SlideShare una empresa de Scribd logo
1 de 67
Descargar para leer sin conexión
1X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Conceptos sobre
Órbitas
José Antonio Sánchez Sobrino
Jefe del Servicio de Programas Geodésicos
Centro de Observaciones Geodésicas – Instituto Geográfico Nacional
2X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Introducción
Determinación de la Órbita. Movimiento Kepleriano
Leyes de Kepler
Representación en el plano orbital
Representación en un sistema fijo a la Tierra
Movimiento Perturbado
Perturbaciones a la órbita ideal
Efemérides en GPS
Almanaque
Efemérides transmitidas
Efemérides precisas
3X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Introducción
El posicionamiento con GPS se basa en la determinación de la posición de
un punto (tierra, mar, aire....).
Dicha determinación se realiza midiendo las distancias a un número de
satélites.
Una vez conocidas estas distancias, tenemos que calcular la posición que
deseamos.
Para poder determinar las coordenadas del punto, debemos conocer las
coordenadas de los satélites.
La precisión en la determinación depende en gran parte de la precisión en
las coordenadas de los satélites (más en posicionamiento absoluto, pues
en relativo se anulan).
4X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Determinación de la órbita
Determinar las coordenadas de un satélite es determinar su movimiento.
Debemos conocer cuales son las causas que generan ese movimiento
Leyes de Newton.
Vamos a estudiar primero un caso ideal (Teoría de Orbitas Normales).
Consideremos la masa de la Tierra concentrada en su centro de masas, no
existencia de atmósfera y no existencia de más fuerza que la gravitatoria
(atracción de masas).
Consideremos dos puntos (Tierra y satélite) de masas m1 y m2 separados
una distancia r.
m1 r
m2
5X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
El movimiento de la masa m2 respecto de m1 viene expresado por la
ecuación diferencial homogénea de segundo grado:
Donde:
vector posición relativo
constante de gravitación universal
vector aceleración relativa
0
)(
3
21
rrr
=⋅
+
+
••
r
r
mmG
r
r
r
2
2
dt
rd
r
r
r
=
••
G
Llamemos MT a la masa de La Tierra. El producto
es una constante conocida y es uno de los parámetros que definen
el sistema de referencia WGS84.
238
103986005 −
⋅=⋅= smMG Tµ
6X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Si la masa del satélite es despreciable en comparación con la masa
de la Tierra, obtenemos la ecuación diferencial:
32
2
r
r
dt
rd
⋅−= µ
La solución analítica de esta ecuación diferencial es un problema clásico
de mecánica celeste.
Dicha solución nos lleva al movimiento Kepleriano, definido por seis
parámetros orbitales.
Éstos se corresponden con las seis constantes de integración de
ecuación diferencial de segundo orden vectorial anterior.
32
2
r
r
dt
rd
⋅−= µ
( )
( )
( )K
J
I
,,,
,,,
,,,
ZYXZZ
ZYXYY
ZYXXX
••
••
••
=
=
= ( )
( )
( )NK
MJ
LI
,,,,
,,,,
,,,,
ZYXZZ
ZYXYY
ZYXXX
=
=
=
7X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Determinación de la órbita: Leyes de Kepler
1ª LEY DE KEPLER.
“El movimiento de un cuerpo respecto a otro debido a la
atracción de las masas se reduce a una cónica, estando uno de los
dos cuerpos en el foco de la cónica.”
• En el caso del sistema Tierra-satélite, suponiendo la Tierra “ideal” y
considerando un campo gravitatorio central, el movimiento se reduce
a una elipse en uno de cuyos focos se encuentra situada la Tierra
8X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
•Llamamos perigeo a la posición, dentro
de la órbita del satélite, en que éste se
encuentra más próximo de la Tierra.
•Llamamos apogeo a la posición, dentro
de la órbita, en que el satélite se
encuentra más alejado de la Tierra.
•La línea que une el perigeo con el centro
de masas de la Tierra recibe el nombre de
línea de ápsides.
•La línea que resulta de la intersección del
plano orbital con el ecuador se llama
línea nodal, dentro de la cual hay que
destacar el nodo ascendente, punto de
la órbita en que el satélite pasa del
hemisferio sur al hemisferio norte.
• Equinoccio vernal: intersección plano
ecuatorial con plano de la eclíptica (Sol).
PP
PlanoPlano
deldel
EcuadorEcuador
ZT
XT
YT
GG
PerigeoPerigeo
NodoNodo
AscendenteAscendente
NodoNodo
DescendenteDescendente
Ω
PlanoPlano
orbitalorbital
t
a, ea, e
LineaLinea nodalnodal
LineaLinea dede
ápsidesápsides
ApogeoApogeo
9X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Una vez consideradas las definiciones anteriores, los 6 parámetros que sitúan de
forma única una órbita en el espacio (también llamados elementos keplerianos) son:
Plano orbital:
Ω ; ascensión recta del nodo
ascendente
i ; inclinación
Tamaño de la órbita :
a, e.
Orientación de la órbita en su plano:
ω; argumento del perigeo
Tiempo de paso por el perigeo: to
Anomalía Verdadera v(t)
El único que es dependiente del tiempo en el movimiento no perturbado es la
anomalía verdadera
10X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
2ª LEY DE KEPLER.
“El radio vector del satélite dentro de la órbita recorre áreas
iguales en tiempos iguales.”
11X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
La posición instantánea del satélite dentro de la órbita se
describe por una cantidad angular conocida como anomalía.
Varios tipos de anomalía según se considere el ángulo medido
desde el foco de la órbita (geocentro) o desde el centro de la órbita:
- Anomalía verdadera v(t) . Ángulo, medido en el plano orbital y desde
el geocentro, entre la línea de ápsides (perigeo-geocentro-apogeo) y la
posición del satélite.
- Anomalía excéntrica E(t). Ángulo, medido en el plano orbital y desde
el centro de la órbita, entre la línea de ápsides y la posición del satélite
proyectada a una circunferencia de radio el semieje mayor de la elipse, a.
- Anomalía media M(t).
12X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
La única anomalía que no tiene sentido físico es la anomalía
media M(t)
13X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
3ª LEY DE KEPLER.
“El cuadrado del periodo orbital es proporcional al cubo del semieje
mayor de la elipse”
2
3
2
4
T
a
πµ =
Nos aporta el conocimiento del periodo orbital del satélite, es decir, el tiempo
que tarda en recorrer una órbita completa alrededor de la Tierra.
Así, fijado el semieje mayor de una órbita para un satélite alrededor de la
Tierra, conocemos su periodo orbital a través de esta tercera ley.
14X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
El conocimiento de este periodo nos lleva a conocer la velocidad
angular media del satélite, también llamada movimiento medio:
y es el que va a dar sentido a la anomalía media.
Si llamamos T0 al tiempo de paso por el perigeo del satélite, se define
la anomalía media para un instante t como (abstracción matemática, no
tiene sentido geométrico):
Es un artificio matemático. Movimiento del satélite en la órbita
es un movimiento medio. Igual en toda la órbita.
3
2
aT
µπ
==n
( )0)( TtntM −⋅=
(Velocidad = espacio / tiempo)
Ejemplo: transcurridas 3 h
desde el paso por perigeo,
M(t)=3 * 2π / 12 = π / 2
15X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Podemos relacionar las tres diferentes anomalías mediante:
Conocida como Ecuación de Kepler.
Estas igualdades, que relacionan las diferentes anomalías dentro
de la órbita, nos van a permitir identificar diferentes conjuntos de
elementos keplerianos para la definición de la posición de un
satélite en el espacio:
con la anomalía verdadera
con la anomalía media
con la anomalía excéntrica
( )0)( TtntM −⋅=
)(sin)()( tEetMtE ⋅+=
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
+
=
2
)(
1
1
2)(
tE
tg
e
e
arctgtv
{ })(,,,,, tveai ωΩ
{ })(,,,,, tMeai ωΩ
{ })(,,,,, tEeai ωΩ
16X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Representación en el Plano Orbital
El sistema de coordenadas
nos permite expresar la
posición y velocidad de un
satélite, dentro de su órbita, en
función de la anomalía
excéntrica y la anomalía
verdadera. Así, podemos
obtenerlas como:
{ }21,ee
rr
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
=
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
⋅=
v
v
r
Ee
eE
ar
sin
cos
sin1
cos
2
r
la representación se denomina Ecuación Polar de la Elipse)(vrr =
(Coordenadas polares del satélite respecto del sistema e1, e2 y geocentro)
17X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Para el cálculo con GPS debemos conocer las coordenadas del satélite con
Representación en el Sistema Fijo a la Tierra
respecto a un sistema de referencia fijo terrestre. Consideremos:
el Sistema de Referencia Ecuatorial Cartesiano :
− origen, O, en el centro de masas de la Tierra,
− eje en la dirección del equinoccio vernal
(punto Aries),
− eje en la dirección del eje de rotación medio y
− eje formando un triedro con orientación positiva
y el sistema fijo a la Tierra
El Sistema Convencional Terrestre (CTS):
− origen, Oo, en el centro de masas de la Tierra,
− eje en la dirección del meridiano de Greenwich
− eje en la dirección del eje de rotación medio y
− eje formando un triedro con orientación positiva
OX
OZ
OY
oOX
oOZ
oOY
(solo se diferencian en el eje X)
18X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• Para pasar al primer sistema de referencia, debemos considerar el
sistema de referencia orbital como tridimensional, por lo que a nuestro
sistema le añadimos un tercer eje ortogonal al plano de la órbita.
• Como los vectores y están contenidos en el plano de la órbita, este
artificio para pasar a tres dimensiones no afecta a las coordenadas ya que
sus componentes en son cero en ambos casos.
• Una vez los dos sistemas son tridimensionales, pasamos del sistema
orbital al ecuatorial mediante 3 giros:
• 1º Respecto al eje y ángulo “ ” para llevar la línea de ápsides (eje en
el plano orbital) hasta coincidir con la línea nodal.
• 2º Respecto al eje y ángulo “ ” para llevar el plano de la órbita hasta
coincidir con el plano del ecuador.
• 3º Respecto al eje y ángulo “ ” para hacer coincidir la línea de
ápsides, ya girada, con la línea que pasa por el equinoccio vernal.
{ }21,ee
rr
3e
r
r
r •
r
r
ω−
i−
Ω−
3e
r
3e
r
1e
r
1e
r
3e
r
19X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
ZT
PP
PlanoPlano
deldel
EcuadorEcuador
XT
YT
GG
PerigeoPerigeo
NodoNodo
AscendenteAscendente
NodoNodo
DescendenteDescendente
PlanoPlano
orbitalorbital
t
a, ea, e
LineaLinea nodalnodal
LineaLinea dede
ápsidesápsides
ΩΩ
ωω
ii
Ω (Aries)
e1e1
e3e3
e2e2
ApogeoApogeo
20X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
De esta manera, si llamamos y a los vectores obtenidos,
tenemos:
donde la matriz tiene la forma:
x
r •
x
r
rRx
rrr
⋅=
R
r
( )331 ,,
cossincossinsin
sincoscoscoscossinsincossincoscossin
sinsincoscossinsincoscossinsincoscos
eee
iii
iii
iii
R
rrrr
=
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎝
⎛
Ω−Ω+Ω−Ω+Ω
ΩΩ−Ω−Ω−Ω
=
ωω
ωωωω
ωωωω
••
⋅= rRx
rr
siendo los vectores columna de la matriz ortogonal los ejes
del sistema de coordenadas orbital.
Debemos tener en cuenta que los elementos de la matriz son constantes
(elipse orbital inmóvil).
21X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Por último, para pasar al sistema convencional fijo a la Tierra, realizamos un giro
respecto al eje tercero y ángulo “ ” (hora siderea aparente en Greenwich) para
llevar el eje que pasa por el punto Aries hasta el eje que pasa por Greenwich
(fijo a la Tierra). Finalmente, la matriz de rotación quedaría:
Existen fórmulas inversas para obtener las coordenadas del satélite dentro del
sistema de referencia orbital a partir de las expresadas en el sistema fijo a la Tierra y
son las que usan los centros de control para calcular las efemérides de los satélites
e introducirlas en el mensaje de navegación.
oθ−
oOX
⋅−⋅−⋅Ω−⋅−= )()()()(' 3133 ωθ RiRRRR o
rrrrr
OX
22X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Estas expresiones nos son útiles en cálculo, con las ecuaciones siguientes, el
usuario debe calcular las coordenadas de la posición del satélite en un sistema
de referencia fijo terrestre (CTS).
NavegaciónNavegación -- Bloque II (3)Bloque II (3)
2
314
10x986005,3
s
m=µ WGS84delterrestrenalgravitacioparámetrodelValor
s
rad
e
5
10x2921151467,7 −
=Ω& WGS84delerrestrerotación tdevelocidadladeValor
mayorSemieje2
)( AA =
30
A
n
µ
=
oek ttt
rad/seg-calculadomedioMovimiento
referenciadeépocaladesdeTiempo−=
nnn ∆+= 0
kk ntMM +
corregidomedioMovimiento
= 0
kkk senEeEM .−
mediaAnomalía
excéntricaanomalíaparaKeplerdeEcuación=
( )
( ) ( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−
−−
=
kk
kk
k
EeeE
EesenEe
cos.1/cos
cos.1/1
arctan
2
ϑ verdaderaAnomalía
23X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
+
=
k
k
k
e
e
E
ϑ
ϑ
cos1
cos
arccos excéntricaAnomalía
ωϑ +=Φ kk
kuckusk CsenCu
latituddeArgumento
latituddeargumentoelparaCorrecciónφφδ 2cos2 +=
kkk uu δφ += corregidolatituddeArgumento
kkk rEeAr δ+−= )cos1(
kkk tIDOTiii )(0 +
corregidoRadio
+= δ corregidanInclinació
kkk urx cos=′
oeekek tt Ω−Ω−Ω+Ω=Ω &&& )(0
krckrsk CsenCr radioelparaCorrecciónφφδ 2cos2 +=
ninclinaciólaparaCorrecciónkickisk CsenCi φφδ 2cos2 +=
orbitalplanoelenPosición
kkk senury =′
kkkkkk seniyxx Ω′−Ω′= coscos
kkkkkk iysenxy Ω′+Ω′= coscos
kkk seniyz
ascendentenododelcorregidaLatitud
′=
CTSsistemaunensCoordenada
