SlideShare una empresa de Scribd logo
1 de 75
Tema 7. Parte II.
• Origen y dinámica de la hidrosfera.
• Sistemas lénticos (lagos, lagunas y humedales).
• Dinámica oceánica.
• Dinámica fluvial y torrencial.
• Aguas subterráneas.
• Los glaciares.
• Riesgos asociadas a las masas
fluidas.
• Climatología.
La hidrosfera es el componente del sistema
tierra formado por toda el agua, ya sea en
estado líquido, sólido o gaseoso, que
encontramos en nuestro planeta.
Origen y dinámica de la hidrosfera
Origen y dinámica de la hidrosfera
Agua en el
universo
Molécula
relativamente
frecuente
En la Tierra se
encuentra en los 3
estados de
agregación.
Su origen
en la
tierra
Formada en el núcleo.
Hielo proveniente de meteoritos.
Combinación de ambos.
Posterior
desgasificación
del manto,
atracción
gravitatoria y
condensación.
Origen y dinámica de la hidrosfera
PROPIEDADES
Molécula dipolar.
Establecimiento de puentes de hidrogeno entre
las moléculas.
Máxima densidad a los 4ºC.
Densidad hielo < densidad agua.
Elevado calor específico.
Buen disolvente de iones (sustancias polares).
Alta tensión superficial.
Contiene disoluciones tampón o amortiguadoras
(carbonatos)
Origen y dinámica de la hidrosfera
Balance hídrico = salidas - entradas
Volumen sistema (m3)
Tiempo permanencia =
Flujo entrante del sistema (m3/s)
Es el flujo neto de agua entrante o saliente de un sistema.
• A largo plazo normalmente es nulo (sistemas autorregulados)
• A corto plazo puede ser un balance positivo (hay un
excedente) o negativo (déficit).
Es el tiempo medio que transcurre desde que una molécula
entra al sistema hasta que lo abandona.
1
Tasa de renovación =
Tiempo de permanencia
Inversa del tiempo de permanencia, indica la velocidad de flujo
en el sistema.
 Los gases son los mismos que componen el aire
libre, pero en diferentes proporciones.
 Cuando aumentan la temperatura y la salinidad,
disminuye la solubilidad de los gases en el agua
del mar.
 La actividad metabólica de los seres vivos
(fotosíntesis), la agitación y la abundancia de seres
vivos, pueden hacer variar el CO2, el O2 y el anión
bicarbonato (HCO3-) disueltos en el agua.
 En aguas oceánicas superficiales bien mezcladas, la
composición típica de gases disueltos tiene un 64%
de nitrógeno (N2), un 34% de oxígeno (O2) y un
1,8% de dióxido de carbono (CO2), muy por encima
éste último del 0,04% que hay en el aire libre.
Origen y dinámica de la hidrosfera
Origen y dinámica de la hidrosfera
ZONA FÓTICA
ZONA AFÓTICA
En función de la penetración de la luz
solar, podemos diferenciar dos
zonas:
-Fótica: La luz penetra en esta
región, es posible la fotosíntesis.
-Afótica: La luz es incapaz de llegar a
esta región.
El principal problema en el océano es la gran distancia entre la zona
fótica (superficial) y los nutrientes (sedimentados en aguas profundas).
Donde hay luz para la producción primaria hay pocos nutrientes
inorgánicos, y viceversa.
Origen y dinámica de la hidrosfera
ZONA FÓTICA
ZONA AFÓTICA
Las zonas con
mayor
productividad sean
aquellas en que las
aguas profundas,
frías y cargadas de
nutrientes afloran a
la superficie; tales
zonas se conocen
como afloramientos.
Nutrientes
Dinámica de oceánica
Movimientos del agua del marCORRIENTES
CORRIENTES
SUPERFICIALES
Vientos
dominantes
Corrientes superficiales condicionadas al giro de
anticiclones (Circulación General de la Atmósfera).
Afloramientos debido a vientos costa  mar.
Corrientes de deriva litoral: Viento oblicuo a la costa.
Variaciones de
densidad
Las masas de agua absorben energía solar,
aumentando su temperatura (<densidad); o
ceden energía disminuyendo su temperatura
(>densidad). La región/profundidad en la que
la Tº desciende bruscamente se llama
TERMOCLINA.
Temperatura
La concentración de sales es variable
dependiendo de la cuenca marina que se
trate. A mayor concentración, mayor
densidad; y a la inversa. Ejemplos: Salinidad
media del mar 3’5%, Muerto 30%.
Salinidad
CORRIENTES
PROFUNDAS
Causadas
por
Dinámica de oceánica
1. Capa superficial. En los primeros
metros el agua recibe la mayor parte de
la radiación solar, estando
considerablemente más caliente que las
capas inferiores. Debido a estar en
superficie, además, es mezclada y
homogeneizada por los vientos.
2. Termoclina. En esta región se produce
un brusco descenso de la temperatura.
Entre los 200-1000m (estrecha en
latitudes altas, amplia en latitudes bajas).
Separa dos regiones de características
muy diferentes, siendo el límite inferior
en torno a los 5ºC.
3. Capa inferior. Hasta la máxima
profundidad de la masa de agua. La
temperatura desciende lentamente. La
temperatura y densidad a gran
profundidad es prácticamente constante.
LA TERMOCLINA ACTÚA COMO
BARRERA VERTICAL ENTRE FASES
DISTINTAS
Dinámica de oceánica
Dinámica de oceánica
LA CORRIENTE TERMOHALINA o Cinta Transportadora de Calor
Dinámica de oceánica
 La corriente termohalina hace referencia al
movimiento de masas de agua en los
océanos, de acuerdo a cambios en la
temperatura y salinidad de las aguas.
 Las modificaciones de esos dos factores
produce cambios en la densidad.
◦ A menor temperatura, mayor densidad.
◦ A mayor salinidad, mayor densidad.
Una buena descripción de la circulación:
http://www.ecured.cu/Circulaci%C3%B3n_termohalina
Dinámica de oceánica
Zona de hundimiento. Zona de afloramiento.
Dinámica de oceánica
https://www.youtube.com/watch?v=-JSXT-Ntgl8
Dinámica de oceánica
El oleaje es resultado de la interacción del viento con la superficie de mares y
océanos.
Ese movimiento permite una efectiva mezcla del agua en los primeros metros
de profundidad (temperatura, concentración de nutrientes y concentración de
gases similares). [Puede aumentar la turbidez en aguas poco profundas].
Dinámica de oceánica
En zonas donde existen vientos de
duración constante y con una intensidad
suficiente, se originan trenes de olas,
que pueden recorrer largas distancias.
Las olas son movimientos ondulatorios
de las partículas.
Dinámica de oceánica
Dinámica oceánica
 En las zonas orientales de los océanos tropicales (costa
oeste de los continentes) el agua se separa de la costa
debido a los vientos alisios que soplan hacia el Oeste.
 El agua que se mueve es reemplazada por agua
profunda, fría y rica en nutrientes, debido a que la
descomposición se produce en el fondo oceánico. Estas
zonas se llaman zonas de afloramiento.
 En la superficie, con la energía solar, se forma una gran
cantidad de fitoplancton capaz de mantener una
comunidad animal muy numerosa como peces y aves
que se alimentan de ellos.
 Este es el origen de algunos de los caladeros más
importantes para la pesca como son el de Perú, costas
de Sahara y costas de Kalahari en África y en España
Galicia (corriente del Golfo).
AFLORAMIENTOS
AFLORAMIENTO COSTA DE PERÚ
Dinámica oceánica (riesgos)
ENSOEL NIÑO: Se trata de una
distribución anómala de
las temperaturas en el
Pacífico Sur, producida
por el debilitamiento de
los vientos alisios.
En situación normal, el
empuje de las aguas
superficiales provoca el
ascenso de la termoclina,
y afloramientos de aguas
ricas en nutrientes.
ENSOLos alisios se
debilitan o cesan, el
movimiento de las
aguas superficiales
también.
Las aguas cálidas se
distribuyen
homogéneamente y la
termoclina se hunde.
No hay afloramientos.
ENSOLos alisios soplan con
fuerza, moviendo las
aguas superficiales.
Genera fuertes tormentas
en la costa australiana, y
grandes sequías en la
suramericana.
(Sería una situación normal
acentuada).
Climatología.
La climatología es la ciencia que estudia el clima y sus variaciones a lo largo del
tiempo. Su objetivo es estudiar las características climáticas a largo plazo.
El clima es el conjunto de fenómenos meteorológicos que caracterizan las
condiciones más probables de una región determinada. Es una serie de valores
estadísticos. VALORES MEDIOS DE PLUVIOSIDAD Y TEMPERATURA.
¿Y qué es lo que hace
que llueva más o
menos? ¿Que haga
más o menos calor?
Latitud
Altitud
Continentalidad
Vientos
dominantes
Climatología.
Por ascenso vertical a capas superiores. El vapor se condensa, las
microgotas chocan entre sí por las turbulencias aumentando su
tamaño, superando la capacidad de sustentación y precipitando.
Por encima de la isoterma 0ºC se forma granizo. En la formación
de nieve intervienen otros factores. Si se da el enfriamiento en
contacto con el suelo se forma rocío o escarcha.
A medida que una masa de aire asciende, puede alcanzar el punto de rocío,
condensándose la humedad que tiene formando nubes. El enfriamiento
progresivo puede generar precipitaciones en forma de lluvia, nieve o granizo.
Nubes de origen
convectivo
Nubes de origen
orográfico
Nubes de origen
frontal
Masas próximas al mar cargadas de humedad se ven forzadas a
ascender por una ladera, pasando de GAS a GAH, pudiendo darse
la precipitación (ladera húmeda). Al pasar a la cima, en su
