 0.6326 0.0003 50.8566 0.6326 0.0003
Mode 2 0.15384 1.4164 73.9093 0.2452 52.273 74.5419 0.2455
Mode 3 0.10451 20.8761 0.4681 0.017 73.1491 75.01 0.2625
Mode 4 0.08807 14.2866 0.0776 0.0134 87.4357 75.0875 0.2759
Mode 5 0.07285 0.0000 0.8419 0.1327 87.4357 75.9294 0.4086
Mode 6 0.07162 0.0025 1.0515 1.2832 87.4381 76.9809 1.6918
Mode 7 0.06773 0.0385 0.2540 0.1916 87.4767 77.2349 1.8833
Mode 8 0.06447 0.1985 0.4630 0.0458 87.6752 77.6979 1.9292
Mode 9 0.06363 0.0001 0.1541 0.3654 87.6753 77.8519 2.2946
Mode 10 0.06215 1.1305 0.5672 0.0072 88.8058 78.4191 2.3018
Mode 11 0.06006 2.6757 0.0651 0.0079 91.4815 78.4843 2.3097
Mode 12 0.05694 0.0127 8.3795 9.5598 91.4941 86.8638 11.8695
TABLE: Modal Participating Mass Ratios
StepType Period RX RY RZ SumRX SumRY SumRZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.21184 1.814 57.153 27.032 1.814 57.153 27.032
Mode 2 0.15384 96.051 1.147 0.545 97.865 58.300 27.577
Mode 3 0.10451 0.005 29.710 53.402 97.869 88.010 80.979
Mode 4 0.08807 0.165 2.637 0.027 98.034 90.647 81.006
Mode 5 0.07285 0.021 0.001 0.094 98.055 90.648 81.101
Mode 6 0.07162 0.074 0.001 0.535 98.129 90.649 81.636
Mode 7 0.06773 0.002 0.006 0.001 98.131 90.656 81.637
Mode 8 0.06447 0.071 0.001 1.402 98.202 90.657 83.039
Mode 9 0.06363 0.033 0.010 0.909 98.235 90.666 83.948
Mode 10 0.06215 0.083 0.004 1.799 98.318 90.671 85.747
Mode 11 0.06006 0.152 0.002 3.216 98.470 90.672 88.963
Mode 12 0.05694 0.002 0.097 0.036 98.472 90.769 88.999
TABLE: Modal Load Participation Ratios
Item Type Item Static Dynamic
Text Text Percent Percent
Accel UX 99.5592 91.4941
Accel UY 98.7974 86.8638
Accel UZ 28.0418 11.8695
Accel RX 97.5156 98.4715
Accel RY 98.7679 90.7689
Accel RZ 70.9884 88.9986
TABLE: Modal Periods And Frequencies
StepType Period Frequency CircFreq
Text Sec Cyc/sec rad/sec
Mode 1 0.21184 4.7205 29.6596
Mode 2 0.15384 1.4164 8.8995
Mode 3 0.10451 20.8761 131.1687
Mode 4 0.08807 14.2866 89.7656
Mode 5 0.07285 0.0000 0.0000
Mode 6 0.07162 0.0025 0.0157
Mode 7 0.06773 0.0385 0.2419
Mode 8 0.06447 0.1985 1.2472
Mode 9 0.06363 0.0001 0.0006
Mode 10 0.06215 1.1305 7.1032
Mode 11 0.06006 2.6757 16.8120
Mode 12 0.05694 0.0127 0.0798
Abril 2012 pág. 22 pág. 22
BLOCK “C”:
TABLE: Modal Participating Mass Ratios
StepType Period UX UY UZ SumUX SumUY SumUZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.14862 41.7586 23.4959 0.024 41.7586 23.4959 0.024
Mode 2 0.12737 28.0867 56.5904 0.0219 69.8453 80.0863 0.0459
Mode 3 0.08945 17.2496 4.1525 0.0074 87.0948 84.2388 0.0533
Mode 4 0.06455 0.0179 0.4830 0.0583 87.1127 84.7218 0.1116
Mode 5 0.06366 0.0341 0.3239 0.2052 87.1468 85.0457 0.3168
Mode 6 0.06173 0.1585 0.2198 0.0068 87.3053 85.2654 0.3236
Mode 7 0.05844 1.0930 0.0453 0.0058 88.3983 85.3107 0.3294
Mode 8 0.05428 0.0215 3.0404 8.1309 88.4198 88.3511 8.4603
Mode 9 0.052001 3.8388 1.9273 0.6422 92.2586 90.2784 9.1025
Mode 10 0.050057 0.1338 0.0773 0.0349 92.3924 90.3557 9.1374
Mode 11 0.048715 2.6811 0.1565 0.2684 95.0735 90.5122 9.4058
Mode 12 0.046885 0.888 1.8929 0.0416 95.9615 92.4051 9.4474
TABLE: Modal Participating Mass Ratios
StepType Period RX RY RZ SumRX SumRY SumRZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.14862 26.46 39.30 21.23 26.46 39.30 21.23
Mode 2 0.12737 63.83 27.73 0.64 90.29 67.03 21.88
Mode 3 0.08945 4.57 17.24 66.40 94.85 84.27 88.28
Mode 4 0.06455 0.00 0.00 0.34 94.86 84.27 88.62
Mode 5 0.06366 0.00 0.00 0.64 94.86 84.27 89.26
Mode 6 0.06173 0.00 0.01 0.01 94.86 84.28 89.27
Mode 7 0.05844 0.00 0.00 0.32 94.86 84.28 89.60
Mode 8 0.05428 0.27 0.34 0.36 95.13 84.61 89.96
Mode 9 0.052001 0.01 0.10 2.03 95.14 84.71 91.98
Mode 10 0.050057 0.01 0.01 0.01 95.15 84.72 92.00
Mode 11 0.048715 0.00 0.04 0.46 95.15 84.76 92.46
Mode 12 0.046885 0.08 0.31 0.02 95.23 85.06 92.48
TABLE: Modal Load Participation Ratios
Item Type Item Static Dynamic
Text Text Percent Percent
Accel UX 99.649 95.9615
Accel UY 99.1573 92.4051
Accel UZ 23.0017 9.4474
Accel RX 97.7261 95.2295
Accel RY 100.248 85.0637
Accel RZ -201.3575 92.4812
TABLE: Modal Periods And Frequencies
StepType Period Frequency CircFreq
Text Sec Cyc/sec rad/sec
Mode 1 0.14862 6.7284 42.2758
Mode 2 0.12737 28.0867 176.4744
Mode 3 0.08945 17.2496 108.3827
Mode 4 0.06455 0.0179 0.1125
Mode 5 0.06366 0.0341 0.2143
Mode 6 0.06173 0.1585 0.9959
Mode 7 0.05844 1.0930 6.8675
Mode 8 0.05428 0.0215 0.1351
Mode 9 0.052001 3.8388 24.1199
Mode 10 0.050057 0.1338 0.8407
Mode 11 0.048715 2.6811 16.8459
Mode 12 0.046885 0.888 5.5795
Abril 2012 pág. 23 pág. 23
BLOCK “D”:
TABLE: Modal Participating Mass Ratios
StepType Period UX UY UZ SumUX SumUY SumUZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.20286 0.9590 47.1199 0.001 0.959 47.1199 0.001
Mode 2 0.16026 73.7838 1.7012 0.3096 74.7428 48.8212 0.3106
Mode 3 0.10767 0.4574 28.8167 0.0071 75.2002 77.6379 0.3177
Mode 4 0.08533 0.1031 11.3450 0.0121 75.3034 88.9829 0.3298
Mode 5 0.07031 4.2850 0.0030 5.8399 79.5883 88.9858 6.1697
Mode 6 0.06826 0.0818 0.0042 1.1114 79.6702 88.99 7.2812
Mode 7 0.06214 0.6243 0.3548 0.1217 80.2945 89.3448 7.4029
Mode 8 0.05978 0.1464 0.0002 1.2206 80.4409 89.345 8.6235
Mode 9 0.05885 3.1544 1.5582 1.176 83.5954 90.9033 9.7995
Mode 10 0.05642 4.7316 0.5012 6.2489 88.327 91.4045 16.0484
Mode 11 0.05297 0.0553 0.0224 0.0833 88.3823 91.4269 16.1317
Mode 12 0.05262 0.0280 1.1499 0.0707 88.4103 92.5768 16.2024
TABLE: Modal Participating Mass Ratios
StepType Period RX RY RZ SumRX SumRY SumRZ
Text Sec Unitless Unitless Unitless Unitless Unitless Unitless
Mode 1 0.20286 48.165 2.583 30.319 48.165 2.583 30.319
Mode 2 0.16026 1.341 95.434 0.452 49.506 98.016 30.771
Mode 3 0.10767 33.843 0.003 48.308 83.350 98.019 79.079
Mode 4 0.08533 0.987 0.223 0.505 84.337 98.242 79.584
Mode 5 0.07031 0.12 0.04 0.41 84.45 98.28 79.99
Mode 6 0.06826 0.01 0.00 0.02 84.47 98.28 80.01
Mode 7 0.06214 0.01 0.00 2.27 84.48 98.29 82.27
Mode 8 0.05978 0.01 0.03 0.27 84.48 98.31 82.55
Mode 9 0.05885 0.00 0.26 7.28 84.48 98.57 89.83
Mode 10 0.05642 0.07 0.02 0.01 84.55 98.59 89.84
Mode 11 0.05297 0.03 0.00 0.02 84.58 98.59 89.86
Mode 12 0.05262 0.79 0.01 0.11 85.36 98.59 89.97
TABLE: Modal Load Participation Ratios
Item Type Item Static Dynamic
Text Text Percent Percent
Accel UX 98.9876 88.4103
Accel UY 99.5727 92.5768
Accel UZ 37.463 16.2024
Accel RX 97.2214 85.3626
Accel RY 130.3892 98.5944
Accel RZ -27.3709 89.9707
TABLE: Modal Periods And Frequencies
StepType Period Frequency CircFreq
Text Sec Cyc/sec rad/sec
Mode 1 0.20286 4.9296 30.9734
Mode 2 0.16026 73.7838 463.5984
Mode 3 0.10767 0.4574 2.8739
Mode 4 0.08533 0.1031 0.6478
Mode 5 0.07031 4.2850 26.9235
Mode 6 0.06826 0.0818 0.5140
Mode 7 0.06214 0.6243 3.9226
Mode 8 0.05978 0.1464 0.9199
Mode 9 0.05885 3.1544 19.8197
Mode 10 0.05642 4.7316 29.7296
Mode 11 0.05297 0.0553 0.3475
Mode 12 0.05262 0.0280 0.1759
Abril 2012 pág. 24 pág. 24
3.3ANALISIS ESTATICO
Se calculara el Cortante Estático con los valores de los parámetros definidos anteriormente, además de definir el Peso de
la Estructura y el Factor de Ampliación Dinámica (C).
3.3.1 PESO DE LA ESTRUCTURA (P)
La estructura clasifico como categoría B, por lo tanto el peso que se ha considerado para el análisis sísmico es el debido a
la carga permanente más el 50% de la carga viva (100%CM + 50%CV).
En azoteas y techo en general se considera el 50% de la carga viva (100%CM + 50%CV).
CARGA MUERTA: El valor de las Cargas Muertas empleadas comprende el peso propio de los elementos estructurales
(losas, vigas, columnas, placas, muros, etc.) según características descritas en el Ítem 1.3; además del peso de los
elementos aligeradores en losas, el peso de la tabiquería y el peso de los acabados, según:
CARGA VIVA: El valor de Carga Viva empleada es de 250 kg/m2 del 1°, 2º,3 º y 4 º nivel (Oficinas), 150 kg/m2 del techo
del 3° nivel (azotea), 300 kg/m2 (ss.hh.), y 400 kg/m2 (escaleras).
BLOCK - A
NIVEL Peso (Tn) Masa(T-s2/m)
3 80.440 8.200
2 81.310 8.288
1 107.880 10.997
TOTAL 269.630 27.485
BLOCK - C
NIVEL Peso (Tn) Masa(T-s2/m)
3 102.620 10.461
2 103.830 10.584
1 107.060 10.913
TOTAL 313.510 31.958
3.3.2 FACTOR DE AMPLIFICACIÓN SÍSMICA (C) y PERIODO FUNDAMENTAL (T)
Para el cálculo del Factor de Amplificación Sísmica en los Análisis se consideró el periodo fundamental estimado en la
Norma NTE. E.030, según: C= 2.5 (Tp/T) ≤
≤
≤
≤ 2.5
BLOCK - A
Dirección Ct Hn T = hn/Ct C C/R > 0.125
X-X 60 9.95 0.166 2.50 1.111
Y-Y 60 9.95 0.166 2.50 0.833
BLOCK - B
Dirección Ct Hn T = hn/Ct C C/R > 0.125
X-X 60 13.20 0.220 2.50 1.111
Y-Y 60 13.20 0.220 2.50 0.833
BLOCK - C
Dirección Ct Hn T = hn/Ct C C/R > 0.125
X-X 60 9.95 0.166 2.50 1.111
Y-Y 60 9.95 0.166 2.50 1.111
Peso propio (Aligerado con
Ladrillo de arcilla):
e= 0.20m: 300 kg/m2
Peso Muerto: Acabados: 100 kg/m2
Tab. Móvil: 100 kg/m2
Albañilería: 1850 kg/m2 (maciza)
Albañilería: 1350 kg/m2 (tubular)
BLOCK - B
NIVEL Peso (Tn) Masa(T-s2/m)
4 26.900 2.742
3 81.830 8.341
2 87.290 8.898
1 88.850 9.057
TOTAL 284.870 29.039
BLOCK - D
NIVEL Peso (Tn) Masa(T-s2/m)
4 29.170 2.973
3 95.240 9.708
2 112.650 11.483
1 114.590 11.681
TOTAL 351.650 35.846
Abril 2012 pág. 25 pág. 25
BLOCK - D
Dirección Ct Hn T = hn/Ct C C/R > 0.125
X-X 60 13.20 0.220 2.50 0.833
Y-Y 60 13.20 0.220 2.50 1.111
3.3.3 FUERZA CORTANTE EN LA BASE (V)
La Fuerza Cortante en la Base de la Edificación se determina como una fracción del peso total de la Edificación mediante
la siguiente expresión:
3.3.4 DISTRIBUCIÓN DE FUERZA CORTANTE EN ELEVACIÓN
Si “T” > 0.7s, una parte de la Cortante basal “V” denominada “Fa” se aplicara como fuerza concentrada en la parte
superior de la edificación, calculada según: Fa = 0.07(T)(V) ≤ 0.15 V
“FI” - entrepisos “BLOCK A”
NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn)
3 80.44 9.950 800.38 72.605 54.454
2 81.31 6.700 544.78 49.419 37.064
1 107.88 3.450 372.19 33.762 25.322
TOTAL 269.63 1717.3 155.786 116.840
V = ZUSC.P → BLOCK “A”: Vx = 0.578*P = 155.79 tn y Vy = 0.433*P = 116.84 tn
R BLOCK “B”: Vx = 0.578*P = 164.69 tn y Vy = 0.433*P = 123.44 tn
BLOCK “C”: Vx = 0.578*P = 181.14 tn y Vy = 0.578*P = 181.14 tn
BLOCK “D”: Vx = 0.433*P = 152.38 tn y Vy = 0.578*P = 203.18 tn
→ T= 0.506 s → Fa = 0
El resto de la Cortante Basal (V-Fa) se
distribuye en cada nivel de la Edificación,
incluyendo el último, según la fórmula:
Fi = Pi x hi x (V-Fa)
∑(Pi x hi)
Abril 2012 pág. 26 pág. 26
“FI” - entrepisos “BLOCK B”
NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn)
4 26.90 13.200 355.08 28.361 21.271
3 81.83 9.950 814.21 65.033 48.775
2 87.29 6.700 584.84 46.713 35.035
1 88.85 3.450 306.53 24.484 18.363
TOTAL 284.87 2060.7 164.592 123.444
“FI” - entrepisos “BLOCK C”
NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn)
3 102.62 9.950 1021.07 88.661 88.661
2 103.83 6.700 695.66 60.406 60.406
1 107.06 3.450 369.36 32.072 32.072
TOTAL 313.51 2086.1 181.139 181.139
“FI” - entrepisos “BLOCK D”
NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn)
4 29.17 13.200 385.04 23.632 31.510
3 95.24 9.950 947.64 58.162 77.549
2 112.65 6.700 754.76 46.324 61.765
1 114.59 3.450 395.34 24.264 32.352
TOTAL 351.65 2482.8 152.382 203.176
Abril 2012 pág. 27 pág. 27
Se indican: - Cargas de Sismo Estático en “X”: En C.M. de diafragmas del cada nivel – por cada BLOCK
- Cargas de Sismo Estático en “Y”: En C.M. de diafragmas del cada nivel – por cada BLOCK
Abril 2012 pág. 28 pág. 28
Abril 2012 pág. 29 pág. 29
3.4 FUERZA CORTANTE PARA EL DISEÑO DE COMPONENTES ESTRUCTURALES
La respuesta máxima dinámica esperada para el cortante basal se calcula utilizando el criterio de combinación cuadrática
completa para todos los modos de vibración calculados.
De acuerdo a la norma vigente, el cortante dinámico no deberá ser menor al 80% del cortante estático para edificios
regulares ni del 90% para edificios irregulares. De acuerdo a esto se comparan los resultados obtenidos.
BLOCK “A”:
Dirección
Block A
ANALISIS ESTATICO ANALISIS DINAMICO FUERZA
DISEÑO
T(s) V (Tn) % V (Tn) T(s) V (Tn)
X-X 0.166 155.79 140.21 (90%) 0.095 84.00 140.21
Abril 2012 pág. 30 pág. 30
Y-Y 0.166 116.84 93.47 (80%) 0.174 65.68 93.47
BLOCK “B”:
Dirección
Block A
ANALISIS ESTATICO ANALISIS DINAMICO FUERZA
DISEÑO
T(s) V (Tn) % V (Tn) T(s) V (Tn)
X-X 0.220 164.59 148.13 (90%) 0.212 93.10 148.13
Y-Y 0.220 123.44 98.75 (80%) 0.154 88.73 98.75
Abril 2012 pág. 31 pág. 31
BLOCK “C”:
Dirección
Block A
ANALISIS ESTATICO ANALISIS DINAMICO FUERZA
DISEÑO
T(s) V (Tn) % V (Tn) T(s) V (Tn)
X-X 0.166 181.14 163.03 (90%) 0.149 102.10 163.03
Y-Y 0.166 181.14 163.03 (90%) 0.127 114.33 163.03
Abril 2012 pág. 32 pág. 32
BLOCK “D”:
Dirección
Block A
ANALISIS ESTATICO ANALISIS DINAMICO FUERZA
DISEÑO
T(s) V (Tn) % V (Tn) T(s) V (Tn)
X-X 0.220 152.38 121.91 (80%) 0.160 110.06 121.91
Y-Y 0.220 203.18 182.86 (90%) 0.203 114.21 182.86
Abril 2012 pág. 33 pág. 33
II
II
II
III.
I.
I.
I. EVALUACION
EVALUACION
EVALUACION
EVALUACION.
.
.
.-
-
-
-
4. CONTROL DE DESPLAZAMIENTOS LATERALES.-
BLOCK “A”:
BLOCK “B”:
Diaphragm CM
Displacementes
Story Drifts
Abril 2012 pág. 34 pág. 34
BLOCK “C”:
BLOCK “D”:
De acuerdo a la Norma NTE. E030, para el control de los desplazamientos laterales, los resultados deberán ser
multiplicados por el valor de 0.75R para calcular los máximos desplazamientos laterales de la estructura. Se tomaron los
desplazamientos del centro de masa y del eje más alejado
Los resultados se muestran en la siguiente tabla para cada dirección de análisis.
Donde: ∆i/he = Desplazamiento relativo de entrepiso
Además: ∆iX/heX (máx.) = 0.0070 (máximo permisible Concreto Armado, NTE E.030 – 3.8)
∆iY/heY (máx.) = 0.0050 (máximo permisible Albañilería confinada, NTE E.030 – 3.8)
Abril 2012 pág. 35 pág. 35
Se observa que tanto en el Eje del Centro de Masa como en los Ejes más alejados de este en cada dirección, todos los
entrepisos cumplen con el Desplazamiento relativo máximo permisible de entrepiso (∆i/he)MAX en ambas direcciones.
BLOCK “A”:
BLOCK “B”:
Abril 2012 pág. 36 pág. 36
BLOCK “C”:
BLOCK “D”:
Abril 2012 pág. 37 pág. 37
4.1 DESPLAZAMIENTOS DE CENTROS DE MASA Y EXTREMOS DE DIAFRAGMAS (PORNIVELES)
BLOCK “A”:
Desplazamiento Relativo de Entrepiso del Centro de Masa
DIRECCION X-X DIRECCION Y-Y
NIVEL
he ∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
(m) he he absolt. (cm) (cm) absolt. (cm) (cm)
3 3.25 0.00154 0.00176 1.286 0.500 0.00260 OK 1.455 0.573 0.0040 OK
2 3.25 0.00177 0.00202 0.786 0.574 0.00298 OK 0.882 0.656 0.0045 OK
1 3.45 0.00062 0.00066 0.213 0.213 0.00104 OK 0.226 0.226 0.0015 OK
Abril 2012 pág. 38 pág. 38
Desplazamiento Relativo de Entrepiso del Eje extremo
DIRECCION X-X DIRECCION Y-Y
NIVEL
he ∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
(m) he he absolt. (cm) (cm) absolt. (cm) (cm)
3 3.25 0.00173 0.00236 1.348 0.562 0.00292 OK 1.649 0.768 0.0053 OK
2 3.25 0.00177 0.00202 0.786 0.574 0.00298 OK 0.882 0.656 0.0045 OK
1 3.45 0.00062 0.00066 0.213 0.213 0.00104 OK 0.226 0.226 0.0015 OK
Abril 2012 pág. 39 pág. 39
BLOCK “B”:
Desplazamiento Relativo de Entrepiso del Centro de Masa
DIRECCION X-X DIRECCION Y-Y
NIVEL
∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
he he absolt. (cm) (cm) absolt. (cm) (cm)
4 0.00188 0.00081 1.735 0.612 0.00318 OK 0.914 0.263 0.0018 OK
3 0.00141 0.00080 1.123 0.458 0.00238 OK 0.651 0.258 0.0018 OK
2 0.00148 0.00082 0.665 0.510 0.00249 OK 0.393 0.282 0.0018 OK
1 0.00096 0.00069 0.155 0.155 0.00161 OK 0.111 0.111 0.0015 OK
Abril 2012 pág. 40 pág. 40
Desplazamiento Relativo de Entrepiso del Eje extremo
DIRECCION X-X DIRECCION Y-Y
NIVEL
∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
he he absolt. (cm) (cm) absolt. (cm) (cm)
4 0.00188 0.00093 1.752 0.612 0.00318 OK 1.049 0.303 0.0021 OK
3 0.00146 0.00109 1.140 0.475 0.00247 OK 0.747 0.354 0.0025 OK
2 0.00148 0.00082 0.665 0.510 0.00249 OK 0.393 0.282 0.0018 OK
1 0.00096 0.00069 0.155 0.155 0.00161 OK 0.111 0.111 0.0015 OK
Abril 2012 pág. 41 pág. 41
BLOCK “C”:
Desplazamiento Relativo de Entrepiso del Centro de Masa
DIRECCION X-X DIRECCION Y-Y
NIVEL
∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
he he absolt. (cm) (cm) absolt. (cm) (cm)
3 0.00052 0.00056 0.507 0.170 0.00088 OK 0.505 0.181 0.0013 OK
2 0.00067 0.00066 0.337 0.232 0.00114 OK 0.324 0.228 0.0015 OK
1 0.00065 0.00059 0.105 0.105 0.00109 OK 0.096 0.096 0.0013 OK
Abril 2012 pág. 42 pág. 42
Desplazamiento Relativo de Entrepiso del Eje extremo
DIRECCION X-X DIRECCION Y-Y
NIVEL
∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
he he absolt. (cm) (cm) absolt. (cm) (cm)
3 0.00068 0.00097 0.557 0.220 0.00114 OK 0.639 0.315 0.0022 OK
2 0.00067 0.00066 0.337 0.232 0.00114 OK 0.324 0.228 0.0015 OK
1 0.00065 0.00059 0.105 0.105 0.00109 OK 0.096 0.096 0.0013 OK
Abril 2012 pág. 43 pág. 43
BLOCK “D”:
Desplazamiento Relativo de Entrepiso del Centro de Masa
DIRECCION X-X DIRECCION Y-Y
NIVEL
∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
he he absolt. (cm) (cm) absolt. (cm) (cm)
4 0.00087 0.00173 0.957 0.282 0.00147 OK 1.519 0.562 0.0039 OK
3 0.00083 0.00119 0.675 0.270 0.00140 OK 0.957 0.385 0.0027 OK
2 0.00084 0.00126 0.404 0.289 0.00142 OK 0.572 0.434 0.0028 OK
1 0.00071 0.00086 0.115 0.115 0.00120 OK 0.139 0.139 0.0019 OK
Abril 2012 pág. 44 pág. 44
Desplazamiento Relativo de Entrepiso del Eje extremo
DIRECCION X-X DIRECCION Y-Y
NIVEL
∆ix ∆iy desplazam. ∆i
(∆i/he)*0.75R OBS.
desplazam. ∆i
(∆i/he)*0.75R OBS.
he he absolt. (cm) (cm) absolt. (cm) (cm)
4 0.00087 0.00173 1.061 0.282 0.00147 OK 1.539 0.562 0.0039 OK
3 0.00115 0.00125 0.778 0.374 0.00194 OK 0.977 0.405 0.0028 OK
2 0.00084 0.00126 0.404 0.289 0.00142 OK 0.572 0.434 0.0028 OK
1 0.00071 0.00086 0.115 0.115 0.00120 OK 0.139 0.139 0.0019 OK
Abril 2012 pág. 45 pág. 45
5. DE DISEÑO DE COMPONENTES DE C°A°.-
Abril 2012 pág. 46 pág. 46
5.1 DISEÑO DE VIGAS Y COLUMNAS DE CºAº
Diseño de refuerzo longitudinal en los miembros (frame) de C°A° (Se indican áreas “As” en cm2):
BLOCK “A”:
BLOCK “B”:
Abril 2012 pág. 47 pág. 47
BLOCK “C”:
BLOCK “D”:
Abril 2012 pág. 48 pág. 48
BLOCK “A” - 1º, 2º y 3º NIVEL: Áreas de acero longitudinal “As” en vigas.
Abril 2012 pág. 49 pág. 49
Áreas de acero por corte “Av” en vigas.
Abril 2012 pág. 50 pág. 50
BLOCK “B” - 1ºal 4º NIVEL: Áreas de acero longitudinal “As” en vigas.
Abril 2012 pág. 51 pág. 51
Áreas de acero por corte “Av” en vigas.
Abril 2012 pág. 52 pág. 52
BLOCK “C” - 1º, 2º y 3º NIVEL: Áreas de acero longitudinal “As” en vigas.
Abril 2012 pág. 53 pág. 53
Áreas de acero por corte “Av” en vigas.
Abril 2012 pág. 54 pág. 54
BLOCK “D” - 1ºal 4º NIVEL: Áreas de acero longitudinal “As” en vigas.
Abril 2012 pág. 55 pág. 55
Áreas de acero por corte “Av” en vigas.
Abril 2012 pág. 56 pág. 56
Elevaciones: Vistas del refuerzo longitudinal en columnas, pórticos principales
Abril 2012 pág. 57 pág. 57
Áreas de acero por corte “Av” en columnas, pórticos principales.
Abril 2012 pág. 58 pág. 58
Abril 2012 pág. 59 pág. 59
→ Cálculo
similar
para resto
de
columnas
Detalle de
diseño de
Columna
entre
ejes 2 y B
nivel 2
Detalle de
diseño de
Columna
entre
ejes 2 y D
nivel 2
Abril 2012 pág. 60 pág. 60
→ Cálculo
similar
para resto
de Vigas
Detalle de
diseño de
Viga
en eje O,
nivel 2
Detalle de
diseño de
Viga
en eje Ñ,
nivel 1
Abril 2012 pág. 61 pág. 61
P.Prop. (c/ladrillo teknoport) : A.C.I. 318-2008:
e= 0.17m: 280 kg/m2 → e ≈ L/20 → Wu/vig = (1.4WD +1.7WL )*0.4 → Mu(+/-)= coef*(Wu/vig)*LPROM
2
e= 0.20m: 300 kg/m2 (en cada tramo)
e= 0.25m: 350 kg/m2 → , Ø =0.90 (flexion)
→ verificando As min: →
→ verificando por corte: → Vadm = , Ø =0.85 (cortante)
→ Vu = coef*(Wu/vig)*LPROM , en cada tramo. Debe cumplirse: Vu < Vadm
d
b
c
f inf
'
53
.
0
φ
fy
b.d.f'c
φ.f'c.b.d
Μu
Αs
.
18
,
1
36
,
2
1
1 2 





