SlideShare una empresa de Scribd logo
1 de 28
Descargar para leer sin conexión
COMUNICACIONES
OPTICAS
WDM
AMBROCIO BARRUETO FAUSTO MIGSEL
2012
Sistemas de Comunicación Óptica
1
INDICE
INTRODUCCION 02
MULTIPLEXACION POR DIVISION DE LONGITUD DE ONDA
(WDM) 04
COMPONENTES DE UN SISTEMA WDM 06
CARACTERISTICAS DE WDM 09
TECNOLOGIAS DE DISPOSITIVOS DE FIBRA OPTICA WDM 11
VENTAJAS DE WDM 18
VARIACIONES DE WDM 18
COMPARACION DE CON DWDM 23
EQUIPOS COMERCIALES WDM 24
APLICACIÓN DE WDM 26
CONCLUSIONES 27
BIBLIOGRAFÍA 27
Sistemas de Comunicación Óptica
2
INTRODUCCION
Siempre que la capacidad de transmisión de un medio que enlaza dos dispositivos sea
mayor que las necesidades de transmisión de los dispositivos, el enlace se puede
compartir, de forma similar a como una gran tubería de agua puede llevar agua al mismo
tiempo a varias casa separadas. La multiplexación es el conjunto de técnicas que permite
la transmisión simultánea de múltiples señales a través de un único enlace de datos.
A medida que se incrementa el uso de los datos y las telecomunicaciones, se incrementa
también el tráfico. Se puede hacer frente a este incremento añadiendo líneas individuales
cada vez que se necesita un canal nuevo o se puede instalar enlaces de más capacidad y
usarlos para transportar múltiples señales. La tecnología actual incluye medios de gran
ancho de banda, como el cable coaxial, la fibra óptica y las microondas terrestres y vía
satélite. Cualquiera de estos tiene una capacidad que sobrepasa con mucho las
necesidades medias para transmitir una señal. Si la capacidad de transmisión del enlace es
mayor que las necesidades de transmisión de los dispositivos conectados a el, la capacidad
sobrante se malgasta. Un sistema eficiente maximiza la utilización de todas las facilidades.
A demás, la cara tecnología utilizada a menudo se hace solo cuando se comparte enlaces.
En la siguiente figura se muestra dos posibles formas de enlazar cuatro pares de
dispositivos. Como se ve en la figura a, cada par tiene su propio enlace, si no se utiliza la
capacidad completa de cada enlace, se está malgastando una porción de esta capacidad.
En la figura b, las transmisiones entre pares están multiplexados, los mismos cuatro pares
comparten la capacidad de un único enlace.
Comunicación sin y con multiplexación
Sistemas de Comunicación Óptica
3
En un sistema multiplexado, n dispositivos comparten la capacidad de un enlace, en la
figura anterior se muestra el formato básico de un sistema de multiplexado. Los cuatro
dispositivos de la izquierda envían sus flujos de transmisión a un multiplexor (MUX), que
los combina en un único flujo (muchos a uno). El extremo receptor, el flujo se introduce en
un demultiplexor (DEMUX), que separa el flujo en sus transmisiones componentes (uno a
muchos) y los dirige a sus correspondientes dispositivos receptores.
La palabra camino que se ve en la anterior figura se refiere al enlace físico. La palabra
canal se refiere a una por ion de camino que lleva una transmisión entre un determinado
par de dispositivos. Un camino puede tener muchos (n) canales.
Las señales se multiplexan usando tres técnicas básicas:
- Multiplexación por división de tiempo TDM
- Multiplexación por división de frecuencia FDM
- Multiplexación por división de onda WDM
Técnicas de multiplexación
Sistemas de Comunicación Óptica
4
MULTIPLEXACION POR DIVISION DE LONGITUD DE ONDA
(WDM)
En telecomunicaciones, la multiplexación por división de longitud de onda (WDM, del
inglés Wavelength Division Multiplexing) es una tecnología que multiplexa varias señales
sobre una sola fibra óptica mediante portadoras ópticas de diferente longitud de onda,
usando luz procedente de un láser o un LED.
Este término se refiere a una portadora óptica (descrita típicamente por su longitud de
onda) mientras que la multiplexación por división de frecuencia generalmente se emplea
para referirse a una portadora de radiofrecuencia (descrita habitualmente por su
frecuencia). Sin embargo, puesto que la longitud de onda y la frecuencia son inversamente
proporcionales, y la radiofrecuencia y la luz son ambas formas de radiación
electromagnética, la distinción resulta un tanto arbitraria.
El dispositivo que une las señales se conoce como multiplexor mientras que el que las
separa es un demultiplexor. Con el tipo adecuado de fibra puede disponerse un dispositivo
que realice ambas funciones a la vez, actuando como un multiplexor óptico de inserción-
extracción.
Los primeros sistemas WDM aparecieron en torno a 1985 y combinaban tan sólo dos
señales. Los sistemas modernos pueden soportar hasta 160 señales y expandir un sistema
de fibra de 10 Gb/s hasta una capacidad total 25.6 Tb/s sobre un solo par de fibra.
La multiplexación por división de onda (WDM, Wave División Multiplexing) la
multiplexación y la demultiplexación involucran señales luminosas transmitidas a través
de canales de fibra óptica. La idea es la misma: se combina distintas señales sobre
frecuencias diferentes. Sin embargo, la diferencia es que las frecuencias son muy altas.
En la siguiente figura da una visión conceptual de un multiplexador y demultiplexador
WDM. Bandas de luz muy estrechas de distintas fuentes se combinan para conseguir una
banda de luz más ancha. En el receptor, las señales son separadas por el demultiplexor.
Sistemas de Comunicación Óptica
5
El mecanismo de WDM es una tecnología muy compleja, pero sin embargo la idea es muy
simple. Se quiere combinar múltiples haces de luz dentro de una única luz en el
multiplexor y hacer la operación inversa en el demultiplexor. Combinar y dividir haces de
luz se resuelve fácilmente un prisma. Como la física básica que un prisma curva un rayo de
luz basándose en el ángulo de incidencia y la frecuencia. Usando esta técnica, se puede
hacer un multiplexor que combine distintos haces de luz de entrada, cada uno de los
cuales contiene una banda estrecha de frecuencia, en un único haz de salida con una
banda de frecuencia mas ancha. También se puede hacer un demultiplexor para hacer la
operación para revertir el proceso como se ve en la siguiente figura.
Sistemas de Comunicación Óptica
6
COMPONENTES DE UN SISTEMA WDM
En este diagrama se muestra los diferentes dispositivos requeridos para un sistema WDM:
A continuación se mostrarán los principales:
Equipo terminal WDM: Transmisión
El equipo terminal de transmisión en un sistema WDM consta de los siguientes elementos:
Transpondedor de transmisión, multiplexor óptico, amplificador óptico, compensadores
de dispersión, interfaces ópticos
En este caso el transponedor de transmisión convierte la longitud de onda de la segunda
ventana de cada señal óptica de entrada a la longitud de onda específica de la banda C
luego un multiplexor óptico multiplexa las N señales de diferentes longitudes de onda en
la banda C una única señal óptica para luego pasar por un amplificador de potencia el
mismo que amplifica la señal óptica multiplexada, antes de su transmisión por la fibra
óptica. Un interfaz óptico entre el cliente y el transportador depende de la velocidad y la
distancia entre ellos. Los componentes de dispersión impiden el ensanchamiento
espectral de cada uno de los canales ópticos, para evitar solapamiento, debido al efecto
de dispersión introducido por toda fibra óptica
Sistemas de Comunicación Óptica
7
Equipo terminal WDM: Recepción
Los elementos que se encuentran en un terminal de recepción como son: Preamplificador
óptico, de multiplexores ópticos, transpondedores de recepción. En el transponedor de
recepción, para cada portadora convierte la longitud de onda específica de la banda C en
una señal óptica de longitud de onda en segunda ventana (1300 nm), en otras palabras se
encarga de conmutar una señal coloreada en una señal SDH.
Transpondedor de Transmisión
Un transpondedor tiene como función adaptar la señal que proviene del cliente para su
uso en la red y viceversa, en la figura se ilustra las partes que forman un transpondedor.
Sistemas de Comunicación Óptica
8
El transpondedor está formada por: receptor óptico, regenerador eléctrico y transmisor
óptico. El receptor se encarga de convertir la señal óptica (segunda ventana) en señal
eléctrica, en cuanto l regenerador, lleva a cabo las funciones 3R y finalmente el transmisor
óptico, convierte la señal eléctrica regenerada en la señal óptica DWDM.
Regenerador–Amplificador Óptico
En la figura anterior se muestra un esquema de un generador el mismo que es utilizado
para la conversión de señal óptica a señal eléctrica, regeneración de la señal eléctrica
(funciones 3R) y por último brindan conversión de la señal eléctrica a señal óptica. A
continuación se presenta un amplificador óptico el cual es usado en sistemas WDM que
lleva a cabo a amplificación de todas las señales ópticas sin pasar al nivel eléctrico.
Los amplificadores ópticos se dividen en dos tipos: amplificadores de fibra óptica (OFA) y
amplificador óptico semiconductor (SOA).En los amplificadores ópticos de
semiconductores se amplifica la señal que pasa por la fibra región activa de un
semiconductor bombeada de forma eléctrica. Estos amplificadores, en comparación con
los OFA presentan menor ganancia, mayor factor de ruido, sensibilidad a la polarización y
efectos no lineales.
Los Amplificadores de Fibra Óptica (OFA) amplifican la señal mediante lentes de fibra
dopada, los cuales tienen la propiedad de amplificar luz. El elemento más común para
esteuso es el Erbio, que entrega una ganancia en longitudes de onda entre 1525 nm y
1560nm. Los amplificadores de fibra dopados con erbio (EDFA-Erbium Doped Fiber
Amplifier).También existen los amplificadores de fibra de fluoruro dopados con
Praseodimio, denominados PDFFA, que tienen una región de ganancia entre 1280 nm y
1330 nm. Estos dos tipos de amplificadores pueden tener una ganancia máxima de 30 dB.
Otro tipo de amplificadores son los Amplificadores Raman que son dispositivos ópticos no
lineales, los cuales tienen ganancia no resonante presente en toda la fibra. A continuación
se indica el esquema interno de un amplificador tipo EDFA que se basan en un segmento
Sistemas de Comunicación Óptica
9
(15 a 29 metros) de fibra dopada con Erbio, excitada con un láser de bombeo y un circuito
de control de ganancia.
En la siguiente figura se muestra la estructura de un multiplexor óptico de
extracción/inserción que puede extraer y adicionar N señales ópticas, cada una de ellas
asociada a una portadora que tiene una longitud de onda diferente, normalmente incluye
amplificadores ópticos de entrada/salida así como también transpondedores.
CARACTERISTICAS DE WDM
Los sistemas de comunicación que utilizan como medio de transmisión una fibra óptica se
basan en inyectar en un extremo de la misma la señal a transmitir (previamente la señal
eléctrica procedente del emisor se ha convertido en óptica mediante un LED o Láser y ha
modulado una portadora) que llega al extremo receptor, atenuada y, probablemente con
alguna distorsión debido a la dispersión cromática propia de la fibra, donde se recibe en
un foto detector, es decodificada y convertida en eléctrica para su lectura por el receptor.
El tipo de modulación y/o codificación que se emplea con los sistemas de fibra óptica
depende de una serie de factores y algunas fuentes de luz se adaptan mejor a unos tipos
que a otros. Así el LED, con un amplio espectro en el haz luminoso, admiten muy bien la
Sistemas de Comunicación Óptica
10
modulación en intensidad, mientras que el láser -un haz de luz coherente adapta mejor a
la modulación en frecuencia y en fase.
En distancias cortas, como es en el entorno de una oficina, la atenuación de la fibra
(mínima para una longitud de onda de 1,55 (mm) y la dispersión (mínima para 1,3 (mm)
no presenta un gran problema, pero a distancias mayores, como las que se requieren en
los enlaces de comunicaciones a larga distancia, realmente lo es y se requiere el uso de
amplificadores/repetidores que regeneren la señal cada cierta distancia.
Por ejemplo en los cables trasatlánticos se colocan repetidores cada 75 Km. que, primero,
convierten la señal óptica degradada en eléctrica, la amplifican y la vuelven a convertir en
óptica mediante un diodo láser, para inyectarla de fibra óptica, todo un proceso complejo
y que introduce retardos debido a los dispositivos electrónicos por los que ha de pasar la
señal.
Este inconveniente se evitaría si todo el camino pudiese ser óptico (all-optical), algo que
ya es posible gracias a los resultados obtenidos, hace ya más de una década, por
investigadores de la Universidad de Southampton, que descubrieron la manera de