descanso seguirá el GAS por no alcanzar en tales condiciones el
punto de rocío (ladera seca). Efecto Foehn.
Por choque de dos frentes, dos masas de aire una fría y otra
cálida. Pueden darse 3 casos.
Climatología.
Nubes (y precipitación ) frontal
Por choque de dos frentes, dos
masas de aire una fría y otra cálida.
Pueden darse 3 casos.
Frente frío: la masa fría invade una
zona de aire caliente. La fría
permanece próxima al suelo (mayor
densidad) y empuja la cálida sobre
ella. Nubes de desarrollo vertical
(cumulonimbos) y precipitaciones
intensas en zonas poco extensas.
Frente cálido.
Frente ocluido.
Frente frío: Masa de aire frío
alcanza una masa cálida.
Por choque de dos frentes, dos
masas de aire una fría y otra cálida.
Pueden darse 3 casos.
Frente frío:
Frente cálido: el aire cálido empuja al
frío y asciende sobre el último como
en una rampa. Nubes de tipo
estratos, de desarrollo horizontal.
Precipitaciones más extensas y
débiles.
Frente ocluido.
Frente cálido: Masa de aire
cálido alcanza una masa fría.
Nubes (y precipitación ) frontal
Por choque de dos frentes, dos
masas de aire una fría y otra cálida.
Pueden darse 3 casos.
Frente frío.
Frente cálido.
Frente ocluido: Masa cálida alcanzada
por una fría que avanza más rápido.
La masa cálida queda atrapada entre
dos frías. Aparecerán los efectos del
frente cálido seguidos de tormentas,
a veces con un intervalo de
estabilidad muy corto entre ambos.
Frente ocluido: Masa de aire
cálido es atrapada entre dos
masas frías.
Nubes (y precipitación ) frontal
Precipitaciones
Lluvia
Llovizna
Ll. Persistente
Chubasco
Granizo Nieve
Climatología.
Como resultado de la interacción de estos factores, se han realizado varias
clasificaciones de los climas terrestres. Utilizan distintos índices basados
en la pluviometría y temperaturas de una región.
CLIMAS
Azonales
Su clima viene definido no por factores
geográficos. Sino por la altitud, vientos...
Zonales
Se corresponden con la región climática
en la que se encuentran (latitud).
Clima tropical
Clima árido
Clima templado
Clima continental
Clima polar
Ecuador
Polos
L
A
T
I
T
U
D
Clima de altas montañas
Clasificación
de Köppen
Clasificación de Köppen
Climatología.
Climatología.
El chorro polar.
El chorro polar es un
velocísimo río de viento
que rodea la tierra, como
una serpiente que se
muerde la cola, a altitudes
de la tropopausa. Su
sentido es de oeste a este.
Va asociado al frente
polar.Separa aire frío polar de
cálido subtropical. Se
trata de un frente, y va
asociado a borrascas
frontales.
Borrasca Anticiclón
Dinámica fluvial y torrencial
Los sistemas lóticos los constituyen los cursos de agua dulce como ríos,
arroyos, torrentes o manantiales.
•Cursos de agua permanentes.
•Flujo de agua más o menos constante.Ríos
•Cursos de agua temporales con cauce fijo.
•Flujo de agua muy variable (seco la mayor parte del año).Arroyos
•Cursos de agua temporales con cauce fijo.
•Caudal extremadamente variable (surgen con grandes precipitaciones)
•Gran pendiente.
Torrentes
Dinámica fluvial y torrencial
Las aguas de arrollada son
encauzadas por los accidentes
del terreno, discurriendo por
cauces cada vez más estables.
Esos cauces en conjunto
constituyen una RED DE
DRENAJE.
◦ EXORREICAS: Vierten al mar.
◦ ENDORREICAS: Vierten a zonas
interiores.
Una CUENCA HIDROGRÁFICA es la
superficie que vierte a una misma
red de drenaje. Las cuencas se
separan por divisorias de aguas
(línea de cumbres).
Dinámica fluvial y torrencial
PERFIL LONGITUDINAL de un río
y PERFIL DE EQUILIBRIO
Representación de altitud vs.
Distancia al nacimiento hasta
desembocadura.
Perfil teórico en el que las
acciones de erosión,
transporte y sedimentación
están equilibradas.
Dinámica fluvial y torrencial
PARTES DE UN RÍO:
• CURSO ALTO: suele ser de carácter torrencial. Se da una
acción principalmente erosiva, aunque también depositan los
materiales más grandes.
• CURSO MEDIO: El factor dominante es el transporte de los
materiales procedente del curso alto, bien sea por flotación,
suspensión, saltación, arrastre o disolución, según la clase de
material que sea.
• CURSO BAJO: Acción predominantemente sedimentaria.
Dinámica fluvial y torrencial
PARTES DE UN TORRENTE:
• CUENCA DE RECEPCIÓN: Laderas donde discurren los barrancos, con forma
de abanico cóncavo que alimenta el torrente.
• CANAL DE DESAGÜE: cauce principal.
• CONO DE DEYECCIÓN: Donde se depositan los materiales.
Todo torrente termina en el nivel de
base (local) al desembocar en otra
corriente fluvial.
La acción geológica de los torrentes es
fundamentalmente erosiva (salvo en la
parte final en la que se depositan los
materiales transportados). Se realiza
una erosión en sentido horizontal
(ensanche del cauce), y sobre todo
vertical (profundización del mismo).
Dinámica fluvial y torrencial
HIDROGRAMAS
Gráficas en las que se representa el caudal de un río (m3/s) o arroyo a
lo largo del tiempo meses, horas).
Caudal(m3/s)
1000
500
100
0
E F M A M J J A S O N D
t (meses)
Precipitaciones
de final invierno
y primavera.
Época de
estío.
Precipitaciones
en otoño.
Caudal(m3/s)
1000
500
100
0
E F M A M J J A S O N D
t (meses)
Los regímenes de los ríos pueden ser pluviales, nivales o pluvionivales.
Durante el invierno
todas las precipitaciones
se almacenan en forma
de nieve.
RÉGIMEN NIVAL
Dinámica fluvial y torrencial
Es un río con un pico en su caudal
significativo, presenta una avenida
debida a la fusión de una gran
cantidad de nieve y hielo. El resto del
año depende de aportes
subterráneos.
Aguas
provenientes del
deshielo.
Caudal(m3/s)
1000
500
100
0
E F M A M J J A S O N D t (meses)
Dinámica fluvial y torrencial
RÉGIMEN PLUVIONIVAL
O MIXTO
Agua del
deshielo.
Precipitaciones
finales de
invierno.
Precipitaciones
otoño.
Es un río con un caudal no muy
elevado, que depende principalmente
de aportes subterráneos. Las
precipitaciones no son significativas,
por eso es uniforme.
Caudal(m3/s)
1000
500
100
0
E F M A M J J A S O N D t (meses)
Dinámica fluvial y torrencial
Precipitaciones
finales de invierno -
primavera.
Época estival.
Se trata de un río cuya época
de crecida coincide con
lluvias cercanas a la
primavera. El resto de meses
no presenta picos, sino que
es una larga época de estío.
RÉGIMEN PLUVIAL
Dinámica fluvial y torrencialCaudal(m3/s)
15
10
5
0
0 2 4 6 8 10 12 14 t (horas)
Caudal
de base
Caída de
aguacero
Caudal
máximo
Tiempo de
respuesta Permite observar el
comportamiento
hídrico de una
cuenca, y compararla
con…
Caudal(m3/s)
15
10
5
0
0 2 4 6 8 10 12 14 t (horas)
Nivel de
inundación
Nivel de
récord
Dinámica fluvial y torrencial
Supuesto 1: La línea discontinua representa el caudal tras la construcción
de una presa.
Supuesto 2: La línea continua representa el caudal tras la tala de la masa
forestal de un valle.
Caudal(m3/s)
15
10
5
0
0 2 4 6 8 10 12 14
Caída de
aguacero
Caudal
máximo Si comparamos el hidrograma
de un torrente, rambla o
barranco, podemos observar
que es distinto al de un río.
El aumento de caudal es
considerable (pues
normalmente está vacío su
cauce).
El tiempo de respuesta suele
ser de minutos.
En este caso tiene carácter
pluvial. Los nivales son
torrentes más predecibles.
Dinámica fluvial y torrencial
Dinámica fluvial y torrencial
Aguas subterráneas
El agua sobre al superficie terrestre puede infiltrarse en el terreno si las
rocas son permeables. Esa infiltración dependerá de la abundancia de
vegetación, de la pendiente del terreno y de la permeabilidad del mismo.
El agua que no se filtre, forma la escorrentía superficial, circulando en
cauces más o menos fijos.
Permeabilidad es la facilidad con la que los fluidos pueden atravesar un
material. Depende del número de poros que presenta el material, pero
además, de las conexiones entre los mismos. Es lo que se llamaría porosidad
efectiva.
La porosidad se define como la cantidad de huecos que tiene la roca. Se
expresa en % en volumen de roca total
Porosidad = (Vhuecos/Vtotal ) x 100
Aguas subterráneas
Aguas subterráneas
Estructuras geológicas que por su porosidad o fracturación son
capaces de almacenar agua, y de transmitirla.
ACUÍFEROS
Acuíferos
libres
Acuíferos
confinados
Aquellos en los que su
límite superior se
encuentra en contacto
con la zona
subsaturada. Puede
ser recargado en toda
su superficie. Se
encuentran a presión
atmosférica.
Aquellos que se
encuentran entre dos
capas impermeables.
El agua está sometida
a una presión mayor
que la atmosférica. La
zona de recarga es
una región concreta.
La capa situada por
encima del mismo es
menos permeable
que los materiales
que constituyen el
acuífero.
Acuíferos
semiconfinados
Aguas subterráneas
1
1
2
3
4 5
6
6
Aguas subterráneas
Aguas subterráneas
irenebyg.blogspot.com
Aguas subterráneas
irenebyg.blogspot.com
Aguas subterráneas
Aguas subterráneas
Los acuíferos tienen gran importancia, debido a que