−
−
=
fy
bd
*
1
.
14
fy
b.d
c
f'
0.22
Αs
min >
=
PAÑO "P - 2":
Wd: P.P.= según "e" kg/m2 f'c = 280.00 kg/cm
2
tabiq = 100.00 kg/m2 b sup= 40.00 cm
acab = 100.00 kg/m2 b inf = 10.00 cm
WD = (suma) kg/m2
As - = 1.122 cm2
1.016 cm2
0.302 cm2
Mu- = 0.679 Tm 0.618 Tm 0.191 Tm
coef = 1/14 1/9 1/14
e losa = 20.00 cm 20.00 cm
WD
= 300.00 kg/m2 300.00 kg/m2
WL
= 400.00 kg/m2 400.00 kg/m2
WU/VIG = 0.552 T/m 0.552 T/m
L = 4.15 m 2.20 m
coef = 1/11 1/11
Mu+= 0.864 Tm 0.243 Tm
As+ = 1.369 cm
2 0.380 cm
2
verificando por cortante:
coef = 0.500 0.500
Vu = 1.145 T 0.607 T
Vadm = 1.319 T … ok 1.381 T … ok
PAÑO "P - 1" y "P - 3"
Wd: P.P.= según "e" kg/m2 f'c = 280.00 kg/cm
2
tabiq = 100.00 kg/m2 b sup= 40.00 cm
acab = 100.00 kg/m2 b inf = 10.00 cm
WD = (suma) kg/m2
As - = 2.355 cm2
1.727 cm2
Mu = 1.328 1.010
M1 = 0.565 0.565
Mw- = 0.763 Tm 0.445 Tm
coef = 1/14 1/24
e losa = 20.00 cm
WPP
= 300.00 kg/m2
WL
= 500.00 kg/m2
WU/VIG = 0.620 T/m M1 = (Wu)*(1.35m)
2
/2
L = 4.15 m
coef = 1/8
Mu+= 1.335 Tm
As+ = 2.137 cm
2
verificando por cortante:
coef = 0.500
Vu = 1.287 T
Vadm = 1.358 T … ok
5.2 DISEÑO DE LOSAS ALIGERADAS DE CºAº
Abril 2012 pág. 62 pág. 62
S/C = 0.05 Kg/cm²
γs = 0.002 Kg/cm³
γc = 0.0024 Kg/cm³
50
cm
40
cm
70
cm
5.3 DISEÑO DE CIMENTACION DE CºAº
5.3.1 PARAMETROS DE DIMENCIONAMIENTO DE CIMENTACION
TERRENO: γS = 2,000 kg/m3 Coef. Balasto: Ks = 2.83kg/cm3
σADM= 1.35 kg/cm2 ɗADM= 2.50 cm
CARGA MUERTA: WD = (γS)*(h) = (2,000 kg/m3)*(0.70m)
= 1,400.00 kg/m2
CARGA VIVA: El valor de Carga Viva empleada es de
250 kg/m2 (Oficinas), 500 kg/m2 (Depositos,
almacenes), 300 kg/m2 (ss.hh.) y 400 kg/m2 (escaleras,
corredores) (según Ítem I).
Se determinan las dimensiones mínimas de cada zapata y
cimiento que no excedan el asentamiento y la resistencia
admisible del terreno (“qadm”, según pág. 1)
CONFIGURACION EN PLANTA Y ELEVACION:
Program Name Versión ProgLevel
SAFE Nonlinear 12.3.1 Advanced
Abril 2012 pág. 63 pág. 63
Abril 2012 pág. 64 pág. 64
→ Estado de Carga Muerta “CM”: cargas transmitidas por la Súper-estructura
(importación ETABS a SAFE)
→ Estado de Carga Muerta “CM”: cargas aplicadas sobre el terreno
ESTADO DE CARGA MUERTA:
Abril 2012 pág. 65 pág. 65
→ Estado de Carga Muerta
“CM”: cargas trasmitidas
por la Súper-estructura
(importación ETABS a
SAFE)
Abril 2012 pág. 66 pág. 66
→ Estado de Carga Viva. “L”: cargas aplicadas sobre el terreno
→ Estado de Carga Viva “L”: cargas trasmitidas por la Súper-estructura
(importación ETABS a SAFE)
ESTADO DE CARGA VIVA:
Abril 2012 pág. 67 pág. 67
→ Estado de Carga Viva.
“L1”: cargas trasmitidas
por la Súper-estructura
(importación ETABS a
SAFE)
Abril 2012 pág. 68 pág. 68
→ Estado de Carga de Sismo “E – dirección X”
(Máxima respuesta del Análisis Dinámico):
cargas trasmitidas por la Súper-estructura
(Importación ETABS a SAFE)
ESTADOS DE CARGA DE SISMO:
Abril 2012 pág. 69 pág. 69
→ Estado de Carga de Sismo “E – dirección Y”
(Máxima respuesta del Análisis Dinámico):
cargas trasmitidas por la Súper-estructura
(Importación ETABS a SAFE)
Abril 2012 pág. 70 pág. 70
→ Diagrama de Presiones en el Terreno, bajo estado de
Cargas “en Servicio sin considerar Sismo”(en kg/cm2)
→ σMAX= 1.35 kg/cm2
→ Diagrama de Presiones en el Terreno, bajo estado de
Cargas “en Servicio considerando Sismo”(en kg/cm2)
→ σMAX = 1.3*Qadm = 1.76 kg/cm2
5.3.2 VERIFICACION DE ESFUERZO Y ASENTAMIENTO DEL TERRENO:
Abril 2012 pág. 71 pág. 71
→ Diagrama de
Asentamientos en el
terreno, bajo estado de
Cargas “en Servicio
considerando Sismo”
(cm).
→ ɗMAX= 0.63 cm
Estas dimensiones de la
Cimentación cumplen
con los límites dados por
el E.M.S.:
→ σADM= 1.35 kg/cm2
→ ɗADM= 2.50 cm
→ Diagrama de Asentamientos en el terreno, bajo estado de
Cargas “en Servicio sin considerar Sismo” (cm).
→ ɗMAX= 0.49 cm
Abril 2012 pág. 72 pág. 72
→ Nota: La distribución
del refuerzo
determinada por el
software es
referencia.
La distribución más
óptima y definitiva es
la indicada en los
respectivos Planos
del proyecto.
. 5.3.3 DISEÑO DE REFUERZO DE ZAPATAS.
Diseño de refuerzo longitudinal en cada dirección, en zapatas y cimientos corridos.
Abril 2012 pág. 73 pág. 73
Abril 2012 pág. 74 pág. 74
→ Nota: La distribución
del refuerzo
determinada por el
software es
referencia.
La distribución más
óptima y definitiva es
la indicada en los
respectivos Planos
del proyecto.
Diseño de refuerzo transversal (estribos) en zapatas y cimientos corridos.
Abril 2012 pág. 75 pág. 75

