SlideShare una empresa de Scribd logo
1 de 15
ESFUERZO Y
DEFORMACION
REALIZADO POR: DAVID GARCÍA C.I: 8,273,755
INSTITUTO UNIVERSITARIO POLITÉCNICO
SANTIAGO MARIÑO
EXTENSIÓN PORLAMAR
INTRODUCCION
 En la vida cotidiana todo cuerpo en algún momento debe soportar alguna
fuerza aplicada, el estudio de ese esfuerzo y deformación.
 En Ingeniería se seleccionan materiales para diversas aplicaciones y
componentes adecuando las propiedades del material a las condiciones
funcionales requeridas por el componente.
 El primer paso en el proceso de selección requiere el análisis de la aplicación
para determinar las características más importantes que debe poseer el
material; una vez determinadas las propiedades requeridas, se selecciona el
material adecuado usando datos que se encuentran en los manuales y bases
de datos, entonces es ideal conocer acerca del esfuerzo y la deformación que
sufren los diferentes tipos de materiales
ESFUERZO
El esfuerzo se define aquí como la intensidad de las fuerzas componentes
internas distribuidas que resisten un cambio en la forma de un cuerpo. El
esfuerzo se define en términos de fuerza por unidad de área. Existen tres
clases básicas de esfuerzos: tensivo, compresivo y corte. El esfuerzo se
computa sobre la base de las dimensiones del corte transversal de una
pieza antes de la aplicación de la carga, que usualmente se llaman
dimensiones originales.
DEFORMACIÓN
La deformación se define como el cambio de forma de un cuerpo, el cual se debe
al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En
conjunción con el esfuerzo directo, la deformación se supone como un cambio
lineal y se mide en unidades de longitud. En los ensayos de torsión se acostumbra
medir la deformación cómo un ángulo de torsión (en ocasiones llamados
detrusión) entre dos secciones especificadas.
Relación entre la deformación unitaria y la deformación
ELASTICIDAD
La elasticidad es aquella propiedad de un material por virtud de la cual las
deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas
sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero
los sólidos pueden poseer, además, elasticidad de forma.
Un cuerpo perfectamente elástico se concibe como uno que
recobra completamente su forma y sus dimensiones
originales al retirarse el esfuerzo. No se conocen materiales
que sean perfectamente elásticos a través del rango de
esfuerzos completo hasta la ruptura, aunque algunos
materiales como el acero, parecen ser elásticos en un
considerable rango de esfuerzos.
ELASTICIDAD
Algunos materiales, como el hierro fundido, el concreto, y ciertos metales no
ferrosos, son imperfectamente elásticos aun bajo esfuerzos relativamente
reducidos, pero la magnitud de la deformación permanente bajo carga de poca
duración es pequeña, de tal forma que para efectos prácticos el material se
considera como elástico hasta magnitudes de esfuerzos razonables
RESISTENCIA ÚLTIMA
El término resistencia última está relacionado con el esfuerzo máximo que un
material puede desarrollar. La resistencia a la tensiones el máximo esfuerzo de
tensión que un material es capaz de desarrollar. La figura 17 muestra,
esquemáticamente, las relaciones entre esfuerzo y deformación para un metal
dúctil y un metal no dúctil cargado hasta la ruptura por tensión
PLASTICIDAD
La plasticidad es aquella propiedad que permite al material sobrellevar
deformación permanente sin que sobrevenga la ruptura. Las evidencias de la
acción plástica en los materiales estructurales se llaman deformación, flujo
plástico y creep.
Las deformaciones plásticas son causadas por deslizamientos inducidos por esfuerzos
cortantes.Tales deformaciones pueden ocurrir en todos los materiales sometidos a
grandes esfuerzos, aun a temperaturas normales. Muchos metales muestran un
efecto de endurecimiento por deformación al sobrellevar deformaciones plásticas, ya
que después de que han ocurrido deslizamientos menores por corte no acusan
deformaciones plásticas adicionales hasta que se aplican esfuerzos mayores. No se
presentan cambios apreciables de volumen como resultado de las deformaciones
plásticas.
Deformación plástica y plano de deslizamiento
PLASTICIDAD
La plasticidad es importante en las operaciones de formación, conformación y
extrusión. Algunos metales se conforman en frío, por ejemplo, la laminación
profunda de láminas delgadas.
Muchos metales son conformados en caliente, por
ejemplo, la laminación de perfiles de acero estructural y
el forjado de ciertas partes para máquinas; los metales
como el hierro fundido se moldean en estado de fusión;
la madera se flexiona mejor mientras está seca y
caliente. Los materiales maleables son aquellos que
pueden martillarse para formar láminas delgadas sin
fractura; la maleabilidad depende tanto de la suavidad
como de la plasticidad del material.
RIGIDEZ
La rigidez tiene que ver con la deformabilidad relativa de un material bajo carga. Se le
mide por la velocidad del esfuerzo con respecto a la deformación. Mientras mayor sea el
esfuerzo requerido para producir una deformación dada, más rígido se considera que es el
material.
Bajo un esfuerzo simple dentro del rango proporcional, la razón entre el esfuerzo y la
deformación correspondiente es denominada módulo de elasticidad (E). Existen tres
módulos de elasticidad: el módulo en tensión, el módulo en compresión y el módulo en
cortante. Bajo el esfuerzo de tensión, esta medida de rigidez se denomina módulo de
Young; bajo corte simple la rigidez se denomina módulo de rigidez. En términos del
diagrama de esfuerzo y deformación, el módulo de elasticidad es la pendiente del
diagrama de esfuerzo y deformación en el rango de la proporcionalidad del esfuerzo y la
deformación
CAPACIDAD ENERGÉTICA
La capacidad de un material
para absorber o almacenar
energía se denomina
capacidad energética del
material. La cantidad de
energía absorbida al esforzar
un material hasta el límite
elástico, o la cantidad de
energía que puede
recobrarse cuando el
esfuerzo es liberado del
límite elástico, es llamada la
resiliencia elástica. La
energía almacenada por
unidad de volumen en el
límite elástico es el módulo
de resiliencia.
El módulo de resiliencia es una
medida de lo que puede llamarse
la resistencia a la energía elástica
del material y es de importancia
en la selección de materiales para
servicio, cuando las partes están
sometidas a cargas de energía,
pero cuando los esfuerzos deben
mantenerse dentro del límite
elástico (SEELEY y SMITH, 1956).
ASPECTOS GENERALES DE LA FALLA EN
LOS MATERIALES
La falla puede considerarse
como la alteración del
comportamiento
característico de acuerdo
con alguna propiedad física
básica. Por ejemplo, el es
forzamiento o deformación
de un material más allá del
límite elástico, es decir sin
recuperación de su forma o
longitud original. A nivel
macroescalar la falla puede
concebirse como el grado de
deformación qué sea
excesivo en relación con el
desempeño aceptable de un
miembro de alguna
estructura o máquina.
Esfuerzo presentacion