24X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Movimiento perturbado
La órbita kepleriana es una órbita teórica.
Supone una Tierra esférica cuya masa se acumula en un punto, un
sistema en el que no actúa más fuerza que la de atracción entre dos masas
y que no existe atmósfera.
NO REAL
Las fuerzas o aceleraciones perturbadoras son factores que generan una
desviación del satélite en su órbita kepleriana teórica.
La ecuación del movimiento perturbado será la del movimiento kepleriano
más la acción de las aceleraciones perturbadoras.
••••
=+ ρρ
ρ
µ
ρ
rrr
d3
(debería ser 0)
25X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• El módulo de la aceleración es 104
veces más grande que la
aceleración de perturbación.
• Todo ello nos lleva a una órbita Kepleriana definida por los 6
parámetros para una determinada época de referencia t0.
• Cada aceleración de perturbación causa variaciones
temporales de los parámetros orbitales
• Consecuentemente, en una época arbitraria t el parámetro pi
describe la llamada elipse osculatriz, que es dada por:
dtdpp ioio /=
•
••
ρd
••
ρ
r
)( 0ttppp ioioi −⋅+=
•
26X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Perturbaciones
Las fuerzas perturbadoras que afectan a un satélite en su movimiento
alrededor de la Tierra podemos dividirlas en dos grandes grupos:
• Gravitacionales
No esfericidad de la Tierra
Atracción de mareas (efecto directo e indirecto)
Irregularidades y variaciones del campo gravitatorio terrestre
• No gravitacionales
Presión por radiación solar
Rozamiento atmosférico
Efectos relativistas
Viento solar, campo magnético, etc...
27X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
En los satélites GNSS, las principales perturbaciones son:
• No esfericidad de la Tierra
• Mareas producidas por el Sol y la Luna
• Presión por radiación solar.
28X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Si reescribimos las ecuaciones del movimiento como:
⎪
⎪
⎪
⎪
⎭
⎪
⎪
⎪
⎪
⎬
⎫
+++=⋅+
=
••••••••
•
•
•
PRSLSg xxxx
x
x
dt
xd
x
dt
xd
rrrr
r
rr
r
r
3
µ
donde el primer término es la parte central del campo
gravitatorio que hemos estudiado en el caso de
movimiento no perturbado.
29X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
No esfericidad de La Tierra y c.g.t.
El potencial gravitatorio terrestre V puede expresarse mediante un
desarrollo en serie de armónicos esféricos en la forma:
Donde:
( ) [ ] ( )
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⋅+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−⋅⋅⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−= ∑ ∑∑
∞
=
∞
= =2 2 1
sinsincossin1
n n
nm
n
m
nmnm
n
E
nn
n
E
PmKmJ
r
a
PJ
r
a
r
V ϕλλϕ
µ
aE semieje mayor del elipsoide terrestre
r distancia geocéntrica del satélite
λ longitud esférica de la posición del satélite
ϕ latitud esférica de la posición del satélite
Jn,Jn,m ,Kn,m coeficientes zonales y teserales del desarrollo en armónicos esféricos del modelo
de potencial
Pn Polinomios de Legendre
Pn,m Funciones asociadas de Legendre
30X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• El término más importante del desarrollo del potencial perturbador es el
y representa el abultamiento ecuatorial en el campo gravitatorio.
• Es aproximadamente tres órdenes de magnitud, 103 mayor que el resto
de coeficientes y menor que el debido al potencial Vo en un factor de 104.
• La aceleración generada por la parte no perturbada del movimiento es
de 0,57 m/s2 y la generada por el potencial perturbador es de 0,5x 10-6 m/s2.
• Actualmente, la solución más completa para el desarrollo en armónicos
esféricos tiene 2190 coeficientes para n y m, si bien sólo los coeficientes de
grado y orden menor (hasta 36) son significativos para el cálculo orbital de
los satélites.
2J
31X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Efecto de marea. Atracción del Sol y la Luna
• Una masa externa al sistema Tierra-satélite ejerce una atracción sobre
la Tierra y el satélite.
• Para ver como afecta dicha aceleración al movimiento del satélite:
• considerar la diferencia entre la atracción que dicha masa externa
ejerce sobre la Tierra y la que ejerce sobre el satélite.
• Consideremos un cuerpo celeste puntual de masa y su vector de
posición geocéntrico .
Cm
Cρ
v
32X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• El ángulo , entre el cuerpo y el satélite respecto a la Tierra,
puede expresarse como función del vector posición geocéntrico del
satélite y el vector posición geocéntrico del cuerpo a través del
coseno director como:
z
ρ
ρ
ρ
ρ
v
v
v
v
⋅=
C
C
zcos
33X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• Como hemos dicho que sólo nos interesa la diferencia entre la
atracción sobre la Tierra y el satélite
• De los cuerpos celestes del sistema solar, sólo el Sol y la Luna
se deben considerar, puesto que el efecto de los demás planetas es
despreciable teniendo en cuenta la relación entre sus masas y
distancias a la Tierra, y su valor máximo se alcanza cuando los tres
cuerpos están alineados, momento en que:
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
⋅⋅=
••
33
C
C
C
C
CmGd
ρ
ρ
ρρ
ρρ
ρ v
v
rv
rv
r
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
⋅⋅=
••
22
11
CC
CmGd
ρρρ
ρ vrv
r
34X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• Si sustituimos los valores para el Sol y la Luna:
obtenemos que las aceleraciones perturbadoras debidas a la
atracción del Sol y la Luna tienen unos valores aproximados de:
2320
103,1 −
⋅≈⋅ smmG S
2312
109,4 −
⋅≈⋅ smmG L
mS
11
105,1 ⋅≈ρ mL
8
108,3 ⋅≈ρ
26
102 −−
••
⋅≈ msxS
r 26
105 −−
••
⋅≈ msxL
r
¡¡¡Efecto de la Luna 2,5 veces efecto del Sol!!!
35X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
• Además de este efecto directo de la atracción lunisolar sobre
el movimiento del satélite, debemos tener en cuenta que existe un
efecto indirecto producido por la deformación de la tierra sólida y
las mareas oceánicas.
• Las aceleraciones que se producen en el satélite por cada uno
de estos procesos se aproximan a 10-9 ms-2.
• La consecuencia de estas mareas es que la posición de un
receptor en la superficie de la Tierra varía con el tiempo. Ésta
variación debe ser tenida en cuenta a la hora de modelar los errores
sistemáticos del receptor en las ecuaciones de observación.
36X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Presión por radiación solar
• Perturbación producida por el impacto, sobre la superficie del satélite, de los
fotones procedentes del Sol.
• Los parámetros básicos que hay que considerar para estudiar la presión por
radiación solar:
- El Área Reflectiva, o superficie normal a la radiación incidente
- Reflectividad de la superficie
- Luminosidad del Sol
- Distancia del satélite al Sol.
• La magnitud de la aceleración perturbadora por efecto de la presión por
radiación solar es aproximadamente:
27
10 −−
••
≈ msx PRS
r
37X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Para limitar los errores obtenidos al calcular la posición de un
satélite en un momento dado, la información orbital debe ser tanto
más abundante cuanto más precisión se requiera.
La información orbital de cada satélite se actualiza cada cierto
tiempo.
En GPS, además de los 6 parámetros keplerianos, se transmiten
otros 9 parámetros.
38X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Para determinar la posición de un satélite GPS se difunden tres tipos de datos:
Almanaque
Efemérides transmitidas (broadcast)
Efemérides precisas (precise)
Los datos difieren en disponibilidad temporal y precisión:
Almanaque Varios kilómetros Inyectado al satélite una vez a la semana o
cada seis días
Efemérides transmitidas 1 metro Inyectadas al satélite cada hora, válidas
para un periodo de unas 4 horas
Efemérides precisas 5 – 25 cm Calculadas a posteriori por los centros de
cálculo del IGS. Varios tipos en función de
retardo en disponibilidad y precisión
Tipos de efemérides
Efemérides Precisión Actualización
39X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Propósito de los datos de almanaque:
inicialización del receptor
proporcionar al usuario datos menos precisos para facilitar al receptor la búsqueda de
satélites
planeamiento y visualización de satélites visibles en cada momento desde un punto
de coordenadas determinadas
El almanaque es actualizado al menos cada seis días y transmitido como
parte del mensaje de navegación.
Contiene esencialmente los parámetros fundamentales de la órbita y términos
de corrección para el reloj del satélite.
Almanaque
Par. keplerianos
40X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Efemérides transmitidas
Basadas en observaciones de las estaciones de control.
La Estación de Control Master es la responsable del cálculo de efemérides y
su descarga a los satélites.
Los parámetros transmitidos son:
• la época de referencia
• seis parámetros para describir la elipse kepleriana en la época de referencia
• tres términos seculares de corrección
• seis términos periódicos de corrección
Los términos de corrección consideran:
• efectos de perturbación debido a la no esfericidad de la Tierra,
• efectos directos de marea
• efectos de presión de radiación solar
41X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Estas efemérides son transmitidas cada hora y sólo deben ser usadas, en
orden a garantizar la precisión, durante el periodo descrito de
aproximadamente dos horas siguientes y dos horas anteriores.
42X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
AODE segundos Antigüedad de la información de efemérides
Crs metros Amplitud de la corrección armónica senoidal del radio orbital
∆n π radianes / s Diferencia del movimiento medio
M0 π radianes Anomalía media en el momento de referencia
Cuc radianes Amplitud de la corrección armónica cosenoidal del argumento de la latitud
e adim. Excentricidad
Cus radianes Amplitud de la corrección armónica senoidal del argumento de la latitud
A1/2
metros Raiz cuadrada del semieje mayor
toe segundos Tiempo de referencia de efemérides (valor máximo 604784, 1 semana)
Cic radianes Amplitud de la corrección armónica cosenoidal del ángulo de inclinación
Ω0 π radianes Ascensión recta en el momento de referencia
Cis π radianes Amplitud de la corrección armónica senoidal del ángulo de inclinación
i0 π radianes Angulo de inclinación en la época de referencia
Crc metros Amplitud de la corrección armónica cosenoidal del radio orbital
ω π radianes Argumento del perigeo
OMEGADOTπ radianes / s Razón del cambio en la ascensión recta
IDOT π radianes / s Razón del cambio en el ángulo de inclinación
Parámetro Unidad Descripción
43X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
El RINEX de navegación
44X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
+----------------------------------------------------------------------------+
| TABLE A4 |
| GPS NAVIGATION MESSAGE FILE - DATA RECORD DESCRIPTION |
+--------------------+------------------------------------------+------------+
| OBS. RECORD | DESCRIPTION | FORMAT |
+--------------------+------------------------------------------+------------+
|PRN / EPOCH / SV CLK| - Satellite PRN number | I2, |
| | - Epoch: Toc - Time of Clock | |
| | year (2 digits, padded with 0 | |
| | if necessary) | 1X,I2.2, |
| | month | 1X,I2, |
| | day | 1X,I2, |
| | hour | 1X,I2, |
| | minute | 1X,I2, |
| | second | F5.1, |
| | - SV clock bias (seconds) | 3D19.12 |
| | - SV clock drift (sec/sec) | |
| | - SV clock drift rate (sec/sec2) | |
+--------------------+------------------------------------------+------------+
| BROADCAST ORBIT - 1| - IODE Issue of Data, Ephemeris | |
| | - Crs (meters) | |
| | - Delta n (radians/s) | |
| - M0 (radians) | |
+--------------------+------------------------------------------+------------+
| BROADCAST ORBIT - 2| - Cuc (radians) | |
| | - e Eccentricity | |
| | - Cus (radians) | |
| | - sqrt(A) (sqrt(m)) | |
+--------------------+------------------------------------------+------------+|
| BROADCAST ORBIT - 3| - Toe Time of Ephemeris | 3X,4D19.12 |
| | (sec of GPS week) | |
| | - Cic (radians) | |
| | - OMEGA (radians) | |
| | - CIS (radians) | |
+--------------------+------------------------------------------+------------+
| BROADCAST ORBIT - 4| - i0 (radians) | |
| | - Crc (meters) | |
| | - omega (radians) | |
| | - OMEGA DOT (radians/sec) | |
+--------------------+------------------------------------------+------------+
| BROADCAST ORBIT - 5| - IDOT (radians/sec) | |
| | - Codes on L2 channel | |
| | - GPS Week # (to go with TOE) | |
| | Continuous number, not mod(1024)! | |
| | - L2 P data flag | |
+--------------------+------------------------------------------+------------+
| BROADCAST ORBIT - 6| - SV accuracy (meters) | 3X,4D19.12 |
| | - SV health (bits 17-22 w 3 sf 1) | |
| | - TGD (seconds) | |
| | - IODC Issue of Data, Clock | |
+--------------------+------------------------------------------+------------+
| BROADCAST ORBIT - 7| - Transmission time of message *) | 3X,4D19.12 |
| | (sec of GPS week, derived e.g. | |
| | from Z-count in Hand Over Word (HOW) | |
| | - Fit interval (hours) | |
| | (see ICD-GPS-200, 20.3.4.4) | |
| | Zero if not known | |
| | - spare | |
| | - spare | |
+--------------------+------------------------------------------+------------+
El RINEX de
navegación