Más contenido relacionado

La actualidad más candente

Memoria de Calculo - Tanque elevado
Memoria de Calculo - Tanque elevadoMemoria de Calculo - Tanque elevado
Memoria de Calculo - Tanque elevadoWadelAdrianzenDelgad
 
Memoria de calculo
Memoria de calculoMemoria de calculo
Memoria de calculopatrick_amb
 
PREDIMENSIONADO DE ELEMENTOS ESTRUCTURALES
PREDIMENSIONADO DE ELEMENTOS ESTRUCTURALESPREDIMENSIONADO DE ELEMENTOS ESTRUCTURALES
PREDIMENSIONADO DE ELEMENTOS ESTRUCTURALESKaréh Karina Hernandez
 
Memoria calculo techo autosoportado
Memoria calculo techo autosoportadoMemoria calculo techo autosoportado
Memoria calculo techo autosoportadoKevinSaenzGamboa
 
1.nave 20por50
1.nave 20por501.nave 20por50
1.nave 20por50jjjj
 
Calculista Marbella Maitencillo +56941055309
Calculista Marbella Maitencillo +56941055309Calculista Marbella Maitencillo +56941055309
Calculista Marbella Maitencillo +56941055309ClculoEstructuralArq
 
MANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOSMANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOSEmilio Castillo
 
Memoria de-calculo-estructuras
Memoria de-calculo-estructurasMemoria de-calculo-estructuras
Memoria de-calculo-estructurasJose Luis Chucuya
 
Capitulo 2 apuntes de cubicación usach (1)
Capitulo 2 apuntes de cubicación usach (1)Capitulo 2 apuntes de cubicación usach (1)
Capitulo 2 apuntes de cubicación usach (1)eliasmatu
 

La actualidad más candente (20)

Memoria de Calculo - Tanque elevado
Memoria de Calculo - Tanque elevadoMemoria de Calculo - Tanque elevado
Memoria de Calculo - Tanque elevado
 
acciones del viento
acciones del vientoacciones del viento
acciones del viento
 
Calculista Concón
Calculista ConcónCalculista Concón
Calculista Concón
 
Calculista Limache
Calculista LimacheCalculista Limache
Calculista Limache
 
1.2 memoria descriptiva estructuras
1.2 memoria descriptiva estructuras1.2 memoria descriptiva estructuras
1.2 memoria descriptiva estructuras
 
Memoria de cálculo
Memoria de cálculoMemoria de cálculo
Memoria de cálculo
 
Memoria de calculo
Memoria de calculoMemoria de calculo
Memoria de calculo
 
Memoria descriptiva de estructuras
Memoria descriptiva de estructurasMemoria descriptiva de estructuras
Memoria descriptiva de estructuras
 
PREDIMENSIONADO DE ELEMENTOS ESTRUCTURALES
PREDIMENSIONADO DE ELEMENTOS ESTRUCTURALESPREDIMENSIONADO DE ELEMENTOS ESTRUCTURALES
PREDIMENSIONADO DE ELEMENTOS ESTRUCTURALES
 
Memoria calculo techo autosoportado
Memoria calculo techo autosoportadoMemoria calculo techo autosoportado
Memoria calculo techo autosoportado
 
1.nave 20por50
1.nave 20por501.nave 20por50
1.nave 20por50
 
Calculista Marbella Maitencillo +56941055309
Calculista Marbella Maitencillo +56941055309Calculista Marbella Maitencillo +56941055309
Calculista Marbella Maitencillo +56941055309
 
