SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
MOISES VILLENA                                                    Vectores en R3




      1
          1.1     Definición
          1.2     Enfoque geométrico
          1.3     Igualdad
          1.4     Operaciones
          1.5     Aplicaciones

                 Objetivos.
                 Se persigue que el estudiante:
                    •   Represente geométricamente un vector de R 3
                    •   Determine magnitud y dirección de un
                        vector.
                    •   Sume vectores, multiplique por un escalar a
                        un vector, obtenga el productor escalar y el
                        producto vectorial entre vectores
                    •   Obtenga el área de un paralelogramo
                        sustentados por dos vectores.
                    •   Obtenga el volumen del paralelepípedo
                        sustentado por tres vectores.




                                                                               1
MOISES VILLENA                                                                                                 Vectores en R3


       Tomando como referencia la teoría de vectores en el plano, se obtienen
definiciones y propiedades de los vectores en el espacio.

1.1 DEFINICIÓN

                 Un vector de R 3 es una terna ordenada de
                 números reales. Denotada de la siguiente manera:
                                                 →
                                                 v = ( x, y , z )


1.2 ENFOQUE GEOMÉTRICO

                                                                3
     Geométricamente a un vector de R                                 se lo representa en el Espacio
como un segmento de recta dirigido.

       Suponga que se tienen los puntos P ( x1 , y1 , z1 ) y P2 ( x2 , y 2 , z 2 ) . Si
                                         1

trazamos un segmento de recta dirigido desde P1                                                hacia P2 tenemos una
                             →    ⎯
                                  ⎯→
representación del vector v = P P2 = ( x2 − x1 , y 2 − y1 , z1 − z 2 )
                               1
                                         z



                                                                                 P2 = ( x2 , y 2 , z 2 )

                                                               →
                                                               v




                                                      P1 = ( x1 , y1 , z1 )

                                                                                                    y




                            x

      Este vector puede tener muchas otras representaciones equivalentes en
el espacio. Una representación equivalente útil es aquella que se realiza
ubicando al vector con el origen como punto de partida.
                                             z




                                                                P ( x, y , z )

                                                  →
                                                  v



                                                                                                           y




                             x

                                                                                                                            2
MOISES VILLENA                                                               Vectores en R3


       1.2.1 Magnitud o norma

                         →
                  Sea v = ( x, y, z ) . La magnitud o norma de v
                                                                                      →



                                       →
                  denotada como v , se define como:

                                                →
                                                v = x2 + y2 + z 2

       Note que la norma sería la longitud del segmento de recta que define el
vector. Es decir, sería la distancia entre los puntos que lo definen.

             →
       Para v = ( x2 − x1 , y 2 − y1 , z 2 − z1 ) sería:

                              →
                              v =     (x2 − x1 )2 + ( y2 − y1 )2 + (z 2 − z1 )2

       1.2.2 Dirección

                                        →
                  La dirección de v = ( x, y, z ) está definida por la
                  medida de los ángulo que forma la línea de acción
                  del segmento de recta con los ejes x , y , z

                                                z




                                                        →

                                                    γ   v


                                            α
                                                        β

                                                                                  y




                              x


       Los ángulos α , β y γ son llamados Ángulos Directores.


                                                                                          3
MOISES VILLENA                                                               Vectores en R3


       Observe que:

                                              x                x
                               Cosα =         →
                                                  =
                                              v           x2 + y2 + z2


                                              y                y
                               Cosβ =         →
                                                  =
                                              v           x + y2 + z2
                                                           2




                                              y                y
                               Cosγ =         →
                                                  =
                                              v           x2 + y2 + z2


                     Ejercicio.
                     Demostrar que cos
                                         2
                                             α + cos 2 β + cos 2 γ = 1

       1.2.3 Sentido

                                    →
                 El sentido de v lo define la flecha dibujada sobre
                 el segmento de recta.
                                                      3
1.3 IGUALDAD DE VECTORES DE R

                                         →                           →
                   Dos vectores v1 = (x1 , y1 , z1 ) y v2 = (x2 , y 2 , z 2 ) son
                 iguales si y sólo si x1 = x2 , y1 = y2 y z1 = z 2
1.4 OPERACIONES

       1.4.1 Suma

                           →        →
                 Sean v1 y v2 dos vectores de R tales que
                                               3

                 →                                    →
                 v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) entonces la
                               →                  →                      →   →
                 suma de v1 con v2 , denotada como v1 + v2 , se
                 define como:
                                   →          →
                                   v1 + v2 = ( x1 + x2 , y1 + y2 , z1 + z 2 )



                                                                                          4
MOISES VILLENA                                                                                                     Vectores en R3


                 1.4.1.1 Propiedades

                              →       →           →
                   Sean v1 , v2 y v3 vectores de R 3 , entonces:
                        →       →         →           →
                   1.   v1 + v2 = v2 + v1                   la suma es conmutativa

                        v1 + ⎛ v2 + v3 ⎞ = ⎛ v1 + v2 ⎞ + v3
                        →      →    →        →    →      →
                   2.        ⎜         ⎟ ⎜           ⎟                                              la suma es asociativa
                             ⎝         ⎠ ⎝           ⎠
                          →                       →                                         →         →    →
                   3.   ∃ 0 ∈ R , ∀ v ∈ R tal que v + 0 = v ,
                                      3                           3

                                  →
                        Donde 0 = (0,0,0 ) es llamado Vector Neutro

                              ∃⎛ − v ⎞ ∈ R 3 tal que v + ⎛ − v ⎞ = 0
                            →      →                 →       →     →
                   4.   ∀v∈R , ⎜ ⎟    3
                                                         ⎜     ⎟
                               ⎝ ⎠                       ⎝     ⎠
                                      ⎛       →
                                                  ⎞
                            Donde ⎜ − v ⎟ es llamado Vector Inverso Aditivo de v
                                                                                                                   →


                                      ⎝           ⎠


Geométricamente:                                                      z
                                                                              →
                                                                                  2
                                                                              v




                                                  →
                                                  v1 = ( x1 , y1 , z1 )
                                                                          →
                                                                          1   +
                                                                          v




                                                                                  →
                                                                                  v2 = (x2 , y 2 , z 2 )
                                                                                                               y




                                          x


                            →             →
      Los vectores v1 y v2 sustentan un paralelogramo, el vector de la
diagonal mayor es el Vector Suma y el vector de la diagonal menor es el
Vector Diferencia.