(observaciones)
45X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
RINEX de navegación: ejemplo
2.10 N: GPS NAV DATA RINEX VERSION / TYPE
teqc 2009Oct19 IGN-E (SPG) 20100525 02:22:03UTCPGM / RUN BY / DATE
Linux 2.4.21-27.ELsmp|Opteron|gcc -static|Linux x86_64|=+ COMMENT
END OF HEADER
2 10 5 23 22 0 0.0 2.583386376500D-04 3.410605131648D-12 0.000000000000D+00
2.500000000000D+01 5.600000000000D+01 4.732339853319D-09-7.500682485190D-01
2.834945917130D-06 9.551479481161D-03 1.079589128494D-05 5.153587400436D+03
7.920000000000D+04 1.732259988785D-07-6.453972894220D-01-2.514570951462D-07
9.400371639097D-01 1.640312500000D+02 3.069071895483D+00-8.123909545077D-09
-9.750406038123D-11 1.000000000000D+00 1.585000000000D+03 0.000000000000D+00
2.000000000000D+00 0.000000000000D+00-1.722946763039D-08 2.500000000000D+01
8.640000000000D+04
3 10 5 23 23 59 12.0 5.589807406068D-04 5.002220859751D-12 0.000000000000D+00
3.600000000000D+01-3.512500000000D+01 5.760239840669D-09 2.221502882398D-01
-1.581385731697D-06 1.309253496584D-02 6.537884473801D-06 5.153703403473D+03
8.635200000000D+04-7.450580596924D-08-1.798119101301D+00 1.695007085800D-07
9.267988861280D-01 2.332500000000D+02 9.941004162726D-01-8.883584534658D-09
-5.335936692497D-10 1.000000000000D+00 1.585000000000D+03 0.000000000000D+00
2.000000000000D+00 0.000000000000D+00-4.656612873077D-09 3.600000000000D+01
8.640000000000D+04
46X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
6 – Número de satélite
4 3 12 – 12 de Abril de 2004
8 0 0.0 – 8:00:00 horas
-2.315267920494D-06 – Coeficiente a0 del polinomio de corrección del estado de reloj
-9.094947017729D-13 - Coeficiente a1 del polinomio de corrección del estado de reloj
0.000000000000D+00 - Coeficiente a2 del polinomio de corrección del estado de reloj
dt = a0 + a1 (t – t0) + a2 (t – t1)2
47X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (1ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
9.000000000000D+00 – IODE Issue Of Data Ephemeris, edición de las efemérides
8.396875000000D+01 – Crs Coeficiente del término seno de corrección al radio
orbital (metros)
4.833772937474D-09 – ∆n Variación del movimiento medio (rad / seg)
-2.720155309867D+00 – M0 Anomalía media en la época TOE, Time Of Ephemeries (rad)
48X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (2ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
4.149973392487D-06 - Cuc Coeficiente del término coseno de corrección al
argumento de la latitud, perigeo (rad)
6.282908492722D-03 - e Excentricidad de la órbita
9.546056389809D-06 – Cus Coeficiente del término seno de corrección al
argumento de la latitud, perigeo (rad)
5.153553123474D+03 – root a Raíz cuadrada del semieje mayor de la órbita (metros)
49X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (3ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
4.608000000000D+05 – TOE, Time Of Ephemeris, Tiempo de Referencia para
la posición del satélite (segundos de la semana GPS)
6.519258022308D-08 – Cic Coeficiente del término coseno de la corrección a
la inclinación (rad)
1.207090937006D+00 – Ω0 Longitud del nodo ascendente de la órbita al
comienzo de la semana GPS (rad)
-4.656612873077D-08 – Cis Coeficiente del término seno de la corrección a
la inclinación (rad)
50X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (4ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
9.360605692857D-01 – i0 Inclinación de la órbita en la época TOE (rad)
1.811875000000D+02 – Crc Coeficiente del término coseno de corrección al
radio orbital (metros)
-2.025429555111D+00 – ω Argumento del perigeo (rad)
-8.012476904184D-09 – Ω Variación de la ascensión recta (rad/seg)
.
51X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (5ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
-1.121475273758D-10 – i Variación de la inclinación (rad/seg)
1.000000000000D+00 - Códigos en L2
1.261000000000D+03 – Semana GPS
0.000000000000D+00 – L2 P data flag (0 = OK)
.
52X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (6ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
1.000000000000D+00 – Precisión de las efemérides (metros)
0.000000000000D+00 – Salud del satélite (0 = OK)
-4.656612873077D-09 – TGD (segundos)
2.650000000000D+02 – IODC Edición de los datos de reloj
53X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Fichero de navegación – Ejemplo de datos (7ª línea)
6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00
9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00
4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03
4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08
9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09
-1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02
4.608000000000D+05
4.608000000000D+05 – Hora de transmisión del mensaje (segundos
de la semana GPS)En este caso, igual que el TOE
54X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Efemérides precisas
A partir de las redes mundiales de estaciones permanentes GPS hay
agencias que calculan a posteriori las posiciones de los satélites (proceso
inverso al GPS: con coordenadas muy precisas en tierra queremos calcular
coordenadas de los satélites).
Las efemérides precisas pueden ser descargadas desde varios sitios.
Normalmente se utilizan las calculadas por el IGS (International GNNS
Service), que son una combinación de las calculadas por 7 centros.
http://igscb.jpl.nasa.gov/components/products
El formato estándar es igswwwwd.SP3(C), donde wwww es la semana GPS
y d, el día de la semana GPS (0 = dom, 6 = sáb).
Es un fichero ASCII con unos datos de cabecera y un listado con las
coordenadas de cada satélite cada 15 minutos (en Km), en el (ITRF), y el
estado del reloj en ese momento (en microseg).
55X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Calendario GPS: http://www.ngs.noaa.gov/CORS/gpscal10.html
56X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Ejemplo de efemérides precisas SP3C:
#cP2006 6 4 0 0 0.00000000 96 ORBIT IGb00 HLM IGS
## 1378 0.00000000 900.00000000 53890 0.0000000000000
+ 29 G01G02G03G04G05G06G07G08G09G10G11G13G14G15G16G17G18
+ G19G20G21G22G23G24G25G26G27G28G29G30 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 3 3 3 3 3 4 2 3 3 3 3 3 3 3 3 3 3
++ 4 3 3 3 3 4 4 3 3 4 4 3 0 0 0 0 0
++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
%c G cc GPS ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc
%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc
%f 1.2500000 1.025000000 0.00000000000 0.000000000000000
%f 0.0000000 0.000000000 0.00000000000 0.000000000000000
%i 0 0 0 0 0 0 0 0 0
%i 0 0 0 0 0 0 0 0 0
/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:
/* cod emr esa gfz jpl mit ngs sio
/* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:
/* CLK ANT Z-OFFSET (M): II/IIA 1.023; IIR 0.000
* 2006 6 4 0 0 0.00000000
PG01 15128.852872 -21256.578591 5025.799882 57.112550 11 5 10 168
PG02 -8779.921716 13518.074235 20817.239348 2.112894 13 9 10 158
PG03 9163.206554 -23473.655639 -8047.781722 103.932417 12 10 11 149
PG04 -20181.028993 7425.126614 15774.067274 245.712154 11 13 11 192
.............................
* 2006 6 4 0 15 0.00000000
PG01 15517.077210 -21434.324475 2152.562849 57.115288 11 5 10 166
PG02 -11132.753919 13069.129280 19952.923248 2.115501 13 9 9 157
PG03 9878.780110 -23913.586979 -5390.303246 103.934149 12 9 11 150
PG04 -21809.671509 6958.951821 13719.107869 245.719979 10 13 11 190
Estado de reloj (microseg)
σ de las coord (en mm)
σ del estado de reloj (picoseg)
57X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Creación en 1991, del International GNSS Service, que coordina una red mundial
GNSS.
Actualmente, unas 270 estaciones en el mundo.
Objetivos del IGS:
Mejora, extensión y definición del Marco de Referencia Terrestre Internacional
(ITRF).
Estudio de la Geodinámica Terrestre.
Determinación de las variaciones de rotación terrestre y coordenadas del polo.
Cálculo y distribución de efemérides precisas.
58X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Red mundial del IGS
59X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
En la actualidad se integran en la red del IGS casi 400 estaciones con
coordenadas y campos de velocidad integrados en el ITRF.
Los datos son procesados semanalmente por diez centros de análisis
(Analysis Centers) y puestos a disposición por los Regional Data Centers,
junto con los datos de todas las estaciones.
Los productos que proporciona el IGS son:
• efemérides GPS (ultrarrápidas, rápidas y finales),
• estados de reloj de satélites,
• efemérides GLONASS finales,
• coordenadas de las estaciones,
• parámetros de rotación de la Tierra (PM, movimiento del polo)
• parámetros atmosféricos (retardo troposférico y densidad TEC en la ionosfera).
http://www.igscb.jpl.nasa.gov
60X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
61X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
62X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
63X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Ejercicio: cálculo de la posición del satélite
Calcular la posición del satélite 30 a partir de los siguientes datos del mensaje
de navegación, para las observaciones de código recibidas en el receptor a las
0:00:00 del día 11 de agosto de 2000 (6º de la semana GPS 1074)
Dato adicional:
Pseudodistancia de código del satélite 30 en ese instante: 20659421.934 metros.
Para el instante de observación: 0 8 11 0 0 0.0000000 0 6G30G29G06G25G24G05
RINEX de NAVEGACIÓN:
30 00 8 11 2 0 0.0-3.275135532022D-05-1.477928890381D-12 0.000000000000D+00
4.000000000000D+01-6.093750000000D+00 5.169858202488D-09 1.362239438238D+00
-4.190951585770D-07 5.362690542825D-03 6.673857569695D-06 5.153622058868D+03
4.392000000000D+05-1.043081283569D-07-1.538901799997D+00-7.823109626770D-08
9.436444989925D-01 2.411562500000D+02 1.445954310898D+00-8.276059016792D-09
-3.171560679661D-10 0.000000000000D+00 1.074000000000D+03 0.000000000000D+00
1.000000000000D+00 0.000000000000D+00-7.450580596924D-09 2.960000000000D+02
4.392000000000D+05
TOE
Igual que TOE
64X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
El TOE o tiempo de referencia de las efemérides es en segundos GPS de referencia
de la semana GPS. Corresponde a la tercera línea, primera columna: segundo 439200,
que se corresponde con las 2:00:00 horas del 11 de agosto de 2000 (las efemérides
predicen la posición que tendrá el satélite a esa hora).
Se piden las coordenadas a las 0:00:00 del 6º día de la semana GPS. En segundos
de la semana GPS han transcurrido 60x60x24x5 = 432000 segundos, por lo tanto, el
intervalo de tiempo entre el TOE y las 0:00:00 (época en la que nos piden las
coordenadas) es de:
432000-439200 = -7200 sg (por tanto se pide la posición del SV 2 h antes del TOE).
Por otra parte, la pseudodistancia del SV 30 es de 20659421.934 metros. Si dividimos
su valor por la velocidad de la luz (299792458 m/s) tenemos el tiempo que ha tardado la
señal en viajar, 0.06891241384732 segundos. Por tanto, el intervalo de tiempo desde TOE
es de -7200.068912 segundos (tk).
ACLARACIÓN: Como esto servirá para la práctica posterior de posicionamiento, las
coordenadas del SV tienen que estar dadas en el tiempo en que el SV envía la
observación, es decir, 0.0689 segundos antes de recibirla en el receptor.
65X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
svprn 30.00000000000000
a2 0.00000000000000
M0 1.36223943823800
roota 5153.622058868000
deltan 0.00000000516985820249
e 0.0053626905428250
omega 1.445954310898000
cuc -0.00000041909515857700
cus 0.00000667385756969500
crc 241.156250000000
crs -6.0937500000000
i0 0.94364449899250
idot -0.00000000031715606797
cic -0.00000010430812835690
cis -0.00000007823109626770
Omega0 -1.53890179999700000000
Omegadot -0.00000000827605901679
toe 439200.0000000000
af0 -0.00003275135532022000
af1 -0.00000000000147792889
toc 439200.000000000
66X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Cálculo de la posición del satélite: proceso
2
)( AA = oek ttt −= 30
A
n
µ
= nnn ∆+= 0
kntMM += 0 senEeEM .−= ( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
=
eE
senEe
k
cos
1
arctan
2
ϑ
ωϑφ += k
φφφ 2cos2 ucus CsenCu ++=
Obtener E
Proceso iterativo
En el 1º E=M
φφ 2cos2)cos1( rcrs CsenCEeAr ++−=
φφ 2cos2)(0 icisk CsenCtIDOTii ++⋅+=
Ω−Ω= isenyxX coscos 11
Ω+Ω= coscos11 iysenxY
seniyZ 1=
urx cos1 =
rsenuy =1
oeeke tt Ω−⋅Ω−Ω+Ω=Ω &&& )(0
⎪
⎪
⎭
⎪⎪
⎬
⎫
⎪
⎪
⎭
⎪⎪
⎬
⎫
67X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
Solución
GM = 3.986005e14 Constante de gravitación universal
Omegaearth_dot = 7.2921151467e-5 Aceleración de la Tierra (Wgs84)
a= 2.655982032565084e+007 Semieje mayor
n0 = 1.458583245017110e-004 Movimiento medio calculado
tk = -7.200068912413844e+003 Intervalo desde Toe
n = 1.458634943599135e-004 Movimiento medio corregido
M = 0.31201222704113 Anomalía media
E = 0.31366687806927 Anomalía excéntrica
θ = 0.31532577168381 Anomalía verdadera
phi = 1.76128008258181 Argumento de la latitud
u = 1.76127799016444 Argumento de la latitud corregido
r = 2.642411609505970e+007 Radio vector
i = 0.94364690845563 Inclinación
Omega = -1.62484808447525 Longitud del nodo ascentente corregida
xk= 1.54742833873780e+7
yk= 0.41730167179566e+7 Coordenadas en tierra fija
zk= 2.10087219155275e+7