cumplen distintas funciones:
- Son almacén de agua que puede ser utilizada con
posterioridad, incluso en regiones en las que las
condiciones climáticas actuales se caracterizan por un
déficit hídrico.
- El agua ocupa cavidades que, sin su presencia,
podrían desaparecer al compactarse el terreno,
provocando subsidencias.
- Aportan agua a ríos efluentes. También existen ríos
que donan agua a acuíferos recargándolos, se
denominan ríos influentes.
Cuerpos de agua cerrados que no fluyen: lagos, lagunas, humedales…
Sistemas lénticos
Sistemas lénticos.
LAGOS
LAGUNAS,
HUMEDALES Y
MARISMAS
Depende del
tamaño
(superficie y
profundidad)
Sistemas lénticos
Se suelen clasificar en función de su origen:
Glaciar, Volcánico, Kárstico, Tectónico
Tienen una dinámica propia, al tener un volumen de agua
considerable. Al igual que mares y océanos, poseen
termoclina, esta puede impedir la mezcla vertical.
Su salinidad dependerá de los aportes o entradas, así como de la
evacuación de esa agua (evaporación o salida al mar). Si la evacuación
no es posible, la concentración de sales aumenta progresivamente.
Los lagos.
ESTRATIFICACIÓN DE LAGOS,
CIRCULACIÓN Y MEZCLA
Sistemas lénticos
Las diferencias de
densidad en las aguas de
los lagos (como en otros
sistemas acuáticos)
resultan del gradiente
térmico, e influyen sobre
la circulación vertical de
las aguas a lo largo del
año. Dado que esa
circulación va ligada a la
temperatura, dependerá
del clima de la región
Termoclina
Sistemas lénticos
ESTRATIFICACIÓN DE LAGOS,
CIRCULACIÓN Y MEZCLA
PRIMAVERA VERANO OTOÑO INVIERNO
T E R M O C L I N A T E R M O C L I N A
H I E L O
LAGO REGIÓN TEMPLADA
Lagos DIMÍCTICOS: Se mezclan en primavera y en otoño.
En los lagos de las zonas templadas, se producen ciclos estacionales que
alteran la estratificación de las aguas.
Verano : las aguas de las capas superiores se calientan más que las del fondo.
La diferencia de temperatura entre las aguas superiores y las profundas da
origen a una zona intermedia denominada termoclina que separa dos capas de
agua bien diferenciadas: epilimnion e hipolimnion. Se produce la circulación de
las aguas superficiales, las cuales no se mezclan con las del fondo frías, no
circulantes.
Otoño la temperatura baja en el epilimnion hasta igualar la del hipolimnion;
este hecho provoca la circulación total de las aguas del lago.
Invierno se produce una estratificación, debido a que las aguas de la superficie
se congelan, mientras las aguas del fondo permanecen a 4º C. Esta temperatura
corresponde al máximo de densidad del agua. La descomposición bacteriana se
reduce a temperaturas bajas.
Primavera sube la temperatura de las aguas del epilimnion, el hielo se funde y,
al hacerse el agua más densa, desciende hacia el fondo provocando la subida de
las aguas profundas; así se establece una circulación total de las aguas con la
consiguiente fertilización de las capas superiores por el arrastre de nutrientes
en suspensión.
Sistemas lénticos
Sistemas lénticos
Lagos (templados y) subtropicales monomícticos. En estos lagos, la temperatura
del agua superficial nunca baja a 4º C y en invierno no se hielan. La mezcla
vertical de las aguas sólo se puede producir durante la estación fría, ya que en
ese momento la termoclina no es amplia.
Lagos fríos monomícticos. La temperatura del agua profunda y superficial no
sobrepasa nunca los 4º C. Cuando las aguas superficiales alcanzan en verano 4º
C, y desaparece el hielo, puede producirse una circulación vertical que origina la
mezcla de las aguas. Estos lagos se encuentran en las regiones polares.
Lagos tropicales oligomícticos. La temperatura del agua superficial oscila entre
20º - 30º C, casi constante durante todo el año. El gradiente térmico es débil, y
se producen por consiguiente cambios poco notorios. La circulación vertical es
irregular y rara vez es total. Termoclina considerable.
También los clasificamos como oligótróficos y
eutróficos, en función de los nutrientes y actividad
biológica que presenten. Lo veremos más adelante.
Sistemas lénticos
Convenio RAMSAR define humedales como "las extensiones de
marismas, pantanos y turberas, o superficies cubiertas de aguas, sean
éstas de régimen natural o artificial, permanentes o temporales,
estancadas o corrientes, dulces, salobres o saladas, incluidas las
extensiones de agua marina cuya profundidad en marea baja no exceda de
seis metros".
Los humedales.
La función principal del
humedal, aparte de ser un
gran ecosistema y un
importante hábitat para
muchos seres vivos, es que
actúan como filtradores
naturales de agua.
Los glaciares
En los lugares donde la cantidad total de precipitaciones sólidas supera a la
cantidad de agua que resulta de su fusión, la nieve se acumula en cantidades
cada vez mayores.
Nieve esponjosa  neviza  hielo blanco  hielo azul
Se dan procesos de compactación
debido al peso de las capas superiores
y por fenómenos de fusión parcial y
rehielo. Por grados sucesivos de
compactación y expulsión del aire
intersticial llega a transformarse en
hielo azul.
Los glaciares
•Cubren la mayoría de las regiones cometidas a modelado glaciar.
Transversalmente tienen forma planoconvexa o biconvexa. En hielo
fluye radialmente en todas direcciones
Inlandsis o
casquetes
glaciares.
•En latitudes templadas, en zonas montañosas por encima de las nieves
perpetuas. En la zona de cumbres por su gran pendiente se acumula nieve
en equilibrio inestable, que desciende en forma de avalanchas a zonas
menos inclinadas donde se acumula y compacta hasta formar hielo: los
circos glaciares. Si la acumulación es suficientemente abundante, por la
zona más deprimida del valle desciende una lengua glaciar
Glaciares
de circo y
valle.
En general, las masas de hielo en el planeta pueden incluirse en alguno
de estos 3 grupos, o suponer transiciones entre ambos.
Son acumulaciones de agua dulce. 79% del total de agua dulce.
Los glaciares
• Capas de agua oceánica heladas en las regiones polares.
Gran parte de la sal marina es expulsada al producirse la
congelación. Su espesor varía de forma natural, en la
actualidad este proceso se ve alterado por los cambios de
temperatura global.
Banquisa
Su fusión desencadenaría modificaciones del clima a escala global, asñi
como un impacto en ecosistemas polares..
•Precipitaciones (tormenta, granizo…)
•Ventisca. (155/215)
•Gota fría. (blog, 160/221)
•Calima. (159/220)
•Tornados. (160/221)
•Tifones, huracanes o ciclones. (163/222)
• Monzones.
•Situación anticiclónica estabilizada.
(159/220)
•Galerna.
•Olas de hielo.
•Avenidas.(129/173)
Cambio climático por causa natural o
antrópica. (blog, 166/228)
Fenómeno de “El Niño” y “La Niña”. (blog,
152/208)
Riesgos
RIESGOS
Climáticos
Meteorológicos
Otros
•Aludes.
•Vaciados de lagos.
•Lahares.
•Subsidencias.
De qué otra ¿forma
clasificábamos los
riesgos…?
GALERNA
Temporal súbito y violento con fuertes ráfagas de viento del oeste al
noroeste que suele azotar las zonas del mar Cantábrico y el Golfo de
Vizcaya, por lo general en la primavera y el otoño.
Aparecen en días calurosos y apacibles en los que la llegada de un frente
frío viene acompañado de un cambio brusco en la dirección e intensidad del
viento, que puede llegar a superar los 100 km/h. El cielo se oscurece y se
produce un fuerte descenso de temperatura, de hasta 12°C en 20 minutos,
un descenso rápido de la presión atmosférica y un aumento de la humedad
relativa que roza el 100%.
OLAS DE HIELO / IVU
Se da con relativa frecuencia en zonas de grandes lagos, con temperaturas
por debajo del punto de congelación del agua, y con fuertes y constantes
vientos. Además, se requiere un movimiento cíclico del agua, debido a
avenidas o fuertes lluvias. Son olas, congeladas.
Producen la destrucción de aquellas infraestructuras que encuentren a su
paso. https://www.youtube.com/watch?v=ER2WSBtVoPw
En cuanto a las aguas subterráneas: las subsidencias, debido a la
compactación de los estratos permeables cuyos poros quedan vacíos.
Riadas a causa de los cauces intermitentes, como torrentes o arroyos y
ramblas. Se denominan avenidas (fluviales o torrenciales).
Aludes: masas de nieve que se desplazan a favor de la gravedad.
Vaciados de lagos: por ruptura de los bloques que contenían el agua
del lago.
Lahares: corrientes de agua y barro, producidas al fundirse el hielo
debido al calor emanado por un volcán.
Este tipo de fenómenos son relativamente impredecibles, lo que genera
que medidas preventivas sean fundamentales, así como las correctivas.
Debido a la fuerza de los materiales arrastrados, este tipo de
fenómenos se llevan por delante los bienes que encuentran a su paso,
alteran ecosistemas, y pueden suponer grandes pérdidas humanas.
 ¿Qué medidas preventivas se te ocurren?
 ¿Qué medidas correctivas se te ocurren?
Riesgos en la hidrosfera.
Hidrosfera y dinámica de los sistemas hídricos

