SlideShare una empresa de Scribd logo
1 de 14
OPTIMIZACIÓN SIN RESTRICCIONES.-  Es el problema de minimizar o maximizar una función sin la existencia de restricciones. Esta función puede ser de una o más variables. Esto es importante porque un problema con restricciones puede tratarse con los multiplicadores de Lagrange como uno sin restricciones como veremos más adelante. Funciones cóncavas y convexas.-  Revisemos el concepto de función cóncava f(x) es cóncava si f(X1+  (X2-X1))>=f(X1)+  (f(X2)-f(X1)) para   entre 0 y 1. Donde la primera parte es la ecuación de la curva desde X1 hasta X2, y la segunda parte la recta que va desde f(X1) hasta f(x2). Será convexa si –f(X) es cóncava
 
Funciones cuasicóncavas y cuasiconvexas.-  La función f es cuasi convexa si para cada X1, X2 es verdad la siguiente inecuación  f(X1+  (X2-X1)) <=Máximo {f(X1), f(X2)} Esto es justamente no cuasi convexa
Búsqueda lineal sin usar derivadas.-  Supongamos que se debe minimizar f(x) sujeto a  a<=X<=b. A este intervalo se lo llama de  incertidumbre . En lo que sigue se verá un teorema que demuestra que si f es estrictamente cuasi convexa el intervalo de incertidumbre puede reducirse. Teorema.-  sea f una función cuasiconvexa en el intervalo [a,b]. Sea c y d pertenecientes al intervalo [a,b] de tal manera que c < d. Si f(c)>f(d) entonces f(e)>=f(c) para todo e entre a y c a b c d f(c) f(d) Nuevo intervalo
Estos métodos pueden ser de 2 tipos: a)  Simultáneos .- Cuando los puntos candidatos se determinan a priori; b)  Secuenciales.-  Cuando los puntos se ubican en función de los anteriores. Ejemplo de búsqueda simultánea: Búsqueda Uniforme.-  El intervalo de incertidumbre [a,b] se divide en intervalos. n son los puntos de la grilla y n-1 los espacios. Hay tantas evaluaciones funcionales como puntos tiene la grilla. Se elige en caso de un mínimo el valor menor y se toma un intervalo a la derecha y otro a la izquierda y el nuevo intervalo se vuelve a dividir en partes. En general se puede detener por pequeña diferencia entre dos valores de la función sucesivos o por tamaño del último intervalo. Ejemplo de búsqueda secuencial: Búsqueda dicotómica.-  Si coloco  c  y  d   a distancia  e  del centro de  ab, e  deberá ser suficiente grande para diferenciar sus valores funcionales pero a su vez pequeño para que el nuevo intervalo de incertidumbre sea pequeño. En este caso el nuevo intervalo de incertidumbre es  e +( b - a )/2. El proceso se detiene de la misma forma que el anterior
a b 2e c d Nuevo intervalo
Método de la relación aurea.-  En una iteración general  k  en este método tenemos el intervalo de incertidumbre [ ak, bk].  Por el teorema anterior el nuevo intervalo  [ak+1,bk+1]  está dado por  [ck,bk]  si f(ck)>f(dk) y por  [ak,dk]  si f(ck)<f(dk). Los puntos  c  y  d  se seleccionan así: 1.- La longitud del nuevo intervalo de incertidumbre  bk+1-ak+1  no debe depender del resultado de la iteración  k.  Si f(bk)>=f(ck) ó f(bk)<=f(ck) la longitud debe ser igual. Por lo tanto bk-ck=dk-ak ak bk ck dk ak+1 ak+1 bk+1 ck+1 bk+1 ck+1 dk+1 dk+1 A