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Wgs 84-uaca
Wgs 84-uacaWgs 84-uaca
Wgs 84-uaca
 
Guía explicada masa de jupiter 2011
Guía explicada masa de jupiter 2011Guía explicada masa de jupiter 2011
Guía explicada masa de jupiter 2011
 
Leyes de kepler
Leyes de keplerLeyes de kepler
Leyes de kepler
 
Presentacion de fisica
Presentacion de fisicaPresentacion de fisica
Presentacion de fisica
 
movimineto circular
movimineto circularmovimineto circular
movimineto circular
 
Practico nº 4 de fisica i
Practico nº 4 de fisica iPractico nº 4 de fisica i
Practico nº 4 de fisica i
 
M2 carto ii parte 1
M2 carto ii   parte 1M2 carto ii   parte 1
M2 carto ii parte 1
 
Eq2 pp
Eq2 ppEq2 pp
Eq2 pp
 
Bases teóricas-del-gps
Bases teóricas-del-gpsBases teóricas-del-gps
Bases teóricas-del-gps
 
Geodesia
GeodesiaGeodesia
Geodesia
 
Resumen fuerza gravitacional y movimiento satelital
Resumen fuerza gravitacional y movimiento satelitalResumen fuerza gravitacional y movimiento satelital
Resumen fuerza gravitacional y movimiento satelital
 
M2 carto ii parte 2
M2 carto ii   parte 2M2 carto ii   parte 2
M2 carto ii parte 2
 
Gps informe jp
Gps informe jpGps informe jp
Gps informe jp
 
1.1 levantamientos de información geográfica
1.1 levantamientos de información geográfica1.1 levantamientos de información geográfica
1.1 levantamientos de información geográfica
 
Formulario tema: Campo Gravitatorio
Formulario tema: Campo GravitatorioFormulario tema: Campo Gravitatorio
Formulario tema: Campo Gravitatorio
 
Presentacion geodesia sat 2
Presentacion geodesia sat 2Presentacion geodesia sat 2
Presentacion geodesia sat 2
 
2539474 apuntes-de-geodesia
2539474 apuntes-de-geodesia2539474 apuntes-de-geodesia
2539474 apuntes-de-geodesia
 
Historia geodesia avanzada 123
Historia geodesia avanzada 123Historia geodesia avanzada 123
Historia geodesia avanzada 123
 
Tema 1. El planeta Tierra
Tema  1. El planeta TierraTema  1. El planeta Tierra
Tema 1. El planeta Tierra
 
Bases teóricas sistemas de información geográfica
Bases teóricas sistemas de información geográficaBases teóricas sistemas de información geográfica
Bases teóricas sistemas de información geográfica
 

Similar a Conceptos sobre orbitas

Similar a Conceptos sobre orbitas (20)

Geodesia teoria
Geodesia teoriaGeodesia teoria
Geodesia teoria
 
Geodesia teoriaypractica
Geodesia teoriaypracticaGeodesia teoriaypractica
Geodesia teoriaypractica
 
FINAL_SISTEMAS DE COORDENADAS.ppt
FINAL_SISTEMAS DE COORDENADAS.pptFINAL_SISTEMAS DE COORDENADAS.ppt
FINAL_SISTEMAS DE COORDENADAS.ppt
 
Tema1 geodesia
Tema1 geodesiaTema1 geodesia
Tema1 geodesia
 
4.1
4.14.1
4.1
 
INTRODUCCIÓN A LA TOPOGRAFÍA
INTRODUCCIÓN A LA TOPOGRAFÍAINTRODUCCIÓN A LA TOPOGRAFÍA
INTRODUCCIÓN A LA TOPOGRAFÍA
 
2problemasresueltost6leydegravitacinuniversal 130731212428-phpapp01
2problemasresueltost6leydegravitacinuniversal 130731212428-phpapp012problemasresueltost6leydegravitacinuniversal 130731212428-phpapp01
2problemasresueltost6leydegravitacinuniversal 130731212428-phpapp01
 
Presentación bases teoricas del gps (salazar galindo diana c.)
Presentación bases teoricas del gps (salazar galindo diana c.)Presentación bases teoricas del gps (salazar galindo diana c.)
Presentación bases teoricas del gps (salazar galindo diana c.)
 