       1.4.2 Multiplicación por escalar

                                                      →
                   Sea α ∈ R y v = ( x, y, z ) un vector de R 3
                   entonces:
                                                             →
                                                      α v = (αx, αy, αz )

                                                                                                                                5
MOISES VILLENA                                                                            Vectores en R3


           1.4.2.1 Propiedades

                                             ⎡α ⎛ v + v ⎞ = α v + α v ⎤
                                               →  →   →→       →       →

                   1. ∀α ∈ R, ∀ v1 , v2 ∈ R ⎢ ⎜ 1 2 ⎟
                                                                 3
                                                                        2⎥
                                             ⎣ ⎝         ⎠               ⎦
                                                                1


                                           3⎡                         ⎤
                                     →                 →     →      →

                   2. ∀α , β ∈ R, ∀ v ∈ R ⎢(α + β ) v = α v + β v ⎥
                                            ⎣                         ⎦
                      ∀α , β ∈ R, ∀ v ∈ R 3 ⎡α ⎛ β v ⎞ = (αβ ) v ⎤
                                     →              →          →

                   3.                       ⎢ ⎜ ⎟
                                            ⎣ ⎝ ⎠                 ⎥
                                                                  ⎦
                                                         →
       Cualquier vector de                    R3 ,       v = ( x, y, z ) , puede ser expresado en
                                                     →                           →
combinación lineal de los vectores i = (1,0,0) , j = (0,1,0) y k = (0,0,1)
                                                                     →




                                  →
                                  v = ( x, y, z ) = x(1,0,0 ) + y (0,1,0 ) + z (0,0,1)
                                                   →         →       →   →
                                                   v = x i + y j+ z k

       1.4. 3. Producto Escalar. Producto Punto o Producto Interno

                          →                                      →
                   Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores
                                                                         →       →
                   de R 3 . El Producto escalar de v1 con v2 denotado
                          →           →
                   como v1 • v2 se define como:
                                              →      →
                                              v1 • v2 = x1 x2 + y1y2 + z1 z 2

                     Ejemplo
                          →                        →
                     Si v1 = (3,1,−2) y v 2 = (− 1,4,0) entonces
                                          →   →
                                          v1 • v 2 = (3)(− 1) + (1)(4) + (− 2)(0) = −3 + 4 + 0 = 1




                 1.4.3.1 Propiedades

                          →           →
                   Sean v1 y v2 vectores de R 3 . Entonces:
                      →       →           →    →
                   1. v1 • v2 = v2 • v1


                                                                                                       6
MOISES VILLENA                                                                                     Vectores en R3



                 2. v1 • ⎛ v2 + v3 ⎞ = v1 • v2 + v1 • v2
                      →       →        →        →          →        →    →
                         ⎜         ⎟
                          ⎝                ⎠
                    ⎛ α v ⎞ • ⎛ β v ⎞ = αβ⎛ v • v ⎞
                          →       →         → →
                 3. ⎜ 1 ⎟ ⎜ 2 ⎟           ⎜ 1 2⎟
                    ⎝     ⎠ ⎝       ⎠     ⎝       ⎠

          →
       Si v = ( x, y, z ) entonces:
                                  →    →
                                  v • v = ( x, y , z ) • ( x, y , z ) = x 2 + y 2 + z 2 .
                      →   →        → 2                              →            →   →
       Por lo tanto v • v = v              o también v =                         v• v




       1.4. 4. Producto Vectorial. Producto Cruz

                              →                                     →
                 Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores
                                                                                               →       →
                 de R 3 . El Producto Vectorial de                                            v1 con v2
                                               →           →
                 denotado como v1 × v2 se define como:
                  →       →
                  v1× v2 = ( y1 z 2 − z 1 y2 ,−( x1 z 2 − x2 z1 ), x1 y2 − y1 x2 )

      Una manera práctica para obtener el resultado de la operación Producto
Cruz entre dos vectores es resolver el siguiente determinante, para la primera
fila:
                                                   i           j        k
                                   →       →
                                  v1 × v2 = x1                 y1       z1
                                                   x2          y2       z2

                    Ejemplo.
                          →                    →
                    Sea v1 = (1,2,−1) y v 2 = (2,−1,0 ) entonces
                                                          i         j        k
                                               →       →
                                               v1 × v 2 = 1         2        − 1 = −i − 2 j − 5k
                                                               2 −1          0




                                                                                                                7
MOISES VILLENA                                                                   Vectores en R3


                 1.4.4.1 Propiedades.

                              →       →        →

                      Sean v1 , v2 y v3 vectores de R 3
                      1. El vector ⎛ v1× v2 ⎞ es tanto perpendicular a
                                                  →    →

                                   ⎜        ⎟
                                   ⎝        ⎠
                          →                       →

                          v1 como a v 2
                      2. El sentido del vector ⎛ v1 × v2 ⎞ se lo puede
                                                                   →   →

                                               ⎜         ⎟
                                               ⎝         ⎠
                         obtener empleando la mano derecha.
                                                                                     →
                         Mientras los dedos se dirigen desde v1
                                          →
                         hacia v2 , el pulgar indica la dirección de
                         ⎛v × v ⎞.
                           →  →

                         ⎜ 1 2⎟
                         ⎝      ⎠
                                              →    →
                                              v1× v2




                                                                           →
                                                                           v2
                                                       •
                                                       •                    →
                                                                            v1




                      3. v1 × v2 = −⎛ v2 × v1 ⎞
                          →       →                →       →

                                    ⎜         ⎟
                                    ⎝         ⎠
                          →       →       →
                      4. v1 × v1 = 0
                              →       →                        →   →   →
                      5. Si v1 // v 2 entonces v1 × v 2 = 0
                         ⎛α v ⎞ × ⎛α v ⎞ = α α ⎛ v × v ⎞
                               →         →                 →   →

                      6. ⎜ 1 1 ⎟ ⎜ 2 2 ⎟                2⎜ 1     2 ⎟
                         ⎝        ⎠ ⎝       ⎠       1
                                                         ⎝         ⎠
                      7. v1 × ⎛ v2 + v3 ⎞ = ⎛ v1 × v2 ⎞ + ⎛ v1 × v3 ⎞
                         →       →    →       →    →         →     →

                              ⎜         ⎟ ⎜           ⎟ ⎜            ⎟
                              ⎝         ⎠ ⎝           ⎠ ⎝            ⎠
                                   2       2 → 2                 2

                      8. v1 × v 2 = v1 v 2 − ⎛ v1 • v 2 ⎞
                           →    →       →               →    →

                                                      ⎜        ⎟
                                                      ⎝        ⎠
      De la última expresión, empleando la propiedad del producto escalar, se
obtiene un resultado muy importante:




                                                                                              8
MOISES VILLENA                                                                                  Vectores en R3


                              → 2         → 2 → 2                            2
                         →
                                                              ⎛→ →⎞
                         v1 × v 2    = v1       v2          − ⎜ v1 • v 2 ⎟
                                                              ⎝          ⎠
                                                                                        2
                                          → 2 → 2
                                                              ⎛ → →          ⎞
                                     = v1       v2          − ⎜ v1 v 2 cos θ ⎟
                                                              ⎝              ⎠
                                          → 2 → 2                → 2 → 2
                                     = v1       v2          − v1       v2        cos 2 θ