Calculista Quillota +56941055309
Calculista Quillota  +56941055309Calculista Quillota  +56941055309
Calculista Quillota +56941055309
 
Analisis dinamico 4 pisos
Analisis dinamico 4 pisosAnalisis dinamico 4 pisos
Analisis dinamico 4 pisos
 
Proceso constructivo 1
Proceso constructivo 1Proceso constructivo 1
Proceso constructivo 1
 
MANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOSMANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOS
 
Calculista Concón +56941055309
Calculista Concón +56941055309Calculista Concón +56941055309
Calculista Concón +56941055309
 
Memoria de-calculo-estructuras
Memoria de-calculo-estructurasMemoria de-calculo-estructuras
Memoria de-calculo-estructuras
 
Capitulo 2 apuntes de cubicación usach (1)
Capitulo 2 apuntes de cubicación usach (1)Capitulo 2 apuntes de cubicación usach (1)
Capitulo 2 apuntes de cubicación usach (1)
 
Ejemplo de-edificio-en-etabs
Ejemplo de-edificio-en-etabsEjemplo de-edificio-en-etabs
Ejemplo de-edificio-en-etabs
 

Similar a MemoriaCalculo Estruct_INSPECTRA2012.pdf

yjyhhoMEtalico-Nuevo Mundo2012.pdf
yjyhhoMEtalico-Nuevo Mundo2012.pdfyjyhhoMEtalico-Nuevo Mundo2012.pdf
yjyhhoMEtalico-Nuevo Mundo2012.pdfJesusPareja2
 
Memoria de calculo estructural metalica
Memoria de calculo estructural metalicaMemoria de calculo estructural metalica
Memoria de calculo estructural metalicaOlmerJobaldoJaraChih
 
Calculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de AtacamaCalculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de AtacamaRegularizacinConcn
 
Memoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructurasMemoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructurasChristian Padilla Farfan
 
Memoria de calculo proyecto vigil
Memoria de calculo   proyecto vigilMemoria de calculo   proyecto vigil
Memoria de calculo proyecto vigilCesarArangena1
 
Calculista Estructuras Isla Juan Fernández
Calculista Estructuras Isla Juan FernándezCalculista Estructuras Isla Juan Fernández
Calculista Estructuras Isla Juan FernándezArquitecturaClculoCe
 
Calculista Estructuras Constitución
Calculista Estructuras ConstituciónCalculista Estructuras Constitución
Calculista Estructuras ConstituciónArquitecto Chile
 
CALCULISTA ESTRUCTURAS ROMERAL, vii región
CALCULISTA ESTRUCTURAS ROMERAL, vii regiónCALCULISTA ESTRUCTURAS ROMERAL, vii región
CALCULISTA ESTRUCTURAS ROMERAL, vii regiónArquitecto Chile
 
Calculista Estructuras Bosques de Montemar
Calculista Estructuras Bosques de MontemarCalculista Estructuras Bosques de Montemar
Calculista Estructuras Bosques de MontemarClculoEstructuralArq
 
Calculista estructuras Talagante
Calculista estructuras Talagante Calculista estructuras Talagante
Calculista estructuras Talagante Juan Luis Menares
 
Calculista estructuras Villa Alemana
Calculista estructuras Villa AlemanaCalculista estructuras Villa Alemana
Calculista estructuras Villa AlemanaClculoEstructuralArq
 
CÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍCÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍRegularizacinConcn
 
MEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docx
MEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docxMEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docx
MEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docxjonnathanguillermore
 
Cálculo Estructural Copiapó
Cálculo Estructural CopiapóCálculo Estructural Copiapó
Cálculo Estructural CopiapóARQUITECTOTUNQUN
 
memoria-calculo-estructural-inkari
 memoria-calculo-estructural-inkari memoria-calculo-estructural-inkari
memoria-calculo-estructural-inkariAndrsCrdenas20
 

Similar a MemoriaCalculo Estruct_INSPECTRA2012.pdf (20)

yjyhhoMEtalico-Nuevo Mundo2012.pdf
yjyhhoMEtalico-Nuevo Mundo2012.pdfyjyhhoMEtalico-Nuevo Mundo2012.pdf
yjyhhoMEtalico-Nuevo Mundo2012.pdf
 
Memoria de calculo estructural metalica
Memoria de calculo estructural metalicaMemoria de calculo estructural metalica
Memoria de calculo estructural metalica
 
Calculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de AtacamaCalculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de Atacama
 
Cálculo estructural Calama
Cálculo estructural CalamaCálculo estructural Calama
Cálculo estructural Calama
 
Memoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructurasMemoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructuras
 
Memoria de calculo proyecto vigil
Memoria de calculo   proyecto vigilMemoria de calculo   proyecto vigil
Memoria de calculo proyecto vigil
 
Calculista Estructuras Isla Juan Fernández
Calculista Estructuras Isla Juan FernándezCalculista Estructuras Isla Juan Fernández
Calculista Estructuras Isla Juan Fernández
 
Calculista Estructuras Constitución
Calculista Estructuras ConstituciónCalculista Estructuras Constitución
Calculista Estructuras Constitución
 
CALCULISTA ESTRUCTURAS ROMERAL, vii región
CALCULISTA ESTRUCTURAS ROMERAL, vii regiónCALCULISTA ESTRUCTURAS ROMERAL, vii región
CALCULISTA ESTRUCTURAS ROMERAL, vii región
 
Calculista Estructuras Bosques de Montemar
Calculista Estructuras Bosques de MontemarCalculista Estructuras Bosques de Montemar
Calculista Estructuras Bosques de Montemar
 
Calculista estructuras Talagante
Calculista estructuras Talagante Calculista estructuras Talagante
Calculista estructuras Talagante
 
Calculista estructuras Villa Alemana
Calculista estructuras Villa AlemanaCalculista estructuras Villa Alemana
Calculista estructuras Villa Alemana
 
CÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍCÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍ
 
MEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docx
MEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docxMEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docx
MEMORIA_DESCRIPTIVA_DE_ESTRUCTURAS_PROYE.docx
 
Cálculo Estructural Copiapó
Cálculo Estructural CopiapóCálculo Estructural Copiapó
Cálculo Estructural Copiapó
 
Memoria estructura metalicas
Memoria estructura metalicasMemoria estructura metalicas
Memoria estructura metalicas
 
memoria-calculo-estructural-inkari
 memoria-calculo-estructural-inkari memoria-calculo-estructural-inkari
memoria-calculo-estructural-inkari
 
Calculista Estructuras Maipú
Calculista Estructuras MaipúCalculista Estructuras Maipú
Calculista Estructuras Maipú
 
Memoria de calculo reservorio elevado
Memoria de calculo reservorio elevadoMemoria de calculo reservorio elevado
Memoria de calculo reservorio elevado
 
Memoria 2 x2.5
Memoria 2 x2.5Memoria 2 x2.5
Memoria 2 x2.5
 

Último

Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxI LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxPATRICIAKARIMESTELAL
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRyanimarca23
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasLeonardoMendozaDvila
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEANDECE
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptxluiscisnerosayala23
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdfLIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdfManuelVillarreal44
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1victorrodrigues972054
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptxEfrain Yungan
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industriesbarom
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...humberto espejo
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesjohannyrmnatejeda
 

Último (20)

Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxI LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSE
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdfLIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
Linea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptxLinea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptx
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industries
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajes
 