Más contenido relacionado

La actualidad más candente

Flexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionFlexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionLuismartin Rodriguez
 
Esfuerzo, deformacion y torsion
Esfuerzo, deformacion y torsionEsfuerzo, deformacion y torsion
Esfuerzo, deformacion y torsionAndri Mieres
 
Modulo de elasticidad
Modulo de elasticidadModulo de elasticidad
Modulo de elasticidadPablo Lázaro
 
Informe ensayo de traccion
Informe ensayo de traccionInforme ensayo de traccion
Informe ensayo de traccionLorena Guacare
 
ESFUERZO Y DEFORMACION
ESFUERZO Y DEFORMACIONESFUERZO Y DEFORMACION
ESFUERZO Y DEFORMACIONmaholyleal
 
Esfuerzo, Flexión y Torsion
Esfuerzo, Flexión y TorsionEsfuerzo, Flexión y Torsion
Esfuerzo, Flexión y Torsionenmanuelacaro
 
Vigas estaticamente determinadas e indeterminadas
Vigas estaticamente determinadas e indeterminadasVigas estaticamente determinadas e indeterminadas
Vigas estaticamente determinadas e indeterminadasSistemadeEstudiosMed
 
Fricción o rozamiento e impulso y cantidad de
Fricción o rozamiento e impulso y cantidad deFricción o rozamiento e impulso y cantidad de
Fricción o rozamiento e impulso y cantidad dejulio94
 
Diseño de miembros sometidos a carga axial.
Diseño de miembros sometidos a carga axial.Diseño de miembros sometidos a carga axial.
Diseño de miembros sometidos a carga axial.Elvir Peraza
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionArgye Lopez
 
Resistencia de los materiales columna
Resistencia de los materiales columnaResistencia de los materiales columna
Resistencia de los materiales columnaJesus Craz
 