amplificar una señal óptica en una longitud de onda de 1,55 mm haciéndola pasar por una
fibra de 3 metros de longitud dopada con iones erbio e inyectando en ella una luz de láser
a 650 mm (fenómeno que se conoce como bombeo o pumping).
Sistemas de Comunicación Óptica
11
TECNOLOGIAS DE DISPOSITIVOS DE FIBRA OPTICA WDM
Los dispositivos WDM son los siguientes:
- Fuentes láser:
El diodo láser es un dispositivo semiconductor similar a los diodos LED pero que bajo las
condiciones adecuadas emite luz láser. A veces se los denomina diodos láser de inyección,
o por sus siglas inglesas LD o ILD.
Láser Fabry-Perot
En los diodos láser, para favorecer la emisión estimulada y generación de luz láser, el
cristal semiconductor del diodo puede tener la forma de una lámina delgada con un lado
totalmente reflectante y otro sólo reflectante de forma parcial (aunque muy reflectante
también), lográndose así una unión PN de grandes dimensiones con las caras exteriores
perfectamente paralelas y reflectantes. Es importante aclarar que las dimensiones de la
unión PN guardan una estrecha relación con la longitud de onda a emitir. Este conjunto
forma una guía de onda similar a un resonador de tipo Fabry-Perot. En ella, los fotones
emitidos en la dirección adecuada se reflejarán repetidamente en dichas caras
reflectantes (en una totalmente y en la otra sólo parcialmente), lo que ayuda a su vez a la
emisión de más fotones estimulados dentro del material semiconductor y
consiguientemente a que se amplifique la luz (mientras dure el bombeo derivado de la
circulación de corriente por el diodo). Parte de estos fotones saldrán del diodo láser a
través de la cara parcialmente transparente (la que es sólo reflectante de forma parcial).
Este proceso da lugar a que el diodo emita luz, que al ser coherente en su mayor parte
(debido a la emisión estimulada), posee una gran pureza espectral. Por tanto, como la luz
emitida por este tipo de diodos es de tipo láser, a estos diodos se los conoce por el mismo
nombre.
Algunas características de estos laser son que funciona en la segunda y tercera ventana,
en conexiones de corta y media distancia. Ancho espectral 3-20 nm
Sistemas de Comunicación Óptica
12
VCSEL’slásers
VCSEL ( Vertical Cavity Surface Emitting Laser ). Láser de emisión superficial con cavidad
vertical, es un diodo semiconductor que emite luz en un haz cilíndrico vertical de la
superficie de un oblea, y ofrece ventajas significativas cuando se compara con láser de
emisión lateral comúnmente usados en la mayoría de comunicaciones por fibra óptica.
Los VCSELs pueden ser construidos con GaAs, InGaAs.
Para el funcionamiento del VCSEL (Vertical CavitySurfaceEmitting Laser) se requiere de
una región activa de emisión de luz encerrada en un resonador que consta de dos espejos.
En este caso, los espejos son parte de las películas epitaxiales, por lo que estas películas se
sobreponen formando una pila. Estos espejos son conocidos como reflectores distribuidos
de Bragg (DBRs),
Algunas características de este laser son que tiene nueva estructura, diferentes materiales
semiconductores hacen de espejo por encima y debajo de la zona activa (Donde se
produce la luz), emisión monocromática, muy alta eficiencia.
- Conectores
Los conectores ópticos constituyen, quizás, uno de los elementos más importantes
dentro de la gama de dispositivos pasivos necesarios para establecer un enlace óptico,
siendo su misión, junto con el adaptador, la de permitir el alineamiento y unión
temporal y repetitivo, de dos o más fibras ópticas entre sí y en las mejores condiciones
ópticas posibles.
Sistemas de Comunicación Óptica
13
Los conectores de fibra óptica básicamente tienen la tarea de unir dos puntas de
distintas fibras para establecer un enlace.
También busca establecer una buena conexión entre las fibras para reducir las
pérdidas en los empalmes.
En la siguiente figura se ve un conector de fibra óptica básico que contiene todas las
partes de un conector.
Tipos de conectores
ST: Los conectores ST fueron creado s en los 80`s por AT&T y deriva del ingles
"StraightTip", tienen un diseño tipo bayoneta que permite alinear el conector de manera
sencilla al adaptador. Su mecanismo de acoplación tipo "Empuja y Gira" asegura que el
conector no tenga deslizamientos y desconexiones. El cuerpo del conector sujeta la férula,
ofreciendo una mejor alineación y previniendo movimientos rotatorios. El ST ha sido el
conector más popular en las redes de área local (LAN) por su buena relación calidad-
precio.
SC: Los conectores SC, tienen un diseño versátil que permite alinear el conector de
manera sencilla al adaptador. Su mecanismo de acoplación tipo "PushPull" lo asegura al
adaptador de manera sencilla. El cuerpo del conector sujeta la férula, ofreciendo una
mejor alineación y previniendo movimientos. El conector SC es el más popular tanto en
LAN como en redes de transporte: operadoras telefonías, CATV.
FC: Los conectores FC fueron creados en los 80`s por NTT por su nombre en ingles
"FiberConnection", tienen un diseño versátil tipo rosca que permite asegurar y alinear el
conector de manera firme en el adaptador. Su mecanismo de acoplación tipo Rosca
asegura que el conector no tenga deslizamientos o desconexiones.
El cuerpo del conector sujeta la férula, ofreciendo una mejor alineación y previniendo
movimientos. Las partes de los conectores son: Férula (Cilindro que rodea la fibra a
Sistemas de Comunicación Óptica
14
manera de PIN), Cuerpo (Es la base del conector), Ojillo de crimpado (Es el que sujeta la
fibra al conector), Bota (Es el mango del conector).
LC: Desarrollados en 1997 por Lucent Technologies, los conectores LC tienen un aspecto
exterior similar a un pequeño SC, con el tamaño de un RJ 45 y se presentan en formato
Simplex o Dúplex, diferenciándose externamente los de tipo SM de los de tipo MM por un
código de colores. El LC es un conector de alta densidad SFF diseñado para su uso en todo
tipo de entornos: LAN, operadoras de telefonías, CATV.
Algunos ejemplos de los conectores que se usan o se ven en el mercado son las siguientes.
- Acopladores
El adaptador es un dispositivo mecánico que hace posible el correcto enfrentamiento de
dos conectores de idéntico o distinto tipo.
Los Acopladores permiten el enfrentamiento de dos conectores ópticos para el correcto
alineamiento de las fibras
Sistemas de Comunicación Óptica
15
Cuando se ponen varios acopladores juntos, se habla de rack.
- Aisladores
Los aisladores ópticos suprimen el reflejo de vuelta de la luz.
Es dispositivo pasivo que permite la transmisión en una sola dirección.
Se utiliza generalmente después de un láser o un amplificador para evitar que señales
reflejadas afecten el rendimiento del sistema.
Permite la transmisión en una sola dirección
Toda transmisión en sentido opuesto es bloqueada
- Circuladores
El circulador óptico Accelink es un micro-dispositivo óptico fabricado usando la tecnología
libre de plomo. El circulador presenta dos opciones: circulador de tres puertos ópticos y
circulador de cuatro puerto ópticos. Presentando una estructura compacta, calidad
confiable, alto aislamiento y bajas perdidas PDL y bajas perdidas por inserción, este
ciculador óptico es muy bien recibido por nuestros clientes alrededor del mundo entero.
Sistemas de Comunicación Óptica
16
Basados en aisladores.
Se utilizan principalmente en aplicaciones Add/Drop.
También para separar señales de propagación forward y backward>50 dB
- ADD/DROP
Elementos que permitan retirar y/o colocar uno o varios canales dentro de un enlace de
fibra.
Basados en circuladores y filtros
- Filtros ópticos
Un filtro óptico es un medio que sólo permite el paso a través de él de luz con ciertas
propiedades, suprimiendo o atenuando la luz restante. Los filtros ópticos más comunes
son los filtros de color, es decir, aquellos que sólo dejan pasar luz de una determinada
longitud de onda. Si se limitan a atenuar la luz uniformemente en todo el rango de
frecuencias se denominan filtros de densidad neutra.
Según su procedimiento de acción pueden ser de absorción, si absorben parte de la luz, o
bien reflectivos si la reflejan. A este último grupo pertenecen los filtros dicroicos. Los usos
Sistemas de Comunicación Óptica
17
de los filtros ópticos incluyen la fotografía, iluminación y numerosos usos científicos. Los
filtros de absorción se elaboran depositando sobre la superficie de un sustrato
transparente o mezclado en él, una sustancia con propiedades absorbentes de la luz.
Según el rango de frecuencias que dejan sin filtrar, se clasifican en filtros de paso alto o de
paso bajo, según si dejan sin filtrar las radiaciones de frecuencia superior o inferior
respectivamente a cierto valor, denominado frecuencia de corte. En los filtros de paso de
banda se filtran las frecuencias por encima y por debajo de ciertos límites.
La atenuación de la señal filtrada se mide mediante la transmitancia óptica del medio
filtrante o su inversa.
Las propiedades de un filtro óptico son un amplio rango de selección, mecanismo de
selección de canal rápido, baja pérdida de inserción, insensibilidad a la polarización,
estabilidad independiente del ambiente, bajo costo de producción
- Multiplexores y demultiplexores
Se usa una grilla de dispersión para separar las distintas longitudes de onda.
- Amplificadores ópticos
En fibra óptica, un amplificador óptico es un dispositivo que amplifica una señal óptica
directamente, sin la necesidad de convertir la señal al dominio eléctrico, amplificar en
eléctrico y volver a pasar a óptico.
Sistemas de Comunicación Óptica
18
VENTAJAS DE WDM
- Permite la transmisión simultánea de señales a diferentes longitudes de onda
sobre la misma fibra
- Aumenta el ancho de banda
- Solución económica para alcanzar capacidades muy altas
- Permite alcanzar con amplificadores distancias muy altas.(cientos de kilometros)
VARIACIONES DE WDM
La multiplexación por división en longitud de onda, multiplexación óptica o WDM
(Wavelength Division Multiplexing).
En WDM se distinguen típicamente cuatro familias de sistemas: DWDM de ultra larga
distancia, DWDM de larga distancia, DWDM metropolitano, y CWDM. Las cuatro familias
de sistemas WDM utilizan componentes ópticos distintos, siendo más complejos y caros
los que soportan mayores capacidades por canal y agregadas, y los que soportan mayores
distancias de transmisión.
En DWDM de larga y ultralarga distancia el espaciamiento de frecuencias actual es
de 50-100 GHz (0,4-0,8 nm), en DWDM metropolitano de 100-200 GHz (0,8-1,6 nm), y en
CWDM de 2.500 GHz (20 nm).
En cuanto al número de longitudes de onda, mientras en DWDM se utilizan hasta
160 y en DWDM metropolitano hasta 40, en CWDM se suelen utilizar hasta 18.
Mientras los sistemas DWDM de larga y ultralarga distancia soportan canales de
hasta 40 Gbps, la mayoría de los sistemas DWDM metropolitanos soportan hasta 10 Gbps
y los CWDM actuales tienen su límite en 2,5 Gbps.
En cuanto a las distancias que se suelen cubrir, los sistemas DWDM de ultralarga
distancia alcanzan hasta unos 4.000 Km sin regeneración electroóptica, los de larga
distancia hasta unos 800 Km, los DWDM metropolitanos hasta unos 300 Km, y los CWDM
hasta unos 80 Km.
Sistemas de Comunicación Óptica
19
CWDM
Las longitudes de onda utilizables por los sistemas CWDM fueron estandarizadas por la
ITU-T (International Telecommunication Union) en el año 2002. La norma, denominada
ITU-T G.694.2, se basa en una rejilla o separación de longitudes de onda de 20 nm (o 2.500
GHz) en el rango de 1.270 a 1.610 nm; pudiendo así transportar hasta 18 longitudes de
onda en una única fibra óptica monomodo. La tecnología de CWDM permite el uso de un
hilo de la fibra de dos hilos para admitir varias topologías de red y velocidades de datos a
fin de aumentar exponencialmente la capacidad de ancho de banda y proporcionar la
capacidad de agregar nuevos clientes sin necesidad de tender un nuevo cable de fibra
óptica entre sitios. De acuerdo con esto, se tienen dos importantes características
inherentes a los sistemas CWDM que permiten emplear componentes ópticos más
sencillos y, por lo tanto, también más baratos que en los sistemas DWDM:
 Mayor espaciamiento de longitudes de onda. De esta forma, en CWDM se pueden
utilizar láseres con un mayor ancho de bandas espectrales y no estabilizadas, es decir,
que la longitud de onda central puede desplazarse debido a imperfecciones de
fabricación o a cambios en la temperatura a la que está sometido el láser y aun así,
estar en banda. Esto permite fabricar láseres siguiendo procesos de fabricación