Si ck es de la forma  ck=ak+(1-  )(bk-ak)  B donde   tiene un valor entre 0 y 1, entonces dk debe ser de la forma   dk=ak+   bk-ak)  C de esa manera  (bk+1)-(ak+1)=bk-ck=dk-ak=  bk-ak)  D  2.- De la manera que ck+1 y dk+1 se seleccionan para una nueva iteración ck+1 coincide con dk ó dk+1 con ck. Se demuestra que el valor de   es 0,618 Búsqueda lineal usando derivadas.-   Método de bisección.-  Supongamos que la función f es convexa y diferenciable. En la iteración n sea el intervalo de incertidumbre [ak, bk]. Supongamos que conocemos la derivada f´(k) y consideremos 3 casos: 1.- Si f´(k)=0  Por la convexidad de f, k es un mínimo 2.- Si f´(k)>0  Se entiende que el mínimo está a izquierda 3.- Si f´(k)<0  “  “  “  “  “  “  “ derecha  Para minimizar las longitudes a considerar tomaremos k en el punto medio de [ak,bk].
Búsqueda Multidimensional sin derivadas.-  Dado un vector X, se busca una buena dirección d, y se minimiza f desde X en la dirección d por una de las técnicas anteriores. Método de coordenadas cíclicas.-  A partir de un punto X se siguen una a una la dirección de los ejes de coordenadas Y X 0.05 1 0.25 5 3
Ejemplo:  Hallar el mínimo de la siguiente función Z=(X-1)^2 + (Y+5)^2 Z=X^2+Y^2-2X+10Y+25 Hagamos  X=7  y reemplacemos Z=49+Y^2-14+10Y+25 Z=Y^2+10y+60 dZ/dY=2Y+10  haciendo esto igual a 0 Y=-5 Z=X^2+25-2X+50+25 Z=X^2-2X+100 dZ/dX=2X-2  haciendo esto igual a 0 X=1 Reemplazando este valor llegaríamos a Y=-5. Por lo que se ve el método es altamente convergente
Matrices definidas y semidefinidas.-  Sea A una matriz simétrica nxn. A será positiva definida si X^t*A*X>0 para todo X en En. De la misma manera si X^t*A*X>=0 será positiva semidefinida. Si X^t*A*X<0 negativa definida. Si X^t*A*X<=0 negativa semidefinida. Sea A=[aij] una matriz simétrica de nxn y se definen los determinantes A1=|a11|  a11  a12  a11  a12  a13   A2=  A3=  a21  a22  a23   a21  a22  a31  a32  a33  Veamos los signos de A1, A2 y A3 ++++…..++++  Positiva Definida (PD) ++000..000  Positiva Semidefinida (PSD) -+-+-+  Negativa Definida (ND) -+-+00000  Negativa Semidefinida (NSD) Si la matriz hessiana de una función f(x) es PD ó PSD la función es convexa. Sea  Z=4X^2+6Y^2
df/dx  8X  8  0   Grad f(x,y)=  H f(x,y)=   df/dy  12Y  0  12 H f(x,y) es PD luego f(x,y) es convexa. Sea Z=-6X^3+5X^2+3Y^2-4XY+2   -18X^2+10x-4y  -36X+10  -4   Grad f(X,Y)  H f(X,Y)=   6Y-4X  -4  6 Para que Hf(X,Y) sea PD debe ocurrir -36X+10>0  para  X=-0,25 6(-36X+10)-16>0  Se puede comprobar gráficamente
Método por gradientes ó de la máxima pendiente.-  Eso se ve en la próxima página
 