La actualidad más candente (20)

Flexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionFlexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexion
 
Esfuerzo, deformacion y torsion
Esfuerzo, deformacion y torsionEsfuerzo, deformacion y torsion
Esfuerzo, deformacion y torsion
 
Deformación
DeformaciónDeformación
Deformación
 
Modulo de elasticidad
Modulo de elasticidadModulo de elasticidad
Modulo de elasticidad
 
Informe ensayo de traccion
Informe ensayo de traccionInforme ensayo de traccion
Informe ensayo de traccion
 
Modulo de Young
Modulo de YoungModulo de Young
Modulo de Young
 
ESFUERZO Y DEFORMACION
ESFUERZO Y DEFORMACIONESFUERZO Y DEFORMACION
ESFUERZO Y DEFORMACION
 
Esfuerzo, Flexión y Torsion
Esfuerzo, Flexión y TorsionEsfuerzo, Flexión y Torsion
Esfuerzo, Flexión y Torsion
 
Ensayo de traccion
Ensayo de traccionEnsayo de traccion
Ensayo de traccion
 
Vigas estaticamente determinadas e indeterminadas
Vigas estaticamente determinadas e indeterminadasVigas estaticamente determinadas e indeterminadas
Vigas estaticamente determinadas e indeterminadas
 
Fricción o rozamiento e impulso y cantidad de
Fricción o rozamiento e impulso y cantidad deFricción o rozamiento e impulso y cantidad de
Fricción o rozamiento e impulso y cantidad de
 
Elasticidad
Elasticidad Elasticidad
Elasticidad
 
Diseño de miembros sometidos a carga axial.
Diseño de miembros sometidos a carga axial.Diseño de miembros sometidos a carga axial.
Diseño de miembros sometidos a carga axial.
 
Deformacion-plástica-clases
Deformacion-plástica-clasesDeformacion-plástica-clases
Deformacion-plástica-clases
 
Resistencia de Materiales: Columnas Estructurales
Resistencia de Materiales: Columnas EstructuralesResistencia de Materiales: Columnas Estructurales
Resistencia de Materiales: Columnas Estructurales
 
Columnas
ColumnasColumnas
Columnas
 
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Capitulo 01-02-2015-1(2)
Capitulo 01-02-2015-1(2)Capitulo 01-02-2015-1(2)
Capitulo 01-02-2015-1(2)
 
Resistencia de los materiales columna
Resistencia de los materiales columnaResistencia de los materiales columna
Resistencia de los materiales columna
 

Similar a Esfuerzo presentacion

Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6Jacky Cedeño
 
Esfuerzo y deformacion albim
Esfuerzo y deformacion albimEsfuerzo y deformacion albim
Esfuerzo y deformacion albimJacky Cedeño
 
EsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanfEsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanfjhordanf
 
elemento de maquina
elemento de maquinaelemento de maquina
elemento de maquina3wwanuel
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materialesptr-phoo
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materialesptr-phoo
 
Resist de materiales
Resist de materialesResist de materiales
Resist de materialesDavid Suarez
 
Ductilidad
DuctilidadDuctilidad
DuctilidadBe To
 
Ductilidad
DuctilidadDuctilidad
DuctilidadBe To
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquinadiegonicol
 
esfuerzo deformacion y torsion
esfuerzo deformacion y torsionesfuerzo deformacion y torsion
esfuerzo deformacion y torsionthemiguelito2015
 
Propiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-RoseroPropiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-RoseroCarlos Rosero
 
Deformación y Esfuerzo.
Deformación y Esfuerzo. Deformación y Esfuerzo.
Deformación y Esfuerzo. Rizcala
 
Deformación y Esfuerzo
Deformación y Esfuerzo Deformación y Esfuerzo
Deformación y Esfuerzo Rizcala
 
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINASEsfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINASMaria Aular
 

Similar a Esfuerzo presentacion (20)

Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6
 
Esfuerzo y deformacion albim
Esfuerzo y deformacion albimEsfuerzo y deformacion albim
Esfuerzo y deformacion albim
 
EsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanfEsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanf
 
elemento de maquina
elemento de maquinaelemento de maquina
elemento de maquina
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materiales
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materiales
 
Resist de materiales
Resist de materialesResist de materiales
Resist de materiales
 
Ductilidad
DuctilidadDuctilidad
Ductilidad
 
Ductilidad
DuctilidadDuctilidad
Ductilidad
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquina
 