                                                            [1 − cos θ ]
                                          → 2 → 2
                                     = v1       v2                     2



                         →    → 2         → 2 → 2
                         v1 × v 2    = v1       v 2 sen 2θ

                 Finalmente:
                                          →     →            →     →
                                          v1 × v 2 = v1 v 2 senθ



       1.5 APLICACIONES

          1.5.1      CALCULO  DEL   ÁREA   DEL    PARALELOGRAMO
                     SUSTENTADO POR DOS VECTORES.
                 →   →
       Sean v1 y v2 dos vectores, no paralelos. Observe la figura:

                                                →
                                                v1
                                     →
                                     v1
                                                        h
                                          θ
                                                                                   →
                                                →                                  v2
                                               v2


                                          →
       Tomando como base a v2 , tenemos:
                       Area = base • altura
                                                →
                                              = v2 h

                                      h                                             →       →
       Observe que senθ =             →
                                               entonces Area = v 2 v1 senθ
                                     v1

       Y por la propiedad del producto cruz:
                                                    →       →
                                    Area = v1 × v 2




                                                                                                             9
MOISES VILLENA                                                                                     Vectores en R3


                 Ejemplo 1
                                                                                                        →
                 Hallar el área del triángulo sustentado por los vectores v1 = (1, 2,−1) y
                 →
                 v 2 = (2,−1, 0 )
                 SOLUCIÓN:
                                                                                     →        →
                 El área del triángulo sustentado por dos vectores v1 y v 2 es la mitad del área del
                 paralelogramo sustentado por los vectores, es decir:
                                                                      →       →
                                                                      v1 × v 2
                                           Area Triángulo =
                                                                          2
                                      i    j     k
                        →    →
                 Como v1 × v 2 = 1 2 − 1 = −i − 2 j − 5k
                                 2 −1 0
                 entonces

                                                        →        →
                                                       v1 × v 2
                                                                          (− 1)2 + (− 2)2 + (− 5)2           30
                              Area Triángulo =                        =                                 =
                                                             2                            2                  2


                 Ejemplo 2
                 Hallar el área del triángulo que tiene por vértices los puntos (1,−2,0 ) , (1,1,1) y
                 (− 2,0,1)
                 SOLUCIÖN:
                 Primero se forman dos vectores entre los puntos dados, tomando arbitrariamente el
                 orden de estos puntos; luego se procede de manera análoga a lo mencionado
                 anteriormente debido a que el área del triángulo es la mitad del área del paralelogramo.

                                                                               P2 (1,1,1)
                                                                 →
                                                                 v1


                                               P (1,−2,0 )                    →               P3 (− 2,0,1)
                                                1
                                                                              v2


                                  →       →
                 En este caso, v1 = P1 P2 = (1 − 1, 1 − (−2), 1 − 0 ) = (0,3,1)
                                    →      →
                                    v 2 = P2 P3 = (− 2 − 1, 0 − (−2), 1 − 0 ) = (− 3,2,1)


                 Entonces,
                                        i         j k
                              →      →
                             v1 × v 2 = 0         3 1 = i − 3 j − 9k
                                           −3 2 1
                                                        →        →
                                                       v1 × v 2
                                                                          (1)2 + (− 3)2 + (9)2          91
                              Area Triángulo =                        =                            =
                                                             2                        2                 2




                                                                                                                  10
MOISES VILLENA                                                                                  Vectores en R3


          1.5.2      CALCULO DEL VOLUMEN DEL PARALELEPÍPEDO
                      SUSTENTADO POR TRES VECTORES
                 →   →    →
       Sean v1 , v2 y v3 tres vectores. Observe la figura.



                                  →    →
                                  v1 × v 2


                                                 →             h
                                                 v3
                                             h            →
                                                      v2
                                                                   •

                                                                       →
                                                                       v1
                                                                                            →      →
       Tomando como base el paralelogramo sustentado por v1 y v2 , la altura
                                                                                           →           →   →
       h del paralelepípedo será la proyección escalar v3 sobre v1 × v2 ,
       entonces:
                         Volumen = Area base × altura
                                                      →       →
                         Donde Area base = v1 × v 2

                                                                            ⎛→ →⎞ →
                                                                       →
                                                                            ⎜ v1 × v 2 ⎟ • v3
                                altura = h = Pr oy →               →   v3 = ⎝ → ⎠      →
                                                              v1 ×v2
                                                                                 v1 × v 2

       Por tanto.
                                                  ⎛v × v ⎞ • v
                                                   →    →    →

                                                  ⎜ 1 2⎟ 3
                                Volumen = v1 × v2 ⎝ → ⎠
                                          →    →

                                                          →
                                                     v1 × v2

       Finalmente, simplificando resulta:


                                Volumen = ⎛ v1 × v 2 ⎞ • v3
                                            →    →       →

                                          ⎜          ⎟
                                          ⎝          ⎠


       Esta última expresión es denominada, EL TRIPLE PRODUCTO
                                   →         →   →
ESCALAR de los vectores v1 , v 2 y v3 , y su interpretación es el volumen del
                                                                   →        →   →
paralelepípedo sustentado por los vectores v1 , v 2 y v 3 . Observe además que
no importa el orden de operación de los vectores, ¿por qué?.




                                                                                                            11
MOISES VILLENA                                                                                                         Vectores en R3


                 Ejemplo
                                                                                                                                →
                 Hallar el volumen del paralelepípedo sustentado por los vectores v1 = (1,−2,1) ,
                  →                       →
                 v 2 = (2,0,−1) y v3 = (1,2,3) .
                 SOLUCIÖN.

                 Por lo definido anteriormente,
                                                                1 −2 1
                                            ⎛→ →⎞ →
                                  Volumen = ⎜ v1 × v 2 ⎟ • v3 = 2 0 − 1 = 2 + 14 + 4 = 20u 3
                                            ⎜          ⎟
                                            ⎝          ⎠
                                                                1 2  3



                                                         Ejercicios propuestos
                                              →                          →
                                            ˆ     j    ˆ         ˆ     j    ˆ
                 1. Sean los vectores V1 = 3i − 2 ˆ + 4k y V2 = 3i + 3 ˆ − 2k .
                                                                         →                         →
                   a) Determinar la proyección vectorial de V1 sobre el vector V2 .
                                                             →                         →
                   b) Calcular la componente de V1 perpendicular a V2 .
                                                                                 ⎯
                                                                                 ⎯→