MemoriaCalculo Estruct_INSPECTRA2012.pdf

  • 1. MEMORIA DE CALCULO ESTRUCTURAL PROYECTO: “NUEVA PLANTA DE ENVASADO DE GLP DE TRUJILLO" DEPARTAMENTO: LA LIBERTAD PROVINCIA: TRUJILLO DISTRITO: TRUJILLO PROPIETARIO: “REPSOL YPF COMERCIAL DEL PERU S.A. ” CONSULTOR: INSPECTRA S.A. Ing. ......................... C.I.P. .................. ABRIL – 2012
  • 2. Abril 2012 pág. 2 pág. 2 CONTENIDO pág. I. GENERALIDADES 3 1.1 NORMAS EMPLEADAS 1.2 ESPECIFICACIONES – MATERIALES EMPLEADOS 1.3 CARACTERISTICAS DEL TERRENO Y CONSIDERACIONES DE CIMENTACION II. IDENTIFICACION 1.00 REFERENCIAS 1.1 ARQUITECTURA Y CONFIGURACION GEOMETRICA 4 1.2 ESTRUCTURACION 6 2.00 ESTADOS DE CARGAS Y COMBINACIONES DE CARGAS 2.1 ESTADOS DE CARGAS 10 2.2 COMBINACIONES DE CARGAS 11 2.3 ALTERNANCIAS DE CARGAS - DIAFRAGMAS (PLANTAS Y 3D) 12 3.00 ANALISIS SISMICOS 3.1 FACTORES PARA EL ANALISIS 17 3.1.1 FUERZAS SISMICAS VERTICALES 3.2 ANALISIS DINAMICO 17 3.2.1 ESPECTRO DE PSEUDO ACELERACIONES 3.2.2 PERIODOS Y MASA PARTICIPANTE 3.3 ANALISIS ESTATICO 24 3.3.1 PESO DE LA ESTRUCTURA (P) 3.3.2 FACTOR DE AMPLIFICACIÓN SÍSMICA (C) y PERIODO FUNDAMENTAL (T) 3.3.3 FUERZA CORTANTE EN LA BASE (V) 3.3.4 DISTRIBUCIÓN DE FUERZA CORTANTE EN ELEVACIÓN 3.4 FUERZA CORTANTE PARA EL DISEÑO DE COMPONENTES ESTRUCTURALES 29 III. FORMULACION Y EVALUACION 4.00 CONTROL DE DESPLAZAMIENTOS LATERALES 33 4.1 DESPLAZAMIENTOS DECENTROS DEMASA DE DIAFRAGMAS (PORNIVELES) 4.2 DESPLAZAMIENTOS MAXIMOS DEEXTREMOSDEDIAFRAGMAS(PORNIVELES) 5.00 DISEÑO DE COMPONENTES DE C° A° 5.1 DISEÑO DE VIGAS Y COLUMNAS 46 5.2 DISEÑO DE LOSAS ALIGERADAS 61 5.3 DISEÑO DE CIMENTACION 5.3.1 PARAMETROS DE DIMENCIONAMIENTO DE CIMENTACION 62 ESTADO DE CARGA MUERTA ESTADOS DE CARGA VIVA ESTADOS DE CARGA DE SISMO 5.3.2 VERIFICACION DE ESFUERZOS Y ASENTAMIENTOS EN EL TERRENO 70 5.3.3 VERIFICACION DE DISEÑO DE REFUERZO DE ZAPATAS 71
  • 3. Abril 2012 pág. 3 pág. 3 I. I. I. I. GENERALIDADES GENERALIDADES GENERALIDADES GENERALIDADES. . . .- - - - La presente Memoria corresponde al análisis sísmico y calculo estructural del proyecto “NUEVA PLANTA DE ENVASADO DE GLP DE TRUJILLO”, de Propietario “REPSOL YPF COMERCIAL DEL PERU S.A.”; Edificación de 2 niveles + azotea (proyectada a 3 niveles) con ubicación en ......................................, distrito y provincia de Trujillo, departamento de La Libertad. 1.1NORMAS EMPLEADAS Se sigue las disposiciones de los Reglamentos y Normas Nacionales e Internacionales descritos a continuación. -Reglamento Nacional de Edificaciones (Perú) – Normas Técnicas de Edificación (N.T.E.): -NTE E.020 “CARGAS” -NTE E.060 “CONCRETO ARMADO” -NTE E.030 “DISEÑO SISMORRESISTENTE” -NTE E.070 “ALBAÑILERIA” -NTE E.050 “SUELOS Y CIMENTACIONES” - A.C.I. 318 – 2008 (American Concrete Institute) - Building Code Requirements for Structural Concrete - UBC 1997 Uniform Building Code Se entiende que todos los Reglamentos y Normas están en vigencia y/o son de la última edición. 1.2ESPECIFICACIONES – MATERIALES EMPLEADOS CONCRETO: -Resistencia (f´c): 175 Kg/cm2 (zapatas, cimientos armados) 280 Kg/cm2 (columnas, placas, vigas y losas) -Módulo de Elasticidad (E) : 217,000 Kg/cm2 (f´c = 210 Kg/cm2) -Módulo de Poisson (u) : 0.20 -Peso Específico (γC): 2300 Kg/m3 (concreto simple); 2400 Kg/m3 (concreto armado) ACERO CORRUGADO (ASTM A605): -Resistencia a la fluencia (fy) : 4,200 Kg/cm2 (Gº 60): “E”: 2’100,000 Kg/cm2 LADRILLOS DE ARCILLA (Techos Aligerados): “γ”: 90 Kg/m2 (unidades de .30x.30x.15m) RECUBRIMIENTOS MÍNIMOS (R): -Cimientos, zapatas, vigas de cimentación 7.50 cm -Columnas, Vigas, Placas, Muros (Cisternas, Tanques) 4.00 cm -Losas Aligeradas, Vigas chatas, Vigas de borde 3.00cm -Losas macizas, Escaleras 2.50 cm 1.3CARACTERISTICAS DEL TERRENO Y CONSIDERACIONES DE CIMENTACION Según especificaciones del Estudio de Mecánica de Suelos con fines de Cimentación Ing. ......................................................, de fecha ..............................: -Peso Específico (γS): 2000 Kg/m3 -Nivel freático: No encontrado CIMIENTO SUPERFICIAL CUADRADO (para ancho B= 2.00 m) -Capacidad portante (σ´T) : 1.35 Kg/cm2 -Desplante de cimiento (DF): 1.20 m CIMIENTO SUPERFICIAL CORRIDO (para ancho B= 1.00 m) -Capacidad portante (σ´T) : 1.35 Kg/cm2 -Desplante de cimiento (DF): 1.20 m La cimentación considerada está conformada básicamente por zapatas conectadas y por cimientos corridos. En caso de no encontrar terreno firme se colocaran sub-zapatas, con la finalidad de llegar a este.
  • 4. Abril 2012 pág. 4 pág. 4 Diafragma - Techo 1º Nivel P1 C-A1 P1 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" P1 1Ø1/2" 1Ø1/2" 1Ø1/2" P2 1Ø1/2" 1Ø1/2" 1Ø1/2" C-A1 C-C1 C-C1 C-B1 C-B2 C-C4 C-C4 C-C4 C-C3 C-B1 C-B2 C-B1 C-B2 C-B1 C-B2 C-C3 C-C1 C-B1 C-B1 C-B1 C-B1 C-C2 C-B1 C-D1 C-C2 C-C2 C-C4 C-B2 C-B1 C-C4 C-C3 C-B2 C-B3 1Ø1/2" 1Ø1/2" 1Ø1/2" P3 P4 P4 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" BLOCK "A" BLOCK "B" BLOCK "C" BLOCK"D" I I I II. I. I. I. IDENTIFICACION IDENTIFICACION IDENTIFICACION IDENTIFICACION. . . .- - - - . REFERENCIAS.- 1.1. ARQUITECTURA Y CONFIGURACION GEOMETRICA.-
  • 5. Abril 2012 pág. 5 pág. 5 Diafragma - Techo 2º Nivel (Azotea) y 3º nivel (proyectado) C-C3 C-C2 C-C2 C-B1 C-B1 C-B1 C-C1 C-B1 C-B1 C-C1 C-B1 C-B1 C-B1 C-B2 C-C1 C-D1 C-C2 C-C1 C-B1 C-B2 C-C2 C-C3 C-B1 C-B2 C-B2 C-B2 C-C1 C-C3 C-C1 C-B1 C-B2 C-C2 P1 1Ø1/2" 1Ø1/2" 1Ø1/2" P1 P1 P2 P3 P4 P4 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" 1Ø1/2" BLOCK "A" BLOCK "B" BLOCK "C" BLOCK"D"
  • 6. Abril 2012 pág. 6 pág. 6 BLOCK “A” 1.2 ESTRUCTURACION.- CONFIGURACION - DIAFRAGMAS 1º al 3º NIVEL
  • 7. Abril 2012 pág. 7 pág. 7 BLOCK “B”
  • 8. Abril 2012 pág. 8 pág. 8 BLOCK “C”
  • 9. Abril 2012 pág. 9 pág. 9 BLOCK “D”
  • 10. Abril 2012 pág. 10 pág. 10 En Sala Tecnología: Falso piso: (.30m)*(2300kg/m3) = 690 kg/m2 Acabados: = 70 kg/m2 760 kg/m2 En azoteas: Tabiquería – media altura: 50 kg/m2 Ladrillo pastelero: 70 kg/m2 120 kg/m2 Barandas y parapetos: Carga vertical (gravedad) 60 kg/m Carga horizontal (hacia fuera del parapeto) 60 kg/m La altura proyectada de los sectores es 3.45m del 1º nivel y 3.25m del 2º, 3º y 4º nivel con un techo máximo de +13.20m sobre la vía pública. El sistema estructural planteado consiste en: BLOCK “A”.- - En la dirección X-X: Un Sistema de Albañilería Confinada (irregular), es decir, una combinación de columnas y muros de Albañilería Confinados entre si. - En la dirección Y-Y: Un Sistema de Albañilería Confinada (regular), es decir, una combinación de columnas y muros de Albañilería Confinados entre si. BLOCK “B”.- - En la dirección X-X: Un Sistema de Albañilería Confinada (irregular). - En la dirección Y-Y: Un Sistema de Albañilería Confinada (regular). BLOCK “C”.- - En la dirección X-X: Un Sistema de Albañilería Confinada (irregular). - En la dirección Y-Y: Un Sistema de Albañilería Confinada (irregular). BLOCK “D”.- - En la dirección X-X: Un Sistema de Albañilería Confinada (regular). - En la dirección Y-Y: Un Sistema de Albañilería Confinada (irregular). Se tiene 4 secciones de columna: rectangulares de .25x.30m, .25x.45m. y en “L” de .45x.45x.25. Mientras que las vigas son VP .25x.50m, .25x.40m, .15x.50m,.15x.40m y VS .15x.20m. El diafragma rígido lo conforma una losa aligerada de 20cm, según se indica en los planos. 2. ESTADOS DE CARGAS Y COMBINACIONES DE CARGAS.- 2.1ESTADOS DE CARGAS.- De acuerdo a las Normas NTE. E.020, E060 y al reglamento ACI 318-08, se consideran los siguientes estados de Carga en la estructura según valores definidos en el Ítem 2.2.1, además del Espectro definido en el Ítem 2.1: Donde: - L1 alternancias consideradas para la carga viva total (L). - SX y SXNEG son Fuerza Sísmica en direcc. X-X, con excentricidad accidental de 5% en direcc. “+Y” y “–Y” respectivamente,en cadablock ynivel, calculadaenelItem2.2.3 - SY y SYNEG son Fuerza Sísmica en direcc. Y-Y, con una excentricidad accidental de 5% en direcc. “+X” y “–X” respectivamente,en cadablocky nivel,calculadaenelItem2.2.3 2.1.1 CARGAS MUERTAS En entrepisos: Tabiquería – altura completa: 100 kg/m2 Acabados : 100 kg/m2 200 kg/m2 En pasadizos: Tabiquería – media altura: 50 kg/m2 Acabados: 70 kg/m2 120 kg/m2 2.1.2 CARGAS VIVAS Oficinas, Salas: 250 kg/m2 Pasadizos, escaleras: 400 kg/m2 SS.HH.: 300 kg/m2 Almacenes, depósitos: 500 kg/m2 Sala Tecnologica: 400 kg/m2 Azoteas: 150 kg/m2
  • 11. Abril 2012 pág. 11 pág. 11 2.2 COMBINACIONES DE CARGAS.- Definiendo primero las combinaciones auxiliares “envL” y “envS”: -“envL”eslaEnvolventedelas2alternanciasdelacargavivayla totaldeesta,segúncuadrodeabajo De dichos Estados de Cargas se considera las siguientes combinaciones en cuadro “Define Load Combinations”: De dichas combinaciones, el diseño Estructural se efectúa → con la “ENVOLVENTE” definida según cuadro “Load Combination Data”: -“envS” es la Envolvente de los 4 estados de carga sísmica definidosanteriormenteydelEspectro,segúncuadrodeabajo
  • 12. Abril 2012 pág. 12 pág. 12 BLOCK “A” BLOCK “B” 2.3 ALTERNANCIA DE CARGAS DIAFRAGMAS 1º NIVEL: Seindicanvaloresdela1º alternanciadelacargaviva (L1)y2ºalternancia(L2)enkg/m2;ademásdelCentrodeMasadecadadiafragma. Program Name Version ProgLevel ETABS Nonlinear 9.7.3 Advanced
  • 13. Abril 2012 pág. 13 pág. 13 BLOCK “C” BLOCK “D”
  • 14. Abril 2012 pág. 14 pág. 14 BLOCK “A” BLOCK “B” DIAFRAGMAS 2º NIVEL : Seindican valoresdela 1º alternancia de la carga viva (L1) y 2º alternancia (L2) en kg/m2
  • 15. Abril 2012 pág. 15 pág. 15 BLOCK “C” BLOCK “D”
  • 16. Abril 2012 pág. 16 pág. 16 BLOCK “A” BLOCK “B” DIAFRAGMAS 3º NIVEL (AZOTEAS) : Seindican valoresdela 1º alternancia de la carga viva (L1) y 2º alternancia (L2) en kg/m2
  • 17. Abril 2012 pág. 17 pág. 17 BLOCK “C” BLOCK “D”