Más contenido relacionado

La actualidad más candente

Atmósfera y climatología
Atmósfera y climatologíaAtmósfera y climatología
Atmósfera y climatologíapepe.moranco
 
Presentacion Ekipo Gases Efect Inver
Presentacion Ekipo Gases Efect InverPresentacion Ekipo Gases Efect Inver
Presentacion Ekipo Gases Efect Inverdaniela xospa
 
VC03 la atmosfera
VC03 la atmosferaVC03 la atmosfera
VC03 la atmosferaNaty Ayala
 
Presentación D E Q U I M I C A
Presentación  D E  Q U I M I C APresentación  D E  Q U I M I C A
Presentación D E Q U I M I C Ac.b.tecnologico
 
Problemas ambientales globales 2021
Problemas ambientales globales 2021Problemas ambientales globales 2021
Problemas ambientales globales 2021ArturoIslaZevallos
 
Principales problemas ambientales
Principales problemas ambientalesPrincipales problemas ambientales
Principales problemas ambientalesDiego Bravo
 
Medio Ambiente
Medio AmbienteMedio Ambiente
Medio AmbienteAngelinaO
 
Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013
Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013
Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013VidalBanez
 
Química ambiental
Química ambientalQuímica ambiental
Química ambientalAlonso David
 
Recursos I. Energéticos y minerales.
Recursos I. Energéticos y minerales.Recursos I. Energéticos y minerales.
Recursos I. Energéticos y minerales.irenebyg
 

La actualidad más candente (20)

Unidad2 lahumanidadymedioambienteii
Unidad2 lahumanidadymedioambienteiiUnidad2 lahumanidadymedioambienteii
Unidad2 lahumanidadymedioambienteii
 
Aire
AireAire
Aire
 
Planeta tierra
Planeta tierraPlaneta tierra
Planeta tierra
 
La atmosfera
La atmosferaLa atmosfera
La atmosfera
 
La atmósfera
La atmósferaLa atmósfera
La atmósfera
 
La atmósfera
La atmósferaLa atmósfera
La atmósfera
 
Contaminación
ContaminaciónContaminación
Contaminación
 
Atmósfera y climatología
Atmósfera y climatologíaAtmósfera y climatología
Atmósfera y climatología
 
Presentacion Ekipo Gases Efect Inver
Presentacion Ekipo Gases Efect InverPresentacion Ekipo Gases Efect Inver
Presentacion Ekipo Gases Efect Inver
 
VC03 la atmosfera
VC03 la atmosferaVC03 la atmosfera
VC03 la atmosfera
 
Presentación D E Q U I M I C A
Presentación  D E  Q U I M I C APresentación  D E  Q U I M I C A
Presentación D E Q U I M I C A
 
Problemas ambientales globales 2021
Problemas ambientales globales 2021Problemas ambientales globales 2021
Problemas ambientales globales 2021
 
Principales problemas ambientales
Principales problemas ambientalesPrincipales problemas ambientales
Principales problemas ambientales
 
Tema1. concepto de medio ambiente
Tema1. concepto de medio ambienteTema1. concepto de medio ambiente
Tema1. concepto de medio ambiente
 
Medio Ambiente
Medio AmbienteMedio Ambiente
Medio Ambiente
 
Quimica Ambiental
Quimica AmbientalQuimica Ambiental
Quimica Ambiental
 
Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013
Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013
Directrices y orientaciones_ciencias_de_la_tierra_y_medioambientales_2012_2013
 
Química ambiental
Química ambientalQuímica ambiental
Química ambiental
 
Recursos I. Energéticos y minerales.
Recursos I. Energéticos y minerales.Recursos I. Energéticos y minerales.
Recursos I. Energéticos y minerales.
 
Aerosoles en la atmósfera
Aerosoles en la atmósferaAerosoles en la atmósfera
Aerosoles en la atmósfera
 

Similar a Hidrosfera y dinámica de los sistemas hídricos

Similar a Hidrosfera y dinámica de los sistemas hídricos (20)

Dinámica de masas fluidas. Parte II.
Dinámica de masas fluidas. Parte II.Dinámica de masas fluidas. Parte II.
Dinámica de masas fluidas. Parte II.
 
La dinámica de la hidrosfera
La dinámica de la hidrosferaLa dinámica de la hidrosfera
La dinámica de la hidrosfera
 
Tema 4
Tema 4Tema 4
Tema 4
 
Tema 4
Tema 4Tema 4
Tema 4
 
La hidrósfera
La hidrósferaLa hidrósfera
La hidrósfera
 
Las mareas
Las mareasLas mareas
Las mareas
 
Capas fluidas (ii)
Capas fluidas (ii)Capas fluidas (ii)
Capas fluidas (ii)
 
Tema 9 hidrosfera atmosfera
Tema 9 hidrosfera atmosferaTema 9 hidrosfera atmosfera
Tema 9 hidrosfera atmosfera
 
Aguasguaaguaguaaguaciclo-hidrologico.ppt
Aguasguaaguaguaaguaciclo-hidrologico.pptAguasguaaguaguaaguaciclo-hidrologico.ppt
Aguasguaaguaguaaguaciclo-hidrologico.ppt
 
ciclo-hidrologico.ppt
ciclo-hidrologico.pptciclo-hidrologico.ppt
ciclo-hidrologico.ppt
 
La hidrosfera
La hidrosferaLa hidrosfera
La hidrosfera
 
Hidrosfera i
Hidrosfera iHidrosfera i
Hidrosfera i
 
Oceanografia fisica
Oceanografia fisicaOceanografia fisica
Oceanografia fisica
 
Cuencas
CuencasCuencas
Cuencas
 
tema_4.pdf
tema_4.pdftema_4.pdf
tema_4.pdf
 
Composición y distribución de la hidrosfera
Composición y distribución      de la hidrosferaComposición y distribución      de la hidrosfera
Composición y distribución de la hidrosfera
 
La dinamica de la hidrosfera
La dinamica de la hidrosferaLa dinamica de la hidrosfera
La dinamica de la hidrosfera
 
Ciclo hidrológico
Ciclo hidrológicoCiclo hidrológico
Ciclo hidrológico
 
Rrnn Expo Iii
Rrnn   Expo IiiRrnn   Expo Iii
Rrnn Expo Iii
 
Tema 4 la hidrosfera
Tema 4 la hidrosferaTema 4 la hidrosfera
Tema 4 la hidrosfera
 

Más de irenebyg

ESPA M3 T3. RECEPTORES Y EFECTORES
ESPA M3 T3. RECEPTORES Y EFECTORESESPA M3 T3. RECEPTORES Y EFECTORES
ESPA M3 T3. RECEPTORES Y EFECTORESirenebyg
 