Más contenido relacionado

La actualidad más candente

Ejemplo del Método de Bisección
Ejemplo del Método de BisecciónEjemplo del Método de Bisección
Ejemplo del Método de BisecciónDaniela Medina
 
Tarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTAS
Tarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTASTarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTAS
Tarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTASIPN
 
Ejercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealEjercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealalgebra
 
Programación lineal entera y binaria
Programación lineal entera y binariaProgramación lineal entera y binaria
Programación lineal entera y binariaJaime Medrano
 
Investigación de Operaciones 2/2
Investigación de Operaciones 2/2Investigación de Operaciones 2/2
Investigación de Operaciones 2/2CEMEX
 
Métodos de optimizacion
Métodos de optimizacionMétodos de optimizacion
Métodos de optimizacionSaid Mora
 
Historia del calculo multivariable
Historia del calculo multivariableHistoria del calculo multivariable
Historia del calculo multivariableNeLsy GaRcia
 
Ejemplo del Método de Falsa Posición
Ejemplo del Método de Falsa PosiciónEjemplo del Método de Falsa Posición
Ejemplo del Método de Falsa PosiciónDaniela Medina
 
Formulario de pruebas de hipótesis 2012-2
Formulario de pruebas de hipótesis 2012-2Formulario de pruebas de hipótesis 2012-2
Formulario de pruebas de hipótesis 2012-2ITS CONSULTORIAS S.A.C
 
Problema copiados de libros
Problema copiados de libros Problema copiados de libros
Problema copiados de libros crisojb
 
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...IPN
 
Estadistica aplicada
Estadistica aplicadaEstadistica aplicada
Estadistica aplicadaNancy Curasi
 
DERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIORDERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIOREthel Sullcaray
 
Clase Nº5 Programacion Lineal
Clase Nº5 Programacion LinealClase Nº5 Programacion Lineal
Clase Nº5 Programacion Linealjotape74
 

La actualidad más candente (20)

Ejemplo del Método de Bisección
Ejemplo del Método de BisecciónEjemplo del Método de Bisección
Ejemplo del Método de Bisección
 
Tarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTAS
Tarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTASTarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTAS
Tarea 15 de PROBABILIDAD Y ESTADISTICA CON RESPUESTAS
 
Ejercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealEjercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia lineal
 
Programación lineal entera y binaria
Programación lineal entera y binariaProgramación lineal entera y binaria
Programación lineal entera y binaria
 
Método gráfico
Método gráficoMétodo gráfico
Método gráfico
 
Programacion no lineal
Programacion no linealProgramacion no lineal
Programacion no lineal
 
ejercicios-resueltos-interpolacion-polinomial
ejercicios-resueltos-interpolacion-polinomialejercicios-resueltos-interpolacion-polinomial
ejercicios-resueltos-interpolacion-polinomial
 
Investigación de Operaciones 2/2
Investigación de Operaciones 2/2Investigación de Operaciones 2/2
Investigación de Operaciones 2/2
 
Ejercicios en integral
Ejercicios en integralEjercicios en integral
Ejercicios en integral
 
Unidad 1. Programación entera
Unidad 1. Programación enteraUnidad 1. Programación entera
Unidad 1. Programación entera
 
Métodos de optimizacion
Métodos de optimizacionMétodos de optimizacion
Métodos de optimizacion
 
Historia del calculo multivariable
Historia del calculo multivariableHistoria del calculo multivariable
Historia del calculo multivariable
 
Ejemplo del Método de Falsa Posición
Ejemplo del Método de Falsa PosiciónEjemplo del Método de Falsa Posición
Ejemplo del Método de Falsa Posición
 
Formulario de pruebas de hipótesis 2012-2
Formulario de pruebas de hipótesis 2012-2Formulario de pruebas de hipótesis 2012-2
Formulario de pruebas de hipótesis 2012-2
 
Problema copiados de libros
Problema copiados de libros Problema copiados de libros
Problema copiados de libros
 
Sumas de riemann
Sumas de riemannSumas de riemann
Sumas de riemann
 
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
Tarea 7 de probabilidad y estadistica con respuesta (esperanza matemática o v...
 
Estadistica aplicada
Estadistica aplicadaEstadistica aplicada
Estadistica aplicada
 
DERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIORDERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIOR
 
Clase Nº5 Programacion Lineal
Clase Nº5 Programacion LinealClase Nº5 Programacion Lineal
Clase Nº5 Programacion Lineal
 

Destacado

Máximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variablesMáximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variableslobi7o
 
Solver y programacion lineal maximizacion de una funcion
Solver y programacion lineal maximizacion de una funcionSolver y programacion lineal maximizacion de una funcion
Solver y programacion lineal maximizacion de una funcionSalvador Tejada
 
Diapositivas de Optimizacion
Diapositivas de OptimizacionDiapositivas de Optimizacion
Diapositivas de OptimizacionNileidys_16
 
Presentacion optimizacion CONDICIONES kkt
Presentacion optimizacion CONDICIONES kktPresentacion optimizacion CONDICIONES kkt
Presentacion optimizacion CONDICIONES kktHugo Guzmán Tello
 
Presentación max weber
Presentación max weberPresentación max weber
Presentación max webermaribel2012
 
