SlideShare una empresa de Scribd logo
1 de 28
Descargar para leer sin conexión
Guía de Calidad de la Energía Eléctrica
Armónicos
Interarmónicos
Armónicos
3.1.1
Frequency (Hz)
Current(A)
Armónicos
Interarmónicos
Zbigniew Hanzelka & Andrzej Bien´
AGH University of Science and Technology
Julio 2004
Esta Guía ha sido publicada como parte de la Iniciativa Leonardo para la Calidad de la
Energía Eléctrica (LPQI), un programa europeo de formación y educación respaldado por
la Comisión Europea (dentro del Programa Leonardo da Vinci) y la International Copper Association. Para
más información sobre LPQI visite www.lpqi.org.
Centro Español de Información del Cobre (CEDIC)
CEDIC es una asociación privada sin fines de lucro que integra la práctica totalidad
de las empresas fundidoras-refinadoras y semitransformadoras de cobre y de sus
aleaciones en España. Su objetivo es promover el uso correcto y eficaz del cobre y sus aleaciones en los
distintos subsectores de aplicación, mediante la compilación, producción y difusión de información.
European Copper Institute (ECI)
El European Copper Institute (ECI) es un proyecto conjunto formado por ICA
(International Copper Association) y la industria europea fabricante. Por medio
de sus socios, ECI actúa en nombre de los principales productores mundiales
de cobre y fabricantes europeos para promover la utilización del cobre en Europa. Fundado en Enero de
1996, ECI está respaldado por una red de once Centros de Promoción del Cobre en Alemania, Benelux,
Escandinavia, España, Francia, Grecia, Hungría, Italia, Polonia, Reino Unido y Rusia.
Limitación de Responsabilidad
El contenido de este proyecto no refleja necesariamente la posición de la Comunidad Europea, y tampoco
implica ninguna responsabilidad por parte de la Comunidad Europea.
El European Copper Institute, la AGH University of Science and Technology, la Copper Development
Association UK y el Centro Español de Información del Cobre (CEDIC) rechazan cualquier responsabilidad por
cualquier daño directo, indirecto, consecuencial o incidental que pueda resultar del uso de la información, o
de la incapacidad de usar la información o los datos contenidos en esta publicación.
Copyright© European Copper Institute, AGH University of Science and Technology y Copper Development
Association UK.
Su reproducción está autorizada siempre que el material sea íntegro y se reconozca la fuente.
La LPQI es promovida en España por los miembros nacionales asociados al programa:
Bovis Lend Lease, S.A. ETSII-UPM Fluke Ibérica, S.L.
®
MGE UPS SYSTEMS
ESPAÑA, S.A.
Prysmian Cables y
Sistemas
Universidad
de Cantabria
Universidad Carlos III
de Madrid
Armónicos
11
Interarmónicos
Introducción
Los armónicos son tensiones o corrientes cuya frecuencia es un múltiplo entero de la frecuencia funda-
mental de suministro. Los interarmónicos son tensiones o corrientes cuya frecuencia es un múltiplo no en-
tero de la frecuencia fundamental de suministro. El conocimiento de las perturbaciones electromagnéticas
asociadas a los interarmónicos se está iniciando actualmente por lo que existe un notable grado de interés
por este fenómeno. Los interarmónicos, siempre presentes en la red de energía eléctrica, han adquirido re-
cientemente mayor importancia debido a que la amplia utilización de los sistemas electrónicos de poten-
cia ha producido un aumento de su proliferación.
Definiciones
Al analizar una determinada forma de
onda, sus armónicos e interarmónicos se
denominan en función de sus compo-
nentes espectrales en un estado cuasi-
estacionario definido sobre un ámbito
determinado de frecuencias. La tabla 1
muestra sus definiciones matemáticas.
El término “subarmónico” no tiene
una definición oficial —es un caso par-
ticular de interarmónico cuya frecuen-
cia es menor que la frecuencia fundamental. Sin embargo, este término aparece en numerosas referencias
y es de uso general en el ámbito profesional.
La norma IEC 61000-2-1 define los interarmónicos de la forma siguiente:
Entre los armónicos de frecuencia de la tensión y de la corriente de la red de alimentación, se pueden obser-
var otras frecuencias que no son un múltiplo entero de la fundamental. Estas frecuencias pueden aparecerco-
mo frecuencias discretas o como un espectro de banda ancha.
Para posteriores consideraciones se aplicarán las siguientes definiciones específicas:
Frecuencia interarmónica
Será cualquier frecuencia que no sea un múltiplo entero de la frecuencia fundamental. Por analogía con el
orden de un armónico, el orden de un interarmónico viene dado por la relación entre la frecuencia del in-
terarmónico y la frecuencia fundamental. Si este valor es inferior a la unidad, la frecuencia también se de-
nomina frecuencia subarmónica. De acuerdo con la recomendación de la IEC, el orden del interarmónico
estará identificado por la letra “m” (según IEC 61000-2-2).
Interarmónico de tensión y, análogamente, de corriente
Se trata de una tensión sinusoidal cuya frecuencia está intercalada entre las de los armónicos o, dicho de
otra forma, cuya frecuencia no es un múltiplo entero de la frecuencia fundamental.
Fuentes
Básicamente existen dos mecanismos de generación de interarmónicos.
El primero es la generación de componentes en las bandas laterales de la frecuencia de la tensión de su-
ministro y de sus armónicos a debido a cambios en sus magnitudes y/o ángulos de fase. Estas variaciones
Armónico f = nf1 donde n es un entero mayor que cero
Componente de
cte. continua (cc)
f = nf1 para n = 0
Interarmónico f =nf1 donde n es un entero mayor que cero
Subarmónico f>0 Hz y f<f1
f1 = frecuencia fundamental de la tensión (armónico básico)
Tabla 1 - Componentes espectrales de una forma de onda (de frecuencia f)
Magnitudnormalizada(dB)
Frecuencia (Hz)
(b)
Tiempo (S)
(a)
TensiónNormalizadaestán provocadas por cambios bruscos de corriente en el equipo y en las instalaciones, que también pueden
originar fluctuaciones de la tensión. Las perturbaciones las generan cargas que operan en un régimen
transitorio, de manera continua o temporalmente, o, más frecuentemente, cuando se produce una modula-
ción de amplitud de corriente y tensión. Estas perturbaciones generalmente son de carácter aleatorio, y de-
penden de las variaciones de carga inherentes a los procesos y equipos utilizados.
El segundo mecanismo es la conmutación asíncrona (es decir, no sincronizada con la frecuencia de la red de
suministro de energía eléctrica) de los dispositivos semiconductores de los convertidores estáticos. Ejemplos
típicos de ello son los ciclo-convertidores y los convertidores de modulación de anchura de impulso (PWM).
Los interarmónicos generados por ellos pueden localizarse en cualquier parte del espectro de los armónicos de
tensión de la red de alimentación.
En muchos tipos de equipos ambos mecanismos se presentan simultáneamente.
Los interarmónicos se pueden generar a cualquier nivel de tensión y se transfieren entre niveles diferentes; es
decir, interarmónicos generados en sistemas de alta (AT) y media tensión (MT) pueden inyectarse en el siste-
ma de baja tensión (BT) y viceversa. Su magnitud raramente supera el 0,5% del armónico fundamental de ten-
sión, aunque en condiciones de resonancia podrían presentarse niveles mas elevados.
Entre las fuentes básicas de esta perturbación se cuentan:
◆ Cargas productoras de arco eléctrico.
◆ Dispositivos de accionamiento eléctrico de carga variable.
◆ Convertidores estáticos, es particular los convertidores de frecuencia directos e indirectos.
◆ Controles de ondulación.
Los interarmónicos también pueden ocasionarse por oscilaciones que se generan, por ejemplo, en sistemas
que contengan condensadores en serie o en paralelo o en los que los transformadores estén saturados y du-
rante los procesos de conmutación.
La tensión de una red de energía eléctrica contiene un ruido de fondo gaussiano con un espectro continuo. Los
niveles típicos de esta perturbación (de acuerdo con la IEC 1000-2-1) son del orden siguiente:
◆ 40-50 mV (alrededor del 0,02% de UN) cuando se mide con un filtro con un ancho de banda de 10 Hz.
◆ 20-25 mV (alrededor de 0,01% de UN) cuando se mide con un filtro con un de ancho de banda
de 3 Hz.
donde UN es la tensión nominal (230 V)
Cargas productoras de arco eléctrico
22
Interarmónicos
Figura 1 - Oscilación de la tensión típica de un horno de arco eléctrico medida en el secundario
del transformador de alimentación
a) fluctuación de tensión
b) espectro mostrando los armónicos (picos) e interarmónicos [1]
En este grupo se incluyen los hornos de arco y las máquinas de soldadura. Los hornos de arco normalmente
no introducen interarmónicos significativos, excepto cuando se amplifican debido a la presencia de reso-
nancias. El régimen transitorio, que es una fuente de interarmónicos, se produce de manera más intensa
durante la fase inicial de la fundición (Figura 1).
Las máquinas de soldadura generan un espectro continuo asociado con su proceso particular. La duración
cada una de las operaciones individuales de soldadura varía entre uno y diez segundos, dependiendo del
tipo de máquina de soldar.
Motores eléctricos
Los motores de inducción pueden generar interarmónicos debido a las ranuras del hierro del estator y del
rotor, especialmente cuando se asocian con la saturación del circuito magnético (los denominados “armó-
nicos de ranura”). Cuando el motor alcanza la velocidad de régimen, las frecuencias de los componentes
perturbadores normalmente están comprendidas entre 500 Hz y 2000 Hz pero, durante el periodo de arran-
que, este margen puede aumentar notablemente. La asimetría natural del motor (desalineamiento del ro-
tor, etc.) puede ser también una fuente de interarmónicos —véase Figura 2.
Interarmónicos
33
Figura 2 - Resultados del análisis espectral de la corriente y de la tensión de una fase de un motor en sus terminales
a), c) – espectro completo de las señales
b), d) – espectro con la componente de la frecuencia fundamental eliminada
Frecuencia (Hz)
a) Espectro de corriente
Corriente(A)
b) Espectro de corriente
Frecuencia (Hz)
Corriente(A)
Frecuencia (Hz) Frecuencia (Hz)
Tensión(V)
c) Espectro de tensión d) Espectro de tensión
Tensión(V)
Los motores de par de carga variable, tales como maquinas de forja, martillos pilones, maquinas troquela-
doras, sierras, compresores, bombas aspirante-impelentes, etc., pueden ser también fuentes de generación
de subarmónicos. El efecto de las cargas variables también se ve en los motores de velocidad variable ali-
mentados por convertidores estáticos.
En las plantas de generación eólica, el efecto de la variación del par motor de la turbina, resultante, por
ejemplo, del “efecto sombra” del pilón de soporte, puede modular la componente fundamental de la ten-
sión, convirtiéndose así en una fuente de componentes de baja frecuencia no deseadas.
Convertidores de frecuencia estáticos
Convertidores de frecuencia indirectos
Los convertidores de frecuencia indirectos contienen un circuito de acoplamiento de cc con un converti-
dor de entrada en la parte de la red de alimentación eléctrica y un convertidor de salida (que normalmen-
te actúa como inversor) en la parte de la carga. En las configuraciones de corriente o de tensión, el circuito
de acoplamiento de corriente continua contiene un filtro que desacopla la corriente o la tensión de los sis-
temas de alimentación y de carga. Por esa razón las dos frecuencias fundamentales (la de alimentación y
la de carga) se desacoplan mutuamente. Pero el filtrado ideal no existe, y siempre hay un cierto grado de
acoplamiento. A consecuencia de ello, en el circuito de acoplamiento de cc están presentes componentes
de corrientes asociados con la carga, y componentes de estos están presentes en la parte de la red de ali-
mentación. Estos componentes son subarmónicos e interarmónicos con respecto a la frecuencia del siste-
ma de alimentación de energía eléctrica.
Inversores de la fuente de corriente conmutados por carga
Debido a la técnica de conmutación
de los elementos semiconductores,
estos se consideran convertidores in-
directos de frecuencia conmutados
por línea. Un convertidor de fre-
cuencia está formado por dos puen-
tes trifásicos P1 y P2 y un circuito de
acoplamiento de cc con una bobina
(de inductancia Ld – Figura 3). Uno
de los puentes actúa como rectifica-
dor y el otro como inversor, aunque
sus funciones pueden ser intercam-
biables.
La presencia de dos puentes rectificadores en dos sistemas de frecuencias diferentes hace que la corriente
del circuito de acoplamiento de cc sea modulada por dos frecuencias – f1 y f2. Cada uno de los convertido-
res incorpora componentes no característicos en el circuito de acoplamiento de corriente continua, que
aparecen como armónicos no característicos en el lado de la corriente alterna, tanto en la carga como en el
sistema de alimentación.
Los componentes del circuito de acoplamiento de corriente continua son:
Del sistema 1: fd1 = p1kf1 k = 0, 1, 2, ...
Del sistema 2: fd2 = p2nf2 n = 0, 1, 2, ...
Donde:
p1, p2 = número del pulso, de los convertidores P1 y P2 respectivamente
f1 = frecuencia fundamental del sistema 1 (red de alimentación eléctrica) [Hz]
f2 = frecuencia fundamental del sistema 2 (carga) [Hz].
44
Interarmónicos
Figura 3 - Convertidor de frecuencia indirecto con un inversor
conmutado por carga
Sistema 1
(frecuencia fundamental, f1)
Sistema 2
(frecuencia fundamental, f2)
convertidor P1 convertidor P2
El funcionamiento del convertidor P1 produce en la red de alimentación la aparición de armónicos de co-
rriente característicos con las siguientes frecuencias:
fhh, char = (p1k ± 1) f1 k = 1,2, …
Además se presentarán otros componentes asociados con los componentes del circuito de acoplamiento
de corriente continua generados por P2.
Se puede representar, de forma general, un paquete completo de las frecuencias de los componentes de la
corriente de la red de alimentación por medio de la expresión:
frecuencias de la corriente de la red de alimentación (sistema 1) = (kp1 ± 1) f1 ± p2nf2
donde: k = 0,1,2, ... y n = 0, 1, 2, ...
Tomando n = 0, para k = 0,1,2, ... se obtienen los órdenes de los armónicos característicos para una confi-
guración dada del convertidor P1. Las componentes determinadas para k = constante y n ≠ 0, son las ban-
das laterales adyacentes a las frecuencias características del inversor. Por lo tanto, cada armónico caracte-
rístico para un puente de seis pulsos, p.ej., de orden n1 = 1, 5, 7, ... tiene sus propias bandas laterales, como
en el ejemplo del 5º armónico que se muestra en la Figura 4.
El primer par de interarmónicos, que se producen en las proximidades del componente fundamental, es decir
con frecuencias f1 ± p2f2, es el de mayor amplitud. La inductancia de la bobina del circuito de acoplamiento de
corriente continua tiene una influencia destacada en el nivel de interarmónicos. Un ejemplo de una configu-
ración de un dispositivo eléctrico con un inversor con fuente de corriente es el dispositivo de compensa-
ción del deslizamiento estático.
Inversores de fuente de tensión
En los convertidores de tensión
(Figura 5) también predominan
los armónicos característicos del
convertidor P1. Las bandas latera-
les, cuyas frecuencias están deter-
minadas por el número de pulsos
del convertidor P2, se producen
alrededor de las frecuencias ca-
racterísticas de P1, es decir:
(kp1 ± 1)f1 ± np2f2
para k = 0, 1, 2, 3, ... n = 0, 1, 2, 3, ...
En la mayoría de los casos los ar-
mónicos no característicos son
una parte muy pequeña de la co-
rriente de alimentación.
La determinación numérica de
los valores de los armónicos e
interarmónicos de la corriente
de alimentación requiere el aná-
lisis preciso del convertidor de
frecuencia de que se trate, inclu-
yendo la carga, o disponer de in-
formación suficiente proporcio-
nada por el fabricante.
Algunos convertidores tienen un
rectificador de entrada activo
Interarmónicos
55
Figura 4 - Bandas laterales adyacentes al 5º
armónico característico
de un convertidor de seis pulsos P1 y P2
Figura 5 - Diafragma esquemático de un convertidor de frecuencia
con enlace de corriente continua de fuente de tensión
Banda lateral Banda lateral
que opera a una frecuencia de conmutación, que
no es un múltiplo entero de la frecuencia de la
red. Esta frecuencia pude ser constante o varia-
ble, dependiendo del diseño del control del con-
vertidor.
Los convertidores de frecuencia de la fuente de
tensión con un rectificador de entrada con mo-
dulación de anchura de impulso (PWM) generan
componentes de corriente a la frecuencia de con-
mutación del dispositivo semiconductor y sus ar-
mónicos, que no están sincronizados con la fre-
cuencia de la red. Normalmente están dentro del
margen de varios cientos de Hz hasta varias dece-
nas de kHz.
Control de ciclo integral de conmutador
de tiristor
Este tipo de control permite el paso de un ciclo
completo de corriente a través de un conmutador
electrónico (semiconductor). Por lo tanto la co-
rriente no se ve distorsionada por el dispositivo de
control – es sinusoidal (para una carga lineal), o
cero.
En la Figura 6 se muestra un ejemplo de conmuta-
dores de control electrónico en una configuración
trifásica. La conmutación de una carga trifásica en
el punto de cruce cero de las tensiones de fase
produce un flujo de corriente en el conductor
neutro de un sistema de cuatro hilos. Con la con-
mutación simultánea entre las fases y una carga
resistiva no se genera flujo de corriente en el con-
ductor neutro (Figura 6) pero, en el caso de una
carga inductiva, se producen transitorios asocia-
dos con los procesos de conmutación.
El análisis de una configuración como la de la
Figura 7a (con conductor neutro) puede represen-
tarse como un circuito monofásico (Figura 7b). A
continuación se trata en detalle, como aplicación
práctica más común, el caso de una carga resisti-
va monofásica.
Un ciclo de control completo se compone de N
ciclos de conducción dentro de un número entero
de ciclos M (Figura 8). La potencia media sumi-
nistrada a una carga se regula controlando el valor
de la relación N/M. Como base para el análisis de
Fourier, se debe suponer que el periodo de la on-
da de corriente es Mf1
-1, donde f1 es la frecuencia
de la tensión de alimentación y M es el número de
ciclos.
66
Interarmónicos
Figura 7 - Regulador de corriente alterna en configuración
a) trifásica
b) monofásica
Figura 8 - Forma de onda de una corriente de carga en un
sistema de ciclo de control integral N = 2, M = 3
Figura 6 - Formas de onda de corrientes
en configuración trifásica con un conductor neutro
para el control de un ciclo integral
Tiempo de conmutación
(a) (b)
Ciclo de tensión de entrada (T)
Tiempo de conducción de corriente (NT)
Tiempo total (MT)
Interarmónicos
77
El primer componente es el interarmónico de frecuencia (1/M)f1, que es el componente con la fre-
cuencia más baja de la corriente. En el ejemplo de la Figura 8, donde N = 2, M = 3, el valor de este su-
barmónico es de un tercio de la frecuencia de la tensión de alimentación. Las frecuencias de los otros
componentes son múltiplos de ésta.
Este tipo de control es una fuente de subarmónicos e interarmónicos, pero no es una fuente de armó-
nicos superiores de la componente fundamental. Cuando N = 2, M = 3, como en la Figura 8, las ampli-