ESPA M3 T3 EL SISTEMA NERVIOSO.
ESPA M3 T3 EL SISTEMA NERVIOSO.ESPA M3 T3 EL SISTEMA NERVIOSO.
ESPA M3 T3 EL SISTEMA NERVIOSO.irenebyg
 
Dentro de la materia.
Dentro de la materia.Dentro de la materia.
Dentro de la materia.irenebyg
 
Receptores y efectores
Receptores y efectoresReceptores y efectores
Receptores y efectoresirenebyg
 
El sistema nervioso I
El sistema nervioso IEl sistema nervioso I
El sistema nervioso Iirenebyg
 
Cultura Científica. Tema 4. Salud y enfermedad.
Cultura Científica. Tema 4. Salud y enfermedad.Cultura Científica. Tema 4. Salud y enfermedad.
Cultura Científica. Tema 4. Salud y enfermedad.irenebyg
 
Aparato reproductor.
Aparato reproductor.Aparato reproductor.
Aparato reproductor.irenebyg
 
CTMA. Tema 7. Dinámica de masas fluidas I.
CTMA. Tema 7. Dinámica de masas fluidas I.CTMA. Tema 7. Dinámica de masas fluidas I.
CTMA. Tema 7. Dinámica de masas fluidas I.irenebyg
 
CTMA Tema 4. Recursos de la biosfera.
CTMA Tema 4. Recursos de la biosfera.CTMA Tema 4. Recursos de la biosfera.
CTMA Tema 4. Recursos de la biosfera.irenebyg
 
CTMA. Tema 3 La biosfera I.
CTMA. Tema 3 La biosfera I.CTMA. Tema 3 La biosfera I.
CTMA. Tema 3 La biosfera I.irenebyg
 
Cultura científica. T2. Recursos y desarrollo sostenible.
Cultura científica. T2. Recursos y desarrollo sostenible.Cultura científica. T2. Recursos y desarrollo sostenible.
Cultura científica. T2. Recursos y desarrollo sostenible.irenebyg
 
Cultura científica. T1. Universo y Sistema Solar.
Cultura científica. T1. Universo y Sistema Solar.Cultura científica. T1. Universo y Sistema Solar.
Cultura científica. T1. Universo y Sistema Solar.irenebyg
 
CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...
CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...
CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...irenebyg
 
Comida por semana y país. Hungry planet.
Comida por semana y país. Hungry planet.Comida por semana y país. Hungry planet.
Comida por semana y país. Hungry planet.irenebyg
 
AA T3. Obtención de materia y energía.
AA T3. Obtención de materia y energía.AA T3. Obtención de materia y energía.
AA T3. Obtención de materia y energía.irenebyg
 
Anatomía Aplicada T1. Organizacion del cuerpo humano I.
Anatomía Aplicada T1. Organizacion del cuerpo humano I.Anatomía Aplicada T1. Organizacion del cuerpo humano I.
Anatomía Aplicada T1. Organizacion del cuerpo humano I.irenebyg
 
Anatomía Aplicada T1. Organización del cuerpo humano II
Anatomía Aplicada T1. Organización del cuerpo humano IIAnatomía Aplicada T1. Organización del cuerpo humano II
Anatomía Aplicada T1. Organización del cuerpo humano IIirenebyg
 
4ESO. Unit 1 Plate tectonics.
4ESO. Unit 1 Plate tectonics.4ESO. Unit 1 Plate tectonics.
4ESO. Unit 1 Plate tectonics.irenebyg
 
3ESO. Reproductive system.
3ESO. Reproductive system.3ESO. Reproductive system.
3ESO. Reproductive system.irenebyg
 
1BACH Anatomía comparada animal. Función de reproducción.
1BACH Anatomía comparada animal. Función de reproducción.1BACH Anatomía comparada animal. Función de reproducción.
1BACH Anatomía comparada animal. Función de reproducción.irenebyg
 

Más de irenebyg (20)

ESPA M3 T3. RECEPTORES Y EFECTORES
ESPA M3 T3. RECEPTORES Y EFECTORESESPA M3 T3. RECEPTORES Y EFECTORES
ESPA M3 T3. RECEPTORES Y EFECTORES
 
ESPA M3 T3 EL SISTEMA NERVIOSO.
ESPA M3 T3 EL SISTEMA NERVIOSO.ESPA M3 T3 EL SISTEMA NERVIOSO.
ESPA M3 T3 EL SISTEMA NERVIOSO.
 
Dentro de la materia.
Dentro de la materia.Dentro de la materia.
Dentro de la materia.
 
Receptores y efectores
Receptores y efectoresReceptores y efectores
Receptores y efectores
 
El sistema nervioso I
El sistema nervioso IEl sistema nervioso I
El sistema nervioso I
 
Cultura Científica. Tema 4. Salud y enfermedad.
Cultura Científica. Tema 4. Salud y enfermedad.Cultura Científica. Tema 4. Salud y enfermedad.
Cultura Científica. Tema 4. Salud y enfermedad.
 
Aparato reproductor.
Aparato reproductor.Aparato reproductor.
Aparato reproductor.
 
CTMA. Tema 7. Dinámica de masas fluidas I.
CTMA. Tema 7. Dinámica de masas fluidas I.CTMA. Tema 7. Dinámica de masas fluidas I.
CTMA. Tema 7. Dinámica de masas fluidas I.
 
CTMA Tema 4. Recursos de la biosfera.
CTMA Tema 4. Recursos de la biosfera.CTMA Tema 4. Recursos de la biosfera.
CTMA Tema 4. Recursos de la biosfera.
 
CTMA. Tema 3 La biosfera I.
CTMA. Tema 3 La biosfera I.CTMA. Tema 3 La biosfera I.
CTMA. Tema 3 La biosfera I.
 
Cultura científica. T2. Recursos y desarrollo sostenible.
Cultura científica. T2. Recursos y desarrollo sostenible.Cultura científica. T2. Recursos y desarrollo sostenible.
Cultura científica. T2. Recursos y desarrollo sostenible.
 
Cultura científica. T1. Universo y Sistema Solar.
Cultura científica. T1. Universo y Sistema Solar.Cultura científica. T1. Universo y Sistema Solar.
Cultura científica. T1. Universo y Sistema Solar.
 
CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...
CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...
CTMA. Tema 1 y 2. Concepto de medio ambiente y teoría de sistemas. Humanidad ...
 
Comida por semana y país. Hungry planet.
Comida por semana y país. Hungry planet.Comida por semana y país. Hungry planet.
Comida por semana y país. Hungry planet.
 
AA T3. Obtención de materia y energía.
AA T3. Obtención de materia y energía.AA T3. Obtención de materia y energía.
AA T3. Obtención de materia y energía.
 
Anatomía Aplicada T1. Organizacion del cuerpo humano I.
Anatomía Aplicada T1. Organizacion del cuerpo humano I.Anatomía Aplicada T1. Organizacion del cuerpo humano I.
Anatomía Aplicada T1. Organizacion del cuerpo humano I.
 
Anatomía Aplicada T1. Organización del cuerpo humano II
Anatomía Aplicada T1. Organización del cuerpo humano IIAnatomía Aplicada T1. Organización del cuerpo humano II
Anatomía Aplicada T1. Organización del cuerpo humano II
 
4ESO. Unit 1 Plate tectonics.
4ESO. Unit 1 Plate tectonics.4ESO. Unit 1 Plate tectonics.
4ESO. Unit 1 Plate tectonics.
 
3ESO. Reproductive system.
3ESO. Reproductive system.3ESO. Reproductive system.
3ESO. Reproductive system.
 
1BACH Anatomía comparada animal. Función de reproducción.
1BACH Anatomía comparada animal. Función de reproducción.1BACH Anatomía comparada animal. Función de reproducción.
1BACH Anatomía comparada animal. Función de reproducción.
 