Grupo5.maximizacion de la utilidad
Grupo5.maximizacion de la utilidadGrupo5.maximizacion de la utilidad
Grupo5.maximizacion de la utilidadEvelina Vallejo
 
Solucionario de matematicas para administracion y economoa
Solucionario de matematicas para administracion y economoaSolucionario de matematicas para administracion y economoa
Solucionario de matematicas para administracion y economoaEdgar Quispe Ccora
 

Destacado (9)

Optimización. Métodos numéricos
Optimización. Métodos numéricosOptimización. Métodos numéricos
Optimización. Métodos numéricos
 
Máximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variablesMáximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variables
 
Optimizacion
OptimizacionOptimizacion
Optimizacion
 
Solver y programacion lineal maximizacion de una funcion
Solver y programacion lineal maximizacion de una funcionSolver y programacion lineal maximizacion de una funcion
Solver y programacion lineal maximizacion de una funcion
 
Diapositivas de Optimizacion
Diapositivas de OptimizacionDiapositivas de Optimizacion
Diapositivas de Optimizacion
 
Presentacion optimizacion CONDICIONES kkt
Presentacion optimizacion CONDICIONES kktPresentacion optimizacion CONDICIONES kkt
Presentacion optimizacion CONDICIONES kkt
 
Presentación max weber
Presentación max weberPresentación max weber
Presentación max weber
 
Grupo5.maximizacion de la utilidad
Grupo5.maximizacion de la utilidadGrupo5.maximizacion de la utilidad
Grupo5.maximizacion de la utilidad
 
Solucionario de matematicas para administracion y economoa
Solucionario de matematicas para administracion y economoaSolucionario de matematicas para administracion y economoa
Solucionario de matematicas para administracion y economoa
 

Similar a Optimización sin restricciones

Revista horacio
Revista horacioRevista horacio
Revista horacioHORACIO920
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfJorgeRojas278373
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfJorgeRojas278373
 
Análisis Vectorial
Análisis VectorialAnálisis Vectorial
Análisis VectorialKike Prieto
 
5. aplicaciones de la integral limitada
5. aplicaciones de la integral limitada5. aplicaciones de la integral limitada
5. aplicaciones de la integral limitadacisco1598
 
Programacion Convexa Presentacion Definitivo
Programacion Convexa Presentacion DefinitivoProgramacion Convexa Presentacion Definitivo
Programacion Convexa Presentacion Definitivowadar3
 
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...dinorkis
 
funciones cuadraticas y raiz cuadrada.pdf
funciones cuadraticas y raiz cuadrada.pdffunciones cuadraticas y raiz cuadrada.pdf
funciones cuadraticas y raiz cuadrada.pdfmartinmaltez
 
072 076-fracciones algebraicas unidad 6
072 076-fracciones algebraicas unidad 6  072 076-fracciones algebraicas unidad 6
072 076-fracciones algebraicas unidad 6 Oscarito Ayala
 
Tema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uneyTema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uneyJulio Barreto Garcia
 
Tema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uneyTema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uneyJulio Barreto Garcia
 
Ejercicios detallados del obj 5 mat ii 178 179-
Ejercicios detallados del obj 5 mat ii  178 179-Ejercicios detallados del obj 5 mat ii  178 179-
Ejercicios detallados del obj 5 mat ii 178 179-Jonathan Mejías
 
Taller de tratamiento de señales, Ingenieria
Taller de tratamiento de señales, IngenieriaTaller de tratamiento de señales, Ingenieria
Taller de tratamiento de señales, IngenieriaLuisMendoza665045
 
Solucionario prueba mt 051 2011 ok
Solucionario prueba mt 051 2011 okSolucionario prueba mt 051 2011 ok
Solucionario prueba mt 051 2011 okjuanlarasoto
 
Clasificación de funciones reales
Clasificación de funciones realesClasificación de funciones reales
Clasificación de funciones realesangiegutierrez11
 

Similar a Optimización sin restricciones (20)

Revista horacio
Revista horacioRevista horacio
Revista horacio
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdf
 
AREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdfAREA E INTEGRAL DEFINIDA.pdf
AREA E INTEGRAL DEFINIDA.pdf
 