  • 18. Abril 2012 pág. 18 pág. 18 3. ANALISIS SISMICOS.- 3.1 FACTORES PARA EL ANALISIS El Análisis Sísmico se realiza utilizando un modelo matemático tridimensional en donde los elementos verticales están conectados con diafragmas horizontales, los cuales se suponen infinitamente rígidos en sus planos. Además, para cada dirección, se ha considerado una excentricidad accidental de 0.05 veces la dimensión del edificio en la dirección perpendicular a la acción de la fuerza. Los parámetros sísmicos que estipula la Norma de Diseño Sismorresistente (NTE E.030) considerados para el Análisis en el Edificio son los siguientes: Factor Nomenclatura Clasificación Categórica Tipo Valor Justificación Zona Z 3 0.4 Zona Sísmica 1: Lima Uso U B 1.3 Oficinas - Industria Suelo S S1 Tp (s) 1.0 0.4 Suelo GL – Grava Limo Arenosa (de E.M.S.) Coeficiente de reducción Rx Albañilería Sistema Confinada 3.00 Muros de Albañilería confinados a columnas (irregular) Ry Albañilería Sistema Confinada 3.00 Muros de Albañilería confinados a columnas (irregular) Para los casos de configuración irregular, según configuración estructural descrita en el Item 1.2 de cada Block y en cada dirección, el valor “R” se tomara como los 3/4 del valor de la tabla anterior: R= 2.25 3.2 ANALISIS DINAMICO 3.2.1 ESPECTRO DE PSEUDO ACELERACIONES Para el Análisis Dinámico de la Estructura se utiliza un Espectro de respuesta según la NTE - E.030, para comparar la fuerza cortante mínima en la base y compararlos con los resultados de un análisis estático. Todo esto para cada dirección de la Edificación en planta (X e Y) BLOCK “A”: Sa = ZUSC.g ; g = 9.81 m/s2 y C=2.5(Tp/T) < 2.5 R
  • 19. Abril 2012 pág. 19 pág. 19 T C=2.5(Tp/T) "C" correg Sa X Sa Y 0.05 20.000 2.500 0.578 0.433 0.10 10.000 2.500 0.578 0.433 0.15 6.667 2.500 0.578 0.433 0.20 5.000 2.500 0.578 0.433 0.25 4.000 2.500 0.578 0.433 0.30 3.333 2.500 0.578 0.433 0.35 2.857 2.500 0.578 0.433 0.40 2.500 2.500 0.578 0.433 0.45 2.222 2.222 0.514 0.385 0.50 2.000 2.000 0.462 0.347 0.55 1.818 1.818 0.420 0.315 0.60 1.667 1.667 0.385 0.289 0.65 1.538 1.538 0.356 0.267 0.70 1.429 1.429 0.330 0.248 0.75 1.333 1.333 0.308 0.231 0.80 1.250 1.250 0.289 0.217 0.85 1.176 1.176 0.272 0.204 0.90 1.111 1.111 0.257 0.193 1.05 0.952 0.952 0.220 0.165 1.10 0.909 0.909 0.210 0.158 1.15 0.870 0.870 0.201 0.151 1.20 0.833 0.833 0.193 0.144 1.25 0.800 0.800 0.185 0.139 1.30 0.769 0.769 0.178 0.133 1.35 0.741 0.741 0.171 0.128 1.40 0.714 0.714 0.165 0.124 1.45 0.690 0.690 0.159 0.120 1.50 0.667 0.667 0.154 0.116 1.55 0.645 0.645 0.149 0.112 1.60 0.625 0.625 0.144 0.108 1.65 0.606 0.606 0.140 0.105 1.70 0.588 0.588 0.136 0.102 1.75 0.571 0.571 0.132 0.099 1.80 0.556 0.556 0.128 0.096 1.85 0.541 0.541 0.125 0.094 1.90 20.000 2.500 0.578 0.433 1.95 10.000 2.500 0.578 0.433 2.00 6.667 2.500 0.578 0.433 2.05 5.000 2.500 0.578 0.433 → Espectro similar para Block “B”, “C” y “D”, según configuración estructural de cada block y en cada dirección descrita en el Item 1.2
  • 20. Abril 2012 pág. 20 pág. 20 3.2.2 PERIODOS Y MASA PARTICIPANTE Los periodos y la masa participante calculados mediante un análisis dinámico para 12 modos de vibración (3 modos por cada nivel), se presentan a continuación: BLOCK “A”: TABLE: Modal Participating Mass Ratios StepType Period UX UY UZ SumUX SumUY SumUZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.239882 18.3321 16.5799 0.0977 18.3321 16.5799 0.0977 Mode 2 0.173818 13.7543 54.6612 0.2294 32.0864 71.2411 0.3271 Mode 3 0.094674 51.6391 3.2801 0.0289 83.7255 74.5212 0.356 Mode 4 0.084968 0.1455 6.406 0.8161 83.871 80.9272 1.1721 Mode 5 0.08331 0.3833 3.2244 0.503 84.2543 84.1516 1.6751 Mode 6 0.080698 0.0488 1.097 0.3464 84.303 85.2486 2.0216 Mode 7 0.078393 0.7367 0.0009 0.5447 85.0398 85.2495 2.5662 Mode 8 0.071102 0.2887 0.0001 1.3471 85.3285 85.2496 3.9133 Mode 9 0.070833 0.3391 0.3115 1.3042 85.6675 85.5611 5.2176 Mode 10 0.069841 0.2972 0.1165 0.1997 85.9648 85.6776 5.4173 Mode 11 0.065056 1.4722 3.9007 7.7393 87.4369 89.5783 13.1566 Mode 12 0.062485 0.0619 0.1451 0.0479 87.4989 89.7234 13.2045 TABLE: Modal Participating Mass Ratios StepType Period RX RY RZ SumRX SumRY SumRZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.239882 22.902 18.967 21.037 22.902 18.967 21.037 Mode 2 0.173818 68.450 11.730 17.230 91.352 30.696 38.266 Mode 3 0.094674 1.874 44.987 14.324 93.226 75.683 52.590 Mode 4 0.084968 0.294 0.158 2.266 93.521 75.841 54.856 Mode 5 0.08331 0.363 0.093 3.897 93.884 75.934 58.753 Mode 6 0.080698 0.170 2.020 24.086 94.053 77.954 82.839 Mode 7 0.078393 0.025 0.214 0.008 94.078 78.168 82.848 Mode 8 0.071102 0.197 0.067 0.256 94.275 78.235 83.103 Mode 9 0.070833 0.037 0.202 0.003 94.311 78.437 83.107 Mode 10 0.069841 0.003 0.001 0.977 94.315 78.437 84.083 Mode 11 0.065056 0.394 0.442 1.601 94.708 78.880 85.685 Mode 12 0.062485 0.032 0.022 0.008 94.740 78.902 85.693 ProgramName Versión ProgLevel ETABS Nonlinear 9.7.3 Advanced TABLE: Modal Load Participation Ratios Item Type Item Static Dynamic Text Text Percent Percent Accel UX 98.7819 87.4989 Accel UY 98.9095 89.7234 Accel UZ 40.1874 13.2045 Accel RX 96.6666 94.7398 Accel RY 97.5615 78.9016 Accel RZ 84.8768 85.6926 TABLE: Modal Periods And Frequencies StepType Period Frequency CircFreq Text Sec Cyc/sec rad/sec Mode 1 0.23988 4.1687 26.1929 Mode 2 0.17382 5.7531 36.1482 Mode 3 0.09467 10.5626 66.3667 Mode 4 0.08497 11.7691 73.9478 Mode 5 0.08331 12.0034 75.4195 Mode 6 0.08070 12.3919 77.8607 Mode 7 0.07839 12.7562 80.1500 Mode 8 0.07110 14.0643 88.3688 Mode 9 0.07083 14.1177 88.7044 Mode 10 0.06984 14.3182 89.9643 Mode 11 0.06506 15.3714 96.5814 Mode 12 0.06249 16.0038 100.5553
  • 21. Abril 2012 pág. 21 pág. 21 BLOCK “B”: TABLE: Modal Participating Mass Ratios StepType Period UX UY UZ SumUX SumUY SumUZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.21184 50.8566 0.6326 0.0003 50.8566 0.6326 0.0003 Mode 2 0.15384 1.4164 73.9093 0.2452 52.273 74.5419 0.2455 Mode 3 0.10451 20.8761 0.4681 0.017 73.1491 75.01 0.2625 Mode 4 0.08807 14.2866 0.0776 0.0134 87.4357 75.0875 0.2759 Mode 5 0.07285 0.0000 0.8419 0.1327 87.4357 75.9294 0.4086 Mode 6 0.07162 0.0025 1.0515 1.2832 87.4381 76.9809 1.6918 Mode 7 0.06773 0.0385 0.2540 0.1916 87.4767 77.2349 1.8833 Mode 8 0.06447 0.1985 0.4630 0.0458 87.6752 77.6979 1.9292 Mode 9 0.06363 0.0001 0.1541 0.3654 87.6753 77.8519 2.2946 Mode 10 0.06215 1.1305 0.5672 0.0072 88.8058 78.4191 2.3018 Mode 11 0.06006 2.6757 0.0651 0.0079 91.4815 78.4843 2.3097 Mode 12 0.05694 0.0127 8.3795 9.5598 91.4941 86.8638 11.8695 TABLE: Modal Participating Mass Ratios StepType Period RX RY RZ SumRX SumRY SumRZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.21184 1.814 57.153 27.032 1.814 57.153 27.032 Mode 2 0.15384 96.051 1.147 0.545 97.865 58.300 27.577 Mode 3 0.10451 0.005 29.710 53.402 97.869 88.010 80.979 Mode 4 0.08807 0.165 2.637 0.027 98.034 90.647 81.006 Mode 5 0.07285 0.021 0.001 0.094 98.055 90.648 81.101 Mode 6 0.07162 0.074 0.001 0.535 98.129 90.649 81.636 Mode 7 0.06773 0.002 0.006 0.001 98.131 90.656 81.637 Mode 8 0.06447 0.071 0.001 1.402 98.202 90.657 83.039 Mode 9 0.06363 0.033 0.010 0.909 98.235 90.666 83.948 Mode 10 0.06215 0.083 0.004 1.799 98.318 90.671 85.747 Mode 11 0.06006 0.152 0.002 3.216 98.470 90.672 88.963 Mode 12 0.05694 0.002 0.097 0.036 98.472 90.769 88.999 TABLE: Modal Load Participation Ratios Item Type Item Static Dynamic Text Text Percent Percent Accel UX 99.5592 91.4941 Accel UY 98.7974 86.8638 Accel UZ 28.0418 11.8695 Accel RX 97.5156 98.4715 Accel RY 98.7679 90.7689 Accel RZ 70.9884 88.9986 TABLE: Modal Periods And Frequencies StepType Period Frequency CircFreq Text Sec Cyc/sec rad/sec Mode 1 0.21184 4.7205 29.6596 Mode 2 0.15384 1.4164 8.8995 Mode 3 0.10451 20.8761 131.1687 Mode 4 0.08807 14.2866 89.7656 Mode 5 0.07285 0.0000 0.0000 Mode 6 0.07162 0.0025 0.0157 Mode 7 0.06773 0.0385 0.2419 Mode 8 0.06447 0.1985 1.2472 Mode 9 0.06363 0.0001 0.0006 Mode 10 0.06215 1.1305 7.1032 Mode 11 0.06006 2.6757 16.8120 Mode 12 0.05694 0.0127 0.0798
  • 22. Abril 2012 pág. 22 pág. 22 BLOCK “C”: TABLE: Modal Participating Mass Ratios StepType Period UX UY UZ SumUX SumUY SumUZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.14862 41.7586 23.4959 0.024 41.7586 23.4959 0.024 Mode 2 0.12737 28.0867 56.5904 0.0219 69.8453 80.0863 0.0459 Mode 3 0.08945 17.2496 4.1525 0.0074 87.0948 84.2388 0.0533 Mode 4 0.06455 0.0179 0.4830 0.0583 87.1127 84.7218 0.1116 Mode 5 0.06366 0.0341 0.3239 0.2052 87.1468 85.0457 0.3168 Mode 6 0.06173 0.1585 0.2198 0.0068 87.3053 85.2654 0.3236 Mode 7 0.05844 1.0930 0.0453 0.0058 88.3983 85.3107 0.3294 Mode 8 0.05428 0.0215 3.0404 8.1309 88.4198 88.3511 8.4603 Mode 9 0.052001 3.8388 1.9273 0.6422 92.2586 90.2784 9.1025 Mode 10 0.050057 0.1338 0.0773 0.0349 92.3924 90.3557 9.1374 Mode 11 0.048715 2.6811 0.1565 0.2684 95.0735 90.5122 9.4058 Mode 12 0.046885 0.888 1.8929 0.0416 95.9615 92.4051 9.4474 TABLE: Modal Participating Mass Ratios StepType Period RX RY RZ SumRX SumRY SumRZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.14862 26.46 39.30 21.23 26.46 39.30 21.23 Mode 2 0.12737 63.83 27.73 0.64 90.29 67.03 21.88 Mode 3 0.08945 4.57 17.24 66.40 94.85 84.27 88.28 Mode 4 0.06455 0.00 0.00 0.34 94.86 84.27 88.62 Mode 5 0.06366 0.00 0.00 0.64 94.86 84.27 89.26 Mode 6 0.06173 0.00 0.01 0.01 94.86 84.28 89.27 Mode 7 0.05844 0.00 0.00 0.32 94.86 84.28 89.60 Mode 8 0.05428 0.27 0.34 0.36 95.13 84.61 89.96 Mode 9 0.052001 0.01 0.10 2.03 95.14 84.71 91.98 Mode 10 0.050057 0.01 0.01 0.01 95.15 84.72 92.00 Mode 11 0.048715 0.00 0.04 0.46 95.15 84.76 92.46 Mode 12 0.046885 0.08 0.31 0.02 95.23 85.06 92.48 TABLE: Modal Load Participation Ratios Item Type Item Static Dynamic Text Text Percent Percent Accel UX 99.649 95.9615 Accel UY 99.1573 92.4051 Accel UZ 23.0017 9.4474 Accel RX 97.7261 95.2295 Accel RY 100.248 85.0637 Accel RZ -201.3575 92.4812 TABLE: Modal Periods And Frequencies StepType Period Frequency CircFreq Text Sec Cyc/sec rad/sec Mode 1 0.14862 6.7284 42.2758 Mode 2 0.12737 28.0867 176.4744 Mode 3 0.08945 17.2496 108.3827 Mode 4 0.06455 0.0179 0.1125 Mode 5 0.06366 0.0341 0.2143 Mode 6 0.06173 0.1585 0.9959 Mode 7 0.05844 1.0930 6.8675 Mode 8 0.05428 0.0215 0.1351 Mode 9 0.052001 3.8388 24.1199 Mode 10 0.050057 0.1338 0.8407 Mode 11 0.048715 2.6811 16.8459 Mode 12 0.046885 0.888 5.5795