Último

programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
plan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativaplan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativafiorelachuctaya2
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 

Último (20)

programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
plan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativaplan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativa
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 

Hidrosfera y dinámica de los sistemas hídricos

  • 2. • Origen y dinámica de la hidrosfera. • Sistemas lénticos (lagos, lagunas y humedales). • Dinámica oceánica. • Dinámica fluvial y torrencial. • Aguas subterráneas. • Los glaciares. • Riesgos asociadas a las masas fluidas. • Climatología.
  • 3. La hidrosfera es el componente del sistema tierra formado por toda el agua, ya sea en estado líquido, sólido o gaseoso, que encontramos en nuestro planeta. Origen y dinámica de la hidrosfera
  • 4. Origen y dinámica de la hidrosfera Agua en el universo Molécula relativamente frecuente En la Tierra se encuentra en los 3 estados de agregación. Su origen en la tierra Formada en el núcleo. Hielo proveniente de meteoritos. Combinación de ambos. Posterior desgasificación del manto, atracción gravitatoria y condensación.
  • 5. Origen y dinámica de la hidrosfera PROPIEDADES Molécula dipolar. Establecimiento de puentes de hidrogeno entre las moléculas. Máxima densidad a los 4ºC. Densidad hielo < densidad agua. Elevado calor específico. Buen disolvente de iones (sustancias polares). Alta tensión superficial. Contiene disoluciones tampón o amortiguadoras (carbonatos)
  • 6. Origen y dinámica de la hidrosfera Balance hídrico = salidas - entradas Volumen sistema (m3) Tiempo permanencia = Flujo entrante del sistema (m3/s) Es el flujo neto de agua entrante o saliente de un sistema. • A largo plazo normalmente es nulo (sistemas autorregulados) • A corto plazo puede ser un balance positivo (hay un excedente) o negativo (déficit). Es el tiempo medio que transcurre desde que una molécula entra al sistema hasta que lo abandona. 1 Tasa de renovación = Tiempo de permanencia Inversa del tiempo de permanencia, indica la velocidad de flujo en el sistema.
  • 7.  Los gases son los mismos que componen el aire libre, pero en diferentes proporciones.  Cuando aumentan la temperatura y la salinidad, disminuye la solubilidad de los gases en el agua del mar.  La actividad metabólica de los seres vivos (fotosíntesis), la agitación y la abundancia de seres vivos, pueden hacer variar el CO2, el O2 y el anión bicarbonato (HCO3-) disueltos en el agua.  En aguas oceánicas superficiales bien mezcladas, la composición típica de gases disueltos tiene un 64% de nitrógeno (N2), un 34% de oxígeno (O2) y un 1,8% de dióxido de carbono (CO2), muy por encima éste último del 0,04% que hay en el aire libre. Origen y dinámica de la hidrosfera
  • 8. Origen y dinámica de la hidrosfera ZONA FÓTICA ZONA AFÓTICA En función de la penetración de la luz solar, podemos diferenciar dos zonas: -Fótica: La luz penetra en esta región, es posible la fotosíntesis. -Afótica: La luz es incapaz de llegar a esta región.
  • 9. El principal problema en el océano es la gran distancia entre la zona fótica (superficial) y los nutrientes (sedimentados en aguas profundas). Donde hay luz para la producción primaria hay pocos nutrientes inorgánicos, y viceversa. Origen y dinámica de la hidrosfera ZONA FÓTICA ZONA AFÓTICA Las zonas con mayor productividad sean aquellas en que las aguas profundas, frías y cargadas de nutrientes afloran a la superficie; tales zonas se conocen como afloramientos. Nutrientes
  • 10. Dinámica de oceánica Movimientos del agua del marCORRIENTES CORRIENTES SUPERFICIALES Vientos dominantes Corrientes superficiales condicionadas al giro de anticiclones (Circulación General de la Atmósfera). Afloramientos debido a vientos costa  mar. Corrientes de deriva litoral: Viento oblicuo a la costa. Variaciones de densidad Las masas de agua absorben energía solar, aumentando su temperatura (<densidad); o ceden energía disminuyendo su temperatura (>densidad). La región/profundidad en la que la Tº desciende bruscamente se llama TERMOCLINA. Temperatura La concentración de sales es variable dependiendo de la cuenca marina que se trate. A mayor concentración, mayor densidad; y a la inversa. Ejemplos: Salinidad media del mar 3’5%, Muerto 30%. Salinidad CORRIENTES PROFUNDAS Causadas por
  • 11. Dinámica de oceánica 1. Capa superficial. En los primeros metros el agua recibe la mayor parte de la radiación solar, estando considerablemente más caliente que las capas inferiores. Debido a estar en superficie, además, es mezclada y homogeneizada por los vientos. 2. Termoclina. En esta región se produce un brusco descenso de la temperatura. Entre los 200-1000m (estrecha en latitudes altas, amplia en latitudes bajas). Separa dos regiones de características muy diferentes, siendo el límite inferior en torno a los 5ºC. 3. Capa inferior. Hasta la máxima profundidad de la masa de agua. La temperatura desciende lentamente. La temperatura y densidad a gran profundidad es prácticamente constante. LA TERMOCLINA ACTÚA COMO BARRERA VERTICAL ENTRE FASES DISTINTAS
  • 13. Dinámica de oceánica LA CORRIENTE TERMOHALINA o Cinta Transportadora de Calor
  • 14. Dinámica de oceánica  La corriente termohalina hace referencia al movimiento de masas de agua en los océanos, de acuerdo a cambios en la temperatura y salinidad de las aguas.  Las modificaciones de esos dos factores produce cambios en la densidad. ◦ A menor temperatura, mayor densidad. ◦ A mayor salinidad, mayor densidad.
  • 15. Una buena descripción de la circulación: http://www.ecured.cu/Circulaci%C3%B3n_termohalina Dinámica de oceánica Zona de hundimiento. Zona de afloramiento.
  • 17.
  • 18.
  • 19. Dinámica de oceánica El oleaje es resultado de la interacción del viento con la superficie de mares y océanos. Ese movimiento permite una efectiva mezcla del agua en los primeros metros de profundidad (temperatura, concentración de nutrientes y concentración de gases similares). [Puede aumentar la turbidez en aguas poco profundas].
  • 20. Dinámica de oceánica En zonas donde existen vientos de duración constante y con una intensidad suficiente, se originan trenes de olas, que pueden recorrer largas distancias. Las olas son movimientos ondulatorios de las partículas.
  • 22. Dinámica oceánica  En las zonas orientales de los océanos tropicales (costa oeste de los continentes) el agua se separa de la costa debido a los vientos alisios que soplan hacia el Oeste.  El agua que se mueve es reemplazada por agua profunda, fría y rica en nutrientes, debido a que la descomposición se produce en el fondo oceánico. Estas zonas se llaman zonas de afloramiento.  En la superficie, con la energía solar, se forma una gran cantidad de fitoplancton capaz de mantener una comunidad animal muy numerosa como peces y aves que se alimentan de ellos.  Este es el origen de algunos de los caladeros más importantes para la pesca como son el de Perú, costas de Sahara y costas de Kalahari en África y en España Galicia (corriente del Golfo). AFLORAMIENTOS
  • 23. AFLORAMIENTO COSTA DE PERÚ Dinámica oceánica (riesgos)
  • 24. ENSOEL NIÑO: Se trata de una distribución anómala de las temperaturas en el Pacífico Sur, producida por el debilitamiento de los vientos alisios. En situación normal, el empuje de las aguas superficiales provoca el ascenso de la termoclina, y afloramientos de aguas ricas en nutrientes.
  • 25. ENSOLos alisios se debilitan o cesan, el movimiento de las aguas superficiales también. Las aguas cálidas se distribuyen homogéneamente y la termoclina se hunde. No hay afloramientos.
  • 26. ENSOLos alisios soplan con fuerza, moviendo las aguas superficiales. Genera fuertes tormentas en la costa australiana, y grandes sequías en la suramericana. (Sería una situación normal acentuada).
  • 27. Climatología. La climatología es la ciencia que estudia el clima y sus variaciones a lo largo del tiempo. Su objetivo es estudiar las características climáticas a largo plazo. El clima es el conjunto de fenómenos meteorológicos que caracterizan las condiciones más probables de una región determinada. Es una serie de valores estadísticos. VALORES MEDIOS DE PLUVIOSIDAD Y TEMPERATURA.
  • 28. ¿Y qué es lo que hace que llueva más o menos? ¿Que haga más o menos calor? Latitud Altitud Continentalidad Vientos dominantes Climatología.