Oviedo mco nolineales
Oviedo mco nolinealesOviedo mco nolineales
Oviedo mco nolineales
 
Análisis Vectorial
Análisis VectorialAnálisis Vectorial
Análisis Vectorial
 
5. aplicaciones de la integral limitada
5. aplicaciones de la integral limitada5. aplicaciones de la integral limitada
5. aplicaciones de la integral limitada
 
Programacion Convexa Presentacion Definitivo
Programacion Convexa Presentacion DefinitivoProgramacion Convexa Presentacion Definitivo
Programacion Convexa Presentacion Definitivo
 
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
 
Pdf unido
Pdf unidoPdf unido
Pdf unido
 
funciones cuadraticas y raiz cuadrada.pdf
funciones cuadraticas y raiz cuadrada.pdffunciones cuadraticas y raiz cuadrada.pdf
funciones cuadraticas y raiz cuadrada.pdf
 
072 076-fracciones algebraicas unidad 6
072 076-fracciones algebraicas unidad 6  072 076-fracciones algebraicas unidad 6
072 076-fracciones algebraicas unidad 6
 
Funcion cuadratic a
Funcion cuadratic aFuncion cuadratic a
Funcion cuadratic a
 
Tema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uneyTema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uney
 
Tema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uneyTema iii integral definida y aplicaciones uney
Tema iii integral definida y aplicaciones uney
 
Integrales teoria 2
Integrales teoria 2Integrales teoria 2
Integrales teoria 2
 
Integrales
IntegralesIntegrales
Integrales
 
Ejercicios detallados del obj 5 mat ii 178 179-
Ejercicios detallados del obj 5 mat ii  178 179-Ejercicios detallados del obj 5 mat ii  178 179-
Ejercicios detallados del obj 5 mat ii 178 179-
 
Taller de tratamiento de señales, Ingenieria
Taller de tratamiento de señales, IngenieriaTaller de tratamiento de señales, Ingenieria
Taller de tratamiento de señales, Ingenieria
 
Solucionario prueba mt 051 2011 ok
Solucionario prueba mt 051 2011 okSolucionario prueba mt 051 2011 ok
Solucionario prueba mt 051 2011 ok
 
Clasificación de funciones reales
Clasificación de funciones realesClasificación de funciones reales
Clasificación de funciones reales
 

Más de Diego Gomez

Gold Solutions IT
Gold Solutions ITGold Solutions IT
Gold Solutions ITDiego Gomez
 
Teoría de las redes
Teoría de las redesTeoría de las redes
Teoría de las redesDiego Gomez
 
Administración de proyectos por análisis de redes.
Administración de proyectos por análisis de redes. Administración de proyectos por análisis de redes.
Administración de proyectos por análisis de redes. Diego Gomez
 
Diseño de experiencias
Diseño de experienciasDiseño de experiencias
Diseño de experienciasDiego Gomez
 
Clase8 modelo denegocio
Clase8 modelo denegocioClase8 modelo denegocio
Clase8 modelo denegocioDiego Gomez
 
Clase1 1 presentacion
Clase1 1 presentacionClase1 1 presentacion
Clase1 1 presentacionDiego Gomez
 
Multiplicadores de lagrange
Multiplicadores de lagrangeMultiplicadores de lagrange
Multiplicadores de lagrangeDiego Gomez
 
Soluciones enteras en un problema de programación lineal (mejorado)
Soluciones enteras en un problema de programación lineal (mejorado)Soluciones enteras en un problema de programación lineal (mejorado)
Soluciones enteras en un problema de programación lineal (mejorado)Diego Gomez
 
Soluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación linealSoluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación linealDiego Gomez
 

Más de Diego Gomez (10)

Gold Solutions IT
Gold Solutions ITGold Solutions IT
Gold Solutions IT
 
Teoría de las redes
Teoría de las redesTeoría de las redes
Teoría de las redes
 
Administración de proyectos por análisis de redes.
Administración de proyectos por análisis de redes. Administración de proyectos por análisis de redes.
Administración de proyectos por análisis de redes.
 