tudes de los armónicos son cero para n = 6, 9, 12... En la Figura 9 se muestra el espectro de la corriente
para este caso. Como se ve en la figura, los componentes principales son el armónico de frecuencia de
la tensión de alimentación y el subarmónico de la frecuencia (2f)/3. Las amplitudes de los armónicos
son iguales a cero.
Principales tensiones de señalización en los sistemas de distribución eléctrica
La finalidad principal de una red pública de distribución eléctrica es el suministro de energía eléctrica
a los usuarios. Sin embargo es frecuente que, también las empresas suministradoras, la utilicen para
transmitir señales de gestión del sistema, por ejemplo, para controlar ciertos tipos de cargas (alumbra-
do urbano, para la transmisión de señales de cambio de tarifa, conmutación de cargas remotas, etc) o
para la transmisión de datos.
Desde el punto de vista técnico, estas señales son una fuente de interarmónicos de una duración de 0,5
a 2 segundos (hasta 7 segundos en los sistemas más antiguos), que se repiten con una periodicidad de
6 a 180 segundos. En la mayoría de los casos la duración del pulsos es de 0,5 segundos, y el tiempo de la
secuencia completa se encuentra alrededor de los 30 segundos. La tensión y la frecuencia de la señal se
han acordado previamente y la señal se transmite en momentos determinados.
En la norma IEC 61000-2-1 se especifican cuatro categorías básicas para estas señales:
◆ Señales de control de modulación: Señales sinusoidales en la banda de los 110-2200 (3000) Hz
con preferencia entre 110-500 Hz en sistemas modernos. Se utilizan principalmente en sistemas
profesionales de suministro de energía (a veces también en sistemas industriales de alimenta-
ción eléctrica) a niveles de Baja (BT), media (MT) y alta (AT) tensión. La magnitud de la señal si-
nusoidal de tensión es del orden del 2-5% de la tensión nominal (dependiendo de los procedi-
mientos utilizados). En condiciones de resonancia puede incrementarse hasta el 9%.
◆ Señales portadoras de frecuencia media sobre líneas de distribución eléctrica: Señales sinusoida-
les en la gama de los 3 a 20 kHz, preferentemente de 6-8 kHz. Utilizadas principalmente en sis-
temas profesionales de suministro eléctrico. La magnitud de señal puede alcanzar hasta el 2 %
de UN.
◆ Señales portadoras de radiofrecuencia sobre líneas de distribución eléctrica: De 20 a 150 (148,5)
kHz (hasta 500 kHz n algunos países). Utilizadas en sistemas de alimentación eléctrica profe-
sionales, industriales y comunitarios, así como para aplicaciones comerciales (control remoto
de equipos, etc.).
◆ Sistemas de señalización de la red: marcas no sinusoidales sobre la onda de tensión que toman
la forma de:
- Pulsos largos (escalones de tensión de una duración de 1,5 – 2 mseg., preferentemente en el
punto de cruce cero de la tensión).
- Pulsos cortos, de duración de 20-50 mseg.
- Pulsos con frecuencia de 50Hz y duración igual a uno o medio ciclo de la tensión de la red.
En la Figura 10 se muestra un ejemplo
del espectro de tensión de un sistema
que utiliza para la transmisión de da-
tos una frecuencia de 175 Hz (Uih =
1,35%). En el ejemplo se observan
otros interarmónicos generados por la
interacción con frecuencias armóni-
cas. Los componentes por encima del
segundo armónico son irrelevantes (ya
que no perturban las cargas), mientras
que los interarmónicos por debajo de
200 Hz sí pueden provocar problemas.
Efectos de la presencia
de interarmónicos
Las corrientes interarmónicas producen una distorsión interarmónica de la tensión dependiendo de la magni-
tud de las componentes de la corriente y de la impedancia del sistema de alimentación a esa frecuencia. Cuanto
mayor es el margen de la frecuencia de los componentes de la corriente, mayor es el riesgo de que se presenten
fenómenos de resonancia no deseados, que pueden aumentar la distorsión de la tensión y producir sobrecargas
o perturbaciones en el funcionamiento de los equipos e instalaciones del usuario. Entre los efectos directos más
comunes de los interarmónicos están:
◆ Efectos térmicos.
◆ Oscilaciones de baja frecuencia en siste-
mas mecánicos.
◆ Perturbaciones en el funcionamiento de
los equipos electrónicos y lámparas fluo-
rescentes. En la práctica puede verse per-
turbado el funcionamiento de cualquier
equipo que esté sincronizado con respec-
to al punto de paso por cero de la tensión
de alimentación o con la tensión de pico
(Figura 11).
88
Interarmónicos
Figura 11 - Múltiples puntos de cruce por cero de la
onda de tensión a consecuencia de la distorsión
Figura 10 - Resultados de la Transformación Rápida de Fourier para
la tensión durante la emisión de una señal de transmisión de datos
(Uih = 1,35%, f(Uih) = 175 Hz
Frecuencia (Hz)
U(%)
Corriente(A)
Frecuencia (Hz)
Figura 9 - Espectro de la corriente para N = 2; M = 3.
,
,
, ,
◆ Interferencia con las señales de control y de protección en las líneas de suministro de energía eléc-
trica. Actualmente, esta es la principal perturbación ocasionada por los interarmónicos.
◆ Sobrecarga de filtros pasivos en paralelo para armónicos de orden elevado.
◆ Interferencia en las telecomunicaciones.
◆ Perturbación acústica.
◆ Saturación de los transformadores de corriente.
Los efectos más comunes de la presencia de interarmónicos son las variaciones en la magnitud de la ten-
sión eficaz y el flicker.
Fluctuaciones de la tensión y el flicker
La tensión de suministro se puede representar como:
u(t) = U1 sen(ω1t)[1+msen(ωit)]+∑Uh sen(ωht)
h
u(t) = U1 sen(ω1t)+[ΣUh sen(ωht)][1+msen(ωit)]
h
donde ω1 = 2πf1 y m es el índice de la señal de modulación cuya frecuencia es ωi = 2πfi
Las ecuaciones anteriores representan posibles fuentes de fluctuaciones de tensión causadas por la modulación
de la componente fundamental con armónicos enteros. El segundo sumando es de poca importancia práctica.
Teniendo en cuenta solamente la componente fundamental, la ecuación se convierte en :
u(t) = U1 sen(ω1t)[1+msen(ωit)] = U1 sen ω1t+ mU1
[cos(ω1-ωi)t-cos(ω1+ωi)t]
2
En esta ecuación, además de la componente fundamental hay dos componentes con frecuencias asociadas
con la frecuencia moduladora de la señal, situadas simétricamente a cada lado de la componente de la fre-
cuencia fundamental. Las variaciones periódicas de la tensión podrían considerarse como variaciones del
valor eficaz (o máximo), o como una consecuencia de la presencia de interarmónicos de banda lateral que
modulan la tensión de alimentación.
Por ejemplo, para u(t) = sen (2πft) + m sen (2πfit) (asumiendo que U1 = 1), la variación máxima de la amplitud de
la tensión es igual a la amplitud del interarmónico, mientras que la variación del valor eficaz depende tanto de la
amplitud como de la frecuencia del interarmónico. La Figura 12 muestra el máximo porcentaje de variación del
valor eficaz de la tensión, definido a lo largo de varios ciclos de la forma de onda fundamental, causado por
interarmónicos de diferentes frecuencias pero de amplitud constante m = 0,2% de la componente fundamental
de la tensión.
Como se aprecia en la Figura 12, la in-
fluencia de los interarmónicos de fre-
cuencias superiores al doble de la fre-
cuencia de alimentación es pequeña
comparada con la influencia de los
componentes de frecuencias inferiores
a la del segundo armónico (100 Hz). En
el caso de interarmónicos existe el ries-
go de que las fluctuaciones de tensión
provoquen oscilaciones si el nivel exce-
de, para una frecuencia determinada,
un cierto valor límite. Por lo tanto, si fi ≤
f1, y en particular para fi próxima a la
frecuencia fundamental (f1 ± 15 Hz), la
Interarmónicos
99
Figura 12 -Dependencia de la variación máxima de la tensión eficaz
de la frecuencia del interarmónico de una amplitud constante
(0,2% de la amplitud de la componente fundamental) [10]
(1)
(2)
Frecuencia (Hz)
Tensióneficaz(V)
(3)
modulación de la componente fundamental provoca fluctuaciones en la magnitud de la tensión eficaz y, por
lo tanto, es una fuente de parpadeo (flicker). Este fenómeno puede observarse tanto en lámparas incandes-
centes como fluorescentes, aunque el mecanismo y el margen de frecuencias, y también las amplitudes per-
misibles de las componentes perturbadoras, son totalmente diferentes.
Una fuente de parpadeo pueden ser los sistemas de transmisión de señales a través de la red eléctrica que
se describieron anteriormente. A pesar de su pequeña magnitud, estas señales pueden, a veces, dar lugar a
parpadeo en el caso de dispositivos de iluminación muy sensibles tales como las lámparas fluorescentes
compactas de bajo consumo, especialmente las que tienen balastos inductivos. Este tipo de perturbación
raramente se produce en fuentes de iluminación con balastos electrónicos.
Mediciones
La mayoría de los instrumentos que realizan mediciones de frecuencia funcionan correctamente cuan-
do en la señal medida sólo están presentes armónicos. Estos instrumentos emplean un circuito de blo-
queo de fase para sincronizar la medición con la frecuencia componente fundamental y muestrean la se-
ñal durante uno o varios ciclos para analizarla por medio de la Transformación Rápida de Fourier (FFT).
A causa de la presencia del bucle de bloqueo de fase, las muestras de “ciclo único” pueden dar una re-
presentación precisa del espectro de la onda sólo cuando ésta no contiene interarmónicos. Si están pre-
sentes otras frecuencias no armónicas (en relación con el período medido) y/o la forma de onda exami-
nada no es periódica en ese intervalo de tiempo, puede haber dificultades con la interpretación de los re-
sultados.
La herramienta fundamental de análisis es la Trasformación de Fourier. En la práctica la señal se analiza en
un intervalo de tiempo limitado (una ventana de medición de duración Tw) utilizando un número limitado
(M) de muestras de la señal presente. Los resultados de la Transformación Discreta de Fourier (DFT) de-
penden de los valores de Tw y M escogidos. La inversa de Tw es la frecuencia fundamental de Fourier – fF.
La Transformación Discreta de Fourier se aplica a la señal presente dentro de la ventana de tiempo, mien-
tras que no se procesa la señal que queda fuera de esta ventana, puesto que se asume que es idéntica a la
forma de onda comprendida en la ventana. Así pues, la señal presente es sustituida por una virtual, que es
periódica y cuyo período es igual al ancho de la ventana.
En el análisis de formas de onda periódicas no hay ningún problema para sincronizar el tiempo de aná-
lisis con el período de la onda fundamental (también con armónicos). Sin embargo, con interarmónicos
el análisis se hace más difícil. Las frecuencias de las componentes interarmónicas son múltiplos no en-
teros de la frecuencia fundamental y suelen variar con el tiempo, lo cual añade mayor dificultad a la me-
dición.
Debido a la presencia de componentes tanto armónicas como interarmónicas, la frecuencia de Fourier, que
es el máximo común divisor de todas las frecuencias de las componentes contenidas en la señal, es dife-
rente de la frecuencia fundamental de la tensión de alimentación y normalmente es muy pequeña. Se pre-
sentan dos problemas:
◆ El tiempo mínimo de toma de muestras puede ser muy largo y el número de muestras muy grande.
◆ Es difícil predecir la frecuencia fundamental de Fourier porque no se conocen a priori todas las fre-
cuencias componentes de la señal.
Esto se puede ilustrar por medio de los siguientes ejemplos:
La señal a analizar es una suma de la componente fundamental (50 Hz), un interarmónico (71,2 Hz) y un
armónico (2.500 Hz). La frecuencia fundamental de Fourier es 0,2 Hz y es mucho mas baja que la fre-
cuencia de la componente fundamental. El período correspondiente es 5 segundos y, consecuentemen-
te, el mínimo tiempo de toma de muestras permisible es también de 5 segundos. Suponiendo que la fre-
cuencia de muestreo es de 10 kHz, que prácticamente es el mínimo valor aplicable resultante de la apli-
cación del criterio de Nyquist (Apéndice 2), el tiempo de medida mínimo sería de 20 ms y el número de
muestras sería de 200.
1100
Interarmónicos
La señal a analizar es la suma de la componente fundamental (50 Hz) y un armónico (2.500 Hz), la ampli-
tud de cada una de ellas varía de forma sinusoidal con unas frecuencias de 0,1 Hz y 5 Hz respectivamente.
El efecto de estas modulaciones es de cuatro interarmónicos con frecuencias de 49,9 Hz, 50,1 Hz, 2.495 Hz
y 2.505 Hz. La frecuencia fundamental de Fourier es 0,1 Hz, el tiempo mínimo de toma de muestras es de
10 segundos y M = 100.000.
En las aplicaciones prácticas, debido a las limitaciones del equipo y del software, el número de mues-
tras M no puede ser mayor que un cierto número máximo, y en consecuencia, el tiempo de medición
es limitado. La utilización de un tiempo de medición diferente del período fundamental de Fourier
provoca una discontinuidad entre la señal al principio y al final de la ventana de medición. Esto da lu-
gar a unos errores de identificación de las componentes que se conocen como pérdida de espectro.
Una posible solución para este problema es el empleo, antes del análisis con la Transformación Rápida
de Fourier, de una ventana de tiempo “ponderada” con respecto a una señal variable con el tiempo. En
la práctica se aplican dos clases de ventanas de medición: la rectangular y la ventana Hanning
(Apéndice 1).
Normalización
Coeficientes normalizados
La Tabla 2, que se presenta a continuación, presenta algunos coeficientes numéricos de contenido de
interarmónicos utilizados en diversos documentos de normalización.
Método de medición normalizado
La medición de los interarmónicos es difícil y sus resultados dependen de muchos factores, de ahí los
intentos de desarrollar un método de “medición” para simplificar el proceso de medida y producir re-
sultados repetibles. La normativa [6] sugiere un método de medición de interarmónicos basado en el
concepto denominado “agrupamiento”. Este método se basa en el análisis de Fourier realizado en una
Interarmónicos
1111
Factor Definición
Magnitud del interarmónico con respecto a la com-
ponente fundamental (corriente o tensión)
Contenido total de distorsión
Razón de distorsión total
Coeficiente de distorsión interarmónica total
Distorsión subarmónica total
Q = valor eficaz total representando corriente o tensión
Q1 = valor eficaz de la componente fundamental
Qi = valor eficaz del interarmónico
i = número variable del interarmónico
n = número total de interarmónicos considerados
S = número total de subarmónicos considerados
Tabla 2 - Coeficientes de distorsión por armónicos aplicados en diversos estándares
Qi
Q1
TIHD =
∑ Qi
2
TDC = Q2
-Q1
2
TDR =
TDC = Q2
-Q1
2
Qi Qi
i=1
n
Q1
TSHD =
∑ Qi
2
i=1
s
Q1
ventana de tiempo igual a 10 ciclos de la frecuencia fundamental (50 Hz), es decir, aproximadamente de
200 mseg. El muestreo se sincroniza con la frecuencia de alimentación por medio de un circuito de blo-
queo de fase El resultado es un espectro con una resolución de 5 Hz. La norma define el método de pro-
ceso individual de líneas de 5 Hz a fin de determinar los grupos de armónicos o interarmónicos, a los
cuales hacen referencia las recomendaciones de las normas e informes técnicos.
Los grupos de armónicos e interarmónicos se calculan mediante las ecuaciones que se indican en la
Figura 13.
Definiciones relativas al concepto de agrupamiento
Valor eficaz de un grupo de armónicos
Es la raíz cuadrada de la suma de los cuadrados de las amplitudes de cada armónico y las componentes es-
pectrales adyacentes a él dentro de la ventana de observación, sumando así el contenido de energía de las
líneas contiguas con el del armónico propiamente dicho.
Valor eficaz de un subgrupo de armónicos
Es la raíz cuadrada de la suma de los cuadrados de las amplitudes de un armónico y de las dos componen-
tes espectrales inmediatamente adyacentes a él, a fin de incluir el efecto de la fluctuación de la tensión du-
rante la toma de muestras de tensión. Se obtiene un subgrupo de componentes de salida de la
Transformación Discreta de Fourier (DFT) sumando los contenidos de energía de las componentes de fre-
cuencia directamente adyacentes a un armónico sobre el armónico propiamente dicho.
1122
Interarmónicos
Figura 13 - Ilustración del principio de grupos de armónicos e interarmónicos
Subgrupo armónico Grupo armónico Grupo armónico
Subgrupo interarmónico Grupo interarmónico
Resultado
de Transf.
Directa
de Fournier
Orden armónico
Orden armónico
Resultado
de Transf.
Directa
de Fournier
Valor eficaz de un grupo de interarmónicos
Es el valor eficaz de todas las componentes interarmónicas del intervalo comprendido entre dos frecuen-
cias armónicas consecutivas (véase la Figura 13).
Valor eficaz de un subgrupo centrado de interarmónicos
El valor eficaz de todas las componentes interarmónicas en el intervalo comprendido entre dos frecuencias
armónicas consecutivas excluyendo las componentes de frecuencia directamente adyacentes a las fre-
cuencias armónicas (véase la Figura 13).
En la normativa [6] puede encontrarse información más detallada relativa a este concepto de medi-
ción. Sobre la base de estas definiciones se pueden efectuar medidas para cualquier grupo de inte-
rarmónicos, así como de la distorsión interarmónica total, referidas a la componente fundamental, al
valor eficaz total o a otro valor de referencia. Estos valores son la base para determinar los valores lí-
mite.
Este método es interesante desde el punto de vista de la verificación en el caso de reclamaciones y para la
realización de pruebas de compatibilidad, porque los niveles límite pueden definirse sobre la base de la dis-
torsión total y no están referidas a la medición de frecuencias particulares. Este método no es adecuado pa-
ra la realización de diagnósticos.
Límites de compatibilidad
El proceso de normalización de los interarmónicos está en sus comienzos y todavía, en este momento, se
está reuniendo información y datos de mediciones.
Se ha generalizado la aplicación de un nivel límite del 0,2% para tensiones interarmónicas, debido princi-
palmente a la falta de una opción mejor. Se ha introducido de acuerdo con la sensibilidad de la carga de los
sistemas de señalización de la red, pero su aplicación a otros casos, al no tener en cuenta los posibles efec-
tos físicos, puede llevar a soluciones muy costosas, por ejemplo, el uso de filtros pasivos muy caros. Más
adelante se citan algunos documentos con varios ejemplos de soluciones, pero resultan evidentes incon-
sistencias y diferencias significativas.
Disposiciones de la Comisión Electrotécnica Internacional (IEC)
Según las recomendaciones de la IEC, los interarmónicos de tensión deben estar limitados al 0,2% para el
rango de frecuencias que va desde la componente de corriente continua hasta 2 kHz.
La norma [7] establece niveles de
prueba de inmunidad para interar-
mónicos en varios márgenes de fre-
cuencia. Dependiendo de la clase
de equipo, los niveles de tensión
están contenidos dentro del 1,5%
de U1 (1.000 – 2.000 Hz). Los niveles
de prueba para interarmónicos por
encima de 100 Hz están dentro del
2-9%.
En la documentación [5] se proporcio-
nan niveles de compatibilidad sólo
para el caso de interarmónicos de ten-
sión con frecuencias próximas a la
componente fundamental, lo cual
produce una modulación de la ten-