Sistemas
SistemasSistemas
Sistemas
 
Leyes de kepler
Leyes de keplerLeyes de kepler
Leyes de kepler
 
Clase II.pptx
Clase II.pptxClase II.pptx
Clase II.pptx
 
UD 2 CAMPO GRAVITATORIO.pptx
UD 2 CAMPO GRAVITATORIO.pptxUD 2 CAMPO GRAVITATORIO.pptx
UD 2 CAMPO GRAVITATORIO.pptx
 
Practico nº 4 de fisica i
Practico nº 4 de fisica iPractico nº 4 de fisica i
Practico nº 4 de fisica i
 
GRUPO #2.pdf
GRUPO #2.pdfGRUPO #2.pdf
GRUPO #2.pdf
 
Georreferenciación
GeorreferenciaciónGeorreferenciación
Georreferenciación
 
movimiento circular-fisica 1
movimiento circular-fisica 1movimiento circular-fisica 1
movimiento circular-fisica 1
 
Practica de topografía y geodesia, canales y puertos,
Practica de topografía y geodesia, canales y puertos, Practica de topografía y geodesia, canales y puertos,
Practica de topografía y geodesia, canales y puertos,
 
Ud1
Ud1Ud1
Ud1
 
UTM
UTMUTM
UTM
 
Leyes Kepler
Leyes KeplerLeyes Kepler
Leyes Kepler
 

Más de jesusmanuelperezaria (10)

Conagua gps-4
Conagua gps-4Conagua gps-4
Conagua gps-4
 
Bosque
BosqueBosque
Bosque
 
Principios de gastronomia alex
Principios de gastronomia alexPrincipios de gastronomia alex
Principios de gastronomia alex
 
Cartografia datum-nivelacion vertical
Cartografia datum-nivelacion verticalCartografia datum-nivelacion vertical
Cartografia datum-nivelacion vertical
 
Cuaderno de-verano-primer-grado i
Cuaderno de-verano-primer-grado iCuaderno de-verano-primer-grado i
Cuaderno de-verano-primer-grado i
 
Cuestonario cartografia
Cuestonario cartografiaCuestonario cartografia
Cuestonario cartografia
 
Honores a la bandera
Honores a la banderaHonores a la bandera
Honores a la bandera
 
Danza
DanzaDanza
Danza
 
Guia de geodesia
Guia de geodesiaGuia de geodesia
Guia de geodesia
 
Red de nivelacion vertical
Red de nivelacion verticalRed de nivelacion vertical
Red de nivelacion vertical
 

Último

Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para PlataformasSegundo Silva Maguiña
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
PRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potenciaPRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potenciazacariasd49
 
Fisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfFisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfJessLeonelVargasJimn
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdfEdwinAlexanderSnchez2
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfAnonymous0pBRsQXfnx
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
CLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civilCLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civilDissneredwinPaivahua
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadANDECE
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 

Último (20)

Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para Plataformas
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
PRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potenciaPRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potencia
 
Fisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfFisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdf
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdf
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
CLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civilCLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civil
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidad
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 