                                                                                            (                      )
                                                                                   →
                                                              Resp. a) Pr oy → V1 = − 15 ,− 15 , 10
                                                                                      22    22 22
                                                                                                                           b)
                                                                                 V2
                                              →                              →
                                             ˆ     j    ˆ         ˆ     j       ˆ
                 2. Sean los vectores A = Ax i − 5 ˆ + 2k y B = −3i + 2 ˆ − B z k . Calcule los valores de Ax y
                                                  → →
                      Bz para los cuales A× B es paralelo a:                 a) al eje      x              b) al eje   y
                                                              Resp. a) Ax =       15
                                                                                   2
                                                                                            Bz =   4
                                                                                                   5
                                                                                                               b) Ax = 15
                                                                                                                        2
                                                                                                                                Bz =    4
                                                                                                                                        5
                 3. Calcular el área del triángulo que tiene sus vértices en los puntos (-3,2,4); (2,1,7) ; (4,2,6)
                                                              Resp. Area =            174
                                                                                       2
                 4. Dados tres vectores V1 = (5,2,6) , V2 = (−1,8,3) , V3 = (2,−7,4) forman un tetraedro con
                   vértice en el origen. Determinar su altura desde el origen.                                          Resp. h =       77
                                                                                                                                        746
                 5. Un tetraedro tiene por base el triángulo de vértices (3.-6,-1) , (4,4,-2) y (-3,-1,2); Si el vértice
                    opuesto es el punto (8,10,6) , determine su altura.                         Resp. h = 938
                                                                                                                                        5459
                 6. Sean u        y       v       vectores no nulos, diferentes tales que: w1 = u + v , w2 = u − v ,
                      w3 =1
                          2
                              (u + v ) . Hallar        w1 • (w2 × w3 )                                                  Resp. 0
                         →                                                                                     →
                 7. Sea V un vector diferente de cero, entonces, demostrar que si U es un vector cualquiera, el
                                          → →
                              →       →   U•V          →                     →
                   vector W = U −                      V es ortogonal a V .
                                                   2
                                              →
                                              V

                                              →                      →           →                     →                            →   →
                 8. Demuestre que si U es ortogonal a V y a W , entonces U es ortogonal a c V + d W para
                   escalares cualquiera           cyd.
                                                                                                                                        →   →
                 9. Demostrar que el área del triángulo, cuyos vértices son los extremos de los vectores A , B y
                     →     1 ⎛ → →⎞ ⎛ → →⎞
                     C , es ⎜ B − A ⎟ × ⎜ C − A ⎟
                            2⎜⎝
                                      ⎟ ⎜
                                      ⎠ ⎝
                                                  ⎟
                                                  ⎠
                                                                                             → →           →       →    →       →
                 10. Demostrar que el volumen del tetraedro de aristas A + B , B + C y C + A y es el doble
                                                                         →   →         →
                     del volumen del tetraedro de aristas A , B y C .
                 11. Pruebe que las diagonales de un rombo (paralelogramo con lados iguales) son
                     perpendiculares.



                                                                                                                                               12

Más contenido relacionado

La actualidad más candente

4 Temas Adicionales De La Derivada
4 Temas Adicionales De La Derivada4 Temas Adicionales De La Derivada
4 Temas Adicionales De La DerivadaERICK CONDE
 
Aplicación de Integrales Definidas
Aplicación de Integrales DefinidasAplicación de Integrales Definidas
Aplicación de Integrales DefinidasEmma
 
Algebra de funciones y funcion inversa. 2015
Algebra de funciones y funcion inversa. 2015Algebra de funciones y funcion inversa. 2015
Algebra de funciones y funcion inversa. 2015María Isabel Arellano
 
Examenes resueltos algebra lineal
Examenes resueltos algebra linealExamenes resueltos algebra lineal
Examenes resueltos algebra linealERICK CONDE
 
Ud 2 determinantes
Ud 2 determinantesUd 2 determinantes
Ud 2 determinantesalfonnavarro
 
Ley de gauss. ing. carlos moreno (ESPOL)
Ley de gauss. ing. carlos moreno (ESPOL)Ley de gauss. ing. carlos moreno (ESPOL)
Ley de gauss. ing. carlos moreno (ESPOL)Francisco Rivas
 
Maximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variablesMaximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variablesRAQUEL CARDENAS GONZALEZ
 
Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricasStefanyMarcano
 
Ejercicio 4.29-t
Ejercicio 4.29-tEjercicio 4.29-t
Ejercicio 4.29-tMiguel Pla
 
Ejercicios resueltos y explicados (conjuntos ortogonales)
Ejercicios resueltos y explicados (conjuntos ortogonales)Ejercicios resueltos y explicados (conjuntos ortogonales)
Ejercicios resueltos y explicados (conjuntos ortogonales)algebra
 
electricidad y magnetismo ejercicios resueltos Capitulo 1
electricidad y magnetismo  ejercicios resueltos  Capitulo 1electricidad y magnetismo  ejercicios resueltos  Capitulo 1
electricidad y magnetismo ejercicios resueltos Capitulo 1J Alexander A Cabrera
 
Problemas ondas y sonido
Problemas ondas y sonidoProblemas ondas y sonido
Problemas ondas y sonidogyox27
 
Ecuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesEcuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesArkantos Flynn
 

La actualidad más candente (20)

4 Temas Adicionales De La Derivada
4 Temas Adicionales De La Derivada4 Temas Adicionales De La Derivada
4 Temas Adicionales De La Derivada
 
Tematicas del 3er corte
Tematicas del 3er corteTematicas del 3er corte
Tematicas del 3er corte
 
Formulas geometria analitica plana
Formulas  geometria analitica planaFormulas  geometria analitica plana
Formulas geometria analitica plana
 
Aplicación de Integrales Definidas
Aplicación de Integrales DefinidasAplicación de Integrales Definidas
Aplicación de Integrales Definidas
 
VECTORES EN R2
VECTORES EN R2VECTORES EN R2
VECTORES EN R2
 
Algebra de funciones y funcion inversa. 2015
Algebra de funciones y funcion inversa. 2015Algebra de funciones y funcion inversa. 2015
Algebra de funciones y funcion inversa. 2015
 
Asintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 IIAsintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 II
 
Cap 3 ley de gauss
Cap 3 ley de gaussCap 3 ley de gauss
Cap 3 ley de gauss
 
Examenes resueltos algebra lineal
Examenes resueltos algebra linealExamenes resueltos algebra lineal
Examenes resueltos algebra lineal
 
Ud 2 determinantes
Ud 2 determinantesUd 2 determinantes
Ud 2 determinantes
 
Ley de gauss. ing. carlos moreno (ESPOL)
Ley de gauss. ing. carlos moreno (ESPOL)Ley de gauss. ing. carlos moreno (ESPOL)
Ley de gauss. ing. carlos moreno (ESPOL)
 
Maximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variablesMaximos y minimos funcion de varias variables
Maximos y minimos funcion de varias variables
 
Topicos em con_problemas
Topicos em con_problemasTopicos em con_problemas
Topicos em con_problemas
 
Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricas
 
Ejercicio 4.29-t
Ejercicio 4.29-tEjercicio 4.29-t
Ejercicio 4.29-t
 
Ejercicios resueltos y explicados (conjuntos ortogonales)
Ejercicios resueltos y explicados (conjuntos ortogonales)Ejercicios resueltos y explicados (conjuntos ortogonales)
Ejercicios resueltos y explicados (conjuntos ortogonales)
 
electricidad y magnetismo ejercicios resueltos Capitulo 1
electricidad y magnetismo  ejercicios resueltos  Capitulo 1electricidad y magnetismo  ejercicios resueltos  Capitulo 1
electricidad y magnetismo ejercicios resueltos Capitulo 1
 
CAMPO ELECTRICO
CAMPO ELECTRICOCAMPO ELECTRICO
CAMPO ELECTRICO
 
Problemas ondas y sonido
Problemas ondas y sonidoProblemas ondas y sonido
Problemas ondas y sonido
 
Ecuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesEcuaciones reducibles a variables separables
Ecuaciones reducibles a variables separables
 

Destacado

3 funciones de varias variables
3 funciones de varias variables3 funciones de varias variables
3 funciones de varias variablesERICK CONDE
 
2 geometría analítica
2 geometría analítica2 geometría analítica
2 geometría analíticaERICK CONDE
 
Ecuaciones 2do orden
Ecuaciones 2do ordenEcuaciones 2do orden
Ecuaciones 2do ordenERICK CONDE
 
7 análisis vectorial
7 análisis vectorial7 análisis vectorial
7 análisis vectorialERICK CONDE
 
Libro de Algebra lineal Vectores-Rectas-Planos-Rotaciones
Libro de Algebra lineal Vectores-Rectas-Planos-RotacionesLibro de Algebra lineal Vectores-Rectas-Planos-Rotaciones
Libro de Algebra lineal Vectores-Rectas-Planos-RotacionesCelso Sobarzo
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2ERICK CONDE
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferencialesERICK CONDE
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1ERICK CONDE
 
Libro: Vectores y Matrices. Autor: Ricardo Figueroa García
Libro: Vectores y Matrices. Autor: Ricardo Figueroa GarcíaLibro: Vectores y Matrices. Autor: Ricardo Figueroa García
Libro: Vectores y Matrices. Autor: Ricardo Figueroa GarcíaCarlos Aviles Galeas
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analiticaDaniel Ossa
 
libro algebra para el cbc
libro algebra para el cbclibro algebra para el cbc
libro algebra para el cbcapuntescbc
 

Destacado (20)

Vectores en R2 - 2
Vectores en R2 - 2Vectores en R2 - 2
Vectores en R2 - 2
 
6 curvas
6 curvas6 curvas
6 curvas
 
3 funciones de varias variables
3 funciones de varias variables3 funciones de varias variables
3 funciones de varias variables
 
2 geometría analítica
2 geometría analítica2 geometría analítica
2 geometría analítica
 
Ecuaciones 2do orden
Ecuaciones 2do ordenEcuaciones 2do orden
Ecuaciones 2do orden
 
4 extremos
4 extremos4 extremos
4 extremos
 
7 análisis vectorial
7 análisis vectorial7 análisis vectorial
7 análisis vectorial
 
Vectores en r2 y r3 por tony
Vectores en r2 y r3 por tony Vectores en r2 y r3 por tony
Vectores en r2 y r3 por tony
 
Libro de Algebra lineal Vectores-Rectas-Planos-Rotaciones
Libro de Algebra lineal Vectores-Rectas-Planos-RotacionesLibro de Algebra lineal Vectores-Rectas-Planos-Rotaciones
Libro de Algebra lineal Vectores-Rectas-Planos-Rotaciones
 
Algebra lineal (vectores r2 y r3)
Algebra lineal (vectores r2 y r3)Algebra lineal (vectores r2 y r3)
Algebra lineal (vectores r2 y r3)
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
 
VECTORES EN R3
VECTORES EN R3VECTORES EN R3
VECTORES EN R3
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1
 
Libro: Vectores y Matrices. Autor: Ricardo Figueroa García
Libro: Vectores y Matrices. Autor: Ricardo Figueroa GarcíaLibro: Vectores y Matrices. Autor: Ricardo Figueroa García
Libro: Vectores y Matrices. Autor: Ricardo Figueroa García
 
Algebra lineal-vectores-rectas-planos-rotaciones
Algebra lineal-vectores-rectas-planos-rotacionesAlgebra lineal-vectores-rectas-planos-rotaciones
Algebra lineal-vectores-rectas-planos-rotaciones
 
vectores en r2 y r3
vectores en r2 y r3 vectores en r2 y r3
vectores en r2 y r3
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
libro algebra para el cbc
libro algebra para el cbclibro algebra para el cbc
libro algebra para el cbc
 

Similar a 1 vectores en r3

Similar a 1 vectores en r3 (20)

Corordenadas Polares
Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
 
Campos esc y_vect
Campos esc y_vectCampos esc y_vect
Campos esc y_vect
 
2f 01 gravitación3
2f 01 gravitación32f 01 gravitación3
2f 01 gravitación3
 
Unidad iv apuntes nov12
Unidad iv  apuntes nov12Unidad iv  apuntes nov12
Unidad iv apuntes nov12
 
Unidad iv apuntes nov12
Unidad iv  apuntes nov12Unidad iv  apuntes nov12
Unidad iv apuntes nov12
 
Espacio afin
Espacio afinEspacio afin
Espacio afin
 
Ecuacion de la recta pendiente
Ecuacion de la recta pendienteEcuacion de la recta pendiente
Ecuacion de la recta pendiente
 
Capitulo3 calculo de volumenes
Capitulo3 calculo de volumenesCapitulo3 calculo de volumenes
Capitulo3 calculo de volumenes
 
03 2
03 203 2
03 2
 
Capitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappusCapitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappus
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiples
 
5 integración múltiple
5 integración múltiple5 integración múltiple
5 integración múltiple
 
Integracion multiple
Integracion multipleIntegracion multiple
Integracion multiple
 
5 integración múltiple
5 integración múltiple5 integración múltiple
5 integración múltiple
 
3 funciones de varias variables
3 funciones de varias variables3 funciones de varias variables
3 funciones de varias variables
 
Capítulo nº2
Capítulo nº2Capítulo nº2
Capítulo nº2
 
1b 01 vectores
1b 01 vectores1b 01 vectores
1b 01 vectores
 
áLgebra lin cap2a
áLgebra lin cap2aáLgebra lin cap2a
áLgebra lin cap2a
 
Álgebra Sistema Coordenadas Cartesianas
Álgebra Sistema Coordenadas CartesianasÁlgebra Sistema Coordenadas Cartesianas
Álgebra Sistema Coordenadas Cartesianas
 