menos críticos que los utilizados en DWDM, y que dichos láseres no tengan
sofisticados circuitos de refrigeración para corregir posibles desviaciones de la
longitud de onda debidos a cambios en la temperatura a la que está sometido el chip;
lo cual reduce sensiblemente el espacio ocupado por el chip y el consumo de
potencia, además del coste de fabricación. Por lo general en CWDM se utilizan
láseres de realimentación distribuida o DFB (DistributedFeed-Back) modulados
directamente y soportando velocidades de canal de hasta 2,5 Gbps sobre distancias
de hasta 80 Km en el caso de utilizar fibra óptica G.652.
 Mayor espectro óptico. Esto, que permite que el número de canales susceptibles de
ser utilizados no se vea radicalmente disminuido a pesar de aumentar la separación
entre ellos, es posible porque en CWDM no se utilizan amplificadores ópticos de fibra
dopada con Erbio o EDFA (ErbiumDopedFilterAmplifier) como ocurre en DWDM para
distancias superiores a 80 Km. Los EDFA son componentes utilizados antes de
transmitir o recibir de la fibra óptica, para amplificar la potencia de todos los canales
ópticos simultáneamente, sin ningún tipo de regeneración a nivel eléctrico. Los
sistemas CWDM utilizan, de ser necesario por las distancias cubiertas o número de
nodos en cascada a atravesar, regeneración; es decir, cada uno de los canales sufre
una conversión óptico-eléctrico-óptico de forma totalmente independiente al resto
para ser amplificado. El coste de la optoelectrónica en CWDM es tal, que es más
simple y menos caro regenerar que amplificar. Por otro lado, puesto que los
regeneradores realizan por completo las funciones de amplificación, reconstrucción
Sistemas de Comunicación Óptica
20
de la forma de la señal, y temporización de la señal de salida, compensan toda la
dispersión acumulada; esto no ocurre en la amplificación óptica, a no ser que se
utilicen fibras con compensación de dispersión o DCF (Dispersion Compensation
Fiber), de alto coste y que además suelen requerir de una etapa de preamplificación
previa dada la alta atenuación que introducen.
Además, CWDM es muy sencillo en cuanto a diseño de red, implementación, y operación.
CWDM trabaja con pocos parámetros que necesiten la optimización por parte del usuario,
mientras que los sistemas DWDM requieren de complejos cálculos de balance de
potencias por canal, algo que se complica aún más cuando se añaden y extraen canales o
cuando DWDM es utilizado en redes en anillo, sobre todo cuando los sistemas incorporan
amplificadores ópticos.
Ventajas.-
- Menor consumo energético.
- Tamaño inferior de los láser CWDM,
- Soluciona los problemas de cuellos de botella
- Hardware y costo operativo más barato referente a otras tecnologías de la misma
familia.
- Anchos de banda más elevada.
- Es más sencillo referente al diseño de la red, implementación y operación.
- Mayor facilidad de instalación, configuración y mantenimiento de la red
- Alto grado de flexibilidad y seguridad en la creación de redes ópticas
metropolitanas.
Las tres primeras utilizan componentes ópticos más complejos, de mayores distancias de
transmisión y más caros que CWDM, la cual está desarrollada especialmente para zonas
metropolitanas, ofreciendo anchos de banda relativamente altos a un coste mucho más
bajo, esto debido a los componentes ópticos de menor complejidad, limitada capacidad y
distancia, por lo cual es la más competitiva a corta distancia.
Sistemas de Comunicación Óptica
21
Dense Wavelength Division Multiplexing (DWDM) es una técnica de transmisión de
señales a través de fibra óptica usando la banda C (1550 nm). Es una tecnología que pone
los datos de diferentes fuentes, junto a una fibra óptica , con cada señal transmitida en el
momento mismo en su propia luz independiente de longitud de onda. Utilizando DWDM,
hasta 80 (y teóricamente más) longitudes de onda por separado o canales de datos
pueden ser multiplexados en un Light Stream transmite en una sola fibra óptica. Cada
canal tiene una división en el tiempo multiplexado ( TDM ) De la señal. En un sistema con
cada canal lleva 2,5 Gbps (mil millones de bits por segundo), hasta 200 mil millones de bits
se pueden entregar en un segundo por la fibra óptica. DWDM también se le llama
multiplexación por división de onda (WDM).
Dado que cada canal se demultiplexa al final de la transmisión de vuelta a la fuente
original, diferentes formatos de datos que se transmiten a velocidades de datos diferentes
se pueden transmitir juntos. En concreto, de Internet (IP) de datos, síncrona de datos de
red óptica (SONET), y el modo de transferencia asíncrono ( ATM ) todos los datos pueden
viajar al mismo tiempo dentro de la fibra óptica.
DWDM es un método de multiplexación muy similar a la Multiplexación por división de
frecuencia que se utiliza en medios de transmisión electromagnéticos. Varias señales
portadoras (ópticas) se transmiten por una única fibra óptica utilizando distintas
longitudes de onda de un haz láser cada una de ellas. Cada portadora óptica forma un
canal óptico que podrá ser tratado independientemente del resto de canales que
comparten el medio (fibra óptica) y contener diferente tipo de tráfico. De esta manera se
puede multiplicar el ancho de banda efectivo de la fibra óptica, así como facilitar
comunicaciones bidireccionales. Se trata de una técnica de transmisión muy atractiva para
las operadoras de telecomunicaciones ya que les permite aumentar su capacidad sin
tender más cables ni abrir zanjas. Para transmitir mediante DWDM es necesario dos
dispositivos complementarios: un multiplexor en lado transmisor y un demultiplexor en el
lado receptor. A diferencia del CWDM, en DWDM se consigue mayor números de canales
ópticos reduciendo la dispersión cromática de cada canal mediante el uso de un láser de
mayor calidad, fibras de baja dispersión o mediante el uso de módulos DCM
“DispersionCompensation Modules”. De esta manera es posible combinar más canales
reduciendo el espacio entre ellos. Actualmente se pueden conseguir 40, 80 o 160 canales
ópticos separados entre sí 100 GHz, 50 GHz o 25 GHz respectivamente.
El medio de transmisión utilizado en DWDM es la fibra óptica y, en concreto, la fibra
óptica monomodo. La fibra óptica monomodo, además de soportar mayores anchos de
banda que el resto medios de transmisión de señales, ofrece otras muchas ventajas: baja
atenuación, fácil instalación, inmunidad a interferencias electromagnéticas, alta seguridad
de la señal, posibilidad de integración, etc. La fibra óptima para trabajar con sistemas
Sistemas de Comunicación Óptica
22
DWDM es la G.655 o NZDSF (Non Zero DispersionShiftedFibre); aunque con canales de 2,5
Gbps, la DWDM se adapta perfectamente a la fibra convencional G.652 o SMF (Standard
Single ModeFibre), que resulta mucho más barata y es la utilizada en la mayor parte de las
instalaciones hasta la actualidad.
Sistemas de Comunicación Óptica
23
COMPARACION DE CWDM Y DWDM
Como se ve en la siguiente figura donde el espacio de separación es más alta de CWDM
que la de DWDM podemos decir que la DWDM es más efectiva.
TABLA COMPARATIVA
CWDM DWDM
Definido por Longitudes de Onda Definido por Frecuencias
Corta Distancia de Transmisión Largas Distancias de Transmisión
Usa amplios rangos entre frecuencias Estrechas frecuencias
Longitudes de Onda de propagación lejana Angostas Longitudes de Onda
Desvío de Longitud de Onda posible
Es necesario Láseres de mucha precisión
para mantener los canales en el punto
Espectro en dividido en grandes proporciones Espectro dividido en pequeñas piezas
La Señal de Luz no es amplificada Tal vez necesario amplificar la señal
La comparación en cuanto a CWDM y DWDM es en la capacidad de transmisión, Costo de
implementación y alcance.
Pese a tener corto alcance CWDM es una solución asequible para conexiones de corto
alcance (entre Campus; Oficinas, etc.) ya que a menor costo se pueden alcanzar
velocidades de 2,5 Gbps.
Sistemas de Comunicación Óptica
24
Pero para Redes MAN DWDM es una solución más ideal por su capacidad de alcanzar
grandes velocidades de transmisión para implementar múltiples servicios dentro de ella,
con una máxima taza de transferencia en los 1,6 Tbps con 160 Longitudes de Onda de 10
Gbps cada una.
La tecnología WDM apareció para la optimización de las redes actuales de Fibra, al igual
que en otras tecnologías (p.e. par de Cobre xDSL y otros), y aprovechar su ancho de banda
al máximo, usando múltiples longitudes de onda para lograr aquello.
Sea cual sea la tecnología a utilizar, siempre habrá una solución acorde a las necesidades y
capacidad de inversión, siendo CWDM la opción más económica, debido a la simplicidad
de los componentes y el menor consumo de energía, o DWDM para grandes velocidades,
grandes recorridos y altas prestaciones, con un nivel más corporativo.
EQUIPOS COMERCIALES WDM
MULTIPLEXOR DWDM
Características
Baja pérdida de inserción
Aislamiento de canal de alta
Bajo PDL
Una fiabilidad excepcional y la estabilidad
Aplicación
Llegar a las redes
Metro WDM sistemas
Las redes empresariales
Sistemas de Comunicación Óptica
25
Telecomunicación
Red FTTH
MULTIPLEXOR DWDM METROPOLITANO
Optimux-108, Optimux-106
Multiplexores de fibra óptica para 4E1/T1 y Ethernet o datos seriales
CARACTERÍSTICAS
Multiplexado de canales E1/T1 y Ethernet sobre un único enlace de fibra óptica
Extensión de alcance hasta 120 km (74,5 millas)
Velocidad completa de datos Ethernet de 100 Mbps (usuario)
Caja para alta temperatura
Precio de 100-800 $
MULTIPLEXOR CWDM
Optimux-134, Optimux-125
Multiplexores ópticos y Ethernet para 16E1/T1
CARACTERÍSTICAS
Multiplexado de hasta 16 canales E1/T1 sobre un enlace de fibra con soporte opcional
para el tráfico Ethernet del usuario y datos de alta velocidad (V.35)
Instalación sencilla con plug-and-play
Alcance de hasta 110 km
Tasa de datos a 100 Mbps Ethernet (usuario)
Las fuentes de alimentación redundantes y enlaces ascendentes e intercambiables en
caliente.
Sistemas de Comunicación Óptica
26
APLICACIÓN DE WDM (MILITARES)
Actualmente se está desarrollando tecnología para comunicaciones por fibra óptica
orientada a los backbones (columna vertebral), de redes de banda ancha y las
comunicaciones para oficina de alta velocidad para las aplicaciones del C3I del DoD
(Departamento de Defensa de los EE.UU.). La tecnología está basada en WDM que
simultáneamente lleva FDDI bidireccional, ATM/Taxi, ATM/OC-3, vídeo NTSC o RGB, y
otros muchos tipos de señal en un simple par de fibras.
Esta tecnología puede utilizarse como un extensor de la red punto a punto, o con una
configuración en anillo add/drop para acceder a la red multiprotocolo universal de alta
velocidad. Además de la transmisión óptica de canales de radio.
Por ello, el siguiente sistema WDM utiliza el Modo de Transferencia Asíncrono (ATM), que
multiplexa varios canales ATM/OC-3. Este sistema está en desarrollo, y está integrado con
un Centro Distribuido de Operaciones Aéreas de la Fuerza Aérea estadounidense, con el
propósito de hacer pruebas y demostraciones.
El esquema simboliza la conexión óptica existente entre los efectivos militares en el teatro
de operaciones y el centro aéreo de operaciones, donde se encuentran todos los órganos
de mando.
Sistemas de Comunicación Óptica
27
CONCLUSIONES
 WDM es un tipo de multiplexación por longitud de onda usado principalmente en
fibra óptica.
 Tiene la capacidad de mandar varias longitudes de onda por una sola fibra.
 Dentro de la familia de WDM se encuentran: DWDM de larga distancia, ultralarga
distancia, metropolitana y CWDM.
 Dada la tecnología que representa esta técnica, su aplicación se realiza en el ámbito
comercial, privado y militar.
BIBLIOGRAFÍA:
 Paul F. Sass & Larry Gorr, "Communications for de Digitized Battlefield of the 21st
Century". IEEE Communications Magazine. October 1995.
 L.S. Tamil y J.R. Cleveland, "Optical Wavelength Division Multiplexing for
Broadband Trunking of RF Channels to Remote Antennas" 1997 IEEE.
 Robert L.Kaminski, "Air Force Opto-Electronic Focus for C³I" 1997 IEEE.
 Johnny Berry, "CAEI'S Approach for a Texas Optical Network Initiative (TONI) to
Develop Applications for Wave Division Multiplexing (WDM)". 1997 IEEE.
 Otis Port, "Through a Glass Quickly". Business Week. December 7, 1998.
 Gerd Keiser, "Optical Fiber Communications". McGraw-Hill.2º Edition.
 Antonio Girón (ERIA S.A.) "Aplicación de los sistemas de transmisión por radio con
protección por ensanchamiento de espectro a la transmisión segura de datos en
situaciones tácticas". Jornadas de Electrónica Militar.