Conceptos sobre orbitas

  • 1. 1X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Conceptos sobre Órbitas José Antonio Sánchez Sobrino Jefe del Servicio de Programas Geodésicos Centro de Observaciones Geodésicas – Instituto Geográfico Nacional
  • 2. 2X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Introducción Determinación de la Órbita. Movimiento Kepleriano Leyes de Kepler Representación en el plano orbital Representación en un sistema fijo a la Tierra Movimiento Perturbado Perturbaciones a la órbita ideal Efemérides en GPS Almanaque Efemérides transmitidas Efemérides precisas
  • 3. 3X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Introducción El posicionamiento con GPS se basa en la determinación de la posición de un punto (tierra, mar, aire....). Dicha determinación se realiza midiendo las distancias a un número de satélites. Una vez conocidas estas distancias, tenemos que calcular la posición que deseamos. Para poder determinar las coordenadas del punto, debemos conocer las coordenadas de los satélites. La precisión en la determinación depende en gran parte de la precisión en las coordenadas de los satélites (más en posicionamiento absoluto, pues en relativo se anulan).
  • 4. 4X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Determinación de la órbita Determinar las coordenadas de un satélite es determinar su movimiento. Debemos conocer cuales son las causas que generan ese movimiento Leyes de Newton. Vamos a estudiar primero un caso ideal (Teoría de Orbitas Normales). Consideremos la masa de la Tierra concentrada en su centro de masas, no existencia de atmósfera y no existencia de más fuerza que la gravitatoria (atracción de masas). Consideremos dos puntos (Tierra y satélite) de masas m1 y m2 separados una distancia r. m1 r m2
  • 5. 5X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 El movimiento de la masa m2 respecto de m1 viene expresado por la ecuación diferencial homogénea de segundo grado: Donde: vector posición relativo constante de gravitación universal vector aceleración relativa 0 )( 3 21 rrr =⋅ + + •• r r mmG r r r 2 2 dt rd r r r = •• G Llamemos MT a la masa de La Tierra. El producto es una constante conocida y es uno de los parámetros que definen el sistema de referencia WGS84. 238 103986005 − ⋅=⋅= smMG Tµ
  • 6. 6X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Si la masa del satélite es despreciable en comparación con la masa de la Tierra, obtenemos la ecuación diferencial: 32 2 r r dt rd ⋅−= µ La solución analítica de esta ecuación diferencial es un problema clásico de mecánica celeste. Dicha solución nos lleva al movimiento Kepleriano, definido por seis parámetros orbitales. Éstos se corresponden con las seis constantes de integración de ecuación diferencial de segundo orden vectorial anterior. 32 2 r r dt rd ⋅−= µ ( ) ( ) ( )K J I ,,, ,,, ,,, ZYXZZ ZYXYY ZYXXX •• •• •• = = = ( ) ( ) ( )NK MJ LI ,,,, ,,,, ,,,, ZYXZZ ZYXYY ZYXXX = = =
  • 7. 7X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Determinación de la órbita: Leyes de Kepler 1ª LEY DE KEPLER. “El movimiento de un cuerpo respecto a otro debido a la atracción de las masas se reduce a una cónica, estando uno de los dos cuerpos en el foco de la cónica.” • En el caso del sistema Tierra-satélite, suponiendo la Tierra “ideal” y considerando un campo gravitatorio central, el movimiento se reduce a una elipse en uno de cuyos focos se encuentra situada la Tierra
  • 8. 8X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 •Llamamos perigeo a la posición, dentro de la órbita del satélite, en que éste se encuentra más próximo de la Tierra. •Llamamos apogeo a la posición, dentro de la órbita, en que el satélite se encuentra más alejado de la Tierra. •La línea que une el perigeo con el centro de masas de la Tierra recibe el nombre de línea de ápsides. •La línea que resulta de la intersección del plano orbital con el ecuador se llama línea nodal, dentro de la cual hay que destacar el nodo ascendente, punto de la órbita en que el satélite pasa del hemisferio sur al hemisferio norte. • Equinoccio vernal: intersección plano ecuatorial con plano de la eclíptica (Sol). PP PlanoPlano deldel EcuadorEcuador ZT XT YT GG PerigeoPerigeo NodoNodo AscendenteAscendente NodoNodo DescendenteDescendente Ω PlanoPlano orbitalorbital t a, ea, e LineaLinea nodalnodal LineaLinea dede ápsidesápsides ApogeoApogeo
  • 9. 9X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Una vez consideradas las definiciones anteriores, los 6 parámetros que sitúan de forma única una órbita en el espacio (también llamados elementos keplerianos) son: Plano orbital: Ω ; ascensión recta del nodo ascendente i ; inclinación Tamaño de la órbita : a, e. Orientación de la órbita en su plano: ω; argumento del perigeo Tiempo de paso por el perigeo: to Anomalía Verdadera v(t) El único que es dependiente del tiempo en el movimiento no perturbado es la anomalía verdadera
  • 10. 10X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 2ª LEY DE KEPLER. “El radio vector del satélite dentro de la órbita recorre áreas iguales en tiempos iguales.”
  • 11. 11X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 La posición instantánea del satélite dentro de la órbita se describe por una cantidad angular conocida como anomalía. Varios tipos de anomalía según se considere el ángulo medido desde el foco de la órbita (geocentro) o desde el centro de la órbita: - Anomalía verdadera v(t) . Ángulo, medido en el plano orbital y desde el geocentro, entre la línea de ápsides (perigeo-geocentro-apogeo) y la posición del satélite. - Anomalía excéntrica E(t). Ángulo, medido en el plano orbital y desde el centro de la órbita, entre la línea de ápsides y la posición del satélite proyectada a una circunferencia de radio el semieje mayor de la elipse, a. - Anomalía media M(t).
  • 12. 12X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 La única anomalía que no tiene sentido físico es la anomalía media M(t)
  • 13. 13X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 3ª LEY DE KEPLER. “El cuadrado del periodo orbital es proporcional al cubo del semieje mayor de la elipse” 2 3 2 4 T a πµ = Nos aporta el conocimiento del periodo orbital del satélite, es decir, el tiempo que tarda en recorrer una órbita completa alrededor de la Tierra. Así, fijado el semieje mayor de una órbita para un satélite alrededor de la Tierra, conocemos su periodo orbital a través de esta tercera ley.
  • 14. 14X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 El conocimiento de este periodo nos lleva a conocer la velocidad angular media del satélite, también llamada movimiento medio: y es el que va a dar sentido a la anomalía media. Si llamamos T0 al tiempo de paso por el perigeo del satélite, se define la anomalía media para un instante t como (abstracción matemática, no tiene sentido geométrico): Es un artificio matemático. Movimiento del satélite en la órbita es un movimiento medio. Igual en toda la órbita. 3 2 aT µπ ==n ( )0)( TtntM −⋅= (Velocidad = espacio / tiempo) Ejemplo: transcurridas 3 h desde el paso por perigeo, M(t)=3 * 2π / 12 = π / 2
  • 15. 15X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Podemos relacionar las tres diferentes anomalías mediante: Conocida como Ecuación de Kepler. Estas igualdades, que relacionan las diferentes anomalías dentro de la órbita, nos van a permitir identificar diferentes conjuntos de elementos keplerianos para la definición de la posición de un satélite en el espacio: con la anomalía verdadera con la anomalía media con la anomalía excéntrica ( )0)( TtntM −⋅= )(sin)()( tEetMtE ⋅+= ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − + = 2 )( 1 1 2)( tE tg e e arctgtv { })(,,,,, tveai ωΩ { })(,,,,, tMeai ωΩ { })(,,,,, tEeai ωΩ
  • 16. 16X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Representación en el Plano Orbital El sistema de coordenadas nos permite expresar la posición y velocidad de un satélite, dentro de su órbita, en función de la anomalía excéntrica y la anomalía verdadera. Así, podemos obtenerlas como: { }21,ee rr ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − ⋅= v v r Ee eE ar sin cos sin1 cos 2 r la representación se denomina Ecuación Polar de la Elipse)(vrr = (Coordenadas polares del satélite respecto del sistema e1, e2 y geocentro)
  • 17. 17X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Para el cálculo con GPS debemos conocer las coordenadas del satélite con Representación en el Sistema Fijo a la Tierra respecto a un sistema de referencia fijo terrestre. Consideremos: el Sistema de Referencia Ecuatorial Cartesiano : − origen, O, en el centro de masas de la Tierra, − eje en la dirección del equinoccio vernal (punto Aries), − eje en la dirección del eje de rotación medio y − eje formando un triedro con orientación positiva y el sistema fijo a la Tierra El Sistema Convencional Terrestre (CTS): − origen, Oo, en el centro de masas de la Tierra, − eje en la dirección del meridiano de Greenwich − eje en la dirección del eje de rotación medio y − eje formando un triedro con orientación positiva OX OZ OY oOX oOZ oOY (solo se diferencian en el eje X)
  • 18. 18X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • Para pasar al primer sistema de referencia, debemos considerar el sistema de referencia orbital como tridimensional, por lo que a nuestro sistema le añadimos un tercer eje ortogonal al plano de la órbita. • Como los vectores y están contenidos en el plano de la órbita, este artificio para pasar a tres dimensiones no afecta a las coordenadas ya que sus componentes en son cero en ambos casos. • Una vez los dos sistemas son tridimensionales, pasamos del sistema orbital al ecuatorial mediante 3 giros: • 1º Respecto al eje y ángulo “ ” para llevar la línea de ápsides (eje en el plano orbital) hasta coincidir con la línea nodal. • 2º Respecto al eje y ángulo “ ” para llevar el plano de la órbita hasta coincidir con el plano del ecuador. • 3º Respecto al eje y ángulo “ ” para hacer coincidir la línea de ápsides, ya girada, con la línea que pasa por el equinoccio vernal. { }21,ee rr 3e r r r • r r ω− i− Ω− 3e r 3e r 1e r 1e r 3e r
  • 19. 19X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 ZT PP PlanoPlano deldel EcuadorEcuador XT YT GG PerigeoPerigeo NodoNodo AscendenteAscendente NodoNodo DescendenteDescendente PlanoPlano orbitalorbital t a, ea, e LineaLinea nodalnodal LineaLinea dede ápsidesápsides ΩΩ ωω ii Ω (Aries) e1e1 e3e3 e2e2 ApogeoApogeo
  • 20. 20X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 De esta manera, si llamamos y a los vectores obtenidos, tenemos: donde la matriz tiene la forma: x r • x r rRx rrr ⋅= R r ( )331 ,, cossincossinsin sincoscoscoscossinsincossincoscossin sinsincoscossinsincoscossinsincoscos eee iii iii iii R rrrr = ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ Ω−Ω+Ω−Ω+Ω ΩΩ−Ω−Ω−Ω = ωω ωωωω ωωωω •• ⋅= rRx rr siendo los vectores columna de la matriz ortogonal los ejes del sistema de coordenadas orbital. Debemos tener en cuenta que los elementos de la matriz son constantes (elipse orbital inmóvil).
  • 21. 21X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Por último, para pasar al sistema convencional fijo a la Tierra, realizamos un giro respecto al eje tercero y ángulo “ ” (hora siderea aparente en Greenwich) para llevar el eje que pasa por el punto Aries hasta el eje que pasa por Greenwich (fijo a la Tierra). Finalmente, la matriz de rotación quedaría: Existen fórmulas inversas para obtener las coordenadas del satélite dentro del sistema de referencia orbital a partir de las expresadas en el sistema fijo a la Tierra y son las que usan los centros de control para calcular las efemérides de los satélites e introducirlas en el mensaje de navegación. oθ− oOX ⋅−⋅−⋅Ω−⋅−= )()()()(' 3133 ωθ RiRRRR o rrrrr OX
  • 22. 22X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Estas expresiones nos son útiles en cálculo, con las ecuaciones siguientes, el usuario debe calcular las coordenadas de la posición del satélite en un sistema de referencia fijo terrestre (CTS). NavegaciónNavegación -- Bloque II (3)Bloque II (3) 2 314 10x986005,3 s m=µ WGS84delterrestrenalgravitacioparámetrodelValor s rad e 5 10x2921151467,7 − =Ω& WGS84delerrestrerotación tdevelocidadladeValor mayorSemieje2 )( AA = 30 A n µ = oek ttt rad/seg-calculadomedioMovimiento referenciadeépocaladesdeTiempo−= nnn ∆+= 0 kk ntMM + corregidomedioMovimiento = 0 kkk senEeEM .− mediaAnomalía excéntricaanomalíaparaKeplerdeEcuación= ( ) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −− −− = kk kk k EeeE EesenEe cos.1/cos cos.1/1 arctan 2 ϑ verdaderaAnomalía
  • 23. 23X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − + = k k k e e E ϑ ϑ cos1 cos arccos excéntricaAnomalía ωϑ +=Φ kk kuckusk CsenCu latituddeArgumento latituddeargumentoelparaCorrecciónφφδ 2cos2 += kkk uu δφ += corregidolatituddeArgumento kkk rEeAr δ+−= )cos1( kkk tIDOTiii )(0 + corregidoRadio += δ corregidanInclinació kkk urx cos=′ oeekek tt Ω−Ω−Ω+Ω=Ω &&& )(0 krckrsk CsenCr radioelparaCorrecciónφφδ 2cos2 += ninclinaciólaparaCorrecciónkickisk CsenCi φφδ 2cos2 += orbitalplanoelenPosición kkk senury =′ kkkkkk seniyxx Ω′−Ω′= coscos kkkkkk iysenxy Ω′+Ω′= coscos kkk seniyz ascendentenododelcorregidaLatitud ′= CTSsistemaunensCoordenada