  • 29. Por ascenso vertical a capas superiores. El vapor se condensa, las microgotas chocan entre sí por las turbulencias aumentando su tamaño, superando la capacidad de sustentación y precipitando. Por encima de la isoterma 0ºC se forma granizo. En la formación de nieve intervienen otros factores. Si se da el enfriamiento en contacto con el suelo se forma rocío o escarcha. A medida que una masa de aire asciende, puede alcanzar el punto de rocío, condensándose la humedad que tiene formando nubes. El enfriamiento progresivo puede generar precipitaciones en forma de lluvia, nieve o granizo. Nubes de origen convectivo Nubes de origen orográfico Nubes de origen frontal Masas próximas al mar cargadas de humedad se ven forzadas a ascender por una ladera, pasando de GAS a GAH, pudiendo darse la precipitación (ladera húmeda). Al pasar a la cima, en su descanso seguirá el GAS por no alcanzar en tales condiciones el punto de rocío (ladera seca). Efecto Foehn. Por choque de dos frentes, dos masas de aire una fría y otra cálida. Pueden darse 3 casos. Climatología.
  • 30. Nubes (y precipitación ) frontal Por choque de dos frentes, dos masas de aire una fría y otra cálida. Pueden darse 3 casos. Frente frío: la masa fría invade una zona de aire caliente. La fría permanece próxima al suelo (mayor densidad) y empuja la cálida sobre ella. Nubes de desarrollo vertical (cumulonimbos) y precipitaciones intensas en zonas poco extensas. Frente cálido. Frente ocluido. Frente frío: Masa de aire frío alcanza una masa cálida.
  • 31. Por choque de dos frentes, dos masas de aire una fría y otra cálida. Pueden darse 3 casos. Frente frío: Frente cálido: el aire cálido empuja al frío y asciende sobre el último como en una rampa. Nubes de tipo estratos, de desarrollo horizontal. Precipitaciones más extensas y débiles. Frente ocluido. Frente cálido: Masa de aire cálido alcanza una masa fría. Nubes (y precipitación ) frontal
  • 32. Por choque de dos frentes, dos masas de aire una fría y otra cálida. Pueden darse 3 casos. Frente frío. Frente cálido. Frente ocluido: Masa cálida alcanzada por una fría que avanza más rápido. La masa cálida queda atrapada entre dos frías. Aparecerán los efectos del frente cálido seguidos de tormentas, a veces con un intervalo de estabilidad muy corto entre ambos. Frente ocluido: Masa de aire cálido es atrapada entre dos masas frías. Nubes (y precipitación ) frontal
  • 34. Climatología. Como resultado de la interacción de estos factores, se han realizado varias clasificaciones de los climas terrestres. Utilizan distintos índices basados en la pluviometría y temperaturas de una región. CLIMAS Azonales Su clima viene definido no por factores geográficos. Sino por la altitud, vientos... Zonales Se corresponden con la región climática en la que se encuentran (latitud). Clima tropical Clima árido Clima templado Clima continental Clima polar Ecuador Polos L A T I T U D Clima de altas montañas Clasificación de Köppen
  • 36.
  • 37. Climatología. El chorro polar. El chorro polar es un velocísimo río de viento que rodea la tierra, como una serpiente que se muerde la cola, a altitudes de la tropopausa. Su sentido es de oeste a este. Va asociado al frente polar.Separa aire frío polar de cálido subtropical. Se trata de un frente, y va asociado a borrascas frontales. Borrasca Anticiclón
  • 38. Dinámica fluvial y torrencial Los sistemas lóticos los constituyen los cursos de agua dulce como ríos, arroyos, torrentes o manantiales. •Cursos de agua permanentes. •Flujo de agua más o menos constante.Ríos •Cursos de agua temporales con cauce fijo. •Flujo de agua muy variable (seco la mayor parte del año).Arroyos •Cursos de agua temporales con cauce fijo. •Caudal extremadamente variable (surgen con grandes precipitaciones) •Gran pendiente. Torrentes
  • 39. Dinámica fluvial y torrencial Las aguas de arrollada son encauzadas por los accidentes del terreno, discurriendo por cauces cada vez más estables. Esos cauces en conjunto constituyen una RED DE DRENAJE. ◦ EXORREICAS: Vierten al mar. ◦ ENDORREICAS: Vierten a zonas interiores. Una CUENCA HIDROGRÁFICA es la superficie que vierte a una misma red de drenaje. Las cuencas se separan por divisorias de aguas (línea de cumbres).
  • 40. Dinámica fluvial y torrencial PERFIL LONGITUDINAL de un río y PERFIL DE EQUILIBRIO Representación de altitud vs. Distancia al nacimiento hasta desembocadura. Perfil teórico en el que las acciones de erosión, transporte y sedimentación están equilibradas.
  • 41. Dinámica fluvial y torrencial PARTES DE UN RÍO: • CURSO ALTO: suele ser de carácter torrencial. Se da una acción principalmente erosiva, aunque también depositan los materiales más grandes. • CURSO MEDIO: El factor dominante es el transporte de los materiales procedente del curso alto, bien sea por flotación, suspensión, saltación, arrastre o disolución, según la clase de material que sea. • CURSO BAJO: Acción predominantemente sedimentaria.
  • 42. Dinámica fluvial y torrencial PARTES DE UN TORRENTE: • CUENCA DE RECEPCIÓN: Laderas donde discurren los barrancos, con forma de abanico cóncavo que alimenta el torrente. • CANAL DE DESAGÜE: cauce principal. • CONO DE DEYECCIÓN: Donde se depositan los materiales. Todo torrente termina en el nivel de base (local) al desembocar en otra corriente fluvial. La acción geológica de los torrentes es fundamentalmente erosiva (salvo en la parte final en la que se depositan los materiales transportados). Se realiza una erosión en sentido horizontal (ensanche del cauce), y sobre todo vertical (profundización del mismo).
  • 43. Dinámica fluvial y torrencial HIDROGRAMAS Gráficas en las que se representa el caudal de un río (m3/s) o arroyo a lo largo del tiempo meses, horas). Caudal(m3/s) 1000 500 100 0 E F M A M J J A S O N D t (meses) Precipitaciones de final invierno y primavera. Época de estío. Precipitaciones en otoño.
  • 44. Caudal(m3/s) 1000 500 100 0 E F M A M J J A S O N D t (meses) Los regímenes de los ríos pueden ser pluviales, nivales o pluvionivales. Durante el invierno todas las precipitaciones se almacenan en forma de nieve. RÉGIMEN NIVAL Dinámica fluvial y torrencial Es un río con un pico en su caudal significativo, presenta una avenida debida a la fusión de una gran cantidad de nieve y hielo. El resto del año depende de aportes subterráneos. Aguas provenientes del deshielo.
  • 45. Caudal(m3/s) 1000 500 100 0 E F M A M J J A S O N D t (meses) Dinámica fluvial y torrencial RÉGIMEN PLUVIONIVAL O MIXTO Agua del deshielo. Precipitaciones finales de invierno. Precipitaciones otoño. Es un río con un caudal no muy elevado, que depende principalmente de aportes subterráneos. Las precipitaciones no son significativas, por eso es uniforme.
  • 46. Caudal(m3/s) 1000 500 100 0 E F M A M J J A S O N D t (meses) Dinámica fluvial y torrencial Precipitaciones finales de invierno - primavera. Época estival. Se trata de un río cuya época de crecida coincide con lluvias cercanas a la primavera. El resto de meses no presenta picos, sino que es una larga época de estío. RÉGIMEN PLUVIAL
  • 47. Dinámica fluvial y torrencialCaudal(m3/s) 15 10 5 0 0 2 4 6 8 10 12 14 t (horas) Caudal de base Caída de aguacero Caudal máximo Tiempo de respuesta Permite observar el comportamiento hídrico de una cuenca, y compararla con…
  • 48. Caudal(m3/s) 15 10 5 0 0 2 4 6 8 10 12 14 t (horas) Nivel de inundación Nivel de récord Dinámica fluvial y torrencial Supuesto 1: La línea discontinua representa el caudal tras la construcción de una presa. Supuesto 2: La línea continua representa el caudal tras la tala de la masa forestal de un valle.
  • 49. Caudal(m3/s) 15 10 5 0 0 2 4 6 8 10 12 14 Caída de aguacero Caudal máximo Si comparamos el hidrograma de un torrente, rambla o barranco, podemos observar que es distinto al de un río. El aumento de caudal es considerable (pues normalmente está vacío su cauce). El tiempo de respuesta suele ser de minutos. En este caso tiene carácter pluvial. Los nivales son torrentes más predecibles. Dinámica fluvial y torrencial
  • 50. Dinámica fluvial y torrencial
  • 51. Aguas subterráneas El agua sobre al superficie terrestre puede infiltrarse en el terreno si las rocas son permeables. Esa infiltración dependerá de la abundancia de vegetación, de la pendiente del terreno y de la permeabilidad del mismo. El agua que no se filtre, forma la escorrentía superficial, circulando en cauces más o menos fijos.
  • 52. Permeabilidad es la facilidad con la que los fluidos pueden atravesar un material. Depende del número de poros que presenta el material, pero además, de las conexiones entre los mismos. Es lo que se llamaría porosidad efectiva. La porosidad se define como la cantidad de huecos que tiene la roca. Se expresa en % en volumen de roca total Porosidad = (Vhuecos/Vtotal ) x 100 Aguas subterráneas
  • 53. Aguas subterráneas Estructuras geológicas que por su porosidad o fracturación son capaces de almacenar agua, y de transmitirla. ACUÍFEROS Acuíferos libres Acuíferos confinados Aquellos en los que su límite superior se encuentra en contacto con la zona subsaturada. Puede ser recargado en toda su superficie. Se encuentran a presión atmosférica. Aquellos que se encuentran entre dos capas impermeables. El agua está sometida a una presión mayor que la atmosférica. La zona de recarga es una región concreta. La capa situada por encima del mismo es menos permeable que los materiales que constituyen el acuífero. Acuíferos semiconfinados