Funciones 1º Grado Y Eje De Coordenadas
Funciones 1º Grado Y Eje De CoordenadasFunciones 1º Grado Y Eje De Coordenadas
Funciones 1º Grado Y Eje De Coordenadas
 

Más de ERICK CONDE

Producción de campos magnéticos
Producción de campos magnéticosProducción de campos magnéticos
Producción de campos magnéticosERICK CONDE
 
Introducción a la electricidad
Introducción a la electricidadIntroducción a la electricidad
Introducción a la electricidadERICK CONDE
 
Inductancia, motores y generadores de cc
Inductancia, motores y generadores de ccInductancia, motores y generadores de cc
Inductancia, motores y generadores de ccERICK CONDE
 
Induccion electromagnética
Induccion electromagnéticaInduccion electromagnética
Induccion electromagnéticaERICK CONDE
 
Equivalente eléctrico del calor
Equivalente eléctrico del calorEquivalente eléctrico del calor
Equivalente eléctrico del calorERICK CONDE
 
Campo y potencial
Campo y potencialCampo y potencial
Campo y potencialERICK CONDE
 
Leyes de kirchhoff
Leyes de kirchhoff Leyes de kirchhoff
Leyes de kirchhoff ERICK CONDE
 

Más de ERICK CONDE (20)

Practica 10
Practica 10Practica 10
Practica 10
 
Practica 11
Practica 11Practica 11
Practica 11
 
Pre practica 9
Pre practica 9Pre practica 9
Pre practica 9
 
Practica 8
Practica 8Practica 8
Practica 8
 
Pre practica 8
Pre practica 8Pre practica 8
Pre practica 8
 
Practica #5
Practica #5Practica #5
Practica #5
 
Pre practica #6
Pre practica #6Pre practica #6
Pre practica #6
 
Practica #5
Practica #5Practica #5
Practica #5
 
Pre practica #6
Pre practica #6Pre practica #6
Pre practica #6
 
Producción de campos magnéticos
Producción de campos magnéticosProducción de campos magnéticos
Producción de campos magnéticos
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Ley de ohm
Ley de ohmLey de ohm
Ley de ohm
 
Introducción a la electricidad
Introducción a la electricidadIntroducción a la electricidad
Introducción a la electricidad
 
Inductancia, motores y generadores de cc
Inductancia, motores y generadores de ccInductancia, motores y generadores de cc
Inductancia, motores y generadores de cc
 
Induccion electromagnética
Induccion electromagnéticaInduccion electromagnética
Induccion electromagnética
 
Equivalente eléctrico del calor
Equivalente eléctrico del calorEquivalente eléctrico del calor
Equivalente eléctrico del calor
 
Electrización
ElectrizaciónElectrización
Electrización
 
Circuitos rc
Circuitos rcCircuitos rc
Circuitos rc
 
Campo y potencial
Campo y potencialCampo y potencial
Campo y potencial
 
Leyes de kirchhoff
Leyes de kirchhoff Leyes de kirchhoff
Leyes de kirchhoff
 

Último

trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdfIsabellaMontaomurill
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
Herramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptxHerramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptxRogerPrieto3
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesFundación YOD YOD
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudianteAndreaHuertas24
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 

Último (15)

trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdf
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
Herramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptxHerramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptx
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento Protégeles
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 