sión de alimentación y parpadeo (flic-
ker). La Figura 14 muestra el nivel de
compatibilidad para un único interar-
mónico de tensión, expresado como
Interarmónicos
1133
Figura 14 - Niveles de compatibilidad para interarmónicos
relacionados con la oscilación (efecto de batido) [5]
Frecuencia de batido, Δf (Hz)
(diferencia entre las dos frecuancias que se combinan)
Amplituddelinterarmónico
(%delatensiónfundamental)
porcentaje de la amplitud de la componente fundamental, en función de la frecuencia de batido de dos com-
ponentes combinadas cuya interacción produce el interarmónico. Esta característica se denomina severidad
de parpadeo Pst = 1 para lámparas incandescentes de 230 V.
A continuación se dan recomendaciones más detalladas relativas a los valores límite de la tensión de seña-
lización en los sistemas de distribución eléctrica:
◆ Control del parpadeo de las se-
ñales: el nivel de estas señales
no debe exceder del valor de
los armónicos impares que no
sean múltiplos de 3 para la
misma banda de frecuencia
([5], (Tabla 3). En la práctica,
este valor está contenido en el
margen del 2-5% de UN.
◆ Señales portadoras de media
frecuencia sobre la línea de
distribución eléctrica: el valor
de señal de hasta el 2% de UN.
◆ Señales portadoras de radio-
frecuenciasobre línea de distri-
bucióneléctrica: Los niveles de
compatibilidad están siendo
sometidos a consideración.
No deben superar el 0,3%.
◆ Sistemas de señalización de la red: Los fabricantes de equipos garantizarán la compatibilidad con el
entorno de trabajo.
En algunos países se reconoce oficialmente la denominada curva Meister, que se muestra en la Figura 15.
CENELEC (Norma EN 50160)
Durante el 99% de una jornada, la
media de tres segundos de las tensio-
nes de la señal deberá ser menor o
igual a los valores que se dan en la
Figura 16.
Límites de emisión subarmónica
e interarmónica [13]
En el Reino Unido, por ejemplo, se
asume que no se aplican sistemas de
control del parpadeo y por lo tanto el
abonado puede conectar una carga
sin considerar si las emisiones inte-
rarmónicas individuales son inferio-
res a los valores límites que se dan en
el Tabla 4. Los límites para frecuencias
1144
Interarmónicos
Figure 15 - Curva Meistter para el control de las oscilaciones en las re-
des de suministro público (100 Hz a 3000 Hz) [5]
Frecuencia (Hz)
Niveldeseñal(%UN)
Orden de Armónico 5 7 11 13
Valor eficaz del armónico (% of fundamental component) 6 5 3.5 3 2.27 * (17/h) - 0.27
17≤ h ≤49
Tabla 3 - Valores de armónicos como base para determinar los niveles de compatibilidad de interarmónicos [5]
Figure 16 - Niveles de tensión de las señales utilizadas en los sistemas
públicos de distribución en Media Tensión [11]
Frecuencia (Hz)
%delatensióndeclarada
interarmónicas particulares entre 80 y 90 Hz se pueden interpolar linealmente a partir de los límites que fi-
guran en la Tabla 4.
Métodos para la mitigación de los interarmónicos y la reducción
de sus efectos
Los métodos de mitigación de los efectos de los interarmónicos son:
◆ La reducción del nivel de emisión,
◆ la reducción de la sensibilidad de las cargas y
◆ la reducción del acoplamiento entre los equipos generadores de energía y las cargas.
Los métodos utilizados son los mismos que para los armónicos.
En el diseño de filtros pasivos deberán
tenerse en cuenta otros factores adi-
cionales. Por ejemplo, considerar que
la resonancia entre los interarmónicos
de los filtros y el sistema de energía
puede amplificar y provocar fluctua-
ciones y distorsión de tensión signifi-
cativas. Los filtros deben diseñarse
con un coeficiente de amortigua-
miento superior.
La Figura 17 muestra el ejemplo de
las características de la impedancia
de una fuente de un filtro pasivo (ar-
mónicos 3, 5, 7 y 12) vistas desde los
terminales de entrada del converti-
dor que alimenta la gran instalación
de un horno de arco eléctrico. La lí-
nea de puntos corresponde a los fil-
tros sin amortiguamiento. Existe un
riesgo real de resonancia para los in-
terarmónicos adyacentes a 120 y 170
Hz. Filtros que amortigüen los armó-
nicos 3º y 7º reducen el peligro de
que se produzca resonancia. El pro-
ceso de diseño de filtros requiere a
veces un compromiso entre la preci-
sión de la sintonización y las pérdidas de energía, lo cual implica tener que escoger el factor de calidad
del filtro.
El diseño de un filtro de banda de paso estrecha presenta varios problemas. La desviación de la frecuencia
normal del sistema de alimentación puede ser importante, especialmente cuando se combina con varia-
ciones de la frecuencia de sintonización debido a las tolerancias de los componentes, envejecimiento, va-
riación de temperatura y cambios en la impedancia de la red de alimentación.
Interarmónicos
1155
Frecuencia del subarmónico o interarmónico, en Hz < 80 80 90 > 90 and < 500
Distorsión de tensión como % de la fundamental 0.2 0.2 0.5 0.5
Tabla 4 - Límites de emisión subarmónica e interarmónica
Figure 17 - Ejemplo de impedancia vista desde los terminales
del convertidor [10]
Filtros sin amortiguamiento
Filtros con amortiguamiento
Frecuencia (Hz)
Impedancia(Ω)
La variación resultante en la frecuencia resonante del filtro, teniendo en cuenta la muy estrecha banda de
paso del mismo, puede reducir significativamente la eficiencia del filtrado, incluso aunque la variación fue-
se pequeña. A veces es necesario escoger un factor de calidad reducido, que aumenta el ancho de banda, lo
que, por otro lado, es desventajoso respecto al filtrado de los interarmónicos.
Las perturbaciones causadas por los sistemas de señalización en la red se pueden eliminar aplicando filtros
en serie, sintonizados a las frecuencias deseadas y situados correctamente en el sistema. Otras soluciones
implican el aumento del nivel de inmunidad de los equipos en uso o el empleo de filtros activos.
Conclusiones
La anterior exposición sobre la presencia de interarmónicos, sus fuentes básicas y las características de es-
pectro continuo y discreto, permite formular varias conclusiones de carácter general.
Primero - en la gran mayoría de los casos los valores y frecuencias de las corrientes y tensiones interarmó-
nicas son cantidades aleatorias que dependen de numerosos parámetros complejos de procesos transito-
rios.
Segundo - para un determinado proceso en particular es posible la evaluación del valor y la frecuencia de
un interarmónico.
Tercero - no existen directivas de normalización coherentes relativas a los interarmónicos, aunque hay una
necesidad práctica de disponer de ellas.
Referencias y Bibliografía
[1] Arrillaga J, Watson N R, Chen S: Power system quality assessment, Wiley, 2000
[2] Gunther E W: Interharmonics in power systems, UIEPQ-9727
[3] Interharmonic Task Force Working Document – IH0101 20001, IEEE
[4] IEC 61000-2-1: 1990 – Electromagnetic compatibility (EMC) Part 2: Environment – Section 1: Description of the en-
vironment – Electromagnetic environment for low-frequency conducted disturbances and signalling in public power
supply systems
[5] IEC 61000-2-2: 2002 – Electromagnetic compatibility (EMC) Part 2: Environment – Section 2: Compatibility levels
for low-frequency conducted disturbances and signalling in public low-voltage power supply systems (also materials
used in preparation of the standard, obtained from the authors)
[6] IEC 61000-4-7: 2002 Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 7:
General guide on harmonics and interharmonics measurements and instrumentation for power supply systems and
equipment connected thereto
[7] IEC 61000-4-13: 2002 Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 13:
Harmonics and interharmonics including mains signalling at ac power port, low frequency immunity tests (also ma-
terials used in preparation of the standard, obtained from the authors)
[8] Kloss A: Oberschwingungen, vde Verlag, ISBN 3-8007-1541-4
[9] Materials used in preparation of the standard IEC 61000-2-4. (obtained from the authors)
[10] Mattaveli P, Fellin L, Bordignon P, Perna M: Analysis of interharmonics in dc arc furnace installations, 8th
International Conference on Harmonics and Quality of Power, Athens, Greece, October 14-16, 1998
[11] EN 50160: 1999 – Voltage characteristics of electricity supplied in public distribution systems
[12] Staudt V: Effects of window functions explained by signals typical to power electronics, 8th
International Conference
on Harmonics and Quality of Power, Athens, Greece, October 14-16, 1998
[13] Engineering Recommendation G5/4, Electricity Association, Feb. 2001
1166
Interarmónicos
Apéndice 1
La Transformación de Fourier es el método más utilizado para el análisis espectral de una señal. La teoría fun-
damental del análisis espectral presupone que éste se lleva a cabo a lo largo de un intervalo de tiempo de -∞
a +∞. La Transformación Discreta de Fourier (DFT) o su variante, la Transformación Rápida de Fourier (FFT),
pueden introducir componentes espectrales inesperados de la señal analizada. Este efecto se produce por-
que, tanto la Transformación Discreta (DFT) como la Transformación Rápida (FFT), operan sobre un núme-
ro finito de muestras, es decir, sobre una parte de la señal presente en el sistema. El espectro determinado y
el real sólo serán idénticos cuando la señal sea periódica, y el tiempo durante el cual se analiza contenga un
número entero de ciclos de la señal. Esta condición es muy difícil de satisfacer en las aplicaciones prácticas.
Los resultados presentados en las Figuras A.1.1 y A.1.2 ilustran cual puede ser el aspecto del espectro real. Se
han obtenido espectros diferentes para la misma señal cuando en la Figura A.1.2 el tiempo era un 2,5% ma-
yor. En la bibliografía este efecto se denomina perdida espectral. Puede decirse que parte de la energía de la
línea espectral principal se transfiere a las líneas laterales. Se ha propuesto la siguiente interpretación de este
fenómeno. La toma de muestras para el análisis por medio de la Trasformación Discreta de Fourier puede
considerarse como la multiplicación de la señal presente en una ventana rectangular correspondiente al tiem-
po de observación para representar la señal presente de duración infinita, como se ilustra en la Figura A.1.3.
Para limitar la pérdida de espectro es necesario que los valores de la señal analizada no cambien rápida-
mente al principio ni al final del intervalo de observación.
Interarmónicos
1177
Figura A.1.1 - Módulos de espectro de señal. Para el
análisis se han utilizado exactamente 4 ciclos
Figura A.1.2 - Módulos de espectro de la señal. Para el
análisis se han utilizado 4,1 ciclos
Figura A.1.3 - Adquisición de muestras para
el análisis por Transformación
Discreta de Fourier
Frecuencia relativa Frecuencia relativa
Amplitudnormalizada
Amplitudnormalizada
Amplitudnormalizada
Número de muestra
Rango de adquisición
Las Figuras A.1.4. muestran como debe utilizarse la ventana de tiempo para el análisis de la señal.
1188
Interarmónicos
Figura A.1.4a - Representación gráfica de muestras
para el análisis
Figura A.1.4b -Utilización de la ventana de tiempo
imponiendo yi = wi * xi
Donde: yi = señal a la que se impone la ventana
xi = muestras medidas
wi = función de ventana en la que i toma
valores de 1 a N (numero de muestras)
Figura A.1.4d - Análisis del espectro para la
Transformación Rápida de Fourier
Figura A.1.4c - Análisis del espectro para la
Transformación Discreta de Fourier
Figura A.1.4e - Ventanas de tiempo utilizadas para
el análisis del espectro de la señal
Amplitudnormalizada
Número de muestra
Amplitudnormalizada
Número de muestra
Amplitudnormalizada
Número de muestra
Amplitudnormalizada
Número de muestra
Frecuencia relativa
Amplitudnormalizada
La Figura A.1.5 muestra como los métodos utili-
zados influyen en el espectro del ejemplo de la
figura A.1.2. Para este ejemplo se ha utilizado la
ventana Hanning. El efecto es una reducción del
número de líneas espectrales distintas de cero, y
el espectro se aproxima al correcto, como se
muestra en la Figura A.1.1.
En la bibliografía presentada se pueden encontrar
varias ventanas de análisis para laTransformación
Discreta de Fourier. Los más utilizados son (Figuras
A.1.6):
◆ La ventana triangular, similar a la venta-
na Barlett.
◆ La ventana Hanning.
◆ La ventana de coseno elevado o de
Hann, o ventana Hamming.
Estas ventanas son las más utilizadas en los
instrumentos de medida. Su uso no elimina los
problemas de pérdida espectral, pero limita
significativamente el efecto del tiempo finito
de observación. Se trata de una evidente mejora
de la resolución del espectro.
Interarmónicos
1199
Figura A.1.6a - Ventana triangular
Figura A.1.6b - Ventana Hanning
Figura A.1.5 - Ejemplo de aplicación de ventana
Hamming al análisis por Transformación Discreta de
Fourier
Figura A.1.6c - Ventana Hamming
Frecuencia relativa
AmplitudnormalizadaAmplitudnormalizada
Número de muestra
Amplitudnormalizada
Número de muestra
Amplitudnormalizada
Número de muestra
Apéndice 2
La mayor dificultad que presenta el
muestreo de una señal continua es
el problema de la ambigüedad. En la fi-
gura A.2.1 se ilustra la esencia del pro-
blema. De la figura se deduce que el
mismo conjunto de datos de la muestra
puede describir varias formas de onda,
imposibles de distinguir por los equi-
pos de medida.
El principio del análisis de frecuencia es
la representación de una forma de on-
da arbitraria mediante la suma de una
serie de señales sinusoidales. Este mé-
todo de presentación permite abordar
cuantitativamente el análisis del pro-
blema de la ambigüedad. Para ello,
consideremos la forma de onda que se
representa en la Figura A.2.2.
Una señal x(t) se muestrea a intervalos
de tiempo iguales h, que determinan
los instantes de toma de muestras, para
los cuales se indican en la figura los va-
lores de la señal medida. Supongamos
que la función x(t) es sinusoidal y tiene
una frecuencia f0. Los mismos puntos
pueden también representar sinusoi-
des de frecuencias f1 y f2 que son múlti-
plos (no necesariamente enteros) de la
frecuencia f0. Evidentemente estas di-
versas frecuencias están relacionadas
con el período de muestreo. A la fre-
cuencia f0 se la denomina frecuencia
fundamental.
Puede afirmarse, sin recurrir a una demostración matemática, que el rango de frecuencias para el cual no
se produce el efecto de ambigüedad se extiende desde f0 = 0 hasta f0 = fN, donde fN, la frecuencia máxima,
se conoce como frecuencia de Nyquist y determina el límite de frecuencia del muestreo de datos, el deno-
minado límite de Shannon, más allá del cual no es posible una reconstrucción única de una señal continua.
Por lo tanto, si la señal analizada no contiene ninguna frecuencia componente mayor que fN, la mínima fre-
cuencia de muestreo necesaria para que la señal muestreada represente la señal real viene dada por:
fS ≥ 2fN, o debido a que , fS ≥
1
entonces fN ≥
1
h 2h
Este es el denominado teorema de muestreo. Se deduce que, para un espectro de frecuencias dado, las
componentes situadas entre f0 = 0 y f0 = fN pueden considerarse por separado. Si la señal contuviera com-
ponentes de frecuencias f > fN, dichas componentes no se distinguirían.
Por lo tanto es necesario limitar el ancho de banda de la señal medida para reducir una consecuencia di-
recta de la ambigüedad durante su muestreo. Eso implica la necesidad de filtrar la señal a medir a través de
un filtro de paso bajo antes de efectuar el muestreo a fin de eliminar todas las frecuencias superiores a fN.
2200
Interarmónicos
Figura A.2.1 - Ambigüedad
Figura A.2.2 - Análisis de ambigüedad
Tiempo de muestreo
Otras formas de onda posibles
Tiempo de muestreo
Armónicos
2211
2222
Armónicos
Armónicos
2233
2244
Armónicos
Consejo Editorial
David Chapman (Chief Editor) CDA UK david.chapman@copperdev.co.uk
Prof Angelo Baggini Università di Bergamo angelo.baggini@unibg.it
Dr Araceli Hernández Bayo ETSII - Universidad Politécnica de Madrid ahernandez@etsii.upm.es
Prof Ronnie Belmans UIE ronnie.belmans@esat.kuleuven.ac.be
Dr Franco Bua ECD franco.bua@ecd.it
Jean-Francois Christin MGE UPS Systems jean-francois.christin@mgeups.com
Prof Anibal de Almeida ISR - Universidade de Coimbra adealmeida@isr.uc.pt
Hans De Keulenaer ECI hdk@eurocopper.org
Prof Jan Desmet Hogeschool West-Vlaanderen jan.desmet@howest.be
Dr ir Marcel Didden Laborelec marcel.didden@laborelec.com
Dr Johan Driesen KU Leuven johan.driesen@esat.kuleuven.ac.be
Stefan Fassbinder DKI sfassbinder@kupferinstitut.de
Prof Zbigniew Hanzelka Akademia Gorniczo-Hutnicza hanzel@uci.agh.edu.pl
Stephanie Horton LEM Instruments sho@lem.com
Dr Antoni Klajn Wroclaw University of Technology antoni.klajn@pwr.wroc.pl
Prof Wolfgang Langguth HTW wlang@htw-saarland.de
Jonathan Manson Gorham & Partners Ltd jonathanm@gorham.org
Prof Henryk Markiewicz Wroclaw University of Technology henryk.markiewicz@pwr.wroc.pl
Carlo Masetti CEI masetti@ceiuni.it
Mark McGranaghan EPRI PEAC Corporation mmcgranaghan@epri-peac.com
Dr Jovica Milanovic UMIST jovica.milanovic@umist.ac.uk
Dr Miles Redfern University of Bath eesmar@bath.ac.uk
Dr ir Tom Sels KU Leuven tom.sels@esat.kuleuven.ac.be
Prof Dr-Ing Zbigniew Styczynski Universität Magdeburg Sty@E-Technik.Uni-Magdeburg.de
Andreas Sumper CITCEA sumper@citcea.upc.es
Roman Targosz PCPC cem@miedz.org.pl
Hans van den Brink Fluke Europe hans.van.den.brink@fluke.nl
European Copper Institute* (ECI)
www.eurocopper.org
ETSII - Universidad Politécnica de Madrid
www.etsii.upm.es
LEM Instruments
www.lem.com
Akademia Gorniczo-Hutnicza (AGH)
www.agh.edu.pl
Fluke Europe
www.fluke.com
MGE UPS Systems
www.mgeups.com
Centre d'Innovació Tecnològica en Convertidors
Estàtics i Accionaments (CITCEA)
www-citcea.upc.es
Hochschule für Technik und Wirtschaft* (HTW)
www.htw-saarland.de
Otto-von-Guericke-Universität Magdeburg
www.uni-magdeburg.de
Comitato Elettrotecnico Italiano (CEI)
www.ceiuni.it
Hogeschool West-Vlaanderen
Departement PIH
www.pih.be
Polish Copper Promotion Centre* (PCPC)
www.miedz.org.pl
Copper Benelux*
www.copperbenelux.org
International Union for Electricity Applications (UIE)
www.uie.org
Università di Bergamo*
www.unibg.it
Copper Development Association* (CDA UK)
www.cda.org.uk
ISR - Universidade de Coimbra
www.isr.uc.pt
University of Bath
www.bath.ac.uk
Deutsches Kupferinstitut* (DKI)
www.kupferinstitut.de
Istituto Italiano del Rame* (IIR)
www.iir.it
University of Manchester Institute of Science and
Technology (UMIST)
www.umist.ac.uk
Engineering Consulting & Design* (ECD)
www.ecd.it
Katholieke Universiteit Leuven*
(KU Leuven)
www.kuleuven.ac.be
Wroclaw University of Technology*
www.pwr.wroc.pl
EPRI PEAC Corporation
www.epri-peac.com
Laborelec
www.laborelec.com
Socios Fundadores* y de Referencia
European Copper Institute
168 Avenue de Tervueren
B-1150 Brussels
Belgium
Tel: 00 32 2 777 70 70
Fax: 00 32 2 777 70 79
Email: eci@eurocopper.org
Website: www.eurocopper.org
Dr eng Andrzej Bien
AGH-UST
Al. Mickiewicza 30
30-059 Kraków
Poland
Tel: (012) 617 28 78
Fax: (012) 633 22 84
Email: hanzel@uci.agh.edu.pl
Web: www.agh.edu.pl
Prof Zbigniew Hanzelka
AGH-UST
Al. Mickiewicza 30
30-059 Kraków
Poland
Tel: (012) 617 28 73
Fax: (012) 633 22 84
Email: abien@uci.agh.edu.pl
Web: www.agh.edu.pl
Princesa, 79
28008 Madrid
Tel: 91 544 84 51
Fax: 91 544 88 84
e-mail: cedic@pasanet.es
web: www.infocobre.org.es