  • 59. Aguas subterráneas Los acuíferos tienen gran importancia, debido a que cumplen distintas funciones: - Son almacén de agua que puede ser utilizada con posterioridad, incluso en regiones en las que las condiciones climáticas actuales se caracterizan por un déficit hídrico. - El agua ocupa cavidades que, sin su presencia, podrían desaparecer al compactarse el terreno, provocando subsidencias. - Aportan agua a ríos efluentes. También existen ríos que donan agua a acuíferos recargándolos, se denominan ríos influentes.
  • 60. Cuerpos de agua cerrados que no fluyen: lagos, lagunas, humedales… Sistemas lénticos Sistemas lénticos. LAGOS LAGUNAS, HUMEDALES Y MARISMAS Depende del tamaño (superficie y profundidad)
  • 61. Sistemas lénticos Se suelen clasificar en función de su origen: Glaciar, Volcánico, Kárstico, Tectónico Tienen una dinámica propia, al tener un volumen de agua considerable. Al igual que mares y océanos, poseen termoclina, esta puede impedir la mezcla vertical. Su salinidad dependerá de los aportes o entradas, así como de la evacuación de esa agua (evaporación o salida al mar). Si la evacuación no es posible, la concentración de sales aumenta progresivamente. Los lagos.
  • 62. ESTRATIFICACIÓN DE LAGOS, CIRCULACIÓN Y MEZCLA Sistemas lénticos Las diferencias de densidad en las aguas de los lagos (como en otros sistemas acuáticos) resultan del gradiente térmico, e influyen sobre la circulación vertical de las aguas a lo largo del año. Dado que esa circulación va ligada a la temperatura, dependerá del clima de la región Termoclina
  • 63. Sistemas lénticos ESTRATIFICACIÓN DE LAGOS, CIRCULACIÓN Y MEZCLA PRIMAVERA VERANO OTOÑO INVIERNO T E R M O C L I N A T E R M O C L I N A H I E L O LAGO REGIÓN TEMPLADA Lagos DIMÍCTICOS: Se mezclan en primavera y en otoño.
  • 64. En los lagos de las zonas templadas, se producen ciclos estacionales que alteran la estratificación de las aguas. Verano : las aguas de las capas superiores se calientan más que las del fondo. La diferencia de temperatura entre las aguas superiores y las profundas da origen a una zona intermedia denominada termoclina que separa dos capas de agua bien diferenciadas: epilimnion e hipolimnion. Se produce la circulación de las aguas superficiales, las cuales no se mezclan con las del fondo frías, no circulantes. Otoño la temperatura baja en el epilimnion hasta igualar la del hipolimnion; este hecho provoca la circulación total de las aguas del lago. Invierno se produce una estratificación, debido a que las aguas de la superficie se congelan, mientras las aguas del fondo permanecen a 4º C. Esta temperatura corresponde al máximo de densidad del agua. La descomposición bacteriana se reduce a temperaturas bajas. Primavera sube la temperatura de las aguas del epilimnion, el hielo se funde y, al hacerse el agua más densa, desciende hacia el fondo provocando la subida de las aguas profundas; así se establece una circulación total de las aguas con la consiguiente fertilización de las capas superiores por el arrastre de nutrientes en suspensión. Sistemas lénticos
  • 65. Sistemas lénticos Lagos (templados y) subtropicales monomícticos. En estos lagos, la temperatura del agua superficial nunca baja a 4º C y en invierno no se hielan. La mezcla vertical de las aguas sólo se puede producir durante la estación fría, ya que en ese momento la termoclina no es amplia. Lagos fríos monomícticos. La temperatura del agua profunda y superficial no sobrepasa nunca los 4º C. Cuando las aguas superficiales alcanzan en verano 4º C, y desaparece el hielo, puede producirse una circulación vertical que origina la mezcla de las aguas. Estos lagos se encuentran en las regiones polares. Lagos tropicales oligomícticos. La temperatura del agua superficial oscila entre 20º - 30º C, casi constante durante todo el año. El gradiente térmico es débil, y se producen por consiguiente cambios poco notorios. La circulación vertical es irregular y rara vez es total. Termoclina considerable. También los clasificamos como oligótróficos y eutróficos, en función de los nutrientes y actividad biológica que presenten. Lo veremos más adelante.
  • 66. Sistemas lénticos Convenio RAMSAR define humedales como "las extensiones de marismas, pantanos y turberas, o superficies cubiertas de aguas, sean éstas de régimen natural o artificial, permanentes o temporales, estancadas o corrientes, dulces, salobres o saladas, incluidas las extensiones de agua marina cuya profundidad en marea baja no exceda de seis metros". Los humedales. La función principal del humedal, aparte de ser un gran ecosistema y un importante hábitat para muchos seres vivos, es que actúan como filtradores naturales de agua.
  • 67. Los glaciares En los lugares donde la cantidad total de precipitaciones sólidas supera a la cantidad de agua que resulta de su fusión, la nieve se acumula en cantidades cada vez mayores. Nieve esponjosa  neviza  hielo blanco  hielo azul Se dan procesos de compactación debido al peso de las capas superiores y por fenómenos de fusión parcial y rehielo. Por grados sucesivos de compactación y expulsión del aire intersticial llega a transformarse en hielo azul.
  • 68. Los glaciares •Cubren la mayoría de las regiones cometidas a modelado glaciar. Transversalmente tienen forma planoconvexa o biconvexa. En hielo fluye radialmente en todas direcciones Inlandsis o casquetes glaciares. •En latitudes templadas, en zonas montañosas por encima de las nieves perpetuas. En la zona de cumbres por su gran pendiente se acumula nieve en equilibrio inestable, que desciende en forma de avalanchas a zonas menos inclinadas donde se acumula y compacta hasta formar hielo: los circos glaciares. Si la acumulación es suficientemente abundante, por la zona más deprimida del valle desciende una lengua glaciar Glaciares de circo y valle. En general, las masas de hielo en el planeta pueden incluirse en alguno de estos 3 grupos, o suponer transiciones entre ambos. Son acumulaciones de agua dulce. 79% del total de agua dulce.
  • 69. Los glaciares • Capas de agua oceánica heladas en las regiones polares. Gran parte de la sal marina es expulsada al producirse la congelación. Su espesor varía de forma natural, en la actualidad este proceso se ve alterado por los cambios de temperatura global. Banquisa Su fusión desencadenaría modificaciones del clima a escala global, asñi como un impacto en ecosistemas polares..
  • 70. •Precipitaciones (tormenta, granizo…) •Ventisca. (155/215) •Gota fría. (blog, 160/221) •Calima. (159/220) •Tornados. (160/221) •Tifones, huracanes o ciclones. (163/222) • Monzones. •Situación anticiclónica estabilizada. (159/220) •Galerna. •Olas de hielo. •Avenidas.(129/173) Cambio climático por causa natural o antrópica. (blog, 166/228) Fenómeno de “El Niño” y “La Niña”. (blog, 152/208) Riesgos RIESGOS Climáticos Meteorológicos Otros •Aludes. •Vaciados de lagos. •Lahares. •Subsidencias. De qué otra ¿forma clasificábamos los riesgos…?
  • 71. GALERNA Temporal súbito y violento con fuertes ráfagas de viento del oeste al noroeste que suele azotar las zonas del mar Cantábrico y el Golfo de Vizcaya, por lo general en la primavera y el otoño. Aparecen en días calurosos y apacibles en los que la llegada de un frente frío viene acompañado de un cambio brusco en la dirección e intensidad del viento, que puede llegar a superar los 100 km/h. El cielo se oscurece y se produce un fuerte descenso de temperatura, de hasta 12°C en 20 minutos, un descenso rápido de la presión atmosférica y un aumento de la humedad relativa que roza el 100%.
  • 72. OLAS DE HIELO / IVU Se da con relativa frecuencia en zonas de grandes lagos, con temperaturas por debajo del punto de congelación del agua, y con fuertes y constantes vientos. Además, se requiere un movimiento cíclico del agua, debido a avenidas o fuertes lluvias. Son olas, congeladas. Producen la destrucción de aquellas infraestructuras que encuentren a su paso. https://www.youtube.com/watch?v=ER2WSBtVoPw
  • 73. En cuanto a las aguas subterráneas: las subsidencias, debido a la compactación de los estratos permeables cuyos poros quedan vacíos. Riadas a causa de los cauces intermitentes, como torrentes o arroyos y ramblas. Se denominan avenidas (fluviales o torrenciales). Aludes: masas de nieve que se desplazan a favor de la gravedad. Vaciados de lagos: por ruptura de los bloques que contenían el agua del lago. Lahares: corrientes de agua y barro, producidas al fundirse el hielo debido al calor emanado por un volcán. Este tipo de fenómenos son relativamente impredecibles, lo que genera que medidas preventivas sean fundamentales, así como las correctivas. Debido a la fuerza de los materiales arrastrados, este tipo de fenómenos se llevan por delante los bienes que encuentran a su paso, alteran ecosistemas, y pueden suponer grandes pérdidas humanas.
  • 74.  ¿Qué medidas preventivas se te ocurren?  ¿Qué medidas correctivas se te ocurren? Riesgos en la hidrosfera.

Notas del editor

  1. Climogramas de los 5 grandes climas