  • 23. Abril 2012 pág. 23 pág. 23 BLOCK “D”: TABLE: Modal Participating Mass Ratios StepType Period UX UY UZ SumUX SumUY SumUZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.20286 0.9590 47.1199 0.001 0.959 47.1199 0.001 Mode 2 0.16026 73.7838 1.7012 0.3096 74.7428 48.8212 0.3106 Mode 3 0.10767 0.4574 28.8167 0.0071 75.2002 77.6379 0.3177 Mode 4 0.08533 0.1031 11.3450 0.0121 75.3034 88.9829 0.3298 Mode 5 0.07031 4.2850 0.0030 5.8399 79.5883 88.9858 6.1697 Mode 6 0.06826 0.0818 0.0042 1.1114 79.6702 88.99 7.2812 Mode 7 0.06214 0.6243 0.3548 0.1217 80.2945 89.3448 7.4029 Mode 8 0.05978 0.1464 0.0002 1.2206 80.4409 89.345 8.6235 Mode 9 0.05885 3.1544 1.5582 1.176 83.5954 90.9033 9.7995 Mode 10 0.05642 4.7316 0.5012 6.2489 88.327 91.4045 16.0484 Mode 11 0.05297 0.0553 0.0224 0.0833 88.3823 91.4269 16.1317 Mode 12 0.05262 0.0280 1.1499 0.0707 88.4103 92.5768 16.2024 TABLE: Modal Participating Mass Ratios StepType Period RX RY RZ SumRX SumRY SumRZ Text Sec Unitless Unitless Unitless Unitless Unitless Unitless Mode 1 0.20286 48.165 2.583 30.319 48.165 2.583 30.319 Mode 2 0.16026 1.341 95.434 0.452 49.506 98.016 30.771 Mode 3 0.10767 33.843 0.003 48.308 83.350 98.019 79.079 Mode 4 0.08533 0.987 0.223 0.505 84.337 98.242 79.584 Mode 5 0.07031 0.12 0.04 0.41 84.45 98.28 79.99 Mode 6 0.06826 0.01 0.00 0.02 84.47 98.28 80.01 Mode 7 0.06214 0.01 0.00 2.27 84.48 98.29 82.27 Mode 8 0.05978 0.01 0.03 0.27 84.48 98.31 82.55 Mode 9 0.05885 0.00 0.26 7.28 84.48 98.57 89.83 Mode 10 0.05642 0.07 0.02 0.01 84.55 98.59 89.84 Mode 11 0.05297 0.03 0.00 0.02 84.58 98.59 89.86 Mode 12 0.05262 0.79 0.01 0.11 85.36 98.59 89.97 TABLE: Modal Load Participation Ratios Item Type Item Static Dynamic Text Text Percent Percent Accel UX 98.9876 88.4103 Accel UY 99.5727 92.5768 Accel UZ 37.463 16.2024 Accel RX 97.2214 85.3626 Accel RY 130.3892 98.5944 Accel RZ -27.3709 89.9707 TABLE: Modal Periods And Frequencies StepType Period Frequency CircFreq Text Sec Cyc/sec rad/sec Mode 1 0.20286 4.9296 30.9734 Mode 2 0.16026 73.7838 463.5984 Mode 3 0.10767 0.4574 2.8739 Mode 4 0.08533 0.1031 0.6478 Mode 5 0.07031 4.2850 26.9235 Mode 6 0.06826 0.0818 0.5140 Mode 7 0.06214 0.6243 3.9226 Mode 8 0.05978 0.1464 0.9199 Mode 9 0.05885 3.1544 19.8197 Mode 10 0.05642 4.7316 29.7296 Mode 11 0.05297 0.0553 0.3475 Mode 12 0.05262 0.0280 0.1759
  • 24. Abril 2012 pág. 24 pág. 24 3.3ANALISIS ESTATICO Se calculara el Cortante Estático con los valores de los parámetros definidos anteriormente, además de definir el Peso de la Estructura y el Factor de Ampliación Dinámica (C). 3.3.1 PESO DE LA ESTRUCTURA (P) La estructura clasifico como categoría B, por lo tanto el peso que se ha considerado para el análisis sísmico es el debido a la carga permanente más el 50% de la carga viva (100%CM + 50%CV). En azoteas y techo en general se considera el 50% de la carga viva (100%CM + 50%CV). CARGA MUERTA: El valor de las Cargas Muertas empleadas comprende el peso propio de los elementos estructurales (losas, vigas, columnas, placas, muros, etc.) según características descritas en el Ítem 1.3; además del peso de los elementos aligeradores en losas, el peso de la tabiquería y el peso de los acabados, según: CARGA VIVA: El valor de Carga Viva empleada es de 250 kg/m2 del 1°, 2º,3 º y 4 º nivel (Oficinas), 150 kg/m2 del techo del 3° nivel (azotea), 300 kg/m2 (ss.hh.), y 400 kg/m2 (escaleras). BLOCK - A NIVEL Peso (Tn) Masa(T-s2/m) 3 80.440 8.200 2 81.310 8.288 1 107.880 10.997 TOTAL 269.630 27.485 BLOCK - C NIVEL Peso (Tn) Masa(T-s2/m) 3 102.620 10.461 2 103.830 10.584 1 107.060 10.913 TOTAL 313.510 31.958 3.3.2 FACTOR DE AMPLIFICACIÓN SÍSMICA (C) y PERIODO FUNDAMENTAL (T) Para el cálculo del Factor de Amplificación Sísmica en los Análisis se consideró el periodo fundamental estimado en la Norma NTE. E.030, según: C= 2.5 (Tp/T) ≤ ≤ ≤ ≤ 2.5 BLOCK - A Dirección Ct Hn T = hn/Ct C C/R > 0.125 X-X 60 9.95 0.166 2.50 1.111 Y-Y 60 9.95 0.166 2.50 0.833 BLOCK - B Dirección Ct Hn T = hn/Ct C C/R > 0.125 X-X 60 13.20 0.220 2.50 1.111 Y-Y 60 13.20 0.220 2.50 0.833 BLOCK - C Dirección Ct Hn T = hn/Ct C C/R > 0.125 X-X 60 9.95 0.166 2.50 1.111 Y-Y 60 9.95 0.166 2.50 1.111 Peso propio (Aligerado con Ladrillo de arcilla): e= 0.20m: 300 kg/m2 Peso Muerto: Acabados: 100 kg/m2 Tab. Móvil: 100 kg/m2 Albañilería: 1850 kg/m2 (maciza) Albañilería: 1350 kg/m2 (tubular) BLOCK - B NIVEL Peso (Tn) Masa(T-s2/m) 4 26.900 2.742 3 81.830 8.341 2 87.290 8.898 1 88.850 9.057 TOTAL 284.870 29.039 BLOCK - D NIVEL Peso (Tn) Masa(T-s2/m) 4 29.170 2.973 3 95.240 9.708 2 112.650 11.483 1 114.590 11.681 TOTAL 351.650 35.846
  • 25. Abril 2012 pág. 25 pág. 25 BLOCK - D Dirección Ct Hn T = hn/Ct C C/R > 0.125 X-X 60 13.20 0.220 2.50 0.833 Y-Y 60 13.20 0.220 2.50 1.111 3.3.3 FUERZA CORTANTE EN LA BASE (V) La Fuerza Cortante en la Base de la Edificación se determina como una fracción del peso total de la Edificación mediante la siguiente expresión: 3.3.4 DISTRIBUCIÓN DE FUERZA CORTANTE EN ELEVACIÓN Si “T” > 0.7s, una parte de la Cortante basal “V” denominada “Fa” se aplicara como fuerza concentrada en la parte superior de la edificación, calculada según: Fa = 0.07(T)(V) ≤ 0.15 V “FI” - entrepisos “BLOCK A” NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn) 3 80.44 9.950 800.38 72.605 54.454 2 81.31 6.700 544.78 49.419 37.064 1 107.88 3.450 372.19 33.762 25.322 TOTAL 269.63 1717.3 155.786 116.840 V = ZUSC.P → BLOCK “A”: Vx = 0.578*P = 155.79 tn y Vy = 0.433*P = 116.84 tn R BLOCK “B”: Vx = 0.578*P = 164.69 tn y Vy = 0.433*P = 123.44 tn BLOCK “C”: Vx = 0.578*P = 181.14 tn y Vy = 0.578*P = 181.14 tn BLOCK “D”: Vx = 0.433*P = 152.38 tn y Vy = 0.578*P = 203.18 tn → T= 0.506 s → Fa = 0 El resto de la Cortante Basal (V-Fa) se distribuye en cada nivel de la Edificación, incluyendo el último, según la fórmula: Fi = Pi x hi x (V-Fa) ∑(Pi x hi)
  • 26. Abril 2012 pág. 26 pág. 26 “FI” - entrepisos “BLOCK B” NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn) 4 26.90 13.200 355.08 28.361 21.271 3 81.83 9.950 814.21 65.033 48.775 2 87.29 6.700 584.84 46.713 35.035 1 88.85 3.450 306.53 24.484 18.363 TOTAL 284.87 2060.7 164.592 123.444 “FI” - entrepisos “BLOCK C” NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn) 3 102.62 9.950 1021.07 88.661 88.661 2 103.83 6.700 695.66 60.406 60.406 1 107.06 3.450 369.36 32.072 32.072 TOTAL 313.51 2086.1 181.139 181.139 “FI” - entrepisos “BLOCK D” NIVEL "Pi" (Tn) hi (m) Pi x hi Fix (Tn) Fiy (Tn) 4 29.17 13.200 385.04 23.632 31.510 3 95.24 9.950 947.64 58.162 77.549 2 112.65 6.700 754.76 46.324 61.765 1 114.59 3.450 395.34 24.264 32.352 TOTAL 351.65 2482.8 152.382 203.176
  • 27. Abril 2012 pág. 27 pág. 27 Se indican: - Cargas de Sismo Estático en “X”: En C.M. de diafragmas del cada nivel – por cada BLOCK - Cargas de Sismo Estático en “Y”: En C.M. de diafragmas del cada nivel – por cada BLOCK
  • 28. Abril 2012 pág. 28 pág. 28
  • 29. Abril 2012 pág. 29 pág. 29 3.4 FUERZA CORTANTE PARA EL DISEÑO DE COMPONENTES ESTRUCTURALES La respuesta máxima dinámica esperada para el cortante basal se calcula utilizando el criterio de combinación cuadrática completa para todos los modos de vibración calculados. De acuerdo a la norma vigente, el cortante dinámico no deberá ser menor al 80% del cortante estático para edificios regulares ni del 90% para edificios irregulares. De acuerdo a esto se comparan los resultados obtenidos. BLOCK “A”: Dirección Block A ANALISIS ESTATICO ANALISIS DINAMICO FUERZA DISEÑO T(s) V (Tn) % V (Tn) T(s) V (Tn) X-X 0.166 155.79 140.21 (90%) 0.095 84.00 140.21
  • 30. Abril 2012 pág. 30 pág. 30 Y-Y 0.166 116.84 93.47 (80%) 0.174 65.68 93.47 BLOCK “B”: Dirección Block A ANALISIS ESTATICO ANALISIS DINAMICO FUERZA DISEÑO T(s) V (Tn) % V (Tn) T(s) V (Tn) X-X 0.220 164.59 148.13 (90%) 0.212 93.10 148.13 Y-Y 0.220 123.44 98.75 (80%) 0.154 88.73 98.75
  • 31. Abril 2012 pág. 31 pág. 31 BLOCK “C”: Dirección Block A ANALISIS ESTATICO ANALISIS DINAMICO FUERZA DISEÑO T(s) V (Tn) % V (Tn) T(s) V (Tn) X-X 0.166 181.14 163.03 (90%) 0.149 102.10 163.03 Y-Y 0.166 181.14 163.03 (90%) 0.127 114.33 163.03
  • 32. Abril 2012 pág. 32 pág. 32 BLOCK “D”: Dirección Block A ANALISIS ESTATICO ANALISIS DINAMICO FUERZA DISEÑO T(s) V (Tn) % V (Tn) T(s) V (Tn) X-X 0.220 152.38 121.91 (80%) 0.160 110.06 121.91 Y-Y 0.220 203.18 182.86 (90%) 0.203 114.21 182.86
  • 33. Abril 2012 pág. 33 pág. 33 II II II III. I. I. I. EVALUACION EVALUACION EVALUACION EVALUACION. . . .- - - - 4. CONTROL DE DESPLAZAMIENTOS LATERALES.- BLOCK “A”: BLOCK “B”: Diaphragm CM Displacementes Story Drifts
  • 34. Abril 2012 pág. 34 pág. 34 BLOCK “C”: BLOCK “D”: De acuerdo a la Norma NTE. E030, para el control de los desplazamientos laterales, los resultados deberán ser multiplicados por el valor de 0.75R para calcular los máximos desplazamientos laterales de la estructura. Se tomaron los desplazamientos del centro de masa y del eje más alejado Los resultados se muestran en la siguiente tabla para cada dirección de análisis. Donde: ∆i/he = Desplazamiento relativo de entrepiso Además: ∆iX/heX (máx.) = 0.0070 (máximo permisible Concreto Armado, NTE E.030 – 3.8) ∆iY/heY (máx.) = 0.0050 (máximo permisible Albañilería confinada, NTE E.030 – 3.8)
  • 35. Abril 2012 pág. 35 pág. 35 Se observa que tanto en el Eje del Centro de Masa como en los Ejes más alejados de este en cada dirección, todos los entrepisos cumplen con el Desplazamiento relativo máximo permisible de entrepiso (∆i/he)MAX en ambas direcciones. BLOCK “A”: BLOCK “B”:
  • 36. Abril 2012 pág. 36 pág. 36 BLOCK “C”: BLOCK “D”:
  • 37. Abril 2012 pág. 37 pág. 37 4.1 DESPLAZAMIENTOS DE CENTROS DE MASA Y EXTREMOS DE DIAFRAGMAS (PORNIVELES) BLOCK “A”: Desplazamiento Relativo de Entrepiso del Centro de Masa DIRECCION X-X DIRECCION Y-Y NIVEL he ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. (m) he he absolt. (cm) (cm) absolt. (cm) (cm) 3 3.25 0.00154 0.00176 1.286 0.500 0.00260 OK 1.455 0.573 0.0040 OK 2 3.25 0.00177 0.00202 0.786 0.574 0.00298 OK 0.882 0.656 0.0045 OK 1 3.45 0.00062 0.00066 0.213 0.213 0.00104 OK 0.226 0.226 0.0015 OK