  • 24. 24X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Movimiento perturbado La órbita kepleriana es una órbita teórica. Supone una Tierra esférica cuya masa se acumula en un punto, un sistema en el que no actúa más fuerza que la de atracción entre dos masas y que no existe atmósfera. NO REAL Las fuerzas o aceleraciones perturbadoras son factores que generan una desviación del satélite en su órbita kepleriana teórica. La ecuación del movimiento perturbado será la del movimiento kepleriano más la acción de las aceleraciones perturbadoras. •••• =+ ρρ ρ µ ρ rrr d3 (debería ser 0)
  • 25. 25X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • El módulo de la aceleración es 104 veces más grande que la aceleración de perturbación. • Todo ello nos lleva a una órbita Kepleriana definida por los 6 parámetros para una determinada época de referencia t0. • Cada aceleración de perturbación causa variaciones temporales de los parámetros orbitales • Consecuentemente, en una época arbitraria t el parámetro pi describe la llamada elipse osculatriz, que es dada por: dtdpp ioio /= • •• ρd •• ρ r )( 0ttppp ioioi −⋅+= •
  • 26. 26X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Perturbaciones Las fuerzas perturbadoras que afectan a un satélite en su movimiento alrededor de la Tierra podemos dividirlas en dos grandes grupos: • Gravitacionales No esfericidad de la Tierra Atracción de mareas (efecto directo e indirecto) Irregularidades y variaciones del campo gravitatorio terrestre • No gravitacionales Presión por radiación solar Rozamiento atmosférico Efectos relativistas Viento solar, campo magnético, etc...
  • 27. 27X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 En los satélites GNSS, las principales perturbaciones son: • No esfericidad de la Tierra • Mareas producidas por el Sol y la Luna • Presión por radiación solar.
  • 28. 28X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Si reescribimos las ecuaciones del movimiento como: ⎪ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎪ ⎬ ⎫ +++=⋅+ = •••••••• • • • PRSLSg xxxx x x dt xd x dt xd rrrr r rr r r 3 µ donde el primer término es la parte central del campo gravitatorio que hemos estudiado en el caso de movimiento no perturbado.
  • 29. 29X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 No esfericidad de La Tierra y c.g.t. El potencial gravitatorio terrestre V puede expresarse mediante un desarrollo en serie de armónicos esféricos en la forma: Donde: ( ) [ ] ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⋅+⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −⋅⋅⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ∑ ∑∑ ∞ = ∞ = =2 2 1 sinsincossin1 n n nm n m nmnm n E nn n E PmKmJ r a PJ r a r V ϕλλϕ µ aE semieje mayor del elipsoide terrestre r distancia geocéntrica del satélite λ longitud esférica de la posición del satélite ϕ latitud esférica de la posición del satélite Jn,Jn,m ,Kn,m coeficientes zonales y teserales del desarrollo en armónicos esféricos del modelo de potencial Pn Polinomios de Legendre Pn,m Funciones asociadas de Legendre
  • 30. 30X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • El término más importante del desarrollo del potencial perturbador es el y representa el abultamiento ecuatorial en el campo gravitatorio. • Es aproximadamente tres órdenes de magnitud, 103 mayor que el resto de coeficientes y menor que el debido al potencial Vo en un factor de 104. • La aceleración generada por la parte no perturbada del movimiento es de 0,57 m/s2 y la generada por el potencial perturbador es de 0,5x 10-6 m/s2. • Actualmente, la solución más completa para el desarrollo en armónicos esféricos tiene 2190 coeficientes para n y m, si bien sólo los coeficientes de grado y orden menor (hasta 36) son significativos para el cálculo orbital de los satélites. 2J
  • 31. 31X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Efecto de marea. Atracción del Sol y la Luna • Una masa externa al sistema Tierra-satélite ejerce una atracción sobre la Tierra y el satélite. • Para ver como afecta dicha aceleración al movimiento del satélite: • considerar la diferencia entre la atracción que dicha masa externa ejerce sobre la Tierra y la que ejerce sobre el satélite. • Consideremos un cuerpo celeste puntual de masa y su vector de posición geocéntrico . Cm Cρ v
  • 32. 32X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • El ángulo , entre el cuerpo y el satélite respecto a la Tierra, puede expresarse como función del vector posición geocéntrico del satélite y el vector posición geocéntrico del cuerpo a través del coseno director como: z ρ ρ ρ ρ v v v v ⋅= C C zcos
  • 33. 33X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • Como hemos dicho que sólo nos interesa la diferencia entre la atracción sobre la Tierra y el satélite • De los cuerpos celestes del sistema solar, sólo el Sol y la Luna se deben considerar, puesto que el efecto de los demás planetas es despreciable teniendo en cuenta la relación entre sus masas y distancias a la Tierra, y su valor máximo se alcanza cuando los tres cuerpos están alineados, momento en que: ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − ⋅⋅= •• 33 C C C C CmGd ρ ρ ρρ ρρ ρ v v rv rv r ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − ⋅⋅= •• 22 11 CC CmGd ρρρ ρ vrv r
  • 34. 34X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • Si sustituimos los valores para el Sol y la Luna: obtenemos que las aceleraciones perturbadoras debidas a la atracción del Sol y la Luna tienen unos valores aproximados de: 2320 103,1 − ⋅≈⋅ smmG S 2312 109,4 − ⋅≈⋅ smmG L mS 11 105,1 ⋅≈ρ mL 8 108,3 ⋅≈ρ 26 102 −− •• ⋅≈ msxS r 26 105 −− •• ⋅≈ msxL r ¡¡¡Efecto de la Luna 2,5 veces efecto del Sol!!!
  • 35. 35X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 • Además de este efecto directo de la atracción lunisolar sobre el movimiento del satélite, debemos tener en cuenta que existe un efecto indirecto producido por la deformación de la tierra sólida y las mareas oceánicas. • Las aceleraciones que se producen en el satélite por cada uno de estos procesos se aproximan a 10-9 ms-2. • La consecuencia de estas mareas es que la posición de un receptor en la superficie de la Tierra varía con el tiempo. Ésta variación debe ser tenida en cuenta a la hora de modelar los errores sistemáticos del receptor en las ecuaciones de observación.
  • 36. 36X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Presión por radiación solar • Perturbación producida por el impacto, sobre la superficie del satélite, de los fotones procedentes del Sol. • Los parámetros básicos que hay que considerar para estudiar la presión por radiación solar: - El Área Reflectiva, o superficie normal a la radiación incidente - Reflectividad de la superficie - Luminosidad del Sol - Distancia del satélite al Sol. • La magnitud de la aceleración perturbadora por efecto de la presión por radiación solar es aproximadamente: 27 10 −− •• ≈ msx PRS r
  • 37. 37X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Para limitar los errores obtenidos al calcular la posición de un satélite en un momento dado, la información orbital debe ser tanto más abundante cuanto más precisión se requiera. La información orbital de cada satélite se actualiza cada cierto tiempo. En GPS, además de los 6 parámetros keplerianos, se transmiten otros 9 parámetros.
  • 38. 38X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Para determinar la posición de un satélite GPS se difunden tres tipos de datos: Almanaque Efemérides transmitidas (broadcast) Efemérides precisas (precise) Los datos difieren en disponibilidad temporal y precisión: Almanaque Varios kilómetros Inyectado al satélite una vez a la semana o cada seis días Efemérides transmitidas 1 metro Inyectadas al satélite cada hora, válidas para un periodo de unas 4 horas Efemérides precisas 5 – 25 cm Calculadas a posteriori por los centros de cálculo del IGS. Varios tipos en función de retardo en disponibilidad y precisión Tipos de efemérides Efemérides Precisión Actualización
  • 39. 39X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Propósito de los datos de almanaque: inicialización del receptor proporcionar al usuario datos menos precisos para facilitar al receptor la búsqueda de satélites planeamiento y visualización de satélites visibles en cada momento desde un punto de coordenadas determinadas El almanaque es actualizado al menos cada seis días y transmitido como parte del mensaje de navegación. Contiene esencialmente los parámetros fundamentales de la órbita y términos de corrección para el reloj del satélite. Almanaque Par. keplerianos
  • 40. 40X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Efemérides transmitidas Basadas en observaciones de las estaciones de control. La Estación de Control Master es la responsable del cálculo de efemérides y su descarga a los satélites. Los parámetros transmitidos son: • la época de referencia • seis parámetros para describir la elipse kepleriana en la época de referencia • tres términos seculares de corrección • seis términos periódicos de corrección Los términos de corrección consideran: • efectos de perturbación debido a la no esfericidad de la Tierra, • efectos directos de marea • efectos de presión de radiación solar
  • 41. 41X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Estas efemérides son transmitidas cada hora y sólo deben ser usadas, en orden a garantizar la precisión, durante el periodo descrito de aproximadamente dos horas siguientes y dos horas anteriores.
  • 42. 42X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 AODE segundos Antigüedad de la información de efemérides Crs metros Amplitud de la corrección armónica senoidal del radio orbital ∆n π radianes / s Diferencia del movimiento medio M0 π radianes Anomalía media en el momento de referencia Cuc radianes Amplitud de la corrección armónica cosenoidal del argumento de la latitud e adim. Excentricidad Cus radianes Amplitud de la corrección armónica senoidal del argumento de la latitud A1/2 metros Raiz cuadrada del semieje mayor toe segundos Tiempo de referencia de efemérides (valor máximo 604784, 1 semana) Cic radianes Amplitud de la corrección armónica cosenoidal del ángulo de inclinación Ω0 π radianes Ascensión recta en el momento de referencia Cis π radianes Amplitud de la corrección armónica senoidal del ángulo de inclinación i0 π radianes Angulo de inclinación en la época de referencia Crc metros Amplitud de la corrección armónica cosenoidal del radio orbital ω π radianes Argumento del perigeo OMEGADOTπ radianes / s Razón del cambio en la ascensión recta IDOT π radianes / s Razón del cambio en el ángulo de inclinación Parámetro Unidad Descripción
  • 43. 43X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 El RINEX de navegación
  • 44. 44X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 +----------------------------------------------------------------------------+ | TABLE A4 | | GPS NAVIGATION MESSAGE FILE - DATA RECORD DESCRIPTION | +--------------------+------------------------------------------+------------+ | OBS. RECORD | DESCRIPTION | FORMAT | +--------------------+------------------------------------------+------------+ |PRN / EPOCH / SV CLK| - Satellite PRN number | I2, | | | - Epoch: Toc - Time of Clock | | | | year (2 digits, padded with 0 | | | | if necessary) | 1X,I2.2, | | | month | 1X,I2, | | | day | 1X,I2, | | | hour | 1X,I2, | | | minute | 1X,I2, | | | second | F5.1, | | | - SV clock bias (seconds) | 3D19.12 | | | - SV clock drift (sec/sec) | | | | - SV clock drift rate (sec/sec2) | | +--------------------+------------------------------------------+------------+ | BROADCAST ORBIT - 1| - IODE Issue of Data, Ephemeris | | | | - Crs (meters) | | | | - Delta n (radians/s) | | | - M0 (radians) | | +--------------------+------------------------------------------+------------+ | BROADCAST ORBIT - 2| - Cuc (radians) | | | | - e Eccentricity | | | | - Cus (radians) | | | | - sqrt(A) (sqrt(m)) | | +--------------------+------------------------------------------+------------+| | BROADCAST ORBIT - 3| - Toe Time of Ephemeris | 3X,4D19.12 | | | (sec of GPS week) | | | | - Cic (radians) | | | | - OMEGA (radians) | | | | - CIS (radians) | | +--------------------+------------------------------------------+------------+ | BROADCAST ORBIT - 4| - i0 (radians) | | | | - Crc (meters) | | | | - omega (radians) | | | | - OMEGA DOT (radians/sec) | | +--------------------+------------------------------------------+------------+ | BROADCAST ORBIT - 5| - IDOT (radians/sec) | | | | - Codes on L2 channel | | | | - GPS Week # (to go with TOE) | | | | Continuous number, not mod(1024)! | | | | - L2 P data flag | | +--------------------+------------------------------------------+------------+ | BROADCAST ORBIT - 6| - SV accuracy (meters) | 3X,4D19.12 | | | - SV health (bits 17-22 w 3 sf 1) | | | | - TGD (seconds) | | | | - IODC Issue of Data, Clock | | +--------------------+------------------------------------------+------------+ | BROADCAST ORBIT - 7| - Transmission time of message *) | 3X,4D19.12 | | | (sec of GPS week, derived e.g. | | | | from Z-count in Hand Over Word (HOW) | | | | - Fit interval (hours) | | | | (see ICD-GPS-200, 20.3.4.4) | | | | Zero if not known | | | | - spare | | | | - spare | | +--------------------+------------------------------------------+------------+ El RINEX de navegación (observaciones)