Más contenido relacionado

La actualidad más candente

TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORESTEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORESKike Prieto
 
Analisis de transformadores
Analisis de transformadoresAnalisis de transformadores
Analisis de transformadoresnorenelson
 
ETAP - Analisis de cortocircuito etap 11
ETAP - Analisis de cortocircuito etap 11ETAP - Analisis de cortocircuito etap 11
ETAP - Analisis de cortocircuito etap 11Himmelstern
 
Amplificadores operacionales
Amplificadores operacionalesAmplificadores operacionales
Amplificadores operacionalesJomicast
 
Caida de tension trifasica
Caida de tension trifasicaCaida de tension trifasica
Caida de tension trifasica71rudy
 
Convertidores acdc (Colección apuntes UJA 96/97)
Convertidores acdc (Colección apuntes UJA 96/97)Convertidores acdc (Colección apuntes UJA 96/97)
Convertidores acdc (Colección apuntes UJA 96/97)JUAN AGUILAR
 
Tabla de codigos ansi para protecciones electricas
Tabla de codigos ansi para protecciones electricasTabla de codigos ansi para protecciones electricas
Tabla de codigos ansi para protecciones electricasEfraín Herrera Jaén
 
ETAP - Arranque de motores motor starting
ETAP - Arranque de motores motor startingETAP - Arranque de motores motor starting
ETAP - Arranque de motores motor startingHimmelstern
 
DISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIO
DISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIODISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIO
DISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIOJoel Flores
 

La actualidad más candente (20)

Laboratorio 3 autotransformador
Laboratorio 3  autotransformadorLaboratorio 3  autotransformador
Laboratorio 3 autotransformador
 
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORESTEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
TEORIA Y PROBLEMAS DE APLICACION DE LOS TRANSFORMADORES
 
8.1 power point transistores
8.1 power point transistores8.1 power point transistores
8.1 power point transistores
 
Generadores de CD
Generadores de CDGeneradores de CD
Generadores de CD
 
8a. sobretensiones
8a. sobretensiones8a. sobretensiones
8a. sobretensiones
 
Analisis de transformadores
Analisis de transformadoresAnalisis de transformadores
Analisis de transformadores
 
ETAP - Analisis de cortocircuito etap 11
ETAP - Analisis de cortocircuito etap 11ETAP - Analisis de cortocircuito etap 11
ETAP - Analisis de cortocircuito etap 11
 
Tiristores
TiristoresTiristores
Tiristores
 
Subestaciones
SubestacionesSubestaciones
Subestaciones
 
Amplificadores operacionales
Amplificadores operacionalesAmplificadores operacionales
Amplificadores operacionales
 
Diac
DiacDiac
Diac
 
Caida de tension trifasica
Caida de tension trifasicaCaida de tension trifasica
Caida de tension trifasica
 
Convertidores acdc (Colección apuntes UJA 96/97)
Convertidores acdc (Colección apuntes UJA 96/97)Convertidores acdc (Colección apuntes UJA 96/97)
Convertidores acdc (Colección apuntes UJA 96/97)
 
Tabla de codigos ansi para protecciones electricas
Tabla de codigos ansi para protecciones electricasTabla de codigos ansi para protecciones electricas
Tabla de codigos ansi para protecciones electricas
 
MEDICIONES ELEC. PUESTA A TIERRA
MEDICIONES ELEC. PUESTA A TIERRAMEDICIONES ELEC. PUESTA A TIERRA
MEDICIONES ELEC. PUESTA A TIERRA
 
Transformadores Eléctricos
Transformadores EléctricosTransformadores Eléctricos
Transformadores Eléctricos
 
ETAP - Arranque de motores motor starting
ETAP - Arranque de motores motor startingETAP - Arranque de motores motor starting
ETAP - Arranque de motores motor starting
 
DISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIO
DISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIODISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIO
DISEÑO DE UN AUTOTRANSFORMADOR TRIFÁSICO CON DEVANADO TERCIARIO
 
Sfra teoria y_analisis
Sfra teoria y_analisisSfra teoria y_analisis
Sfra teoria y_analisis
 
Triac.g
Triac.gTriac.g
Triac.g
 

Destacado

Pic16 f877 20p
Pic16 f877 20pPic16 f877 20p
Pic16 f877 20peloirvr
 
Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016
Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016
Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016Lorena Martin
 
M-Tec Engineering Solutions Ltd - IIP Report - February 2016
M-Tec Engineering Solutions Ltd - IIP Report - February 2016M-Tec Engineering Solutions Ltd - IIP Report - February 2016
M-Tec Engineering Solutions Ltd - IIP Report - February 2016Tim Keyte
 
Youth On Youth Gyc Report Final
Youth On Youth  Gyc Report FinalYouth On Youth  Gyc Report Final
Youth On Youth Gyc Report Finalibrahimrainbow
 
Experimentacion con animales 1
Experimentacion con animales 1Experimentacion con animales 1
Experimentacion con animales 1dayana1093
 
Presentación grupo moreno c.a pantalla grande
Presentación grupo moreno c.a pantalla grandePresentación grupo moreno c.a pantalla grande
Presentación grupo moreno c.a pantalla grandejonelsy moreno
 
Revista octubre infoutrera
Revista octubre infoutreraRevista octubre infoutrera
Revista octubre infoutreraandalumedio
 
Email Design for All Devices
Email Design for All DevicesEmail Design for All Devices
Email Design for All DevicesSilverpop
 
08-01-14 Reforma Energética - PEMEX
08-01-14 Reforma Energética - PEMEX08-01-14 Reforma Energética - PEMEX
08-01-14 Reforma Energética - PEMEXMarcela Guerra
 
WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...
WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...
WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...Brad Bush
 
Tutorial #3: Kommbox Email Integration
Tutorial #3: Kommbox Email IntegrationTutorial #3: Kommbox Email Integration
Tutorial #3: Kommbox Email IntegrationAshish Belagali
 
Requisitos agiles 2010
Requisitos agiles 2010Requisitos agiles 2010
Requisitos agiles 2010Ana Malumbres
 
BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)
BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)
BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)Lacoon Mobile Security
 
Nutricion inteligentente
Nutricion inteligententeNutricion inteligentente
Nutricion inteligententemsanchez2000
 
Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...
Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...
Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...Jason Attaman
 

Destacado (20)

Pic16 f877 20p
Pic16 f877 20pPic16 f877 20p
Pic16 f877 20p
 
Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016
Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016
Stratesys - Desayuno Atraer Talento Era Digital - EQUIPOS Y TALENTO - JUN 2016
 
M-Tec Engineering Solutions Ltd - IIP Report - February 2016
M-Tec Engineering Solutions Ltd - IIP Report - February 2016M-Tec Engineering Solutions Ltd - IIP Report - February 2016
M-Tec Engineering Solutions Ltd - IIP Report - February 2016
 
Youth On Youth Gyc Report Final
Youth On Youth  Gyc Report FinalYouth On Youth  Gyc Report Final
Youth On Youth Gyc Report Final
 
Experimentacion con animales 1
Experimentacion con animales 1Experimentacion con animales 1
Experimentacion con animales 1
 
luxcon2015
luxcon2015luxcon2015
luxcon2015
 
SDI - Service Desk Foundation
SDI - Service Desk FoundationSDI - Service Desk Foundation
SDI - Service Desk Foundation
 
Presentación grupo moreno c.a pantalla grande
Presentación grupo moreno c.a pantalla grandePresentación grupo moreno c.a pantalla grande
Presentación grupo moreno c.a pantalla grande
 
Revista octubre infoutrera
Revista octubre infoutreraRevista octubre infoutrera
Revista octubre infoutrera
 
Email Design for All Devices
Email Design for All DevicesEmail Design for All Devices
Email Design for All Devices
 
08-01-14 Reforma Energética - PEMEX
08-01-14 Reforma Energética - PEMEX08-01-14 Reforma Energética - PEMEX
08-01-14 Reforma Energética - PEMEX
 
WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...
WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...
WebRTC Expo Atlanta June 2014 - Brad Bush, CMO GENBAND speaks on the fast mov...
 