Más contenido relacionado

La actualidad más candente

Redes de Transporte Ópticas C1 fam ss
Redes de Transporte Ópticas   C1 fam ssRedes de Transporte Ópticas   C1 fam ss
Redes de Transporte Ópticas C1 fam ss
Francisco Apablaza
 
Fase ii sesion01
Fase ii sesion01Fase ii sesion01
Fase ii sesion01
svaclaro
 
Cuestionario de autoevaluacion
Cuestionario de autoevaluacionCuestionario de autoevaluacion
Cuestionario de autoevaluacion
Rochin Piolin
 
011 teoria de-redes
011 teoria de-redes011 teoria de-redes
011 teoria de-redes
jhennilu
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
jhennilu
 
Cuadro comparativo de los diferentes medios de transmisión guiados y no guiados
Cuadro comparativo de los diferentes medios de transmisión guiados y no guiadosCuadro comparativo de los diferentes medios de transmisión guiados y no guiados
Cuadro comparativo de los diferentes medios de transmisión guiados y no guiados
Mirna L. Torres Garcia
 
Cuadro comparativo de los medios de transmisión.
Cuadro comparativo de los medios de transmisión.Cuadro comparativo de los medios de transmisión.
Cuadro comparativo de los medios de transmisión.
Lucre Castillo Lorenzo
 
Medios de transmision de banda ancha
Medios de transmision de banda anchaMedios de transmision de banda ancha
Medios de transmision de banda ancha
cybercr
 
Emision y transmision de la fibra optica
Emision y transmision de la fibra opticaEmision y transmision de la fibra optica
Emision y transmision de la fibra optica
Haider Navarro
 

La actualidad más candente (20)

Redes DWDM
Redes DWDMRedes DWDM
Redes DWDM
 
Redes de Transporte Ópticas C1 fam ss
Redes de Transporte Ópticas   C1 fam ssRedes de Transporte Ópticas   C1 fam ss
Redes de Transporte Ópticas C1 fam ss
 
Multiplexación por división de onda (wdm)
Multiplexación por división de onda (wdm)Multiplexación por división de onda (wdm)
Multiplexación por división de onda (wdm)
 
Dialnet redes opticasdwdm-4169349
Dialnet redes opticasdwdm-4169349Dialnet redes opticasdwdm-4169349
Dialnet redes opticasdwdm-4169349
 
Fase ii sesion01
Fase ii sesion01Fase ii sesion01
Fase ii sesion01
 
Diagrama de un sistema de fibra óptica, Jerarquía Digital Plesiócrona, Jerarq...
Diagrama de un sistema de fibra óptica, Jerarquía Digital Plesiócrona, Jerarq...Diagrama de un sistema de fibra óptica, Jerarquía Digital Plesiócrona, Jerarq...
Diagrama de un sistema de fibra óptica, Jerarquía Digital Plesiócrona, Jerarq...
 
Medios de transmisión
Medios de transmisiónMedios de transmisión
Medios de transmisión
 
Evolucion Red de Transporte WDM
Evolucion Red de Transporte WDMEvolucion Red de Transporte WDM
Evolucion Red de Transporte WDM
 
Cuestionario de autoevaluacion
Cuestionario de autoevaluacionCuestionario de autoevaluacion
Cuestionario de autoevaluacion
 
Redes de Transporte Ópticas C3 fam SS
Redes de Transporte Ópticas   C3 fam SSRedes de Transporte Ópticas   C3 fam SS
Redes de Transporte Ópticas C3 fam SS
 
011 teoria de-redes
011 teoria de-redes011 teoria de-redes
011 teoria de-redes
 
Redes de Telecomunicaciones cap3
Redes de Telecomunicaciones cap3Redes de Telecomunicaciones cap3
Redes de Telecomunicaciones cap3
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Cuadro comparativo de los diferentes medios de transmisión guiados y no guiados
Cuadro comparativo de los diferentes medios de transmisión guiados y no guiadosCuadro comparativo de los diferentes medios de transmisión guiados y no guiados
Cuadro comparativo de los diferentes medios de transmisión guiados y no guiados
 
Cuadro comparativo de los medios de transmisión.
Cuadro comparativo de los medios de transmisión.Cuadro comparativo de los medios de transmisión.
Cuadro comparativo de los medios de transmisión.
 