  • 45. 45X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 RINEX de navegación: ejemplo 2.10 N: GPS NAV DATA RINEX VERSION / TYPE teqc 2009Oct19 IGN-E (SPG) 20100525 02:22:03UTCPGM / RUN BY / DATE Linux 2.4.21-27.ELsmp|Opteron|gcc -static|Linux x86_64|=+ COMMENT END OF HEADER 2 10 5 23 22 0 0.0 2.583386376500D-04 3.410605131648D-12 0.000000000000D+00 2.500000000000D+01 5.600000000000D+01 4.732339853319D-09-7.500682485190D-01 2.834945917130D-06 9.551479481161D-03 1.079589128494D-05 5.153587400436D+03 7.920000000000D+04 1.732259988785D-07-6.453972894220D-01-2.514570951462D-07 9.400371639097D-01 1.640312500000D+02 3.069071895483D+00-8.123909545077D-09 -9.750406038123D-11 1.000000000000D+00 1.585000000000D+03 0.000000000000D+00 2.000000000000D+00 0.000000000000D+00-1.722946763039D-08 2.500000000000D+01 8.640000000000D+04 3 10 5 23 23 59 12.0 5.589807406068D-04 5.002220859751D-12 0.000000000000D+00 3.600000000000D+01-3.512500000000D+01 5.760239840669D-09 2.221502882398D-01 -1.581385731697D-06 1.309253496584D-02 6.537884473801D-06 5.153703403473D+03 8.635200000000D+04-7.450580596924D-08-1.798119101301D+00 1.695007085800D-07 9.267988861280D-01 2.332500000000D+02 9.941004162726D-01-8.883584534658D-09 -5.335936692497D-10 1.000000000000D+00 1.585000000000D+03 0.000000000000D+00 2.000000000000D+00 0.000000000000D+00-4.656612873077D-09 3.600000000000D+01 8.640000000000D+04
  • 46. 46X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 6 – Número de satélite 4 3 12 – 12 de Abril de 2004 8 0 0.0 – 8:00:00 horas -2.315267920494D-06 – Coeficiente a0 del polinomio de corrección del estado de reloj -9.094947017729D-13 - Coeficiente a1 del polinomio de corrección del estado de reloj 0.000000000000D+00 - Coeficiente a2 del polinomio de corrección del estado de reloj dt = a0 + a1 (t – t0) + a2 (t – t1)2
  • 47. 47X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (1ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 9.000000000000D+00 – IODE Issue Of Data Ephemeris, edición de las efemérides 8.396875000000D+01 – Crs Coeficiente del término seno de corrección al radio orbital (metros) 4.833772937474D-09 – ∆n Variación del movimiento medio (rad / seg) -2.720155309867D+00 – M0 Anomalía media en la época TOE, Time Of Ephemeries (rad)
  • 48. 48X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (2ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 4.149973392487D-06 - Cuc Coeficiente del término coseno de corrección al argumento de la latitud, perigeo (rad) 6.282908492722D-03 - e Excentricidad de la órbita 9.546056389809D-06 – Cus Coeficiente del término seno de corrección al argumento de la latitud, perigeo (rad) 5.153553123474D+03 – root a Raíz cuadrada del semieje mayor de la órbita (metros)
  • 49. 49X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (3ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 4.608000000000D+05 – TOE, Time Of Ephemeris, Tiempo de Referencia para la posición del satélite (segundos de la semana GPS) 6.519258022308D-08 – Cic Coeficiente del término coseno de la corrección a la inclinación (rad) 1.207090937006D+00 – Ω0 Longitud del nodo ascendente de la órbita al comienzo de la semana GPS (rad) -4.656612873077D-08 – Cis Coeficiente del término seno de la corrección a la inclinación (rad)
  • 50. 50X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (4ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 9.360605692857D-01 – i0 Inclinación de la órbita en la época TOE (rad) 1.811875000000D+02 – Crc Coeficiente del término coseno de corrección al radio orbital (metros) -2.025429555111D+00 – ω Argumento del perigeo (rad) -8.012476904184D-09 – Ω Variación de la ascensión recta (rad/seg) .
  • 51. 51X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (5ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 -1.121475273758D-10 – i Variación de la inclinación (rad/seg) 1.000000000000D+00 - Códigos en L2 1.261000000000D+03 – Semana GPS 0.000000000000D+00 – L2 P data flag (0 = OK) .
  • 52. 52X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (6ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 1.000000000000D+00 – Precisión de las efemérides (metros) 0.000000000000D+00 – Salud del satélite (0 = OK) -4.656612873077D-09 – TGD (segundos) 2.650000000000D+02 – IODC Edición de los datos de reloj
  • 53. 53X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Fichero de navegación – Ejemplo de datos (7ª línea) 6 4 3 12 8 0 0.0-2.315267920494D-06-9.094947017729D-13 0.000000000000D+00 9.000000000000D+00 8.396875000000D+01 4.833772937474D-09-2.720155309867D+00 4.149973392487D-06 6.282908492722D-03 9.546056389809D-06 5.153553123474D+03 4.608000000000D+05 6.519258022308D-08 1.207090937006D+00-4.656612873077D-08 9.360605692857D-01 1.811875000000D+02-2.025429555111D+00-8.012476904184D-09 -1.121475273758D-10 1.000000000000D+00 1.261000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-4.656612873077D-09 2.650000000000D+02 4.608000000000D+05 4.608000000000D+05 – Hora de transmisión del mensaje (segundos de la semana GPS)En este caso, igual que el TOE
  • 54. 54X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Efemérides precisas A partir de las redes mundiales de estaciones permanentes GPS hay agencias que calculan a posteriori las posiciones de los satélites (proceso inverso al GPS: con coordenadas muy precisas en tierra queremos calcular coordenadas de los satélites). Las efemérides precisas pueden ser descargadas desde varios sitios. Normalmente se utilizan las calculadas por el IGS (International GNNS Service), que son una combinación de las calculadas por 7 centros. http://igscb.jpl.nasa.gov/components/products El formato estándar es igswwwwd.SP3(C), donde wwww es la semana GPS y d, el día de la semana GPS (0 = dom, 6 = sáb). Es un fichero ASCII con unos datos de cabecera y un listado con las coordenadas de cada satélite cada 15 minutos (en Km), en el (ITRF), y el estado del reloj en ese momento (en microseg).
  • 55. 55X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Calendario GPS: http://www.ngs.noaa.gov/CORS/gpscal10.html
  • 56. 56X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Ejemplo de efemérides precisas SP3C: #cP2006 6 4 0 0 0.00000000 96 ORBIT IGb00 HLM IGS ## 1378 0.00000000 900.00000000 53890 0.0000000000000 + 29 G01G02G03G04G05G06G07G08G09G10G11G13G14G15G16G17G18 + G19G20G21G22G23G24G25G26G27G28G29G30 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ++ 3 3 3 3 3 4 2 3 3 3 3 3 3 3 3 3 3 ++ 4 3 3 3 3 4 4 3 3 4 4 3 0 0 0 0 0 ++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %c G cc GPS ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc %c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc %f 1.2500000 1.025000000 0.00000000000 0.000000000000000 %f 0.0000000 0.000000000 0.00000000000 0.000000000000000 %i 0 0 0 0 0 0 0 0 0 %i 0 0 0 0 0 0 0 0 0 /* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF: /* cod emr esa gfz jpl mit ngs sio /* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE: /* CLK ANT Z-OFFSET (M): II/IIA 1.023; IIR 0.000 * 2006 6 4 0 0 0.00000000 PG01 15128.852872 -21256.578591 5025.799882 57.112550 11 5 10 168 PG02 -8779.921716 13518.074235 20817.239348 2.112894 13 9 10 158 PG03 9163.206554 -23473.655639 -8047.781722 103.932417 12 10 11 149 PG04 -20181.028993 7425.126614 15774.067274 245.712154 11 13 11 192 ............................. * 2006 6 4 0 15 0.00000000 PG01 15517.077210 -21434.324475 2152.562849 57.115288 11 5 10 166 PG02 -11132.753919 13069.129280 19952.923248 2.115501 13 9 9 157 PG03 9878.780110 -23913.586979 -5390.303246 103.934149 12 9 11 150 PG04 -21809.671509 6958.951821 13719.107869 245.719979 10 13 11 190 Estado de reloj (microseg) σ de las coord (en mm) σ del estado de reloj (picoseg)
  • 57. 57X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Creación en 1991, del International GNSS Service, que coordina una red mundial GNSS. Actualmente, unas 270 estaciones en el mundo. Objetivos del IGS: Mejora, extensión y definición del Marco de Referencia Terrestre Internacional (ITRF). Estudio de la Geodinámica Terrestre. Determinación de las variaciones de rotación terrestre y coordenadas del polo. Cálculo y distribución de efemérides precisas.
  • 58. 58X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Red mundial del IGS
  • 59. 59X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 En la actualidad se integran en la red del IGS casi 400 estaciones con coordenadas y campos de velocidad integrados en el ITRF. Los datos son procesados semanalmente por diez centros de análisis (Analysis Centers) y puestos a disposición por los Regional Data Centers, junto con los datos de todas las estaciones. Los productos que proporciona el IGS son: • efemérides GPS (ultrarrápidas, rápidas y finales), • estados de reloj de satélites, • efemérides GLONASS finales, • coordenadas de las estaciones, • parámetros de rotación de la Tierra (PM, movimiento del polo) • parámetros atmosféricos (retardo troposférico y densidad TEC en la ionosfera). http://www.igscb.jpl.nasa.gov
  • 60. 60X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
  • 61. 61X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
  • 62. 62X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010
  • 63. 63X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Ejercicio: cálculo de la posición del satélite Calcular la posición del satélite 30 a partir de los siguientes datos del mensaje de navegación, para las observaciones de código recibidas en el receptor a las 0:00:00 del día 11 de agosto de 2000 (6º de la semana GPS 1074) Dato adicional: Pseudodistancia de código del satélite 30 en ese instante: 20659421.934 metros. Para el instante de observación: 0 8 11 0 0 0.0000000 0 6G30G29G06G25G24G05 RINEX de NAVEGACIÓN: 30 00 8 11 2 0 0.0-3.275135532022D-05-1.477928890381D-12 0.000000000000D+00 4.000000000000D+01-6.093750000000D+00 5.169858202488D-09 1.362239438238D+00 -4.190951585770D-07 5.362690542825D-03 6.673857569695D-06 5.153622058868D+03 4.392000000000D+05-1.043081283569D-07-1.538901799997D+00-7.823109626770D-08 9.436444989925D-01 2.411562500000D+02 1.445954310898D+00-8.276059016792D-09 -3.171560679661D-10 0.000000000000D+00 1.074000000000D+03 0.000000000000D+00 1.000000000000D+00 0.000000000000D+00-7.450580596924D-09 2.960000000000D+02 4.392000000000D+05 TOE Igual que TOE
  • 64. 64X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 El TOE o tiempo de referencia de las efemérides es en segundos GPS de referencia de la semana GPS. Corresponde a la tercera línea, primera columna: segundo 439200, que se corresponde con las 2:00:00 horas del 11 de agosto de 2000 (las efemérides predicen la posición que tendrá el satélite a esa hora). Se piden las coordenadas a las 0:00:00 del 6º día de la semana GPS. En segundos de la semana GPS han transcurrido 60x60x24x5 = 432000 segundos, por lo tanto, el intervalo de tiempo entre el TOE y las 0:00:00 (época en la que nos piden las coordenadas) es de: 432000-439200 = -7200 sg (por tanto se pide la posición del SV 2 h antes del TOE). Por otra parte, la pseudodistancia del SV 30 es de 20659421.934 metros. Si dividimos su valor por la velocidad de la luz (299792458 m/s) tenemos el tiempo que ha tardado la señal en viajar, 0.06891241384732 segundos. Por tanto, el intervalo de tiempo desde TOE es de -7200.068912 segundos (tk). ACLARACIÓN: Como esto servirá para la práctica posterior de posicionamiento, las coordenadas del SV tienen que estar dadas en el tiempo en que el SV envía la observación, es decir, 0.0689 segundos antes de recibirla en el receptor.
  • 65. 65X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 svprn 30.00000000000000 a2 0.00000000000000 M0 1.36223943823800 roota 5153.622058868000 deltan 0.00000000516985820249 e 0.0053626905428250 omega 1.445954310898000 cuc -0.00000041909515857700 cus 0.00000667385756969500 crc 241.156250000000 crs -6.0937500000000 i0 0.94364449899250 idot -0.00000000031715606797 cic -0.00000010430812835690 cis -0.00000007823109626770 Omega0 -1.53890179999700000000 Omegadot -0.00000000827605901679 toe 439200.0000000000 af0 -0.00003275135532022000 af1 -0.00000000000147792889 toc 439200.000000000
  • 66. 66X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Cálculo de la posición del satélite: proceso 2 )( AA = oek ttt −= 30 A n µ = nnn ∆+= 0 kntMM += 0 senEeEM .−= ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − = eE senEe k cos 1 arctan 2 ϑ ωϑφ += k φφφ 2cos2 ucus CsenCu ++= Obtener E Proceso iterativo En el 1º E=M φφ 2cos2)cos1( rcrs CsenCEeAr ++−= φφ 2cos2)(0 icisk CsenCtIDOTii ++⋅+= Ω−Ω= isenyxX coscos 11 Ω+Ω= coscos11 iysenxY seniyZ 1= urx cos1 = rsenuy =1 oeeke tt Ω−⋅Ω−Ω+Ω=Ω &&& )(0 ⎪ ⎪ ⎭ ⎪⎪ ⎬ ⎫ ⎪ ⎪ ⎭ ⎪⎪ ⎬ ⎫
  • 67. 67X Curso GPS en Geodesia y Cartografía. Montevideo, mayo 2010 Solución GM = 3.986005e14 Constante de gravitación universal Omegaearth_dot = 7.2921151467e-5 Aceleración de la Tierra (Wgs84) a= 2.655982032565084e+007 Semieje mayor n0 = 1.458583245017110e-004 Movimiento medio calculado tk = -7.200068912413844e+003 Intervalo desde Toe n = 1.458634943599135e-004 Movimiento medio corregido M = 0.31201222704113 Anomalía media E = 0.31366687806927 Anomalía excéntrica θ = 0.31532577168381 Anomalía verdadera phi = 1.76128008258181 Argumento de la latitud u = 1.76127799016444 Argumento de la latitud corregido r = 2.642411609505970e+007 Radio vector i = 0.94364690845563 Inclinación Omega = -1.62484808447525 Longitud del nodo ascentente corregida xk= 1.54742833873780e+7 yk= 0.41730167179566e+7 Coordenadas en tierra fija zk= 2.10087219155275e+7