Tutorial #3: Kommbox Email Integration
Tutorial #3: Kommbox Email IntegrationTutorial #3: Kommbox Email Integration
Tutorial #3: Kommbox Email Integration
 
Superhouse limited
Superhouse limitedSuperhouse limited
Superhouse limited
 
Requisitos agiles 2010
Requisitos agiles 2010Requisitos agiles 2010
Requisitos agiles 2010
 
Abecedario bilingüe inglés-español
Abecedario bilingüe inglés-españolAbecedario bilingüe inglés-español
Abecedario bilingüe inglés-español
 
Creer 1
Creer 1Creer 1
Creer 1
 
BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)
BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)
BlackHat Europe 2013 - Practical Attacks against Mobile Device Management (MDM)
 
Nutricion inteligentente
Nutricion inteligententeNutricion inteligentente
Nutricion inteligentente
 
Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...
Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...
Ultrasound guided pulsed radiofrequency treatment of the pudendal nerve in ch...
 

Similar a 311 armonicos-interarmonicos

Cargas no lineales y su soluciones
Cargas no lineales y su solucionesCargas no lineales y su soluciones
Cargas no lineales y su solucionesAlfredo Argel
 
Armonicos causas, efectos y minimizacion
Armonicos causas, efectos y minimizacionArmonicos causas, efectos y minimizacion
Armonicos causas, efectos y minimizacionRamon Pinyol
 
Esquema de proyecto de investigacion
Esquema de proyecto de investigacionEsquema de proyecto de investigacion
Esquema de proyecto de investigacionWil Wilfredo Sapana
 
Los armonicos en electricidad
Los armonicos en electricidadLos armonicos en electricidad
Los armonicos en electricidadDaniel Bustamante
 
Procedimientos sp
Procedimientos spProcedimientos sp
Procedimientos spMiseas H.V.
 
Armonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y RoxaniArmonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y Roxaniguest159648e
 
Armonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y RoxaniArmonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y Roxaniguest159648e
 
2. tipos de fallas y análisis de cortocircuito ETAP
2. tipos de fallas y análisis de cortocircuito ETAP2. tipos de fallas y análisis de cortocircuito ETAP
2. tipos de fallas y análisis de cortocircuito ETAPHimmelstern
 
Armonicos
ArmonicosArmonicos
Armonicosdeysihh
 
Arm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricasArm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricassivime
 
Arm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricasArm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricasAntonio Shinela
 
Arm nicos en_redes_el_ctricas (2)
Arm nicos en_redes_el_ctricas (2)Arm nicos en_redes_el_ctricas (2)
Arm nicos en_redes_el_ctricas (2)emilio bonnet
 
Calidad del servicio en sistemas electricos de potencia
Calidad del servicio en sistemas electricos de potenciaCalidad del servicio en sistemas electricos de potencia
Calidad del servicio en sistemas electricos de potenciaEduardo Soracco
 
Resumen de teoria de atp
Resumen de teoria de atpResumen de teoria de atp
Resumen de teoria de atpGilberto Mejía
 

Similar a 311 armonicos-interarmonicos (20)

Cargas no lineales y su soluciones
Cargas no lineales y su solucionesCargas no lineales y su soluciones
Cargas no lineales y su soluciones
 
Armonicos causas, efectos y minimizacion
Armonicos causas, efectos y minimizacionArmonicos causas, efectos y minimizacion
Armonicos causas, efectos y minimizacion
 
Esquema de proyecto de investigacion
Esquema de proyecto de investigacionEsquema de proyecto de investigacion
Esquema de proyecto de investigacion
 
Los armonicos en electricidad
Los armonicos en electricidadLos armonicos en electricidad
Los armonicos en electricidad
 
Armonicos.pdf
Armonicos.pdfArmonicos.pdf
Armonicos.pdf
 
Analopro
AnaloproAnalopro
Analopro
 
Procedimientos sp
Procedimientos spProcedimientos sp
Procedimientos sp
 
Armonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y RoxaniArmonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y Roxani
 
Armonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y RoxaniArmonicos En Linea Leonel Y Roxani
Armonicos En Linea Leonel Y Roxani
 
2. tipos de fallas y análisis de cortocircuito ETAP
2. tipos de fallas y análisis de cortocircuito ETAP2. tipos de fallas y análisis de cortocircuito ETAP
2. tipos de fallas y análisis de cortocircuito ETAP
 
Armonicos generalidades
Armonicos generalidadesArmonicos generalidades
Armonicos generalidades
 
Armonicos
ArmonicosArmonicos
Armonicos
 
Armonicos
ArmonicosArmonicos
Armonicos
 
Armonicos_en_Redes_Electricas.pdf
Armonicos_en_Redes_Electricas.pdfArmonicos_en_Redes_Electricas.pdf
Armonicos_en_Redes_Electricas.pdf
 
Arm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricasArm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricas
 
Arm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricasArm nicos en_redes_el_ctricas
Arm nicos en_redes_el_ctricas
 
Armonicos en la red electrica
Armonicos en la red electricaArmonicos en la red electrica
Armonicos en la red electrica
 
Arm nicos en_redes_el_ctricas (2)
Arm nicos en_redes_el_ctricas (2)Arm nicos en_redes_el_ctricas (2)
Arm nicos en_redes_el_ctricas (2)
 
Calidad del servicio en sistemas electricos de potencia
Calidad del servicio en sistemas electricos de potenciaCalidad del servicio en sistemas electricos de potencia
Calidad del servicio en sistemas electricos de potencia
 
Resumen de teoria de atp
Resumen de teoria de atpResumen de teoria de atp
Resumen de teoria de atp
 

Último

Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...SuannNeyraChongShing
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfDanielaVelasquez553560
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
Introducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptIntroducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptEduardoCorado
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEANDECE
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdfEdwinAlexanderSnchez2
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 

Último (20)

Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdf
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
Introducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptIntroducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.ppt
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSE
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 