35427423 modulacion-en-fibras-opticas
35427423 modulacion-en-fibras-opticas35427423 modulacion-en-fibras-opticas
35427423 modulacion-en-fibras-opticas
 
Sistema 3G y 3.5G UMTS y HSPA
Sistema 3G y 3.5G UMTS y HSPASistema 3G y 3.5G UMTS y HSPA
Sistema 3G y 3.5G UMTS y HSPA
 
Medios de transmision de banda ancha
Medios de transmision de banda anchaMedios de transmision de banda ancha
Medios de transmision de banda ancha
 
Medios de transmision
Medios de transmisionMedios de transmision
Medios de transmision
 
Emision y transmision de la fibra optica
Emision y transmision de la fibra opticaEmision y transmision de la fibra optica
Emision y transmision de la fibra optica
 

Similar a Comunicacionesopticaswdm 121207175305-phpapp01

Multiplexación
MultiplexaciónMultiplexación
Multiplexación
leonsito21
 
Multiplexación
MultiplexaciónMultiplexación
Multiplexación
leonsito21
 
Que es la mutiplexacion oscar valdivieso.
Que es la mutiplexacion oscar valdivieso.Que es la mutiplexacion oscar valdivieso.
Que es la mutiplexacion oscar valdivieso.
Oscar Valdivieso
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
Eduardo Evas
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
jhennilu
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
Vero Yungán
 
Medios guiados y no guiados
Medios guiados y no guiadosMedios guiados y no guiados
Medios guiados y no guiados
Albert Eainsten
 

Similar a Comunicacionesopticaswdm 121207175305-phpapp01 (20)

Multiplexación
MultiplexaciónMultiplexación
Multiplexación
 
Multiplexación
MultiplexaciónMultiplexación
Multiplexación
 
Medios de transmision
Medios de transmisionMedios de transmision
Medios de transmision
 
variedades-de-wdm.pptx
variedades-de-wdm.pptxvariedades-de-wdm.pptx
variedades-de-wdm.pptx
 
Que es la mutiplexacion oscar valdivieso.
Que es la mutiplexacion oscar valdivieso.Que es la mutiplexacion oscar valdivieso.
Que es la mutiplexacion oscar valdivieso.
 
Medios de transmision
Medios de transmisionMedios de transmision
Medios de transmision
 
Introducción a WDM y OTN
Introducción a WDM y OTNIntroducción a WDM y OTN
Introducción a WDM y OTN
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Redes 15
Redes 15 Redes 15
Redes 15
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion
Que es-la-multiplexacionQue es-la-multiplexacion
Que es-la-multiplexacion
 
Que es-la-multiplexacion.
Que es-la-multiplexacion.Que es-la-multiplexacion.
Que es-la-multiplexacion.
 
Que Es La MultiplexacióN
Que Es La MultiplexacióNQue Es La MultiplexacióN
Que Es La MultiplexacióN
 
Carlos
CarlosCarlos
Carlos
 
Medios guiados y no guiados
Medios guiados y no guiadosMedios guiados y no guiados
Medios guiados y no guiados
 

Último

Presentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdfPresentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdf
fernandolozano90
 
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
MirkaCBauer
 
S01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfS01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdf
SalomeRunco
 
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJHInmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Vivafornai
 

Último (20)

Presentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdfPresentación_ Marco general de las contrataciones públicas.pdf
Presentación_ Marco general de las contrataciones públicas.pdf
 
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdfPRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
PRACTICAS_DE_AUTOMATIZACION_industrial (1).pdf
 
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA  Multiproposito TIPO IP.pdfFicha Técnica -Cemento YURA  Multiproposito TIPO IP.pdf
Ficha Técnica -Cemento YURA Multiproposito TIPO IP.pdf
 
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
647913404-06-Partes-principales-de-las-Perforadoras-manuales-1.pdf
 
Trabajo de cristalografia. año 2024 mes de mayo
Trabajo de cristalografia. año 2024 mes de mayoTrabajo de cristalografia. año 2024 mes de mayo
Trabajo de cristalografia. año 2024 mes de mayo
 
Convocatoria de Becas Caja de Ingenieros_UOC 2024-25
Convocatoria de Becas Caja de Ingenieros_UOC 2024-25Convocatoria de Becas Caja de Ingenieros_UOC 2024-25
Convocatoria de Becas Caja de Ingenieros_UOC 2024-25
 
Sesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obrasSesión de Clase A dde sistemas de riego y otras obras
Sesión de Clase A dde sistemas de riego y otras obras
 
UNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptxUNIDAD III Esquemas de comunicacion pptx
UNIDAD III Esquemas de comunicacion pptx
 
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOSTEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
TEST ESPACIAL CONTEO DE CUBOS y TEST DE MOSAICOS
 
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docxESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
ESPECIFICACIONES TECNICAS MURO DE CONTENCION.docx
 
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTSCONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
CONCEPTOS BASICOS DE ROBOTICA, CLASES DE ROBOTS
 
Semana 1 - Introduccion - Fluidos - Unidades.pptx
Semana 1 - Introduccion - Fluidos - Unidades.pptxSemana 1 - Introduccion - Fluidos - Unidades.pptx
Semana 1 - Introduccion - Fluidos - Unidades.pptx
 
las humanidades y su impotancia en la formación integral del ingeniero
las humanidades y su impotancia en la formación integral del ingenierolas humanidades y su impotancia en la formación integral del ingeniero
las humanidades y su impotancia en la formación integral del ingeniero
 
herrramientas de resistividad para registro de pozos.pptx
herrramientas de resistividad para registro de pozos.pptxherrramientas de resistividad para registro de pozos.pptx
herrramientas de resistividad para registro de pozos.pptx
 
Diseño digital - M. Morris Mano - 3ed.pdf
Diseño digital - M. Morris Mano - 3ed.pdfDiseño digital - M. Morris Mano - 3ed.pdf
Diseño digital - M. Morris Mano - 3ed.pdf
 
TYPP_Industrialización del Petróleo.pptx
TYPP_Industrialización del Petróleo.pptxTYPP_Industrialización del Petróleo.pptx
TYPP_Industrialización del Petróleo.pptx
 
S01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdfS01.s1 - Clasificación de las Industrias.pdf
S01.s1 - Clasificación de las Industrias.pdf
 
DIAGRAMAS PID automatizacion y control.ppt
DIAGRAMAS PID automatizacion y control.pptDIAGRAMAS PID automatizacion y control.ppt
DIAGRAMAS PID automatizacion y control.ppt
 
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPODIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
DIFERENCIA DE COMPRESION Y TENSION EN UN CUERPO
 
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJHInmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
Inmunología AMIR 14va EdiciónNM,NLKKJHKLJHKJLBHLKJH
 