  • 38. Abril 2012 pág. 38 pág. 38 Desplazamiento Relativo de Entrepiso del Eje extremo DIRECCION X-X DIRECCION Y-Y NIVEL he ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. (m) he he absolt. (cm) (cm) absolt. (cm) (cm) 3 3.25 0.00173 0.00236 1.348 0.562 0.00292 OK 1.649 0.768 0.0053 OK 2 3.25 0.00177 0.00202 0.786 0.574 0.00298 OK 0.882 0.656 0.0045 OK 1 3.45 0.00062 0.00066 0.213 0.213 0.00104 OK 0.226 0.226 0.0015 OK
  • 39. Abril 2012 pág. 39 pág. 39 BLOCK “B”: Desplazamiento Relativo de Entrepiso del Centro de Masa DIRECCION X-X DIRECCION Y-Y NIVEL ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. he he absolt. (cm) (cm) absolt. (cm) (cm) 4 0.00188 0.00081 1.735 0.612 0.00318 OK 0.914 0.263 0.0018 OK 3 0.00141 0.00080 1.123 0.458 0.00238 OK 0.651 0.258 0.0018 OK 2 0.00148 0.00082 0.665 0.510 0.00249 OK 0.393 0.282 0.0018 OK 1 0.00096 0.00069 0.155 0.155 0.00161 OK 0.111 0.111 0.0015 OK
  • 40. Abril 2012 pág. 40 pág. 40 Desplazamiento Relativo de Entrepiso del Eje extremo DIRECCION X-X DIRECCION Y-Y NIVEL ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. he he absolt. (cm) (cm) absolt. (cm) (cm) 4 0.00188 0.00093 1.752 0.612 0.00318 OK 1.049 0.303 0.0021 OK 3 0.00146 0.00109 1.140 0.475 0.00247 OK 0.747 0.354 0.0025 OK 2 0.00148 0.00082 0.665 0.510 0.00249 OK 0.393 0.282 0.0018 OK 1 0.00096 0.00069 0.155 0.155 0.00161 OK 0.111 0.111 0.0015 OK
  • 41. Abril 2012 pág. 41 pág. 41 BLOCK “C”: Desplazamiento Relativo de Entrepiso del Centro de Masa DIRECCION X-X DIRECCION Y-Y NIVEL ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. he he absolt. (cm) (cm) absolt. (cm) (cm) 3 0.00052 0.00056 0.507 0.170 0.00088 OK 0.505 0.181 0.0013 OK 2 0.00067 0.00066 0.337 0.232 0.00114 OK 0.324 0.228 0.0015 OK 1 0.00065 0.00059 0.105 0.105 0.00109 OK 0.096 0.096 0.0013 OK
  • 42. Abril 2012 pág. 42 pág. 42 Desplazamiento Relativo de Entrepiso del Eje extremo DIRECCION X-X DIRECCION Y-Y NIVEL ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. he he absolt. (cm) (cm) absolt. (cm) (cm) 3 0.00068 0.00097 0.557 0.220 0.00114 OK 0.639 0.315 0.0022 OK 2 0.00067 0.00066 0.337 0.232 0.00114 OK 0.324 0.228 0.0015 OK 1 0.00065 0.00059 0.105 0.105 0.00109 OK 0.096 0.096 0.0013 OK
  • 43. Abril 2012 pág. 43 pág. 43 BLOCK “D”: Desplazamiento Relativo de Entrepiso del Centro de Masa DIRECCION X-X DIRECCION Y-Y NIVEL ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. he he absolt. (cm) (cm) absolt. (cm) (cm) 4 0.00087 0.00173 0.957 0.282 0.00147 OK 1.519 0.562 0.0039 OK 3 0.00083 0.00119 0.675 0.270 0.00140 OK 0.957 0.385 0.0027 OK 2 0.00084 0.00126 0.404 0.289 0.00142 OK 0.572 0.434 0.0028 OK 1 0.00071 0.00086 0.115 0.115 0.00120 OK 0.139 0.139 0.0019 OK
  • 44. Abril 2012 pág. 44 pág. 44 Desplazamiento Relativo de Entrepiso del Eje extremo DIRECCION X-X DIRECCION Y-Y NIVEL ∆ix ∆iy desplazam. ∆i (∆i/he)*0.75R OBS. desplazam. ∆i (∆i/he)*0.75R OBS. he he absolt. (cm) (cm) absolt. (cm) (cm) 4 0.00087 0.00173 1.061 0.282 0.00147 OK 1.539 0.562 0.0039 OK 3 0.00115 0.00125 0.778 0.374 0.00194 OK 0.977 0.405 0.0028 OK 2 0.00084 0.00126 0.404 0.289 0.00142 OK 0.572 0.434 0.0028 OK 1 0.00071 0.00086 0.115 0.115 0.00120 OK 0.139 0.139 0.0019 OK
  • 45. Abril 2012 pág. 45 pág. 45 5. DE DISEÑO DE COMPONENTES DE C°A°.-
  • 46. Abril 2012 pág. 46 pág. 46 5.1 DISEÑO DE VIGAS Y COLUMNAS DE CºAº Diseño de refuerzo longitudinal en los miembros (frame) de C°A° (Se indican áreas “As” en cm2): BLOCK “A”: BLOCK “B”:
  • 47. Abril 2012 pág. 47 pág. 47 BLOCK “C”: BLOCK “D”:
  • 48. Abril 2012 pág. 48 pág. 48 BLOCK “A” - 1º, 2º y 3º NIVEL: Áreas de acero longitudinal “As” en vigas.
  • 49. Abril 2012 pág. 49 pág. 49 Áreas de acero por corte “Av” en vigas.
  • 50. Abril 2012 pág. 50 pág. 50 BLOCK “B” - 1ºal 4º NIVEL: Áreas de acero longitudinal “As” en vigas.
  • 51. Abril 2012 pág. 51 pág. 51 Áreas de acero por corte “Av” en vigas.
  • 52. Abril 2012 pág. 52 pág. 52 BLOCK “C” - 1º, 2º y 3º NIVEL: Áreas de acero longitudinal “As” en vigas.
  • 53. Abril 2012 pág. 53 pág. 53 Áreas de acero por corte “Av” en vigas.
  • 54. Abril 2012 pág. 54 pág. 54 BLOCK “D” - 1ºal 4º NIVEL: Áreas de acero longitudinal “As” en vigas.
  • 55. Abril 2012 pág. 55 pág. 55 Áreas de acero por corte “Av” en vigas.
  • 56. Abril 2012 pág. 56 pág. 56 Elevaciones: Vistas del refuerzo longitudinal en columnas, pórticos principales
  • 57. Abril 2012 pág. 57 pág. 57 Áreas de acero por corte “Av” en columnas, pórticos principales.
  • 58. Abril 2012 pág. 58 pág. 58
  • 59. Abril 2012 pág. 59 pág. 59 → Cálculo similar para resto de columnas Detalle de diseño de Columna entre ejes 2 y B nivel 2 Detalle de diseño de Columna entre ejes 2 y D nivel 2
  • 60. Abril 2012 pág. 60 pág. 60 → Cálculo similar para resto de Vigas Detalle de diseño de Viga en eje O, nivel 2 Detalle de diseño de Viga en eje Ñ, nivel 1
  • 61. Abril 2012 pág. 61 pág. 61 P.Prop. (c/ladrillo teknoport) : A.C.I. 318-2008: e= 0.17m: 280 kg/m2 → e ≈ L/20 → Wu/vig = (1.4WD +1.7WL )*0.4 → Mu(+/-)= coef*(Wu/vig)*LPROM 2 e= 0.20m: 300 kg/m2 (en cada tramo) e= 0.25m: 350 kg/m2 → , Ø =0.90 (flexion) → verificando As min: → → verificando por corte: → Vadm = , Ø =0.85 (cortante) → Vu = coef*(Wu/vig)*LPROM , en cada tramo. Debe cumplirse: Vu < Vadm d b c f inf ' 53 . 0 φ fy b.d.f'c φ.f'c.b.d Μu Αs . 18 , 1 36 , 2 1 1 2       − − = fy bd * 1 . 14 fy b.d c f' 0.22 Αs min > = PAÑO "P - 2": Wd: P.P.= según "e" kg/m2 f'c = 280.00 kg/cm 2 tabiq = 100.00 kg/m2 b sup= 40.00 cm acab = 100.00 kg/m2 b inf = 10.00 cm WD = (suma) kg/m2 As - = 1.122 cm2 1.016 cm2 0.302 cm2 Mu- = 0.679 Tm 0.618 Tm 0.191 Tm coef = 1/14 1/9 1/14 e losa = 20.00 cm 20.00 cm WD = 300.00 kg/m2 300.00 kg/m2 WL = 400.00 kg/m2 400.00 kg/m2 WU/VIG = 0.552 T/m 0.552 T/m L = 4.15 m 2.20 m coef = 1/11 1/11 Mu+= 0.864 Tm 0.243 Tm As+ = 1.369 cm 2 0.380 cm 2 verificando por cortante: coef = 0.500 0.500 Vu = 1.145 T 0.607 T Vadm = 1.319 T … ok 1.381 T … ok PAÑO "P - 1" y "P - 3" Wd: P.P.= según "e" kg/m2 f'c = 280.00 kg/cm 2 tabiq = 100.00 kg/m2 b sup= 40.00 cm acab = 100.00 kg/m2 b inf = 10.00 cm WD = (suma) kg/m2 As - = 2.355 cm2 1.727 cm2 Mu = 1.328 1.010 M1 = 0.565 0.565 Mw- = 0.763 Tm 0.445 Tm coef = 1/14 1/24 e losa = 20.00 cm WPP = 300.00 kg/m2 WL = 500.00 kg/m2 WU/VIG = 0.620 T/m M1 = (Wu)*(1.35m) 2 /2 L = 4.15 m coef = 1/8 Mu+= 1.335 Tm As+ = 2.137 cm 2 verificando por cortante: coef = 0.500 Vu = 1.287 T Vadm = 1.358 T … ok 5.2 DISEÑO DE LOSAS ALIGERADAS DE CºAº
  • 62. Abril 2012 pág. 62 pág. 62 S/C = 0.05 Kg/cm² γs = 0.002 Kg/cm³ γc = 0.0024 Kg/cm³ 50 cm 40 cm 70 cm 5.3 DISEÑO DE CIMENTACION DE CºAº 5.3.1 PARAMETROS DE DIMENCIONAMIENTO DE CIMENTACION TERRENO: γS = 2,000 kg/m3 Coef. Balasto: Ks = 2.83kg/cm3 σADM= 1.35 kg/cm2 ɗADM= 2.50 cm CARGA MUERTA: WD = (γS)*(h) = (2,000 kg/m3)*(0.70m) = 1,400.00 kg/m2 CARGA VIVA: El valor de Carga Viva empleada es de 250 kg/m2 (Oficinas), 500 kg/m2 (Depositos, almacenes), 300 kg/m2 (ss.hh.) y 400 kg/m2 (escaleras, corredores) (según Ítem I). Se determinan las dimensiones mínimas de cada zapata y cimiento que no excedan el asentamiento y la resistencia admisible del terreno (“qadm”, según pág. 1) CONFIGURACION EN PLANTA Y ELEVACION: Program Name Versión ProgLevel SAFE Nonlinear 12.3.1 Advanced
  • 63. Abril 2012 pág. 63 pág. 63
  • 64. Abril 2012 pág. 64 pág. 64 → Estado de Carga Muerta “CM”: cargas transmitidas por la Súper-estructura (importación ETABS a SAFE) → Estado de Carga Muerta “CM”: cargas aplicadas sobre el terreno ESTADO DE CARGA MUERTA:
  • 65. Abril 2012 pág. 65 pág. 65 → Estado de Carga Muerta “CM”: cargas trasmitidas por la Súper-estructura (importación ETABS a SAFE)
  • 66. Abril 2012 pág. 66 pág. 66 → Estado de Carga Viva. “L”: cargas aplicadas sobre el terreno → Estado de Carga Viva “L”: cargas trasmitidas por la Súper-estructura (importación ETABS a SAFE) ESTADO DE CARGA VIVA:
  • 67. Abril 2012 pág. 67 pág. 67 → Estado de Carga Viva. “L1”: cargas trasmitidas por la Súper-estructura (importación ETABS a SAFE)
  • 68. Abril 2012 pág. 68 pág. 68 → Estado de Carga de Sismo “E – dirección X” (Máxima respuesta del Análisis Dinámico): cargas trasmitidas por la Súper-estructura (Importación ETABS a SAFE) ESTADOS DE CARGA DE SISMO:
  • 69. Abril 2012 pág. 69 pág. 69 → Estado de Carga de Sismo “E – dirección Y” (Máxima respuesta del Análisis Dinámico): cargas trasmitidas por la Súper-estructura (Importación ETABS a SAFE)
  • 70. Abril 2012 pág. 70 pág. 70 → Diagrama de Presiones en el Terreno, bajo estado de Cargas “en Servicio sin considerar Sismo”(en kg/cm2) → σMAX= 1.35 kg/cm2 → Diagrama de Presiones en el Terreno, bajo estado de Cargas “en Servicio considerando Sismo”(en kg/cm2) → σMAX = 1.3*Qadm = 1.76 kg/cm2 5.3.2 VERIFICACION DE ESFUERZO Y ASENTAMIENTO DEL TERRENO:
  • 71. Abril 2012 pág. 71 pág. 71 → Diagrama de Asentamientos en el terreno, bajo estado de Cargas “en Servicio considerando Sismo” (cm). → ɗMAX= 0.63 cm Estas dimensiones de la Cimentación cumplen con los límites dados por el E.M.S.: → σADM= 1.35 kg/cm2 → ɗADM= 2.50 cm → Diagrama de Asentamientos en el terreno, bajo estado de Cargas “en Servicio sin considerar Sismo” (cm). → ɗMAX= 0.49 cm
  • 72. Abril 2012 pág. 72 pág. 72 → Nota: La distribución del refuerzo determinada por el software es referencia. La distribución más óptima y definitiva es la indicada en los respectivos Planos del proyecto. . 5.3.3 DISEÑO DE REFUERZO DE ZAPATAS. Diseño de refuerzo longitudinal en cada dirección, en zapatas y cimientos corridos.
  • 73. Abril 2012 pág. 73 pág. 73
  • 74. Abril 2012 pág. 74 pág. 74 → Nota: La distribución del refuerzo determinada por el software es referencia. La distribución más óptima y definitiva es la indicada en los respectivos Planos del proyecto. Diseño de refuerzo transversal (estribos) en zapatas y cimientos corridos.
  • 75. Abril 2012 pág. 75 pág. 75