1 vectores en r3

  • 1. MOISES VILLENA Vectores en R3 1 1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones Objetivos. Se persigue que el estudiante: • Represente geométricamente un vector de R 3 • Determine magnitud y dirección de un vector. • Sume vectores, multiplique por un escalar a un vector, obtenga el productor escalar y el producto vectorial entre vectores • Obtenga el área de un paralelogramo sustentados por dos vectores. • Obtenga el volumen del paralelepípedo sustentado por tres vectores. 1
  • 2. MOISES VILLENA Vectores en R3 Tomando como referencia la teoría de vectores en el plano, se obtienen definiciones y propiedades de los vectores en el espacio. 1.1 DEFINICIÓN Un vector de R 3 es una terna ordenada de números reales. Denotada de la siguiente manera: → v = ( x, y , z ) 1.2 ENFOQUE GEOMÉTRICO 3 Geométricamente a un vector de R se lo representa en el Espacio como un segmento de recta dirigido. Suponga que se tienen los puntos P ( x1 , y1 , z1 ) y P2 ( x2 , y 2 , z 2 ) . Si 1 trazamos un segmento de recta dirigido desde P1 hacia P2 tenemos una → ⎯ ⎯→ representación del vector v = P P2 = ( x2 − x1 , y 2 − y1 , z1 − z 2 ) 1 z P2 = ( x2 , y 2 , z 2 ) → v P1 = ( x1 , y1 , z1 ) y x Este vector puede tener muchas otras representaciones equivalentes en el espacio. Una representación equivalente útil es aquella que se realiza ubicando al vector con el origen como punto de partida. z P ( x, y , z ) → v y x 2
  • 3. MOISES VILLENA Vectores en R3 1.2.1 Magnitud o norma → Sea v = ( x, y, z ) . La magnitud o norma de v → → denotada como v , se define como: → v = x2 + y2 + z 2 Note que la norma sería la longitud del segmento de recta que define el vector. Es decir, sería la distancia entre los puntos que lo definen. → Para v = ( x2 − x1 , y 2 − y1 , z 2 − z1 ) sería: → v = (x2 − x1 )2 + ( y2 − y1 )2 + (z 2 − z1 )2 1.2.2 Dirección → La dirección de v = ( x, y, z ) está definida por la medida de los ángulo que forma la línea de acción del segmento de recta con los ejes x , y , z z → γ v α β y x Los ángulos α , β y γ son llamados Ángulos Directores. 3
  • 4. MOISES VILLENA Vectores en R3 Observe que: x x Cosα = → = v x2 + y2 + z2 y y Cosβ = → = v x + y2 + z2 2 y y Cosγ = → = v x2 + y2 + z2 Ejercicio. Demostrar que cos 2 α + cos 2 β + cos 2 γ = 1 1.2.3 Sentido → El sentido de v lo define la flecha dibujada sobre el segmento de recta. 3 1.3 IGUALDAD DE VECTORES DE R → → Dos vectores v1 = (x1 , y1 , z1 ) y v2 = (x2 , y 2 , z 2 ) son iguales si y sólo si x1 = x2 , y1 = y2 y z1 = z 2 1.4 OPERACIONES 1.4.1 Suma → → Sean v1 y v2 dos vectores de R tales que 3 → → v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) entonces la → → → → suma de v1 con v2 , denotada como v1 + v2 , se define como: → → v1 + v2 = ( x1 + x2 , y1 + y2 , z1 + z 2 ) 4
  • 5. MOISES VILLENA Vectores en R3 1.4.1.1 Propiedades → → → Sean v1 , v2 y v3 vectores de R 3 , entonces: → → → → 1. v1 + v2 = v2 + v1 la suma es conmutativa v1 + ⎛ v2 + v3 ⎞ = ⎛ v1 + v2 ⎞ + v3 → → → → → → 2. ⎜ ⎟ ⎜ ⎟ la suma es asociativa ⎝ ⎠ ⎝ ⎠ → → → → → 3. ∃ 0 ∈ R , ∀ v ∈ R tal que v + 0 = v , 3 3 → Donde 0 = (0,0,0 ) es llamado Vector Neutro ∃⎛ − v ⎞ ∈ R 3 tal que v + ⎛ − v ⎞ = 0 → → → → → 4. ∀v∈R , ⎜ ⎟ 3 ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ → ⎞ Donde ⎜ − v ⎟ es llamado Vector Inverso Aditivo de v → ⎝ ⎠ Geométricamente: z → 2 v → v1 = ( x1 , y1 , z1 ) → 1 + v → v2 = (x2 , y 2 , z 2 ) y x → → Los vectores v1 y v2 sustentan un paralelogramo, el vector de la diagonal mayor es el Vector Suma y el vector de la diagonal menor es el Vector Diferencia. 1.4.2 Multiplicación por escalar → Sea α ∈ R y v = ( x, y, z ) un vector de R 3 entonces: → α v = (αx, αy, αz ) 5
  • 6. MOISES VILLENA Vectores en R3 1.4.2.1 Propiedades ⎡α ⎛ v + v ⎞ = α v + α v ⎤ → → →→ → → 1. ∀α ∈ R, ∀ v1 , v2 ∈ R ⎢ ⎜ 1 2 ⎟ 3 2⎥ ⎣ ⎝ ⎠ ⎦ 1 3⎡ ⎤ → → → → 2. ∀α , β ∈ R, ∀ v ∈ R ⎢(α + β ) v = α v + β v ⎥ ⎣ ⎦ ∀α , β ∈ R, ∀ v ∈ R 3 ⎡α ⎛ β v ⎞ = (αβ ) v ⎤ → → → 3. ⎢ ⎜ ⎟ ⎣ ⎝ ⎠ ⎥ ⎦ → Cualquier vector de R3 , v = ( x, y, z ) , puede ser expresado en → → combinación lineal de los vectores i = (1,0,0) , j = (0,1,0) y k = (0,0,1) → → v = ( x, y, z ) = x(1,0,0 ) + y (0,1,0 ) + z (0,0,1) → → → → v = x i + y j+ z k 1.4. 3. Producto Escalar. Producto Punto o Producto Interno → → Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores → → de R 3 . El Producto escalar de v1 con v2 denotado → → como v1 • v2 se define como: → → v1 • v2 = x1 x2 + y1y2 + z1 z 2 Ejemplo → → Si v1 = (3,1,−2) y v 2 = (− 1,4,0) entonces → → v1 • v 2 = (3)(− 1) + (1)(4) + (− 2)(0) = −3 + 4 + 0 = 1 1.4.3.1 Propiedades → → Sean v1 y v2 vectores de R 3 . Entonces: → → → → 1. v1 • v2 = v2 • v1 6
  • 7. MOISES VILLENA Vectores en R3 2. v1 • ⎛ v2 + v3 ⎞ = v1 • v2 + v1 • v2 → → → → → → → ⎜ ⎟ ⎝ ⎠ ⎛ α v ⎞ • ⎛ β v ⎞ = αβ⎛ v • v ⎞ → → → → 3. ⎜ 1 ⎟ ⎜ 2 ⎟ ⎜ 1 2⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ → Si v = ( x, y, z ) entonces: → → v • v = ( x, y , z ) • ( x, y , z ) = x 2 + y 2 + z 2 . → → → 2 → → → Por lo tanto v • v = v o también v = v• v 1.4. 4. Producto Vectorial. Producto Cruz → → Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores → → de R 3 . El Producto Vectorial de v1 con v2 → → denotado como v1 × v2 se define como: → → v1× v2 = ( y1 z 2 − z 1 y2 ,−( x1 z 2 − x2 z1 ), x1 y2 − y1 x2 ) Una manera práctica para obtener el resultado de la operación Producto Cruz entre dos vectores es resolver el siguiente determinante, para la primera fila: i j k → → v1 × v2 = x1 y1 z1 x2 y2 z2 Ejemplo. → → Sea v1 = (1,2,−1) y v 2 = (2,−1,0 ) entonces i j k → → v1 × v 2 = 1 2 − 1 = −i − 2 j − 5k 2 −1 0 7