Comunicacionesopticaswdm 121207175305-phpapp01

  • 2. Sistemas de Comunicación Óptica 1 INDICE INTRODUCCION 02 MULTIPLEXACION POR DIVISION DE LONGITUD DE ONDA (WDM) 04 COMPONENTES DE UN SISTEMA WDM 06 CARACTERISTICAS DE WDM 09 TECNOLOGIAS DE DISPOSITIVOS DE FIBRA OPTICA WDM 11 VENTAJAS DE WDM 18 VARIACIONES DE WDM 18 COMPARACION DE CON DWDM 23 EQUIPOS COMERCIALES WDM 24 APLICACIÓN DE WDM 26 CONCLUSIONES 27 BIBLIOGRAFÍA 27
  • 3. Sistemas de Comunicación Óptica 2 INTRODUCCION Siempre que la capacidad de transmisión de un medio que enlaza dos dispositivos sea mayor que las necesidades de transmisión de los dispositivos, el enlace se puede compartir, de forma similar a como una gran tubería de agua puede llevar agua al mismo tiempo a varias casa separadas. La multiplexación es el conjunto de técnicas que permite la transmisión simultánea de múltiples señales a través de un único enlace de datos. A medida que se incrementa el uso de los datos y las telecomunicaciones, se incrementa también el tráfico. Se puede hacer frente a este incremento añadiendo líneas individuales cada vez que se necesita un canal nuevo o se puede instalar enlaces de más capacidad y usarlos para transportar múltiples señales. La tecnología actual incluye medios de gran ancho de banda, como el cable coaxial, la fibra óptica y las microondas terrestres y vía satélite. Cualquiera de estos tiene una capacidad que sobrepasa con mucho las necesidades medias para transmitir una señal. Si la capacidad de transmisión del enlace es mayor que las necesidades de transmisión de los dispositivos conectados a el, la capacidad sobrante se malgasta. Un sistema eficiente maximiza la utilización de todas las facilidades. A demás, la cara tecnología utilizada a menudo se hace solo cuando se comparte enlaces. En la siguiente figura se muestra dos posibles formas de enlazar cuatro pares de dispositivos. Como se ve en la figura a, cada par tiene su propio enlace, si no se utiliza la capacidad completa de cada enlace, se está malgastando una porción de esta capacidad. En la figura b, las transmisiones entre pares están multiplexados, los mismos cuatro pares comparten la capacidad de un único enlace. Comunicación sin y con multiplexación
  • 4. Sistemas de Comunicación Óptica 3 En un sistema multiplexado, n dispositivos comparten la capacidad de un enlace, en la figura anterior se muestra el formato básico de un sistema de multiplexado. Los cuatro dispositivos de la izquierda envían sus flujos de transmisión a un multiplexor (MUX), que los combina en un único flujo (muchos a uno). El extremo receptor, el flujo se introduce en un demultiplexor (DEMUX), que separa el flujo en sus transmisiones componentes (uno a muchos) y los dirige a sus correspondientes dispositivos receptores. La palabra camino que se ve en la anterior figura se refiere al enlace físico. La palabra canal se refiere a una por ion de camino que lleva una transmisión entre un determinado par de dispositivos. Un camino puede tener muchos (n) canales. Las señales se multiplexan usando tres técnicas básicas: - Multiplexación por división de tiempo TDM - Multiplexación por división de frecuencia FDM - Multiplexación por división de onda WDM Técnicas de multiplexación
  • 5. Sistemas de Comunicación Óptica 4 MULTIPLEXACION POR DIVISION DE LONGITUD DE ONDA (WDM) En telecomunicaciones, la multiplexación por división de longitud de onda (WDM, del inglés Wavelength Division Multiplexing) es una tecnología que multiplexa varias señales sobre una sola fibra óptica mediante portadoras ópticas de diferente longitud de onda, usando luz procedente de un láser o un LED. Este término se refiere a una portadora óptica (descrita típicamente por su longitud de onda) mientras que la multiplexación por división de frecuencia generalmente se emplea para referirse a una portadora de radiofrecuencia (descrita habitualmente por su frecuencia). Sin embargo, puesto que la longitud de onda y la frecuencia son inversamente proporcionales, y la radiofrecuencia y la luz son ambas formas de radiación electromagnética, la distinción resulta un tanto arbitraria. El dispositivo que une las señales se conoce como multiplexor mientras que el que las separa es un demultiplexor. Con el tipo adecuado de fibra puede disponerse un dispositivo que realice ambas funciones a la vez, actuando como un multiplexor óptico de inserción- extracción. Los primeros sistemas WDM aparecieron en torno a 1985 y combinaban tan sólo dos señales. Los sistemas modernos pueden soportar hasta 160 señales y expandir un sistema de fibra de 10 Gb/s hasta una capacidad total 25.6 Tb/s sobre un solo par de fibra. La multiplexación por división de onda (WDM, Wave División Multiplexing) la multiplexación y la demultiplexación involucran señales luminosas transmitidas a través de canales de fibra óptica. La idea es la misma: se combina distintas señales sobre frecuencias diferentes. Sin embargo, la diferencia es que las frecuencias son muy altas. En la siguiente figura da una visión conceptual de un multiplexador y demultiplexador WDM. Bandas de luz muy estrechas de distintas fuentes se combinan para conseguir una banda de luz más ancha. En el receptor, las señales son separadas por el demultiplexor.
  • 6. Sistemas de Comunicación Óptica 5 El mecanismo de WDM es una tecnología muy compleja, pero sin embargo la idea es muy simple. Se quiere combinar múltiples haces de luz dentro de una única luz en el multiplexor y hacer la operación inversa en el demultiplexor. Combinar y dividir haces de luz se resuelve fácilmente un prisma. Como la física básica que un prisma curva un rayo de luz basándose en el ángulo de incidencia y la frecuencia. Usando esta técnica, se puede hacer un multiplexor que combine distintos haces de luz de entrada, cada uno de los cuales contiene una banda estrecha de frecuencia, en un único haz de salida con una banda de frecuencia mas ancha. También se puede hacer un demultiplexor para hacer la operación para revertir el proceso como se ve en la siguiente figura.
  • 7. Sistemas de Comunicación Óptica 6 COMPONENTES DE UN SISTEMA WDM En este diagrama se muestra los diferentes dispositivos requeridos para un sistema WDM: A continuación se mostrarán los principales: Equipo terminal WDM: Transmisión El equipo terminal de transmisión en un sistema WDM consta de los siguientes elementos: Transpondedor de transmisión, multiplexor óptico, amplificador óptico, compensadores de dispersión, interfaces ópticos En este caso el transponedor de transmisión convierte la longitud de onda de la segunda ventana de cada señal óptica de entrada a la longitud de onda específica de la banda C luego un multiplexor óptico multiplexa las N señales de diferentes longitudes de onda en la banda C una única señal óptica para luego pasar por un amplificador de potencia el mismo que amplifica la señal óptica multiplexada, antes de su transmisión por la fibra óptica. Un interfaz óptico entre el cliente y el transportador depende de la velocidad y la distancia entre ellos. Los componentes de dispersión impiden el ensanchamiento espectral de cada uno de los canales ópticos, para evitar solapamiento, debido al efecto de dispersión introducido por toda fibra óptica
  • 8. Sistemas de Comunicación Óptica 7 Equipo terminal WDM: Recepción Los elementos que se encuentran en un terminal de recepción como son: Preamplificador óptico, de multiplexores ópticos, transpondedores de recepción. En el transponedor de recepción, para cada portadora convierte la longitud de onda específica de la banda C en una señal óptica de longitud de onda en segunda ventana (1300 nm), en otras palabras se encarga de conmutar una señal coloreada en una señal SDH. Transpondedor de Transmisión Un transpondedor tiene como función adaptar la señal que proviene del cliente para su uso en la red y viceversa, en la figura se ilustra las partes que forman un transpondedor.
  • 9. Sistemas de Comunicación Óptica 8 El transpondedor está formada por: receptor óptico, regenerador eléctrico y transmisor óptico. El receptor se encarga de convertir la señal óptica (segunda ventana) en señal eléctrica, en cuanto l regenerador, lleva a cabo las funciones 3R y finalmente el transmisor óptico, convierte la señal eléctrica regenerada en la señal óptica DWDM. Regenerador–Amplificador Óptico En la figura anterior se muestra un esquema de un generador el mismo que es utilizado para la conversión de señal óptica a señal eléctrica, regeneración de la señal eléctrica (funciones 3R) y por último brindan conversión de la señal eléctrica a señal óptica. A continuación se presenta un amplificador óptico el cual es usado en sistemas WDM que lleva a cabo a amplificación de todas las señales ópticas sin pasar al nivel eléctrico. Los amplificadores ópticos se dividen en dos tipos: amplificadores de fibra óptica (OFA) y amplificador óptico semiconductor (SOA).En los amplificadores ópticos de semiconductores se amplifica la señal que pasa por la fibra región activa de un semiconductor bombeada de forma eléctrica. Estos amplificadores, en comparación con los OFA presentan menor ganancia, mayor factor de ruido, sensibilidad a la polarización y efectos no lineales. Los Amplificadores de Fibra Óptica (OFA) amplifican la señal mediante lentes de fibra dopada, los cuales tienen la propiedad de amplificar luz. El elemento más común para esteuso es el Erbio, que entrega una ganancia en longitudes de onda entre 1525 nm y 1560nm. Los amplificadores de fibra dopados con erbio (EDFA-Erbium Doped Fiber Amplifier).También existen los amplificadores de fibra de fluoruro dopados con Praseodimio, denominados PDFFA, que tienen una región de ganancia entre 1280 nm y 1330 nm. Estos dos tipos de amplificadores pueden tener una ganancia máxima de 30 dB. Otro tipo de amplificadores son los Amplificadores Raman que son dispositivos ópticos no lineales, los cuales tienen ganancia no resonante presente en toda la fibra. A continuación se indica el esquema interno de un amplificador tipo EDFA que se basan en un segmento
  • 10. Sistemas de Comunicación Óptica 9 (15 a 29 metros) de fibra dopada con Erbio, excitada con un láser de bombeo y un circuito de control de ganancia. En la siguiente figura se muestra la estructura de un multiplexor óptico de extracción/inserción que puede extraer y adicionar N señales ópticas, cada una de ellas asociada a una portadora que tiene una longitud de onda diferente, normalmente incluye amplificadores ópticos de entrada/salida así como también transpondedores. CARACTERISTICAS DE WDM Los sistemas de comunicación que utilizan como medio de transmisión una fibra óptica se basan en inyectar en un extremo de la misma la señal a transmitir (previamente la señal eléctrica procedente del emisor se ha convertido en óptica mediante un LED o Láser y ha modulado una portadora) que llega al extremo receptor, atenuada y, probablemente con alguna distorsión debido a la dispersión cromática propia de la fibra, donde se recibe en un foto detector, es decodificada y convertida en eléctrica para su lectura por el receptor. El tipo de modulación y/o codificación que se emplea con los sistemas de fibra óptica depende de una serie de factores y algunas fuentes de luz se adaptan mejor a unos tipos que a otros. Así el LED, con un amplio espectro en el haz luminoso, admiten muy bien la
  • 11. Sistemas de Comunicación Óptica 10 modulación en intensidad, mientras que el láser -un haz de luz coherente adapta mejor a la modulación en frecuencia y en fase. En distancias cortas, como es en el entorno de una oficina, la atenuación de la fibra (mínima para una longitud de onda de 1,55 (mm) y la dispersión (mínima para 1,3 (mm) no presenta un gran problema, pero a distancias mayores, como las que se requieren en los enlaces de comunicaciones a larga distancia, realmente lo es y se requiere el uso de amplificadores/repetidores que regeneren la señal cada cierta distancia. Por ejemplo en los cables trasatlánticos se colocan repetidores cada 75 Km. que, primero, convierten la señal óptica degradada en eléctrica, la amplifican y la vuelven a convertir en óptica mediante un diodo láser, para inyectarla de fibra óptica, todo un proceso complejo y que introduce retardos debido a los dispositivos electrónicos por los que ha de pasar la señal. Este inconveniente se evitaría si todo el camino pudiese ser óptico (all-optical), algo que ya es posible gracias a los resultados obtenidos, hace ya más de una década, por investigadores de la Universidad de Southampton, que descubrieron la manera de amplificar una señal óptica en una longitud de onda de 1,55 mm haciéndola pasar por una fibra de 3 metros de longitud dopada con iones erbio e inyectando en ella una luz de láser a 650 mm (fenómeno que se conoce como bombeo o pumping).