Diseño de experiencias
Diseño de experienciasDiseño de experiencias
Diseño de experiencias
 
Clase8 modelo denegocio
Clase8 modelo denegocioClase8 modelo denegocio
Clase8 modelo denegocio
 
Clase7 drupal
Clase7 drupalClase7 drupal
Clase7 drupal
 
Clase1 1 presentacion
Clase1 1 presentacionClase1 1 presentacion
Clase1 1 presentacion
 
Multiplicadores de lagrange
Multiplicadores de lagrangeMultiplicadores de lagrange
Multiplicadores de lagrange
 
Soluciones enteras en un problema de programación lineal (mejorado)
Soluciones enteras en un problema de programación lineal (mejorado)Soluciones enteras en un problema de programación lineal (mejorado)
Soluciones enteras en un problema de programación lineal (mejorado)
 
Soluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación linealSoluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación lineal
 

Último

PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfEduardoJosVargasCama1
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptxCamuchaCrdovaAlonso
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...Ars Erótica
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfMercedes Gonzalez
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptAlberto Rubio
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxroberthirigoinvasque
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxFernando Solis
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!CatalinaAlfaroChryso
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIAFabiolaGarcia751855
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCCarlosEduardoSosa2
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfRaulGomez822561
 

Último (20)

PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 

Optimización sin restricciones

  • 1. OPTIMIZACIÓN SIN RESTRICCIONES.- Es el problema de minimizar o maximizar una función sin la existencia de restricciones. Esta función puede ser de una o más variables. Esto es importante porque un problema con restricciones puede tratarse con los multiplicadores de Lagrange como uno sin restricciones como veremos más adelante. Funciones cóncavas y convexas.- Revisemos el concepto de función cóncava f(x) es cóncava si f(X1+  (X2-X1))>=f(X1)+  (f(X2)-f(X1)) para  entre 0 y 1. Donde la primera parte es la ecuación de la curva desde X1 hasta X2, y la segunda parte la recta que va desde f(X1) hasta f(x2). Será convexa si –f(X) es cóncava
  • 2.  
  • 3. Funciones cuasicóncavas y cuasiconvexas.- La función f es cuasi convexa si para cada X1, X2 es verdad la siguiente inecuación f(X1+  (X2-X1)) <=Máximo {f(X1), f(X2)} Esto es justamente no cuasi convexa
  • 4. Búsqueda lineal sin usar derivadas.- Supongamos que se debe minimizar f(x) sujeto a a<=X<=b. A este intervalo se lo llama de incertidumbre . En lo que sigue se verá un teorema que demuestra que si f es estrictamente cuasi convexa el intervalo de incertidumbre puede reducirse. Teorema.- sea f una función cuasiconvexa en el intervalo [a,b]. Sea c y d pertenecientes al intervalo [a,b] de tal manera que c < d. Si f(c)>f(d) entonces f(e)>=f(c) para todo e entre a y c a b c d f(c) f(d) Nuevo intervalo
  • 5. Estos métodos pueden ser de 2 tipos: a) Simultáneos .- Cuando los puntos candidatos se determinan a priori; b) Secuenciales.- Cuando los puntos se ubican en función de los anteriores. Ejemplo de búsqueda simultánea: Búsqueda Uniforme.- El intervalo de incertidumbre [a,b] se divide en intervalos. n son los puntos de la grilla y n-1 los espacios. Hay tantas evaluaciones funcionales como puntos tiene la grilla. Se elige en caso de un mínimo el valor menor y se toma un intervalo a la derecha y otro a la izquierda y el nuevo intervalo se vuelve a dividir en partes. En general se puede detener por pequeña diferencia entre dos valores de la función sucesivos o por tamaño del último intervalo. Ejemplo de búsqueda secuencial: Búsqueda dicotómica.- Si coloco c y d a distancia e del centro de ab, e deberá ser suficiente grande para diferenciar sus valores funcionales pero a su vez pequeño para que el nuevo intervalo de incertidumbre sea pequeño. En este caso el nuevo intervalo de incertidumbre es e +( b - a )/2. El proceso se detiene de la misma forma que el anterior
  • 6. a b 2e c d Nuevo intervalo
  • 7. Método de la relación aurea.- En una iteración general k en este método tenemos el intervalo de incertidumbre [ ak, bk]. Por el teorema anterior el nuevo intervalo [ak+1,bk+1] está dado por [ck,bk] si f(ck)>f(dk) y por [ak,dk] si f(ck)<f(dk). Los puntos c y d se seleccionan así: 1.- La longitud del nuevo intervalo de incertidumbre bk+1-ak+1 no debe depender del resultado de la iteración k. Si f(bk)>=f(ck) ó f(bk)<=f(ck) la longitud debe ser igual. Por lo tanto bk-ck=dk-ak ak bk ck dk ak+1 ak+1 bk+1 ck+1 bk+1 ck+1 dk+1 dk+1 A
  • 8. Si ck es de la forma ck=ak+(1-  )(bk-ak) B donde  tiene un valor entre 0 y 1, entonces dk debe ser de la forma dk=ak+  bk-ak) C de esa manera (bk+1)-(ak+1)=bk-ck=dk-ak=  bk-ak) D 2.- De la manera que ck+1 y dk+1 se seleccionan para una nueva iteración ck+1 coincide con dk ó dk+1 con ck. Se demuestra que el valor de  es 0,618 Búsqueda lineal usando derivadas.- Método de bisección.- Supongamos que la función f es convexa y diferenciable. En la iteración n sea el intervalo de incertidumbre [ak, bk]. Supongamos que conocemos la derivada f´(k) y consideremos 3 casos: 1.- Si f´(k)=0 Por la convexidad de f, k es un mínimo 2.- Si f´(k)>0 Se entiende que el mínimo está a izquierda 3.- Si f´(k)<0 “ “ “ “ “ “ “ derecha Para minimizar las longitudes a considerar tomaremos k en el punto medio de [ak,bk].
  • 9. Búsqueda Multidimensional sin derivadas.- Dado un vector X, se busca una buena dirección d, y se minimiza f desde X en la dirección d por una de las técnicas anteriores. Método de coordenadas cíclicas.- A partir de un punto X se siguen una a una la dirección de los ejes de coordenadas Y X 0.05 1 0.25 5 3
  • 10. Ejemplo: Hallar el mínimo de la siguiente función Z=(X-1)^2 + (Y+5)^2 Z=X^2+Y^2-2X+10Y+25 Hagamos X=7 y reemplacemos Z=49+Y^2-14+10Y+25 Z=Y^2+10y+60 dZ/dY=2Y+10 haciendo esto igual a 0 Y=-5 Z=X^2+25-2X+50+25 Z=X^2-2X+100 dZ/dX=2X-2 haciendo esto igual a 0 X=1 Reemplazando este valor llegaríamos a Y=-5. Por lo que se ve el método es altamente convergente
  • 11. Matrices definidas y semidefinidas.- Sea A una matriz simétrica nxn. A será positiva definida si X^t*A*X>0 para todo X en En. De la misma manera si X^t*A*X>=0 será positiva semidefinida. Si X^t*A*X<0 negativa definida. Si X^t*A*X<=0 negativa semidefinida. Sea A=[aij] una matriz simétrica de nxn y se definen los determinantes A1=|a11| a11 a12 a11 a12 a13 A2= A3= a21 a22 a23 a21 a22 a31 a32 a33 Veamos los signos de A1, A2 y A3 ++++…..++++ Positiva Definida (PD) ++000..000 Positiva Semidefinida (PSD) -+-+-+ Negativa Definida (ND) -+-+00000 Negativa Semidefinida (NSD) Si la matriz hessiana de una función f(x) es PD ó PSD la función es convexa. Sea Z=4X^2+6Y^2
  • 12. df/dx 8X 8 0 Grad f(x,y)= H f(x,y)= df/dy 12Y 0 12 H f(x,y) es PD luego f(x,y) es convexa. Sea Z=-6X^3+5X^2+3Y^2-4XY+2 -18X^2+10x-4y -36X+10 -4 Grad f(X,Y) H f(X,Y)= 6Y-4X -4 6 Para que Hf(X,Y) sea PD debe ocurrir -36X+10>0 para X=-0,25 6(-36X+10)-16>0 Se puede comprobar gráficamente
  • 13. Método por gradientes ó de la máxima pendiente.- Eso se ve en la próxima página
  • 14.