Esfuerzo
EsfuerzoEsfuerzo
Esfuerzo
 
Esfuerzo
EsfuerzoEsfuerzo
Esfuerzo
 
Deformacion y esfuerzo
Deformacion y esfuerzoDeformacion y esfuerzo
Deformacion y esfuerzo
 
Deformacion y esfuerzo
Deformacion y esfuerzoDeformacion y esfuerzo
Deformacion y esfuerzo
 
esfuerzo deformacion y torsion
esfuerzo deformacion y torsionesfuerzo deformacion y torsion
esfuerzo deformacion y torsion
 
Propiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-RoseroPropiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-Rosero
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Deformación y Esfuerzo.
Deformación y Esfuerzo. Deformación y Esfuerzo.
Deformación y Esfuerzo.
 
Deformación y Esfuerzo
Deformación y Esfuerzo Deformación y Esfuerzo
Deformación y Esfuerzo
 
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINASEsfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
 

Último

5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
1. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf2373743353471. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf237374335347vd110501
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industriesbarom
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdffredyflores58
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasAhmedMontaoSnchez1
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesjohannyrmnatejeda
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
ESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRAS
ESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRASESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRAS
ESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRASenriquezerly87
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptxEfrain Yungan
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidasNelsonQuispeQuispitu
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1victorrodrigues972054
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdffredyflores58
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasLeonardoMendozaDvila
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOCamiloSaavedra30
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
Espontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosEspontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosOscarGonzalez231938
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxJairReyna1
 

Último (20)

5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
1. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf2373743353471. Cap. 4 Carga Axial (1).pdf237374335347
1. Cap. 4 Carga Axial (1).pdf237374335347
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industries
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnas
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajes
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
ESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRAS
ESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRASESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRAS
ESTRUCTURAS EN LA SUPERVISIÓN Y RESIDENCIA DE OBRAS
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 
4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx4.3 Subestaciones eléctricas componentes principales .pptx
4.3 Subestaciones eléctricas componentes principales .pptx
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidas
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
Espontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosEspontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneos
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptx
 