  • 12. Sistemas de Comunicación Óptica 11 TECNOLOGIAS DE DISPOSITIVOS DE FIBRA OPTICA WDM Los dispositivos WDM son los siguientes: - Fuentes láser: El diodo láser es un dispositivo semiconductor similar a los diodos LED pero que bajo las condiciones adecuadas emite luz láser. A veces se los denomina diodos láser de inyección, o por sus siglas inglesas LD o ILD. Láser Fabry-Perot En los diodos láser, para favorecer la emisión estimulada y generación de luz láser, el cristal semiconductor del diodo puede tener la forma de una lámina delgada con un lado totalmente reflectante y otro sólo reflectante de forma parcial (aunque muy reflectante también), lográndose así una unión PN de grandes dimensiones con las caras exteriores perfectamente paralelas y reflectantes. Es importante aclarar que las dimensiones de la unión PN guardan una estrecha relación con la longitud de onda a emitir. Este conjunto forma una guía de onda similar a un resonador de tipo Fabry-Perot. En ella, los fotones emitidos en la dirección adecuada se reflejarán repetidamente en dichas caras reflectantes (en una totalmente y en la otra sólo parcialmente), lo que ayuda a su vez a la emisión de más fotones estimulados dentro del material semiconductor y consiguientemente a que se amplifique la luz (mientras dure el bombeo derivado de la circulación de corriente por el diodo). Parte de estos fotones saldrán del diodo láser a través de la cara parcialmente transparente (la que es sólo reflectante de forma parcial). Este proceso da lugar a que el diodo emita luz, que al ser coherente en su mayor parte (debido a la emisión estimulada), posee una gran pureza espectral. Por tanto, como la luz emitida por este tipo de diodos es de tipo láser, a estos diodos se los conoce por el mismo nombre. Algunas características de estos laser son que funciona en la segunda y tercera ventana, en conexiones de corta y media distancia. Ancho espectral 3-20 nm
  • 13. Sistemas de Comunicación Óptica 12 VCSEL’slásers VCSEL ( Vertical Cavity Surface Emitting Laser ). Láser de emisión superficial con cavidad vertical, es un diodo semiconductor que emite luz en un haz cilíndrico vertical de la superficie de un oblea, y ofrece ventajas significativas cuando se compara con láser de emisión lateral comúnmente usados en la mayoría de comunicaciones por fibra óptica. Los VCSELs pueden ser construidos con GaAs, InGaAs. Para el funcionamiento del VCSEL (Vertical CavitySurfaceEmitting Laser) se requiere de una región activa de emisión de luz encerrada en un resonador que consta de dos espejos. En este caso, los espejos son parte de las películas epitaxiales, por lo que estas películas se sobreponen formando una pila. Estos espejos son conocidos como reflectores distribuidos de Bragg (DBRs), Algunas características de este laser son que tiene nueva estructura, diferentes materiales semiconductores hacen de espejo por encima y debajo de la zona activa (Donde se produce la luz), emisión monocromática, muy alta eficiencia. - Conectores Los conectores ópticos constituyen, quizás, uno de los elementos más importantes dentro de la gama de dispositivos pasivos necesarios para establecer un enlace óptico, siendo su misión, junto con el adaptador, la de permitir el alineamiento y unión temporal y repetitivo, de dos o más fibras ópticas entre sí y en las mejores condiciones ópticas posibles.
  • 14. Sistemas de Comunicación Óptica 13 Los conectores de fibra óptica básicamente tienen la tarea de unir dos puntas de distintas fibras para establecer un enlace. También busca establecer una buena conexión entre las fibras para reducir las pérdidas en los empalmes. En la siguiente figura se ve un conector de fibra óptica básico que contiene todas las partes de un conector. Tipos de conectores ST: Los conectores ST fueron creado s en los 80`s por AT&T y deriva del ingles "StraightTip", tienen un diseño tipo bayoneta que permite alinear el conector de manera sencilla al adaptador. Su mecanismo de acoplación tipo "Empuja y Gira" asegura que el conector no tenga deslizamientos y desconexiones. El cuerpo del conector sujeta la férula, ofreciendo una mejor alineación y previniendo movimientos rotatorios. El ST ha sido el conector más popular en las redes de área local (LAN) por su buena relación calidad- precio. SC: Los conectores SC, tienen un diseño versátil que permite alinear el conector de manera sencilla al adaptador. Su mecanismo de acoplación tipo "PushPull" lo asegura al adaptador de manera sencilla. El cuerpo del conector sujeta la férula, ofreciendo una mejor alineación y previniendo movimientos. El conector SC es el más popular tanto en LAN como en redes de transporte: operadoras telefonías, CATV. FC: Los conectores FC fueron creados en los 80`s por NTT por su nombre en ingles "FiberConnection", tienen un diseño versátil tipo rosca que permite asegurar y alinear el conector de manera firme en el adaptador. Su mecanismo de acoplación tipo Rosca asegura que el conector no tenga deslizamientos o desconexiones. El cuerpo del conector sujeta la férula, ofreciendo una mejor alineación y previniendo movimientos. Las partes de los conectores son: Férula (Cilindro que rodea la fibra a
  • 15. Sistemas de Comunicación Óptica 14 manera de PIN), Cuerpo (Es la base del conector), Ojillo de crimpado (Es el que sujeta la fibra al conector), Bota (Es el mango del conector). LC: Desarrollados en 1997 por Lucent Technologies, los conectores LC tienen un aspecto exterior similar a un pequeño SC, con el tamaño de un RJ 45 y se presentan en formato Simplex o Dúplex, diferenciándose externamente los de tipo SM de los de tipo MM por un código de colores. El LC es un conector de alta densidad SFF diseñado para su uso en todo tipo de entornos: LAN, operadoras de telefonías, CATV. Algunos ejemplos de los conectores que se usan o se ven en el mercado son las siguientes. - Acopladores El adaptador es un dispositivo mecánico que hace posible el correcto enfrentamiento de dos conectores de idéntico o distinto tipo. Los Acopladores permiten el enfrentamiento de dos conectores ópticos para el correcto alineamiento de las fibras
  • 16. Sistemas de Comunicación Óptica 15 Cuando se ponen varios acopladores juntos, se habla de rack. - Aisladores Los aisladores ópticos suprimen el reflejo de vuelta de la luz. Es dispositivo pasivo que permite la transmisión en una sola dirección. Se utiliza generalmente después de un láser o un amplificador para evitar que señales reflejadas afecten el rendimiento del sistema. Permite la transmisión en una sola dirección Toda transmisión en sentido opuesto es bloqueada - Circuladores El circulador óptico Accelink es un micro-dispositivo óptico fabricado usando la tecnología libre de plomo. El circulador presenta dos opciones: circulador de tres puertos ópticos y circulador de cuatro puerto ópticos. Presentando una estructura compacta, calidad confiable, alto aislamiento y bajas perdidas PDL y bajas perdidas por inserción, este ciculador óptico es muy bien recibido por nuestros clientes alrededor del mundo entero.
  • 17. Sistemas de Comunicación Óptica 16 Basados en aisladores. Se utilizan principalmente en aplicaciones Add/Drop. También para separar señales de propagación forward y backward>50 dB - ADD/DROP Elementos que permitan retirar y/o colocar uno o varios canales dentro de un enlace de fibra. Basados en circuladores y filtros - Filtros ópticos Un filtro óptico es un medio que sólo permite el paso a través de él de luz con ciertas propiedades, suprimiendo o atenuando la luz restante. Los filtros ópticos más comunes son los filtros de color, es decir, aquellos que sólo dejan pasar luz de una determinada longitud de onda. Si se limitan a atenuar la luz uniformemente en todo el rango de frecuencias se denominan filtros de densidad neutra. Según su procedimiento de acción pueden ser de absorción, si absorben parte de la luz, o bien reflectivos si la reflejan. A este último grupo pertenecen los filtros dicroicos. Los usos
  • 18. Sistemas de Comunicación Óptica 17 de los filtros ópticos incluyen la fotografía, iluminación y numerosos usos científicos. Los filtros de absorción se elaboran depositando sobre la superficie de un sustrato transparente o mezclado en él, una sustancia con propiedades absorbentes de la luz. Según el rango de frecuencias que dejan sin filtrar, se clasifican en filtros de paso alto o de paso bajo, según si dejan sin filtrar las radiaciones de frecuencia superior o inferior respectivamente a cierto valor, denominado frecuencia de corte. En los filtros de paso de banda se filtran las frecuencias por encima y por debajo de ciertos límites. La atenuación de la señal filtrada se mide mediante la transmitancia óptica del medio filtrante o su inversa. Las propiedades de un filtro óptico son un amplio rango de selección, mecanismo de selección de canal rápido, baja pérdida de inserción, insensibilidad a la polarización, estabilidad independiente del ambiente, bajo costo de producción - Multiplexores y demultiplexores Se usa una grilla de dispersión para separar las distintas longitudes de onda. - Amplificadores ópticos En fibra óptica, un amplificador óptico es un dispositivo que amplifica una señal óptica directamente, sin la necesidad de convertir la señal al dominio eléctrico, amplificar en eléctrico y volver a pasar a óptico.
  • 19. Sistemas de Comunicación Óptica 18 VENTAJAS DE WDM - Permite la transmisión simultánea de señales a diferentes longitudes de onda sobre la misma fibra - Aumenta el ancho de banda - Solución económica para alcanzar capacidades muy altas - Permite alcanzar con amplificadores distancias muy altas.(cientos de kilometros) VARIACIONES DE WDM La multiplexación por división en longitud de onda, multiplexación óptica o WDM (Wavelength Division Multiplexing). En WDM se distinguen típicamente cuatro familias de sistemas: DWDM de ultra larga distancia, DWDM de larga distancia, DWDM metropolitano, y CWDM. Las cuatro familias de sistemas WDM utilizan componentes ópticos distintos, siendo más complejos y caros los que soportan mayores capacidades por canal y agregadas, y los que soportan mayores distancias de transmisión. En DWDM de larga y ultralarga distancia el espaciamiento de frecuencias actual es de 50-100 GHz (0,4-0,8 nm), en DWDM metropolitano de 100-200 GHz (0,8-1,6 nm), y en CWDM de 2.500 GHz (20 nm). En cuanto al número de longitudes de onda, mientras en DWDM se utilizan hasta 160 y en DWDM metropolitano hasta 40, en CWDM se suelen utilizar hasta 18. Mientras los sistemas DWDM de larga y ultralarga distancia soportan canales de hasta 40 Gbps, la mayoría de los sistemas DWDM metropolitanos soportan hasta 10 Gbps y los CWDM actuales tienen su límite en 2,5 Gbps. En cuanto a las distancias que se suelen cubrir, los sistemas DWDM de ultralarga distancia alcanzan hasta unos 4.000 Km sin regeneración electroóptica, los de larga distancia hasta unos 800 Km, los DWDM metropolitanos hasta unos 300 Km, y los CWDM hasta unos 80 Km.