311 armonicos-interarmonicos

  • 1. Guía de Calidad de la Energía Eléctrica Armónicos Interarmónicos Armónicos 3.1.1 Frequency (Hz) Current(A)
  • 2. Armónicos Interarmónicos Zbigniew Hanzelka & Andrzej Bien´ AGH University of Science and Technology Julio 2004 Esta Guía ha sido publicada como parte de la Iniciativa Leonardo para la Calidad de la Energía Eléctrica (LPQI), un programa europeo de formación y educación respaldado por la Comisión Europea (dentro del Programa Leonardo da Vinci) y la International Copper Association. Para más información sobre LPQI visite www.lpqi.org. Centro Español de Información del Cobre (CEDIC) CEDIC es una asociación privada sin fines de lucro que integra la práctica totalidad de las empresas fundidoras-refinadoras y semitransformadoras de cobre y de sus aleaciones en España. Su objetivo es promover el uso correcto y eficaz del cobre y sus aleaciones en los distintos subsectores de aplicación, mediante la compilación, producción y difusión de información. European Copper Institute (ECI) El European Copper Institute (ECI) es un proyecto conjunto formado por ICA (International Copper Association) y la industria europea fabricante. Por medio de sus socios, ECI actúa en nombre de los principales productores mundiales de cobre y fabricantes europeos para promover la utilización del cobre en Europa. Fundado en Enero de 1996, ECI está respaldado por una red de once Centros de Promoción del Cobre en Alemania, Benelux, Escandinavia, España, Francia, Grecia, Hungría, Italia, Polonia, Reino Unido y Rusia. Limitación de Responsabilidad El contenido de este proyecto no refleja necesariamente la posición de la Comunidad Europea, y tampoco implica ninguna responsabilidad por parte de la Comunidad Europea. El European Copper Institute, la AGH University of Science and Technology, la Copper Development Association UK y el Centro Español de Información del Cobre (CEDIC) rechazan cualquier responsabilidad por cualquier daño directo, indirecto, consecuencial o incidental que pueda resultar del uso de la información, o de la incapacidad de usar la información o los datos contenidos en esta publicación. Copyright© European Copper Institute, AGH University of Science and Technology y Copper Development Association UK. Su reproducción está autorizada siempre que el material sea íntegro y se reconozca la fuente. La LPQI es promovida en España por los miembros nacionales asociados al programa: Bovis Lend Lease, S.A. ETSII-UPM Fluke Ibérica, S.L. ® MGE UPS SYSTEMS ESPAÑA, S.A. Prysmian Cables y Sistemas Universidad de Cantabria Universidad Carlos III de Madrid
  • 3. Armónicos 11 Interarmónicos Introducción Los armónicos son tensiones o corrientes cuya frecuencia es un múltiplo entero de la frecuencia funda- mental de suministro. Los interarmónicos son tensiones o corrientes cuya frecuencia es un múltiplo no en- tero de la frecuencia fundamental de suministro. El conocimiento de las perturbaciones electromagnéticas asociadas a los interarmónicos se está iniciando actualmente por lo que existe un notable grado de interés por este fenómeno. Los interarmónicos, siempre presentes en la red de energía eléctrica, han adquirido re- cientemente mayor importancia debido a que la amplia utilización de los sistemas electrónicos de poten- cia ha producido un aumento de su proliferación. Definiciones Al analizar una determinada forma de onda, sus armónicos e interarmónicos se denominan en función de sus compo- nentes espectrales en un estado cuasi- estacionario definido sobre un ámbito determinado de frecuencias. La tabla 1 muestra sus definiciones matemáticas. El término “subarmónico” no tiene una definición oficial —es un caso par- ticular de interarmónico cuya frecuen- cia es menor que la frecuencia fundamental. Sin embargo, este término aparece en numerosas referencias y es de uso general en el ámbito profesional. La norma IEC 61000-2-1 define los interarmónicos de la forma siguiente: Entre los armónicos de frecuencia de la tensión y de la corriente de la red de alimentación, se pueden obser- var otras frecuencias que no son un múltiplo entero de la fundamental. Estas frecuencias pueden aparecerco- mo frecuencias discretas o como un espectro de banda ancha. Para posteriores consideraciones se aplicarán las siguientes definiciones específicas: Frecuencia interarmónica Será cualquier frecuencia que no sea un múltiplo entero de la frecuencia fundamental. Por analogía con el orden de un armónico, el orden de un interarmónico viene dado por la relación entre la frecuencia del in- terarmónico y la frecuencia fundamental. Si este valor es inferior a la unidad, la frecuencia también se de- nomina frecuencia subarmónica. De acuerdo con la recomendación de la IEC, el orden del interarmónico estará identificado por la letra “m” (según IEC 61000-2-2). Interarmónico de tensión y, análogamente, de corriente Se trata de una tensión sinusoidal cuya frecuencia está intercalada entre las de los armónicos o, dicho de otra forma, cuya frecuencia no es un múltiplo entero de la frecuencia fundamental. Fuentes Básicamente existen dos mecanismos de generación de interarmónicos. El primero es la generación de componentes en las bandas laterales de la frecuencia de la tensión de su- ministro y de sus armónicos a debido a cambios en sus magnitudes y/o ángulos de fase. Estas variaciones Armónico f = nf1 donde n es un entero mayor que cero Componente de cte. continua (cc) f = nf1 para n = 0 Interarmónico f =nf1 donde n es un entero mayor que cero Subarmónico f>0 Hz y f<f1 f1 = frecuencia fundamental de la tensión (armónico básico) Tabla 1 - Componentes espectrales de una forma de onda (de frecuencia f)
  • 4. Magnitudnormalizada(dB) Frecuencia (Hz) (b) Tiempo (S) (a) TensiónNormalizadaestán provocadas por cambios bruscos de corriente en el equipo y en las instalaciones, que también pueden originar fluctuaciones de la tensión. Las perturbaciones las generan cargas que operan en un régimen transitorio, de manera continua o temporalmente, o, más frecuentemente, cuando se produce una modula- ción de amplitud de corriente y tensión. Estas perturbaciones generalmente son de carácter aleatorio, y de- penden de las variaciones de carga inherentes a los procesos y equipos utilizados. El segundo mecanismo es la conmutación asíncrona (es decir, no sincronizada con la frecuencia de la red de suministro de energía eléctrica) de los dispositivos semiconductores de los convertidores estáticos. Ejemplos típicos de ello son los ciclo-convertidores y los convertidores de modulación de anchura de impulso (PWM). Los interarmónicos generados por ellos pueden localizarse en cualquier parte del espectro de los armónicos de tensión de la red de alimentación. En muchos tipos de equipos ambos mecanismos se presentan simultáneamente. Los interarmónicos se pueden generar a cualquier nivel de tensión y se transfieren entre niveles diferentes; es decir, interarmónicos generados en sistemas de alta (AT) y media tensión (MT) pueden inyectarse en el siste- ma de baja tensión (BT) y viceversa. Su magnitud raramente supera el 0,5% del armónico fundamental de ten- sión, aunque en condiciones de resonancia podrían presentarse niveles mas elevados. Entre las fuentes básicas de esta perturbación se cuentan: ◆ Cargas productoras de arco eléctrico. ◆ Dispositivos de accionamiento eléctrico de carga variable. ◆ Convertidores estáticos, es particular los convertidores de frecuencia directos e indirectos. ◆ Controles de ondulación. Los interarmónicos también pueden ocasionarse por oscilaciones que se generan, por ejemplo, en sistemas que contengan condensadores en serie o en paralelo o en los que los transformadores estén saturados y du- rante los procesos de conmutación. La tensión de una red de energía eléctrica contiene un ruido de fondo gaussiano con un espectro continuo. Los niveles típicos de esta perturbación (de acuerdo con la IEC 1000-2-1) son del orden siguiente: ◆ 40-50 mV (alrededor del 0,02% de UN) cuando se mide con un filtro con un ancho de banda de 10 Hz. ◆ 20-25 mV (alrededor de 0,01% de UN) cuando se mide con un filtro con un de ancho de banda de 3 Hz. donde UN es la tensión nominal (230 V) Cargas productoras de arco eléctrico 22 Interarmónicos Figura 1 - Oscilación de la tensión típica de un horno de arco eléctrico medida en el secundario del transformador de alimentación a) fluctuación de tensión b) espectro mostrando los armónicos (picos) e interarmónicos [1]
  • 5. En este grupo se incluyen los hornos de arco y las máquinas de soldadura. Los hornos de arco normalmente no introducen interarmónicos significativos, excepto cuando se amplifican debido a la presencia de reso- nancias. El régimen transitorio, que es una fuente de interarmónicos, se produce de manera más intensa durante la fase inicial de la fundición (Figura 1). Las máquinas de soldadura generan un espectro continuo asociado con su proceso particular. La duración cada una de las operaciones individuales de soldadura varía entre uno y diez segundos, dependiendo del tipo de máquina de soldar. Motores eléctricos Los motores de inducción pueden generar interarmónicos debido a las ranuras del hierro del estator y del rotor, especialmente cuando se asocian con la saturación del circuito magnético (los denominados “armó- nicos de ranura”). Cuando el motor alcanza la velocidad de régimen, las frecuencias de los componentes perturbadores normalmente están comprendidas entre 500 Hz y 2000 Hz pero, durante el periodo de arran- que, este margen puede aumentar notablemente. La asimetría natural del motor (desalineamiento del ro- tor, etc.) puede ser también una fuente de interarmónicos —véase Figura 2. Interarmónicos 33 Figura 2 - Resultados del análisis espectral de la corriente y de la tensión de una fase de un motor en sus terminales a), c) – espectro completo de las señales b), d) – espectro con la componente de la frecuencia fundamental eliminada Frecuencia (Hz) a) Espectro de corriente Corriente(A) b) Espectro de corriente Frecuencia (Hz) Corriente(A) Frecuencia (Hz) Frecuencia (Hz) Tensión(V) c) Espectro de tensión d) Espectro de tensión Tensión(V)
  • 6. Los motores de par de carga variable, tales como maquinas de forja, martillos pilones, maquinas troquela- doras, sierras, compresores, bombas aspirante-impelentes, etc., pueden ser también fuentes de generación de subarmónicos. El efecto de las cargas variables también se ve en los motores de velocidad variable ali- mentados por convertidores estáticos. En las plantas de generación eólica, el efecto de la variación del par motor de la turbina, resultante, por ejemplo, del “efecto sombra” del pilón de soporte, puede modular la componente fundamental de la ten- sión, convirtiéndose así en una fuente de componentes de baja frecuencia no deseadas. Convertidores de frecuencia estáticos Convertidores de frecuencia indirectos Los convertidores de frecuencia indirectos contienen un circuito de acoplamiento de cc con un converti- dor de entrada en la parte de la red de alimentación eléctrica y un convertidor de salida (que normalmen- te actúa como inversor) en la parte de la carga. En las configuraciones de corriente o de tensión, el circuito de acoplamiento de corriente continua contiene un filtro que desacopla la corriente o la tensión de los sis- temas de alimentación y de carga. Por esa razón las dos frecuencias fundamentales (la de alimentación y la de carga) se desacoplan mutuamente. Pero el filtrado ideal no existe, y siempre hay un cierto grado de acoplamiento. A consecuencia de ello, en el circuito de acoplamiento de cc están presentes componentes de corrientes asociados con la carga, y componentes de estos están presentes en la parte de la red de ali- mentación. Estos componentes son subarmónicos e interarmónicos con respecto a la frecuencia del siste- ma de alimentación de energía eléctrica. Inversores de la fuente de corriente conmutados por carga Debido a la técnica de conmutación de los elementos semiconductores, estos se consideran convertidores in- directos de frecuencia conmutados por línea. Un convertidor de fre- cuencia está formado por dos puen- tes trifásicos P1 y P2 y un circuito de acoplamiento de cc con una bobina (de inductancia Ld – Figura 3). Uno de los puentes actúa como rectifica- dor y el otro como inversor, aunque sus funciones pueden ser intercam- biables. La presencia de dos puentes rectificadores en dos sistemas de frecuencias diferentes hace que la corriente del circuito de acoplamiento de cc sea modulada por dos frecuencias – f1 y f2. Cada uno de los convertido- res incorpora componentes no característicos en el circuito de acoplamiento de corriente continua, que aparecen como armónicos no característicos en el lado de la corriente alterna, tanto en la carga como en el sistema de alimentación. Los componentes del circuito de acoplamiento de corriente continua son: Del sistema 1: fd1 = p1kf1 k = 0, 1, 2, ... Del sistema 2: fd2 = p2nf2 n = 0, 1, 2, ... Donde: p1, p2 = número del pulso, de los convertidores P1 y P2 respectivamente f1 = frecuencia fundamental del sistema 1 (red de alimentación eléctrica) [Hz] f2 = frecuencia fundamental del sistema 2 (carga) [Hz]. 44 Interarmónicos Figura 3 - Convertidor de frecuencia indirecto con un inversor conmutado por carga Sistema 1 (frecuencia fundamental, f1) Sistema 2 (frecuencia fundamental, f2) convertidor P1 convertidor P2
  • 7. El funcionamiento del convertidor P1 produce en la red de alimentación la aparición de armónicos de co- rriente característicos con las siguientes frecuencias: fhh, char = (p1k ± 1) f1 k = 1,2, … Además se presentarán otros componentes asociados con los componentes del circuito de acoplamiento de corriente continua generados por P2. Se puede representar, de forma general, un paquete completo de las frecuencias de los componentes de la corriente de la red de alimentación por medio de la expresión: frecuencias de la corriente de la red de alimentación (sistema 1) = (kp1 ± 1) f1 ± p2nf2 donde: k = 0,1,2, ... y n = 0, 1, 2, ... Tomando n = 0, para k = 0,1,2, ... se obtienen los órdenes de los armónicos característicos para una confi- guración dada del convertidor P1. Las componentes determinadas para k = constante y n ≠ 0, son las ban- das laterales adyacentes a las frecuencias características del inversor. Por lo tanto, cada armónico caracte- rístico para un puente de seis pulsos, p.ej., de orden n1 = 1, 5, 7, ... tiene sus propias bandas laterales, como en el ejemplo del 5º armónico que se muestra en la Figura 4. El primer par de interarmónicos, que se producen en las proximidades del componente fundamental, es decir con frecuencias f1 ± p2f2, es el de mayor amplitud. La inductancia de la bobina del circuito de acoplamiento de corriente continua tiene una influencia destacada en el nivel de interarmónicos. Un ejemplo de una configu- ración de un dispositivo eléctrico con un inversor con fuente de corriente es el dispositivo de compensa- ción del deslizamiento estático. Inversores de fuente de tensión En los convertidores de tensión (Figura 5) también predominan los armónicos característicos del convertidor P1. Las bandas latera- les, cuyas frecuencias están deter- minadas por el número de pulsos del convertidor P2, se producen alrededor de las frecuencias ca- racterísticas de P1, es decir: (kp1 ± 1)f1 ± np2f2 para k = 0, 1, 2, 3, ... n = 0, 1, 2, 3, ... En la mayoría de los casos los ar- mónicos no característicos son una parte muy pequeña de la co- rriente de alimentación. La determinación numérica de los valores de los armónicos e interarmónicos de la corriente de alimentación requiere el aná- lisis preciso del convertidor de frecuencia de que se trate, inclu- yendo la carga, o disponer de in- formación suficiente proporcio- nada por el fabricante. Algunos convertidores tienen un rectificador de entrada activo Interarmónicos 55 Figura 4 - Bandas laterales adyacentes al 5º armónico característico de un convertidor de seis pulsos P1 y P2 Figura 5 - Diafragma esquemático de un convertidor de frecuencia con enlace de corriente continua de fuente de tensión Banda lateral Banda lateral
  • 8. que opera a una frecuencia de conmutación, que no es un múltiplo entero de la frecuencia de la red. Esta frecuencia pude ser constante o varia- ble, dependiendo del diseño del control del con- vertidor. Los convertidores de frecuencia de la fuente de tensión con un rectificador de entrada con mo- dulación de anchura de impulso (PWM) generan componentes de corriente a la frecuencia de con- mutación del dispositivo semiconductor y sus ar- mónicos, que no están sincronizados con la fre- cuencia de la red. Normalmente están dentro del margen de varios cientos de Hz hasta varias dece- nas de kHz. Control de ciclo integral de conmutador de tiristor Este tipo de control permite el paso de un ciclo completo de corriente a través de un conmutador electrónico (semiconductor). Por lo tanto la co- rriente no se ve distorsionada por el dispositivo de control – es sinusoidal (para una carga lineal), o cero. En la Figura 6 se muestra un ejemplo de conmuta- dores de control electrónico en una configuración trifásica. La conmutación de una carga trifásica en el punto de cruce cero de las tensiones de fase produce un flujo de corriente en el conductor neutro de un sistema de cuatro hilos. Con la con- mutación simultánea entre las fases y una carga resistiva no se genera flujo de corriente en el con- ductor neutro (Figura 6) pero, en el caso de una carga inductiva, se producen transitorios asocia- dos con los procesos de conmutación. El análisis de una configuración como la de la Figura 7a (con conductor neutro) puede represen- tarse como un circuito monofásico (Figura 7b). A continuación se trata en detalle, como aplicación práctica más común, el caso de una carga resisti- va monofásica. Un ciclo de control completo se compone de N ciclos de conducción dentro de un número entero de ciclos M (Figura 8). La potencia media sumi- nistrada a una carga se regula controlando el valor de la relación N/M. Como base para el análisis de Fourier, se debe suponer que el periodo de la on- da de corriente es Mf1 -1, donde f1 es la frecuencia de la tensión de alimentación y M es el número de ciclos. 66 Interarmónicos Figura 7 - Regulador de corriente alterna en configuración a) trifásica b) monofásica Figura 8 - Forma de onda de una corriente de carga en un sistema de ciclo de control integral N = 2, M = 3 Figura 6 - Formas de onda de corrientes en configuración trifásica con un conductor neutro para el control de un ciclo integral Tiempo de conmutación (a) (b) Ciclo de tensión de entrada (T) Tiempo de conducción de corriente (NT) Tiempo total (MT)