  • 8. MOISES VILLENA Vectores en R3 1.4.4.1 Propiedades. → → → Sean v1 , v2 y v3 vectores de R 3 1. El vector ⎛ v1× v2 ⎞ es tanto perpendicular a → → ⎜ ⎟ ⎝ ⎠ → → v1 como a v 2 2. El sentido del vector ⎛ v1 × v2 ⎞ se lo puede → → ⎜ ⎟ ⎝ ⎠ obtener empleando la mano derecha. → Mientras los dedos se dirigen desde v1 → hacia v2 , el pulgar indica la dirección de ⎛v × v ⎞. → → ⎜ 1 2⎟ ⎝ ⎠ → → v1× v2 → v2 • • → v1 3. v1 × v2 = −⎛ v2 × v1 ⎞ → → → → ⎜ ⎟ ⎝ ⎠ → → → 4. v1 × v1 = 0 → → → → → 5. Si v1 // v 2 entonces v1 × v 2 = 0 ⎛α v ⎞ × ⎛α v ⎞ = α α ⎛ v × v ⎞ → → → → 6. ⎜ 1 1 ⎟ ⎜ 2 2 ⎟ 2⎜ 1 2 ⎟ ⎝ ⎠ ⎝ ⎠ 1 ⎝ ⎠ 7. v1 × ⎛ v2 + v3 ⎞ = ⎛ v1 × v2 ⎞ + ⎛ v1 × v3 ⎞ → → → → → → → ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 2 2 → 2 2 8. v1 × v 2 = v1 v 2 − ⎛ v1 • v 2 ⎞ → → → → → ⎜ ⎟ ⎝ ⎠ De la última expresión, empleando la propiedad del producto escalar, se obtiene un resultado muy importante: 8
  • 9. MOISES VILLENA Vectores en R3 → 2 → 2 → 2 2 → ⎛→ →⎞ v1 × v 2 = v1 v2 − ⎜ v1 • v 2 ⎟ ⎝ ⎠ 2 → 2 → 2 ⎛ → → ⎞ = v1 v2 − ⎜ v1 v 2 cos θ ⎟ ⎝ ⎠ → 2 → 2 → 2 → 2 = v1 v2 − v1 v2 cos 2 θ [1 − cos θ ] → 2 → 2 = v1 v2 2 → → 2 → 2 → 2 v1 × v 2 = v1 v 2 sen 2θ Finalmente: → → → → v1 × v 2 = v1 v 2 senθ 1.5 APLICACIONES 1.5.1 CALCULO DEL ÁREA DEL PARALELOGRAMO SUSTENTADO POR DOS VECTORES. → → Sean v1 y v2 dos vectores, no paralelos. Observe la figura: → v1 → v1 h θ → → v2 v2 → Tomando como base a v2 , tenemos: Area = base • altura → = v2 h h → → Observe que senθ = → entonces Area = v 2 v1 senθ v1 Y por la propiedad del producto cruz: → → Area = v1 × v 2 9
  • 10. MOISES VILLENA Vectores en R3 Ejemplo 1 → Hallar el área del triángulo sustentado por los vectores v1 = (1, 2,−1) y → v 2 = (2,−1, 0 ) SOLUCIÓN: → → El área del triángulo sustentado por dos vectores v1 y v 2 es la mitad del área del paralelogramo sustentado por los vectores, es decir: → → v1 × v 2 Area Triángulo = 2 i j k → → Como v1 × v 2 = 1 2 − 1 = −i − 2 j − 5k 2 −1 0 entonces → → v1 × v 2 (− 1)2 + (− 2)2 + (− 5)2 30 Area Triángulo = = = 2 2 2 Ejemplo 2 Hallar el área del triángulo que tiene por vértices los puntos (1,−2,0 ) , (1,1,1) y (− 2,0,1) SOLUCIÖN: Primero se forman dos vectores entre los puntos dados, tomando arbitrariamente el orden de estos puntos; luego se procede de manera análoga a lo mencionado anteriormente debido a que el área del triángulo es la mitad del área del paralelogramo. P2 (1,1,1) → v1 P (1,−2,0 ) → P3 (− 2,0,1) 1 v2 → → En este caso, v1 = P1 P2 = (1 − 1, 1 − (−2), 1 − 0 ) = (0,3,1) → → v 2 = P2 P3 = (− 2 − 1, 0 − (−2), 1 − 0 ) = (− 3,2,1) Entonces, i j k → → v1 × v 2 = 0 3 1 = i − 3 j − 9k −3 2 1 → → v1 × v 2 (1)2 + (− 3)2 + (9)2 91 Area Triángulo = = = 2 2 2 10
  • 11. MOISES VILLENA Vectores en R3 1.5.2 CALCULO DEL VOLUMEN DEL PARALELEPÍPEDO SUSTENTADO POR TRES VECTORES → → → Sean v1 , v2 y v3 tres vectores. Observe la figura. → → v1 × v 2 → h v3 h → v2 • → v1 → → Tomando como base el paralelogramo sustentado por v1 y v2 , la altura → → → h del paralelepípedo será la proyección escalar v3 sobre v1 × v2 , entonces: Volumen = Area base × altura → → Donde Area base = v1 × v 2 ⎛→ →⎞ → → ⎜ v1 × v 2 ⎟ • v3 altura = h = Pr oy → → v3 = ⎝ → ⎠ → v1 ×v2 v1 × v 2 Por tanto. ⎛v × v ⎞ • v → → → ⎜ 1 2⎟ 3 Volumen = v1 × v2 ⎝ → ⎠ → → → v1 × v2 Finalmente, simplificando resulta: Volumen = ⎛ v1 × v 2 ⎞ • v3 → → → ⎜ ⎟ ⎝ ⎠ Esta última expresión es denominada, EL TRIPLE PRODUCTO → → → ESCALAR de los vectores v1 , v 2 y v3 , y su interpretación es el volumen del → → → paralelepípedo sustentado por los vectores v1 , v 2 y v 3 . Observe además que no importa el orden de operación de los vectores, ¿por qué?. 11
  • 12. MOISES VILLENA Vectores en R3 Ejemplo → Hallar el volumen del paralelepípedo sustentado por los vectores v1 = (1,−2,1) , → → v 2 = (2,0,−1) y v3 = (1,2,3) . SOLUCIÖN. Por lo definido anteriormente, 1 −2 1 ⎛→ →⎞ → Volumen = ⎜ v1 × v 2 ⎟ • v3 = 2 0 − 1 = 2 + 14 + 4 = 20u 3 ⎜ ⎟ ⎝ ⎠ 1 2 3 Ejercicios propuestos → → ˆ j ˆ ˆ j ˆ 1. Sean los vectores V1 = 3i − 2 ˆ + 4k y V2 = 3i + 3 ˆ − 2k . → → a) Determinar la proyección vectorial de V1 sobre el vector V2 . → → b) Calcular la componente de V1 perpendicular a V2 . ⎯ ⎯→ ( ) → Resp. a) Pr oy → V1 = − 15 ,− 15 , 10 22 22 22 b) V2 → → ˆ j ˆ ˆ j ˆ 2. Sean los vectores A = Ax i − 5 ˆ + 2k y B = −3i + 2 ˆ − B z k . Calcule los valores de Ax y → → Bz para los cuales A× B es paralelo a: a) al eje x b) al eje y Resp. a) Ax = 15 2 Bz = 4 5 b) Ax = 15 2 Bz = 4 5 3. Calcular el área del triángulo que tiene sus vértices en los puntos (-3,2,4); (2,1,7) ; (4,2,6) Resp. Area = 174 2 4. Dados tres vectores V1 = (5,2,6) , V2 = (−1,8,3) , V3 = (2,−7,4) forman un tetraedro con vértice en el origen. Determinar su altura desde el origen. Resp. h = 77 746 5. Un tetraedro tiene por base el triángulo de vértices (3.-6,-1) , (4,4,-2) y (-3,-1,2); Si el vértice opuesto es el punto (8,10,6) , determine su altura. Resp. h = 938 5459 6. Sean u y v vectores no nulos, diferentes tales que: w1 = u + v , w2 = u − v , w3 =1 2 (u + v ) . Hallar w1 • (w2 × w3 ) Resp. 0 → → 7. Sea V un vector diferente de cero, entonces, demostrar que si U es un vector cualquiera, el → → → → U•V → → vector W = U − V es ortogonal a V . 2 → V → → → → → → 8. Demuestre que si U es ortogonal a V y a W , entonces U es ortogonal a c V + d W para escalares cualquiera cyd. → → 9. Demostrar que el área del triángulo, cuyos vértices son los extremos de los vectores A , B y → 1 ⎛ → →⎞ ⎛ → →⎞ C , es ⎜ B − A ⎟ × ⎜ C − A ⎟ 2⎜⎝ ⎟ ⎜ ⎠ ⎝ ⎟ ⎠ → → → → → → 10. Demostrar que el volumen del tetraedro de aristas A + B , B + C y C + A y es el doble → → → del volumen del tetraedro de aristas A , B y C . 11. Pruebe que las diagonales de un rombo (paralelogramo con lados iguales) son perpendiculares. 12