  • 20. Sistemas de Comunicación Óptica 19 CWDM Las longitudes de onda utilizables por los sistemas CWDM fueron estandarizadas por la ITU-T (International Telecommunication Union) en el año 2002. La norma, denominada ITU-T G.694.2, se basa en una rejilla o separación de longitudes de onda de 20 nm (o 2.500 GHz) en el rango de 1.270 a 1.610 nm; pudiendo así transportar hasta 18 longitudes de onda en una única fibra óptica monomodo. La tecnología de CWDM permite el uso de un hilo de la fibra de dos hilos para admitir varias topologías de red y velocidades de datos a fin de aumentar exponencialmente la capacidad de ancho de banda y proporcionar la capacidad de agregar nuevos clientes sin necesidad de tender un nuevo cable de fibra óptica entre sitios. De acuerdo con esto, se tienen dos importantes características inherentes a los sistemas CWDM que permiten emplear componentes ópticos más sencillos y, por lo tanto, también más baratos que en los sistemas DWDM:  Mayor espaciamiento de longitudes de onda. De esta forma, en CWDM se pueden utilizar láseres con un mayor ancho de bandas espectrales y no estabilizadas, es decir, que la longitud de onda central puede desplazarse debido a imperfecciones de fabricación o a cambios en la temperatura a la que está sometido el láser y aun así, estar en banda. Esto permite fabricar láseres siguiendo procesos de fabricación menos críticos que los utilizados en DWDM, y que dichos láseres no tengan sofisticados circuitos de refrigeración para corregir posibles desviaciones de la longitud de onda debidos a cambios en la temperatura a la que está sometido el chip; lo cual reduce sensiblemente el espacio ocupado por el chip y el consumo de potencia, además del coste de fabricación. Por lo general en CWDM se utilizan láseres de realimentación distribuida o DFB (DistributedFeed-Back) modulados directamente y soportando velocidades de canal de hasta 2,5 Gbps sobre distancias de hasta 80 Km en el caso de utilizar fibra óptica G.652.  Mayor espectro óptico. Esto, que permite que el número de canales susceptibles de ser utilizados no se vea radicalmente disminuido a pesar de aumentar la separación entre ellos, es posible porque en CWDM no se utilizan amplificadores ópticos de fibra dopada con Erbio o EDFA (ErbiumDopedFilterAmplifier) como ocurre en DWDM para distancias superiores a 80 Km. Los EDFA son componentes utilizados antes de transmitir o recibir de la fibra óptica, para amplificar la potencia de todos los canales ópticos simultáneamente, sin ningún tipo de regeneración a nivel eléctrico. Los sistemas CWDM utilizan, de ser necesario por las distancias cubiertas o número de nodos en cascada a atravesar, regeneración; es decir, cada uno de los canales sufre una conversión óptico-eléctrico-óptico de forma totalmente independiente al resto para ser amplificado. El coste de la optoelectrónica en CWDM es tal, que es más simple y menos caro regenerar que amplificar. Por otro lado, puesto que los regeneradores realizan por completo las funciones de amplificación, reconstrucción
  • 21. Sistemas de Comunicación Óptica 20 de la forma de la señal, y temporización de la señal de salida, compensan toda la dispersión acumulada; esto no ocurre en la amplificación óptica, a no ser que se utilicen fibras con compensación de dispersión o DCF (Dispersion Compensation Fiber), de alto coste y que además suelen requerir de una etapa de preamplificación previa dada la alta atenuación que introducen. Además, CWDM es muy sencillo en cuanto a diseño de red, implementación, y operación. CWDM trabaja con pocos parámetros que necesiten la optimización por parte del usuario, mientras que los sistemas DWDM requieren de complejos cálculos de balance de potencias por canal, algo que se complica aún más cuando se añaden y extraen canales o cuando DWDM es utilizado en redes en anillo, sobre todo cuando los sistemas incorporan amplificadores ópticos. Ventajas.- - Menor consumo energético. - Tamaño inferior de los láser CWDM, - Soluciona los problemas de cuellos de botella - Hardware y costo operativo más barato referente a otras tecnologías de la misma familia. - Anchos de banda más elevada. - Es más sencillo referente al diseño de la red, implementación y operación. - Mayor facilidad de instalación, configuración y mantenimiento de la red - Alto grado de flexibilidad y seguridad en la creación de redes ópticas metropolitanas. Las tres primeras utilizan componentes ópticos más complejos, de mayores distancias de transmisión y más caros que CWDM, la cual está desarrollada especialmente para zonas metropolitanas, ofreciendo anchos de banda relativamente altos a un coste mucho más bajo, esto debido a los componentes ópticos de menor complejidad, limitada capacidad y distancia, por lo cual es la más competitiva a corta distancia.
  • 22. Sistemas de Comunicación Óptica 21 Dense Wavelength Division Multiplexing (DWDM) es una técnica de transmisión de señales a través de fibra óptica usando la banda C (1550 nm). Es una tecnología que pone los datos de diferentes fuentes, junto a una fibra óptica , con cada señal transmitida en el momento mismo en su propia luz independiente de longitud de onda. Utilizando DWDM, hasta 80 (y teóricamente más) longitudes de onda por separado o canales de datos pueden ser multiplexados en un Light Stream transmite en una sola fibra óptica. Cada canal tiene una división en el tiempo multiplexado ( TDM ) De la señal. En un sistema con cada canal lleva 2,5 Gbps (mil millones de bits por segundo), hasta 200 mil millones de bits se pueden entregar en un segundo por la fibra óptica. DWDM también se le llama multiplexación por división de onda (WDM). Dado que cada canal se demultiplexa al final de la transmisión de vuelta a la fuente original, diferentes formatos de datos que se transmiten a velocidades de datos diferentes se pueden transmitir juntos. En concreto, de Internet (IP) de datos, síncrona de datos de red óptica (SONET), y el modo de transferencia asíncrono ( ATM ) todos los datos pueden viajar al mismo tiempo dentro de la fibra óptica. DWDM es un método de multiplexación muy similar a la Multiplexación por división de frecuencia que se utiliza en medios de transmisión electromagnéticos. Varias señales portadoras (ópticas) se transmiten por una única fibra óptica utilizando distintas longitudes de onda de un haz láser cada una de ellas. Cada portadora óptica forma un canal óptico que podrá ser tratado independientemente del resto de canales que comparten el medio (fibra óptica) y contener diferente tipo de tráfico. De esta manera se puede multiplicar el ancho de banda efectivo de la fibra óptica, así como facilitar comunicaciones bidireccionales. Se trata de una técnica de transmisión muy atractiva para las operadoras de telecomunicaciones ya que les permite aumentar su capacidad sin tender más cables ni abrir zanjas. Para transmitir mediante DWDM es necesario dos dispositivos complementarios: un multiplexor en lado transmisor y un demultiplexor en el lado receptor. A diferencia del CWDM, en DWDM se consigue mayor números de canales ópticos reduciendo la dispersión cromática de cada canal mediante el uso de un láser de mayor calidad, fibras de baja dispersión o mediante el uso de módulos DCM “DispersionCompensation Modules”. De esta manera es posible combinar más canales reduciendo el espacio entre ellos. Actualmente se pueden conseguir 40, 80 o 160 canales ópticos separados entre sí 100 GHz, 50 GHz o 25 GHz respectivamente. El medio de transmisión utilizado en DWDM es la fibra óptica y, en concreto, la fibra óptica monomodo. La fibra óptica monomodo, además de soportar mayores anchos de banda que el resto medios de transmisión de señales, ofrece otras muchas ventajas: baja atenuación, fácil instalación, inmunidad a interferencias electromagnéticas, alta seguridad de la señal, posibilidad de integración, etc. La fibra óptima para trabajar con sistemas
  • 23. Sistemas de Comunicación Óptica 22 DWDM es la G.655 o NZDSF (Non Zero DispersionShiftedFibre); aunque con canales de 2,5 Gbps, la DWDM se adapta perfectamente a la fibra convencional G.652 o SMF (Standard Single ModeFibre), que resulta mucho más barata y es la utilizada en la mayor parte de las instalaciones hasta la actualidad.
  • 24. Sistemas de Comunicación Óptica 23 COMPARACION DE CWDM Y DWDM Como se ve en la siguiente figura donde el espacio de separación es más alta de CWDM que la de DWDM podemos decir que la DWDM es más efectiva. TABLA COMPARATIVA CWDM DWDM Definido por Longitudes de Onda Definido por Frecuencias Corta Distancia de Transmisión Largas Distancias de Transmisión Usa amplios rangos entre frecuencias Estrechas frecuencias Longitudes de Onda de propagación lejana Angostas Longitudes de Onda Desvío de Longitud de Onda posible Es necesario Láseres de mucha precisión para mantener los canales en el punto Espectro en dividido en grandes proporciones Espectro dividido en pequeñas piezas La Señal de Luz no es amplificada Tal vez necesario amplificar la señal La comparación en cuanto a CWDM y DWDM es en la capacidad de transmisión, Costo de implementación y alcance. Pese a tener corto alcance CWDM es una solución asequible para conexiones de corto alcance (entre Campus; Oficinas, etc.) ya que a menor costo se pueden alcanzar velocidades de 2,5 Gbps.
  • 25. Sistemas de Comunicación Óptica 24 Pero para Redes MAN DWDM es una solución más ideal por su capacidad de alcanzar grandes velocidades de transmisión para implementar múltiples servicios dentro de ella, con una máxima taza de transferencia en los 1,6 Tbps con 160 Longitudes de Onda de 10 Gbps cada una. La tecnología WDM apareció para la optimización de las redes actuales de Fibra, al igual que en otras tecnologías (p.e. par de Cobre xDSL y otros), y aprovechar su ancho de banda al máximo, usando múltiples longitudes de onda para lograr aquello. Sea cual sea la tecnología a utilizar, siempre habrá una solución acorde a las necesidades y capacidad de inversión, siendo CWDM la opción más económica, debido a la simplicidad de los componentes y el menor consumo de energía, o DWDM para grandes velocidades, grandes recorridos y altas prestaciones, con un nivel más corporativo. EQUIPOS COMERCIALES WDM MULTIPLEXOR DWDM Características Baja pérdida de inserción Aislamiento de canal de alta Bajo PDL Una fiabilidad excepcional y la estabilidad Aplicación Llegar a las redes Metro WDM sistemas Las redes empresariales
  • 26. Sistemas de Comunicación Óptica 25 Telecomunicación Red FTTH MULTIPLEXOR DWDM METROPOLITANO Optimux-108, Optimux-106 Multiplexores de fibra óptica para 4E1/T1 y Ethernet o datos seriales CARACTERÍSTICAS Multiplexado de canales E1/T1 y Ethernet sobre un único enlace de fibra óptica Extensión de alcance hasta 120 km (74,5 millas) Velocidad completa de datos Ethernet de 100 Mbps (usuario) Caja para alta temperatura Precio de 100-800 $ MULTIPLEXOR CWDM Optimux-134, Optimux-125 Multiplexores ópticos y Ethernet para 16E1/T1 CARACTERÍSTICAS Multiplexado de hasta 16 canales E1/T1 sobre un enlace de fibra con soporte opcional para el tráfico Ethernet del usuario y datos de alta velocidad (V.35) Instalación sencilla con plug-and-play Alcance de hasta 110 km Tasa de datos a 100 Mbps Ethernet (usuario) Las fuentes de alimentación redundantes y enlaces ascendentes e intercambiables en caliente.
  • 27. Sistemas de Comunicación Óptica 26 APLICACIÓN DE WDM (MILITARES) Actualmente se está desarrollando tecnología para comunicaciones por fibra óptica orientada a los backbones (columna vertebral), de redes de banda ancha y las comunicaciones para oficina de alta velocidad para las aplicaciones del C3I del DoD (Departamento de Defensa de los EE.UU.). La tecnología está basada en WDM que simultáneamente lleva FDDI bidireccional, ATM/Taxi, ATM/OC-3, vídeo NTSC o RGB, y otros muchos tipos de señal en un simple par de fibras. Esta tecnología puede utilizarse como un extensor de la red punto a punto, o con una configuración en anillo add/drop para acceder a la red multiprotocolo universal de alta velocidad. Además de la transmisión óptica de canales de radio. Por ello, el siguiente sistema WDM utiliza el Modo de Transferencia Asíncrono (ATM), que multiplexa varios canales ATM/OC-3. Este sistema está en desarrollo, y está integrado con un Centro Distribuido de Operaciones Aéreas de la Fuerza Aérea estadounidense, con el propósito de hacer pruebas y demostraciones. El esquema simboliza la conexión óptica existente entre los efectivos militares en el teatro de operaciones y el centro aéreo de operaciones, donde se encuentran todos los órganos de mando.
  • 28. Sistemas de Comunicación Óptica 27 CONCLUSIONES  WDM es un tipo de multiplexación por longitud de onda usado principalmente en fibra óptica.  Tiene la capacidad de mandar varias longitudes de onda por una sola fibra.  Dentro de la familia de WDM se encuentran: DWDM de larga distancia, ultralarga distancia, metropolitana y CWDM.  Dada la tecnología que representa esta técnica, su aplicación se realiza en el ámbito comercial, privado y militar. BIBLIOGRAFÍA:  Paul F. Sass & Larry Gorr, "Communications for de Digitized Battlefield of the 21st Century". IEEE Communications Magazine. October 1995.  L.S. Tamil y J.R. Cleveland, "Optical Wavelength Division Multiplexing for Broadband Trunking of RF Channels to Remote Antennas" 1997 IEEE.  Robert L.Kaminski, "Air Force Opto-Electronic Focus for C³I" 1997 IEEE.  Johnny Berry, "CAEI'S Approach for a Texas Optical Network Initiative (TONI) to Develop Applications for Wave Division Multiplexing (WDM)". 1997 IEEE.  Otis Port, "Through a Glass Quickly". Business Week. December 7, 1998.  Gerd Keiser, "Optical Fiber Communications". McGraw-Hill.2º Edition.  Antonio Girón (ERIA S.A.) "Aplicación de los sistemas de transmisión por radio con protección por ensanchamiento de espectro a la transmisión segura de datos en situaciones tácticas". Jornadas de Electrónica Militar.