  • 9. Interarmónicos 77 El primer componente es el interarmónico de frecuencia (1/M)f1, que es el componente con la fre- cuencia más baja de la corriente. En el ejemplo de la Figura 8, donde N = 2, M = 3, el valor de este su- barmónico es de un tercio de la frecuencia de la tensión de alimentación. Las frecuencias de los otros componentes son múltiplos de ésta. Este tipo de control es una fuente de subarmónicos e interarmónicos, pero no es una fuente de armó- nicos superiores de la componente fundamental. Cuando N = 2, M = 3, como en la Figura 8, las ampli- tudes de los armónicos son cero para n = 6, 9, 12... En la Figura 9 se muestra el espectro de la corriente para este caso. Como se ve en la figura, los componentes principales son el armónico de frecuencia de la tensión de alimentación y el subarmónico de la frecuencia (2f)/3. Las amplitudes de los armónicos son iguales a cero. Principales tensiones de señalización en los sistemas de distribución eléctrica La finalidad principal de una red pública de distribución eléctrica es el suministro de energía eléctrica a los usuarios. Sin embargo es frecuente que, también las empresas suministradoras, la utilicen para transmitir señales de gestión del sistema, por ejemplo, para controlar ciertos tipos de cargas (alumbra- do urbano, para la transmisión de señales de cambio de tarifa, conmutación de cargas remotas, etc) o para la transmisión de datos. Desde el punto de vista técnico, estas señales son una fuente de interarmónicos de una duración de 0,5 a 2 segundos (hasta 7 segundos en los sistemas más antiguos), que se repiten con una periodicidad de 6 a 180 segundos. En la mayoría de los casos la duración del pulsos es de 0,5 segundos, y el tiempo de la secuencia completa se encuentra alrededor de los 30 segundos. La tensión y la frecuencia de la señal se han acordado previamente y la señal se transmite en momentos determinados. En la norma IEC 61000-2-1 se especifican cuatro categorías básicas para estas señales: ◆ Señales de control de modulación: Señales sinusoidales en la banda de los 110-2200 (3000) Hz con preferencia entre 110-500 Hz en sistemas modernos. Se utilizan principalmente en sistemas profesionales de suministro de energía (a veces también en sistemas industriales de alimenta- ción eléctrica) a niveles de Baja (BT), media (MT) y alta (AT) tensión. La magnitud de la señal si- nusoidal de tensión es del orden del 2-5% de la tensión nominal (dependiendo de los procedi- mientos utilizados). En condiciones de resonancia puede incrementarse hasta el 9%. ◆ Señales portadoras de frecuencia media sobre líneas de distribución eléctrica: Señales sinusoida- les en la gama de los 3 a 20 kHz, preferentemente de 6-8 kHz. Utilizadas principalmente en sis- temas profesionales de suministro eléctrico. La magnitud de señal puede alcanzar hasta el 2 % de UN. ◆ Señales portadoras de radiofrecuencia sobre líneas de distribución eléctrica: De 20 a 150 (148,5) kHz (hasta 500 kHz n algunos países). Utilizadas en sistemas de alimentación eléctrica profe- sionales, industriales y comunitarios, así como para aplicaciones comerciales (control remoto de equipos, etc.). ◆ Sistemas de señalización de la red: marcas no sinusoidales sobre la onda de tensión que toman la forma de: - Pulsos largos (escalones de tensión de una duración de 1,5 – 2 mseg., preferentemente en el punto de cruce cero de la tensión). - Pulsos cortos, de duración de 20-50 mseg. - Pulsos con frecuencia de 50Hz y duración igual a uno o medio ciclo de la tensión de la red.
  • 10. En la Figura 10 se muestra un ejemplo del espectro de tensión de un sistema que utiliza para la transmisión de da- tos una frecuencia de 175 Hz (Uih = 1,35%). En el ejemplo se observan otros interarmónicos generados por la interacción con frecuencias armóni- cas. Los componentes por encima del segundo armónico son irrelevantes (ya que no perturban las cargas), mientras que los interarmónicos por debajo de 200 Hz sí pueden provocar problemas. Efectos de la presencia de interarmónicos Las corrientes interarmónicas producen una distorsión interarmónica de la tensión dependiendo de la magni- tud de las componentes de la corriente y de la impedancia del sistema de alimentación a esa frecuencia. Cuanto mayor es el margen de la frecuencia de los componentes de la corriente, mayor es el riesgo de que se presenten fenómenos de resonancia no deseados, que pueden aumentar la distorsión de la tensión y producir sobrecargas o perturbaciones en el funcionamiento de los equipos e instalaciones del usuario. Entre los efectos directos más comunes de los interarmónicos están: ◆ Efectos térmicos. ◆ Oscilaciones de baja frecuencia en siste- mas mecánicos. ◆ Perturbaciones en el funcionamiento de los equipos electrónicos y lámparas fluo- rescentes. En la práctica puede verse per- turbado el funcionamiento de cualquier equipo que esté sincronizado con respec- to al punto de paso por cero de la tensión de alimentación o con la tensión de pico (Figura 11). 88 Interarmónicos Figura 11 - Múltiples puntos de cruce por cero de la onda de tensión a consecuencia de la distorsión Figura 10 - Resultados de la Transformación Rápida de Fourier para la tensión durante la emisión de una señal de transmisión de datos (Uih = 1,35%, f(Uih) = 175 Hz Frecuencia (Hz) U(%) Corriente(A) Frecuencia (Hz) Figura 9 - Espectro de la corriente para N = 2; M = 3. , , , ,
  • 11. ◆ Interferencia con las señales de control y de protección en las líneas de suministro de energía eléc- trica. Actualmente, esta es la principal perturbación ocasionada por los interarmónicos. ◆ Sobrecarga de filtros pasivos en paralelo para armónicos de orden elevado. ◆ Interferencia en las telecomunicaciones. ◆ Perturbación acústica. ◆ Saturación de los transformadores de corriente. Los efectos más comunes de la presencia de interarmónicos son las variaciones en la magnitud de la ten- sión eficaz y el flicker. Fluctuaciones de la tensión y el flicker La tensión de suministro se puede representar como: u(t) = U1 sen(ω1t)[1+msen(ωit)]+∑Uh sen(ωht) h u(t) = U1 sen(ω1t)+[ΣUh sen(ωht)][1+msen(ωit)] h donde ω1 = 2πf1 y m es el índice de la señal de modulación cuya frecuencia es ωi = 2πfi Las ecuaciones anteriores representan posibles fuentes de fluctuaciones de tensión causadas por la modulación de la componente fundamental con armónicos enteros. El segundo sumando es de poca importancia práctica. Teniendo en cuenta solamente la componente fundamental, la ecuación se convierte en : u(t) = U1 sen(ω1t)[1+msen(ωit)] = U1 sen ω1t+ mU1 [cos(ω1-ωi)t-cos(ω1+ωi)t] 2 En esta ecuación, además de la componente fundamental hay dos componentes con frecuencias asociadas con la frecuencia moduladora de la señal, situadas simétricamente a cada lado de la componente de la fre- cuencia fundamental. Las variaciones periódicas de la tensión podrían considerarse como variaciones del valor eficaz (o máximo), o como una consecuencia de la presencia de interarmónicos de banda lateral que modulan la tensión de alimentación. Por ejemplo, para u(t) = sen (2πft) + m sen (2πfit) (asumiendo que U1 = 1), la variación máxima de la amplitud de la tensión es igual a la amplitud del interarmónico, mientras que la variación del valor eficaz depende tanto de la amplitud como de la frecuencia del interarmónico. La Figura 12 muestra el máximo porcentaje de variación del valor eficaz de la tensión, definido a lo largo de varios ciclos de la forma de onda fundamental, causado por interarmónicos de diferentes frecuencias pero de amplitud constante m = 0,2% de la componente fundamental de la tensión. Como se aprecia en la Figura 12, la in- fluencia de los interarmónicos de fre- cuencias superiores al doble de la fre- cuencia de alimentación es pequeña comparada con la influencia de los componentes de frecuencias inferiores a la del segundo armónico (100 Hz). En el caso de interarmónicos existe el ries- go de que las fluctuaciones de tensión provoquen oscilaciones si el nivel exce- de, para una frecuencia determinada, un cierto valor límite. Por lo tanto, si fi ≤ f1, y en particular para fi próxima a la frecuencia fundamental (f1 ± 15 Hz), la Interarmónicos 99 Figura 12 -Dependencia de la variación máxima de la tensión eficaz de la frecuencia del interarmónico de una amplitud constante (0,2% de la amplitud de la componente fundamental) [10] (1) (2) Frecuencia (Hz) Tensióneficaz(V) (3)
  • 12. modulación de la componente fundamental provoca fluctuaciones en la magnitud de la tensión eficaz y, por lo tanto, es una fuente de parpadeo (flicker). Este fenómeno puede observarse tanto en lámparas incandes- centes como fluorescentes, aunque el mecanismo y el margen de frecuencias, y también las amplitudes per- misibles de las componentes perturbadoras, son totalmente diferentes. Una fuente de parpadeo pueden ser los sistemas de transmisión de señales a través de la red eléctrica que se describieron anteriormente. A pesar de su pequeña magnitud, estas señales pueden, a veces, dar lugar a parpadeo en el caso de dispositivos de iluminación muy sensibles tales como las lámparas fluorescentes compactas de bajo consumo, especialmente las que tienen balastos inductivos. Este tipo de perturbación raramente se produce en fuentes de iluminación con balastos electrónicos. Mediciones La mayoría de los instrumentos que realizan mediciones de frecuencia funcionan correctamente cuan- do en la señal medida sólo están presentes armónicos. Estos instrumentos emplean un circuito de blo- queo de fase para sincronizar la medición con la frecuencia componente fundamental y muestrean la se- ñal durante uno o varios ciclos para analizarla por medio de la Transformación Rápida de Fourier (FFT). A causa de la presencia del bucle de bloqueo de fase, las muestras de “ciclo único” pueden dar una re- presentación precisa del espectro de la onda sólo cuando ésta no contiene interarmónicos. Si están pre- sentes otras frecuencias no armónicas (en relación con el período medido) y/o la forma de onda exami- nada no es periódica en ese intervalo de tiempo, puede haber dificultades con la interpretación de los re- sultados. La herramienta fundamental de análisis es la Trasformación de Fourier. En la práctica la señal se analiza en un intervalo de tiempo limitado (una ventana de medición de duración Tw) utilizando un número limitado (M) de muestras de la señal presente. Los resultados de la Transformación Discreta de Fourier (DFT) de- penden de los valores de Tw y M escogidos. La inversa de Tw es la frecuencia fundamental de Fourier – fF. La Transformación Discreta de Fourier se aplica a la señal presente dentro de la ventana de tiempo, mien- tras que no se procesa la señal que queda fuera de esta ventana, puesto que se asume que es idéntica a la forma de onda comprendida en la ventana. Así pues, la señal presente es sustituida por una virtual, que es periódica y cuyo período es igual al ancho de la ventana. En el análisis de formas de onda periódicas no hay ningún problema para sincronizar el tiempo de aná- lisis con el período de la onda fundamental (también con armónicos). Sin embargo, con interarmónicos el análisis se hace más difícil. Las frecuencias de las componentes interarmónicas son múltiplos no en- teros de la frecuencia fundamental y suelen variar con el tiempo, lo cual añade mayor dificultad a la me- dición. Debido a la presencia de componentes tanto armónicas como interarmónicas, la frecuencia de Fourier, que es el máximo común divisor de todas las frecuencias de las componentes contenidas en la señal, es dife- rente de la frecuencia fundamental de la tensión de alimentación y normalmente es muy pequeña. Se pre- sentan dos problemas: ◆ El tiempo mínimo de toma de muestras puede ser muy largo y el número de muestras muy grande. ◆ Es difícil predecir la frecuencia fundamental de Fourier porque no se conocen a priori todas las fre- cuencias componentes de la señal. Esto se puede ilustrar por medio de los siguientes ejemplos: La señal a analizar es una suma de la componente fundamental (50 Hz), un interarmónico (71,2 Hz) y un armónico (2.500 Hz). La frecuencia fundamental de Fourier es 0,2 Hz y es mucho mas baja que la fre- cuencia de la componente fundamental. El período correspondiente es 5 segundos y, consecuentemen- te, el mínimo tiempo de toma de muestras permisible es también de 5 segundos. Suponiendo que la fre- cuencia de muestreo es de 10 kHz, que prácticamente es el mínimo valor aplicable resultante de la apli- cación del criterio de Nyquist (Apéndice 2), el tiempo de medida mínimo sería de 20 ms y el número de muestras sería de 200. 1100 Interarmónicos
  • 13. La señal a analizar es la suma de la componente fundamental (50 Hz) y un armónico (2.500 Hz), la ampli- tud de cada una de ellas varía de forma sinusoidal con unas frecuencias de 0,1 Hz y 5 Hz respectivamente. El efecto de estas modulaciones es de cuatro interarmónicos con frecuencias de 49,9 Hz, 50,1 Hz, 2.495 Hz y 2.505 Hz. La frecuencia fundamental de Fourier es 0,1 Hz, el tiempo mínimo de toma de muestras es de 10 segundos y M = 100.000. En las aplicaciones prácticas, debido a las limitaciones del equipo y del software, el número de mues- tras M no puede ser mayor que un cierto número máximo, y en consecuencia, el tiempo de medición es limitado. La utilización de un tiempo de medición diferente del período fundamental de Fourier provoca una discontinuidad entre la señal al principio y al final de la ventana de medición. Esto da lu- gar a unos errores de identificación de las componentes que se conocen como pérdida de espectro. Una posible solución para este problema es el empleo, antes del análisis con la Transformación Rápida de Fourier, de una ventana de tiempo “ponderada” con respecto a una señal variable con el tiempo. En la práctica se aplican dos clases de ventanas de medición: la rectangular y la ventana Hanning (Apéndice 1). Normalización Coeficientes normalizados La Tabla 2, que se presenta a continuación, presenta algunos coeficientes numéricos de contenido de interarmónicos utilizados en diversos documentos de normalización. Método de medición normalizado La medición de los interarmónicos es difícil y sus resultados dependen de muchos factores, de ahí los intentos de desarrollar un método de “medición” para simplificar el proceso de medida y producir re- sultados repetibles. La normativa [6] sugiere un método de medición de interarmónicos basado en el concepto denominado “agrupamiento”. Este método se basa en el análisis de Fourier realizado en una Interarmónicos 1111 Factor Definición Magnitud del interarmónico con respecto a la com- ponente fundamental (corriente o tensión) Contenido total de distorsión Razón de distorsión total Coeficiente de distorsión interarmónica total Distorsión subarmónica total Q = valor eficaz total representando corriente o tensión Q1 = valor eficaz de la componente fundamental Qi = valor eficaz del interarmónico i = número variable del interarmónico n = número total de interarmónicos considerados S = número total de subarmónicos considerados Tabla 2 - Coeficientes de distorsión por armónicos aplicados en diversos estándares Qi Q1 TIHD = ∑ Qi 2 TDC = Q2 -Q1 2 TDR = TDC = Q2 -Q1 2 Qi Qi i=1 n Q1 TSHD = ∑ Qi 2 i=1 s Q1
  • 14. ventana de tiempo igual a 10 ciclos de la frecuencia fundamental (50 Hz), es decir, aproximadamente de 200 mseg. El muestreo se sincroniza con la frecuencia de alimentación por medio de un circuito de blo- queo de fase El resultado es un espectro con una resolución de 5 Hz. La norma define el método de pro- ceso individual de líneas de 5 Hz a fin de determinar los grupos de armónicos o interarmónicos, a los cuales hacen referencia las recomendaciones de las normas e informes técnicos. Los grupos de armónicos e interarmónicos se calculan mediante las ecuaciones que se indican en la Figura 13. Definiciones relativas al concepto de agrupamiento Valor eficaz de un grupo de armónicos Es la raíz cuadrada de la suma de los cuadrados de las amplitudes de cada armónico y las componentes es- pectrales adyacentes a él dentro de la ventana de observación, sumando así el contenido de energía de las líneas contiguas con el del armónico propiamente dicho. Valor eficaz de un subgrupo de armónicos Es la raíz cuadrada de la suma de los cuadrados de las amplitudes de un armónico y de las dos componen- tes espectrales inmediatamente adyacentes a él, a fin de incluir el efecto de la fluctuación de la tensión du- rante la toma de muestras de tensión. Se obtiene un subgrupo de componentes de salida de la Transformación Discreta de Fourier (DFT) sumando los contenidos de energía de las componentes de fre- cuencia directamente adyacentes a un armónico sobre el armónico propiamente dicho. 1122 Interarmónicos Figura 13 - Ilustración del principio de grupos de armónicos e interarmónicos Subgrupo armónico Grupo armónico Grupo armónico Subgrupo interarmónico Grupo interarmónico Resultado de Transf. Directa de Fournier Orden armónico Orden armónico Resultado de Transf. Directa de Fournier
  • 15. Valor eficaz de un grupo de interarmónicos Es el valor eficaz de todas las componentes interarmónicas del intervalo comprendido entre dos frecuen- cias armónicas consecutivas (véase la Figura 13). Valor eficaz de un subgrupo centrado de interarmónicos El valor eficaz de todas las componentes interarmónicas en el intervalo comprendido entre dos frecuencias armónicas consecutivas excluyendo las componentes de frecuencia directamente adyacentes a las fre- cuencias armónicas (véase la Figura 13). En la normativa [6] puede encontrarse información más detallada relativa a este concepto de medi- ción. Sobre la base de estas definiciones se pueden efectuar medidas para cualquier grupo de inte- rarmónicos, así como de la distorsión interarmónica total, referidas a la componente fundamental, al valor eficaz total o a otro valor de referencia. Estos valores son la base para determinar los valores lí- mite. Este método es interesante desde el punto de vista de la verificación en el caso de reclamaciones y para la realización de pruebas de compatibilidad, porque los niveles límite pueden definirse sobre la base de la dis- torsión total y no están referidas a la medición de frecuencias particulares. Este método no es adecuado pa- ra la realización de diagnósticos. Límites de compatibilidad El proceso de normalización de los interarmónicos está en sus comienzos y todavía, en este momento, se está reuniendo información y datos de mediciones. Se ha generalizado la aplicación de un nivel límite del 0,2% para tensiones interarmónicas, debido princi- palmente a la falta de una opción mejor. Se ha introducido de acuerdo con la sensibilidad de la carga de los sistemas de señalización de la red, pero su aplicación a otros casos, al no tener en cuenta los posibles efec- tos físicos, puede llevar a soluciones muy costosas, por ejemplo, el uso de filtros pasivos muy caros. Más adelante se citan algunos documentos con varios ejemplos de soluciones, pero resultan evidentes incon- sistencias y diferencias significativas. Disposiciones de la Comisión Electrotécnica Internacional (IEC) Según las recomendaciones de la IEC, los interarmónicos de tensión deben estar limitados al 0,2% para el rango de frecuencias que va desde la componente de corriente continua hasta 2 kHz. La norma [7] establece niveles de prueba de inmunidad para interar- mónicos en varios márgenes de fre- cuencia. Dependiendo de la clase de equipo, los niveles de tensión están contenidos dentro del 1,5% de U1 (1.000 – 2.000 Hz). Los niveles de prueba para interarmónicos por encima de 100 Hz están dentro del 2-9%. En la documentación [5] se proporcio- nan niveles de compatibilidad sólo para el caso de interarmónicos de ten- sión con frecuencias próximas a la componente fundamental, lo cual produce una modulación de la ten- sión de alimentación y parpadeo (flic- ker). La Figura 14 muestra el nivel de compatibilidad para un único interar- mónico de tensión, expresado como Interarmónicos 1133 Figura 14 - Niveles de compatibilidad para interarmónicos relacionados con la oscilación (efecto de batido) [5] Frecuencia de batido, Δf (Hz) (diferencia entre las dos frecuancias que se combinan) Amplituddelinterarmónico (%delatensiónfundamental)