Esfuerzo presentacion

  • 1. ESFUERZO Y DEFORMACION REALIZADO POR: DAVID GARCÍA C.I: 8,273,755 INSTITUTO UNIVERSITARIO POLITÉCNICO SANTIAGO MARIÑO EXTENSIÓN PORLAMAR
  • 2. INTRODUCCION  En la vida cotidiana todo cuerpo en algún momento debe soportar alguna fuerza aplicada, el estudio de ese esfuerzo y deformación.  En Ingeniería se seleccionan materiales para diversas aplicaciones y componentes adecuando las propiedades del material a las condiciones funcionales requeridas por el componente.  El primer paso en el proceso de selección requiere el análisis de la aplicación para determinar las características más importantes que debe poseer el material; una vez determinadas las propiedades requeridas, se selecciona el material adecuado usando datos que se encuentran en los manuales y bases de datos, entonces es ideal conocer acerca del esfuerzo y la deformación que sufren los diferentes tipos de materiales
  • 3. ESFUERZO El esfuerzo se define aquí como la intensidad de las fuerzas componentes internas distribuidas que resisten un cambio en la forma de un cuerpo. El esfuerzo se define en términos de fuerza por unidad de área. Existen tres clases básicas de esfuerzos: tensivo, compresivo y corte. El esfuerzo se computa sobre la base de las dimensiones del corte transversal de una pieza antes de la aplicación de la carga, que usualmente se llaman dimensiones originales.
  • 4.
  • 5. DEFORMACIÓN La deformación se define como el cambio de forma de un cuerpo, el cual se debe al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En conjunción con el esfuerzo directo, la deformación se supone como un cambio lineal y se mide en unidades de longitud. En los ensayos de torsión se acostumbra medir la deformación cómo un ángulo de torsión (en ocasiones llamados detrusión) entre dos secciones especificadas. Relación entre la deformación unitaria y la deformación
  • 6. ELASTICIDAD La elasticidad es aquella propiedad de un material por virtud de la cual las deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero los sólidos pueden poseer, además, elasticidad de forma. Un cuerpo perfectamente elástico se concibe como uno que recobra completamente su forma y sus dimensiones originales al retirarse el esfuerzo. No se conocen materiales que sean perfectamente elásticos a través del rango de esfuerzos completo hasta la ruptura, aunque algunos materiales como el acero, parecen ser elásticos en un considerable rango de esfuerzos.
  • 7. ELASTICIDAD Algunos materiales, como el hierro fundido, el concreto, y ciertos metales no ferrosos, son imperfectamente elásticos aun bajo esfuerzos relativamente reducidos, pero la magnitud de la deformación permanente bajo carga de poca duración es pequeña, de tal forma que para efectos prácticos el material se considera como elástico hasta magnitudes de esfuerzos razonables
  • 8. RESISTENCIA ÚLTIMA El término resistencia última está relacionado con el esfuerzo máximo que un material puede desarrollar. La resistencia a la tensiones el máximo esfuerzo de tensión que un material es capaz de desarrollar. La figura 17 muestra, esquemáticamente, las relaciones entre esfuerzo y deformación para un metal dúctil y un metal no dúctil cargado hasta la ruptura por tensión
  • 9. PLASTICIDAD La plasticidad es aquella propiedad que permite al material sobrellevar deformación permanente sin que sobrevenga la ruptura. Las evidencias de la acción plástica en los materiales estructurales se llaman deformación, flujo plástico y creep. Las deformaciones plásticas son causadas por deslizamientos inducidos por esfuerzos cortantes.Tales deformaciones pueden ocurrir en todos los materiales sometidos a grandes esfuerzos, aun a temperaturas normales. Muchos metales muestran un efecto de endurecimiento por deformación al sobrellevar deformaciones plásticas, ya que después de que han ocurrido deslizamientos menores por corte no acusan deformaciones plásticas adicionales hasta que se aplican esfuerzos mayores. No se presentan cambios apreciables de volumen como resultado de las deformaciones plásticas.
  • 10. Deformación plástica y plano de deslizamiento
  • 11. PLASTICIDAD La plasticidad es importante en las operaciones de formación, conformación y extrusión. Algunos metales se conforman en frío, por ejemplo, la laminación profunda de láminas delgadas. Muchos metales son conformados en caliente, por ejemplo, la laminación de perfiles de acero estructural y el forjado de ciertas partes para máquinas; los metales como el hierro fundido se moldean en estado de fusión; la madera se flexiona mejor mientras está seca y caliente. Los materiales maleables son aquellos que pueden martillarse para formar láminas delgadas sin fractura; la maleabilidad depende tanto de la suavidad como de la plasticidad del material.
  • 12. RIGIDEZ La rigidez tiene que ver con la deformabilidad relativa de un material bajo carga. Se le mide por la velocidad del esfuerzo con respecto a la deformación. Mientras mayor sea el esfuerzo requerido para producir una deformación dada, más rígido se considera que es el material. Bajo un esfuerzo simple dentro del rango proporcional, la razón entre el esfuerzo y la deformación correspondiente es denominada módulo de elasticidad (E). Existen tres módulos de elasticidad: el módulo en tensión, el módulo en compresión y el módulo en cortante. Bajo el esfuerzo de tensión, esta medida de rigidez se denomina módulo de Young; bajo corte simple la rigidez se denomina módulo de rigidez. En términos del diagrama de esfuerzo y deformación, el módulo de elasticidad es la pendiente del diagrama de esfuerzo y deformación en el rango de la proporcionalidad del esfuerzo y la deformación
  • 13. CAPACIDAD ENERGÉTICA La capacidad de un material para absorber o almacenar energía se denomina capacidad energética del material. La cantidad de energía absorbida al esforzar un material hasta el límite elástico, o la cantidad de energía que puede recobrarse cuando el esfuerzo es liberado del límite elástico, es llamada la resiliencia elástica. La energía almacenada por unidad de volumen en el límite elástico es el módulo de resiliencia. El módulo de resiliencia es una medida de lo que puede llamarse la resistencia a la energía elástica del material y es de importancia en la selección de materiales para servicio, cuando las partes están sometidas a cargas de energía, pero cuando los esfuerzos deben mantenerse dentro del límite elástico (SEELEY y SMITH, 1956).
  • 14. ASPECTOS GENERALES DE LA FALLA EN LOS MATERIALES La falla puede considerarse como la alteración del comportamiento característico de acuerdo con alguna propiedad física básica. Por ejemplo, el es forzamiento o deformación de un material más allá del límite elástico, es decir sin recuperación de su forma o longitud original. A nivel macroescalar la falla puede concebirse como el grado de deformación qué sea excesivo en relación con el desempeño aceptable de un miembro de alguna estructura o máquina.