  • 16. porcentaje de la amplitud de la componente fundamental, en función de la frecuencia de batido de dos com- ponentes combinadas cuya interacción produce el interarmónico. Esta característica se denomina severidad de parpadeo Pst = 1 para lámparas incandescentes de 230 V. A continuación se dan recomendaciones más detalladas relativas a los valores límite de la tensión de seña- lización en los sistemas de distribución eléctrica: ◆ Control del parpadeo de las se- ñales: el nivel de estas señales no debe exceder del valor de los armónicos impares que no sean múltiplos de 3 para la misma banda de frecuencia ([5], (Tabla 3). En la práctica, este valor está contenido en el margen del 2-5% de UN. ◆ Señales portadoras de media frecuencia sobre la línea de distribución eléctrica: el valor de señal de hasta el 2% de UN. ◆ Señales portadoras de radio- frecuenciasobre línea de distri- bucióneléctrica: Los niveles de compatibilidad están siendo sometidos a consideración. No deben superar el 0,3%. ◆ Sistemas de señalización de la red: Los fabricantes de equipos garantizarán la compatibilidad con el entorno de trabajo. En algunos países se reconoce oficialmente la denominada curva Meister, que se muestra en la Figura 15. CENELEC (Norma EN 50160) Durante el 99% de una jornada, la media de tres segundos de las tensio- nes de la señal deberá ser menor o igual a los valores que se dan en la Figura 16. Límites de emisión subarmónica e interarmónica [13] En el Reino Unido, por ejemplo, se asume que no se aplican sistemas de control del parpadeo y por lo tanto el abonado puede conectar una carga sin considerar si las emisiones inte- rarmónicas individuales son inferio- res a los valores límites que se dan en el Tabla 4. Los límites para frecuencias 1144 Interarmónicos Figure 15 - Curva Meistter para el control de las oscilaciones en las re- des de suministro público (100 Hz a 3000 Hz) [5] Frecuencia (Hz) Niveldeseñal(%UN) Orden de Armónico 5 7 11 13 Valor eficaz del armónico (% of fundamental component) 6 5 3.5 3 2.27 * (17/h) - 0.27 17≤ h ≤49 Tabla 3 - Valores de armónicos como base para determinar los niveles de compatibilidad de interarmónicos [5] Figure 16 - Niveles de tensión de las señales utilizadas en los sistemas públicos de distribución en Media Tensión [11] Frecuencia (Hz) %delatensióndeclarada
  • 17. interarmónicas particulares entre 80 y 90 Hz se pueden interpolar linealmente a partir de los límites que fi- guran en la Tabla 4. Métodos para la mitigación de los interarmónicos y la reducción de sus efectos Los métodos de mitigación de los efectos de los interarmónicos son: ◆ La reducción del nivel de emisión, ◆ la reducción de la sensibilidad de las cargas y ◆ la reducción del acoplamiento entre los equipos generadores de energía y las cargas. Los métodos utilizados son los mismos que para los armónicos. En el diseño de filtros pasivos deberán tenerse en cuenta otros factores adi- cionales. Por ejemplo, considerar que la resonancia entre los interarmónicos de los filtros y el sistema de energía puede amplificar y provocar fluctua- ciones y distorsión de tensión signifi- cativas. Los filtros deben diseñarse con un coeficiente de amortigua- miento superior. La Figura 17 muestra el ejemplo de las características de la impedancia de una fuente de un filtro pasivo (ar- mónicos 3, 5, 7 y 12) vistas desde los terminales de entrada del converti- dor que alimenta la gran instalación de un horno de arco eléctrico. La lí- nea de puntos corresponde a los fil- tros sin amortiguamiento. Existe un riesgo real de resonancia para los in- terarmónicos adyacentes a 120 y 170 Hz. Filtros que amortigüen los armó- nicos 3º y 7º reducen el peligro de que se produzca resonancia. El pro- ceso de diseño de filtros requiere a veces un compromiso entre la preci- sión de la sintonización y las pérdidas de energía, lo cual implica tener que escoger el factor de calidad del filtro. El diseño de un filtro de banda de paso estrecha presenta varios problemas. La desviación de la frecuencia normal del sistema de alimentación puede ser importante, especialmente cuando se combina con varia- ciones de la frecuencia de sintonización debido a las tolerancias de los componentes, envejecimiento, va- riación de temperatura y cambios en la impedancia de la red de alimentación. Interarmónicos 1155 Frecuencia del subarmónico o interarmónico, en Hz < 80 80 90 > 90 and < 500 Distorsión de tensión como % de la fundamental 0.2 0.2 0.5 0.5 Tabla 4 - Límites de emisión subarmónica e interarmónica Figure 17 - Ejemplo de impedancia vista desde los terminales del convertidor [10] Filtros sin amortiguamiento Filtros con amortiguamiento Frecuencia (Hz) Impedancia(Ω)
  • 18. La variación resultante en la frecuencia resonante del filtro, teniendo en cuenta la muy estrecha banda de paso del mismo, puede reducir significativamente la eficiencia del filtrado, incluso aunque la variación fue- se pequeña. A veces es necesario escoger un factor de calidad reducido, que aumenta el ancho de banda, lo que, por otro lado, es desventajoso respecto al filtrado de los interarmónicos. Las perturbaciones causadas por los sistemas de señalización en la red se pueden eliminar aplicando filtros en serie, sintonizados a las frecuencias deseadas y situados correctamente en el sistema. Otras soluciones implican el aumento del nivel de inmunidad de los equipos en uso o el empleo de filtros activos. Conclusiones La anterior exposición sobre la presencia de interarmónicos, sus fuentes básicas y las características de es- pectro continuo y discreto, permite formular varias conclusiones de carácter general. Primero - en la gran mayoría de los casos los valores y frecuencias de las corrientes y tensiones interarmó- nicas son cantidades aleatorias que dependen de numerosos parámetros complejos de procesos transito- rios. Segundo - para un determinado proceso en particular es posible la evaluación del valor y la frecuencia de un interarmónico. Tercero - no existen directivas de normalización coherentes relativas a los interarmónicos, aunque hay una necesidad práctica de disponer de ellas. Referencias y Bibliografía [1] Arrillaga J, Watson N R, Chen S: Power system quality assessment, Wiley, 2000 [2] Gunther E W: Interharmonics in power systems, UIEPQ-9727 [3] Interharmonic Task Force Working Document – IH0101 20001, IEEE [4] IEC 61000-2-1: 1990 – Electromagnetic compatibility (EMC) Part 2: Environment – Section 1: Description of the en- vironment – Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems [5] IEC 61000-2-2: 2002 – Electromagnetic compatibility (EMC) Part 2: Environment – Section 2: Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems (also materials used in preparation of the standard, obtained from the authors) [6] IEC 61000-4-7: 2002 Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 7: General guide on harmonics and interharmonics measurements and instrumentation for power supply systems and equipment connected thereto [7] IEC 61000-4-13: 2002 Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 13: Harmonics and interharmonics including mains signalling at ac power port, low frequency immunity tests (also ma- terials used in preparation of the standard, obtained from the authors) [8] Kloss A: Oberschwingungen, vde Verlag, ISBN 3-8007-1541-4 [9] Materials used in preparation of the standard IEC 61000-2-4. (obtained from the authors) [10] Mattaveli P, Fellin L, Bordignon P, Perna M: Analysis of interharmonics in dc arc furnace installations, 8th International Conference on Harmonics and Quality of Power, Athens, Greece, October 14-16, 1998 [11] EN 50160: 1999 – Voltage characteristics of electricity supplied in public distribution systems [12] Staudt V: Effects of window functions explained by signals typical to power electronics, 8th International Conference on Harmonics and Quality of Power, Athens, Greece, October 14-16, 1998 [13] Engineering Recommendation G5/4, Electricity Association, Feb. 2001 1166 Interarmónicos
  • 19. Apéndice 1 La Transformación de Fourier es el método más utilizado para el análisis espectral de una señal. La teoría fun- damental del análisis espectral presupone que éste se lleva a cabo a lo largo de un intervalo de tiempo de -∞ a +∞. La Transformación Discreta de Fourier (DFT) o su variante, la Transformación Rápida de Fourier (FFT), pueden introducir componentes espectrales inesperados de la señal analizada. Este efecto se produce por- que, tanto la Transformación Discreta (DFT) como la Transformación Rápida (FFT), operan sobre un núme- ro finito de muestras, es decir, sobre una parte de la señal presente en el sistema. El espectro determinado y el real sólo serán idénticos cuando la señal sea periódica, y el tiempo durante el cual se analiza contenga un número entero de ciclos de la señal. Esta condición es muy difícil de satisfacer en las aplicaciones prácticas. Los resultados presentados en las Figuras A.1.1 y A.1.2 ilustran cual puede ser el aspecto del espectro real. Se han obtenido espectros diferentes para la misma señal cuando en la Figura A.1.2 el tiempo era un 2,5% ma- yor. En la bibliografía este efecto se denomina perdida espectral. Puede decirse que parte de la energía de la línea espectral principal se transfiere a las líneas laterales. Se ha propuesto la siguiente interpretación de este fenómeno. La toma de muestras para el análisis por medio de la Trasformación Discreta de Fourier puede considerarse como la multiplicación de la señal presente en una ventana rectangular correspondiente al tiem- po de observación para representar la señal presente de duración infinita, como se ilustra en la Figura A.1.3. Para limitar la pérdida de espectro es necesario que los valores de la señal analizada no cambien rápida- mente al principio ni al final del intervalo de observación. Interarmónicos 1177 Figura A.1.1 - Módulos de espectro de señal. Para el análisis se han utilizado exactamente 4 ciclos Figura A.1.2 - Módulos de espectro de la señal. Para el análisis se han utilizado 4,1 ciclos Figura A.1.3 - Adquisición de muestras para el análisis por Transformación Discreta de Fourier Frecuencia relativa Frecuencia relativa Amplitudnormalizada Amplitudnormalizada Amplitudnormalizada Número de muestra Rango de adquisición
  • 20. Las Figuras A.1.4. muestran como debe utilizarse la ventana de tiempo para el análisis de la señal. 1188 Interarmónicos Figura A.1.4a - Representación gráfica de muestras para el análisis Figura A.1.4b -Utilización de la ventana de tiempo imponiendo yi = wi * xi Donde: yi = señal a la que se impone la ventana xi = muestras medidas wi = función de ventana en la que i toma valores de 1 a N (numero de muestras) Figura A.1.4d - Análisis del espectro para la Transformación Rápida de Fourier Figura A.1.4c - Análisis del espectro para la Transformación Discreta de Fourier Figura A.1.4e - Ventanas de tiempo utilizadas para el análisis del espectro de la señal Amplitudnormalizada Número de muestra Amplitudnormalizada Número de muestra Amplitudnormalizada Número de muestra Amplitudnormalizada Número de muestra Frecuencia relativa Amplitudnormalizada
  • 21. La Figura A.1.5 muestra como los métodos utili- zados influyen en el espectro del ejemplo de la figura A.1.2. Para este ejemplo se ha utilizado la ventana Hanning. El efecto es una reducción del número de líneas espectrales distintas de cero, y el espectro se aproxima al correcto, como se muestra en la Figura A.1.1. En la bibliografía presentada se pueden encontrar varias ventanas de análisis para laTransformación Discreta de Fourier. Los más utilizados son (Figuras A.1.6): ◆ La ventana triangular, similar a la venta- na Barlett. ◆ La ventana Hanning. ◆ La ventana de coseno elevado o de Hann, o ventana Hamming. Estas ventanas son las más utilizadas en los instrumentos de medida. Su uso no elimina los problemas de pérdida espectral, pero limita significativamente el efecto del tiempo finito de observación. Se trata de una evidente mejora de la resolución del espectro. Interarmónicos 1199 Figura A.1.6a - Ventana triangular Figura A.1.6b - Ventana Hanning Figura A.1.5 - Ejemplo de aplicación de ventana Hamming al análisis por Transformación Discreta de Fourier Figura A.1.6c - Ventana Hamming Frecuencia relativa AmplitudnormalizadaAmplitudnormalizada Número de muestra Amplitudnormalizada Número de muestra Amplitudnormalizada Número de muestra
  • 22. Apéndice 2 La mayor dificultad que presenta el muestreo de una señal continua es el problema de la ambigüedad. En la fi- gura A.2.1 se ilustra la esencia del pro- blema. De la figura se deduce que el mismo conjunto de datos de la muestra puede describir varias formas de onda, imposibles de distinguir por los equi- pos de medida. El principio del análisis de frecuencia es la representación de una forma de on- da arbitraria mediante la suma de una serie de señales sinusoidales. Este mé- todo de presentación permite abordar cuantitativamente el análisis del pro- blema de la ambigüedad. Para ello, consideremos la forma de onda que se representa en la Figura A.2.2. Una señal x(t) se muestrea a intervalos de tiempo iguales h, que determinan los instantes de toma de muestras, para los cuales se indican en la figura los va- lores de la señal medida. Supongamos que la función x(t) es sinusoidal y tiene una frecuencia f0. Los mismos puntos pueden también representar sinusoi- des de frecuencias f1 y f2 que son múlti- plos (no necesariamente enteros) de la frecuencia f0. Evidentemente estas di- versas frecuencias están relacionadas con el período de muestreo. A la fre- cuencia f0 se la denomina frecuencia fundamental. Puede afirmarse, sin recurrir a una demostración matemática, que el rango de frecuencias para el cual no se produce el efecto de ambigüedad se extiende desde f0 = 0 hasta f0 = fN, donde fN, la frecuencia máxima, se conoce como frecuencia de Nyquist y determina el límite de frecuencia del muestreo de datos, el deno- minado límite de Shannon, más allá del cual no es posible una reconstrucción única de una señal continua. Por lo tanto, si la señal analizada no contiene ninguna frecuencia componente mayor que fN, la mínima fre- cuencia de muestreo necesaria para que la señal muestreada represente la señal real viene dada por: fS ≥ 2fN, o debido a que , fS ≥ 1 entonces fN ≥ 1 h 2h Este es el denominado teorema de muestreo. Se deduce que, para un espectro de frecuencias dado, las componentes situadas entre f0 = 0 y f0 = fN pueden considerarse por separado. Si la señal contuviera com- ponentes de frecuencias f > fN, dichas componentes no se distinguirían. Por lo tanto es necesario limitar el ancho de banda de la señal medida para reducir una consecuencia di- recta de la ambigüedad durante su muestreo. Eso implica la necesidad de filtrar la señal a medir a través de un filtro de paso bajo antes de efectuar el muestreo a fin de eliminar todas las frecuencias superiores a fN. 2200 Interarmónicos Figura A.2.1 - Ambigüedad Figura A.2.2 - Análisis de ambigüedad Tiempo de muestreo Otras formas de onda posibles Tiempo de muestreo
  • 27. Consejo Editorial David Chapman (Chief Editor) CDA UK david.chapman@copperdev.co.uk Prof Angelo Baggini Università di Bergamo angelo.baggini@unibg.it Dr Araceli Hernández Bayo ETSII - Universidad Politécnica de Madrid ahernandez@etsii.upm.es Prof Ronnie Belmans UIE ronnie.belmans@esat.kuleuven.ac.be Dr Franco Bua ECD franco.bua@ecd.it Jean-Francois Christin MGE UPS Systems jean-francois.christin@mgeups.com Prof Anibal de Almeida ISR - Universidade de Coimbra adealmeida@isr.uc.pt Hans De Keulenaer ECI hdk@eurocopper.org Prof Jan Desmet Hogeschool West-Vlaanderen jan.desmet@howest.be Dr ir Marcel Didden Laborelec marcel.didden@laborelec.com Dr Johan Driesen KU Leuven johan.driesen@esat.kuleuven.ac.be Stefan Fassbinder DKI sfassbinder@kupferinstitut.de Prof Zbigniew Hanzelka Akademia Gorniczo-Hutnicza hanzel@uci.agh.edu.pl Stephanie Horton LEM Instruments sho@lem.com Dr Antoni Klajn Wroclaw University of Technology antoni.klajn@pwr.wroc.pl Prof Wolfgang Langguth HTW wlang@htw-saarland.de Jonathan Manson Gorham & Partners Ltd jonathanm@gorham.org Prof Henryk Markiewicz Wroclaw University of Technology henryk.markiewicz@pwr.wroc.pl Carlo Masetti CEI masetti@ceiuni.it Mark McGranaghan EPRI PEAC Corporation mmcgranaghan@epri-peac.com Dr Jovica Milanovic UMIST jovica.milanovic@umist.ac.uk Dr Miles Redfern University of Bath eesmar@bath.ac.uk Dr ir Tom Sels KU Leuven tom.sels@esat.kuleuven.ac.be Prof Dr-Ing Zbigniew Styczynski Universität Magdeburg Sty@E-Technik.Uni-Magdeburg.de Andreas Sumper CITCEA sumper@citcea.upc.es Roman Targosz PCPC cem@miedz.org.pl Hans van den Brink Fluke Europe hans.van.den.brink@fluke.nl European Copper Institute* (ECI) www.eurocopper.org ETSII - Universidad Politécnica de Madrid www.etsii.upm.es LEM Instruments www.lem.com Akademia Gorniczo-Hutnicza (AGH) www.agh.edu.pl Fluke Europe www.fluke.com MGE UPS Systems www.mgeups.com Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) www-citcea.upc.es Hochschule für Technik und Wirtschaft* (HTW) www.htw-saarland.de Otto-von-Guericke-Universität Magdeburg www.uni-magdeburg.de Comitato Elettrotecnico Italiano (CEI) www.ceiuni.it Hogeschool West-Vlaanderen Departement PIH www.pih.be Polish Copper Promotion Centre* (PCPC) www.miedz.org.pl Copper Benelux* www.copperbenelux.org International Union for Electricity Applications (UIE) www.uie.org Università di Bergamo* www.unibg.it Copper Development Association* (CDA UK) www.cda.org.uk ISR - Universidade de Coimbra www.isr.uc.pt University of Bath www.bath.ac.uk Deutsches Kupferinstitut* (DKI) www.kupferinstitut.de Istituto Italiano del Rame* (IIR) www.iir.it University of Manchester Institute of Science and Technology (UMIST) www.umist.ac.uk Engineering Consulting & Design* (ECD) www.ecd.it Katholieke Universiteit Leuven* (KU Leuven) www.kuleuven.ac.be Wroclaw University of Technology* www.pwr.wroc.pl EPRI PEAC Corporation www.epri-peac.com Laborelec www.laborelec.com Socios Fundadores* y de Referencia
  • 28. European Copper Institute 168 Avenue de Tervueren B-1150 Brussels Belgium Tel: 00 32 2 777 70 70 Fax: 00 32 2 777 70 79 Email: eci@eurocopper.org Website: www.eurocopper.org Dr eng Andrzej Bien AGH-UST Al. Mickiewicza 30 30-059 Kraków Poland Tel: (012) 617 28 78 Fax: (012) 633 22 84 Email: hanzel@uci.agh.edu.pl Web: www.agh.edu.pl Prof Zbigniew Hanzelka AGH-UST Al. Mickiewicza 30 30-059 Kraków Poland Tel: (012) 617 28 73 Fax: (012) 633 22 84 Email: abien@uci.agh.edu.pl Web: www.agh.edu.pl Princesa, 79 28008 Madrid Tel: 91 544 84 51 Fax: 91 544 88 84 e-mail: cedic@pasanet.es web: www.infocobre.org.es