SlideShare una empresa de Scribd logo
1.1 fundamentos de biología
NOMBRE: Jesús Leobardo Piza Almazán
Domingo Pérez Matiano
La biología (del griego «βιος» bios, vida, y «λογος» logos, estudio)
es una de lasciencias naturales que tiene como objeto de estudio a
los seres vivos y, más específicamente, su origen, su evolución y
sus propiedades: génesis, nutrición,morfogénesis, reproducción,
patogenia, etc. Se ocupa tanto de la descripción de las
características y los comportamientos de los organismos
individuales como de las especies en su conjunto, así como de la
reproducción de los seres vivos y de las interacciones entre ellos y
el entorno. De este modo, se ocupa de la estructura y la dinámica
funcional comunes a todos los seres vivos con el fin de establecer
las leyes generales que rigen la vida orgánica y los principios
explicativos fundamentales de ésta. La palabra «biología» en su
sentido moderno parece haber sido introducida independientemente
por Gottfried Reinhold Treviranus (Biologie oder Philosophie der
lebenden Natur, 1802) y por Jean-Baptiste
Lamarck (Hidrogeología, 1802). Generalmente se dice que el
término fue acuñado en 1800 por Karl Friedrich Burdach, aunque se
menciona en el título del tercer volumen de Philosophiae naturalis
sive physicae dogmaticae.
 La biología abarca un amplio espectro de campos de
estudio que, a menudo, se tratan como disciplinas
independientes. Juntas, estudian la vida en un amplio
campo de escalas. La vida se estudia a escala atómica y
molecular en la biología molecular, en la bioquímica y en
la genética molecular. Desde el punto de vista celular, se
estudia en la biología celular, y a escala pluricelular se
estudia en la fisiología, la anatomía y la histología. La
biología del desarrollo estudia el desarrollo o la
ontogenia de un organismo individual.
 La evolución biológica es un fenómeno natural real,
observable y comprobable empíricamente. La llamada
Síntesis Evolutiva Moderna es una robusta teoría que
actualmente proporciona explicaciones y modelos
matemáticos sobre los mecanismos generales de la
evolución o los fenómenos evolutivos como la
adaptación o la especiación. Como cualquier teoría
científica, sus hipótesis están sujetas a constante crítica
y comprobación experimental.
 La síntesis moderna de la evolución se basa en tres
aspectos fundamentales:
 1. La ascendencia común de todos los organismos de
un único ancestro.
2. El origen de nuevos caracteres en un linaje evolutivo.
3. Los mecanismos por los que algunos caracteres
persisten mientras que otros desaparecen.
 BIOQUIMICA: es la ciencia que estudia los
componentes químicos de los seres vivos,
especialmente las proteínas, carbohidratos, lípidos y
ácidos nucleicos, además de otras pequeñas moléculas
presentes en las células. La bioquímica se basa en el
concepto de que todo ser vivo contiene carbono y en
general las moléculas biológicas están compuestas
principalmente de carbono, hidrógeno, oxígeno,
nitrógeno, fósforo y azufre. Es la ciencia que estudia la
mismísima base de la vida: las moléculas que
componen las células y los tejidos, que catalizan las
reacciones químicas de la digestión, la fotosíntesis y la
inmunidad, entre otras.
1.2. teoría celular
 Las fotografías que podemos obtener con el microscopio
electrónico, unidas a las avanzadas técnicas de la
bioquímica, nos permiten conocer mejor la estructura y
funcionamiento de las células. Pero no siempre hemos
tenido un acceso tan fácil al mundo celular. La visión que
tenían los científicos hace 300 años era muy diferente.
Galileo fue el primer científico que registró una
observación microscópica: los ojos compuestos de un
insecto. La primera referencia directa de las células se
debe a Robert Hooke, quien en 1665, tras examinar una
fina lámina de corcho con su microscopio, indicó la
existencia de una serie de celdillas con paredes rígidas, a
las que llamó células.
 Sin embargo, no llegó a descubrir la verdadera naturaleza
de las células, ya que supuso que tenían la misma función
en las plantas que los vasos sanguíneos en los animales.
Con el paso del tiempo se ha conseguido una progresiva
mejora en los mecanismos y en las lentes de los
microscopios. Con el descubrimiento de los infusorios,
seres vivos de pequeño tamaño, leeuwenhoek hizo
aparecer un mundo microscópico que revolucionó el
conocimiento científico del siglo XVII. Se multiplicaron las
observaciones y los resultados no tardaron en aparecer: el
descubrimiento del núcleo celular, las estructuras del
citoplasma..
 En 1838, el botánico alemán SCHLEIDEN, después
de mu-chas observaciones microscópicas, llega a
afirmar que todas las plantas están formadas por
células.

 En 1850, FERDINAND COHN, después de estudiar el
com-portamiento de numerosas células, enuncia
que la célula que forma a los animales, la que forma
a los vegetales y las células de los microbios son
estructuras equivalentes. Dis-tingue, por tanto,
entre seres unicelulares, formados por una sola
célula, como los microorganismos; y seres
pluri-celulares, formados por muchas células, como
las plantas y los animales.
 En 1855, VIRCHOW aplica a la célula las conclusiones de
los experimentos de Pasteur (1822-1895) que demostraban
que no existe la generación espontánea de seres vivos,
sino que todo ser vivo procede de otro ser vivo. Según eso,
Vir-chow emite el principio omnis cellula ex cellula, que
significa que toda célula procede de otra célula.

 Una célula (del latín cellula, diminutivo
de cella, "hueco")1 es la
unidad morfológica y funcional de todo ser vivo. De
hecho, la célula es el elemento de menor tamaño que
puede considerarse vivo.2 De este
modo, puede clasificarse a los organismos vivos según
el número de células que posean: si sólo tienen una, se
les denomina unicelulares (como pueden ser
los protozoos o las bacterias, organismos
microscópicos); si poseen más, se les
llama pluricelulares. En estos últimos el número de
células es variable: de unos pocos cientos, como en
algunos nematodos, a cientos de billones (1014), como
en el caso del ser humano. Las células suelen poseer un
tamaño de 10 µm y una masa de 1 ng, si bien existen
células mucho mayores.
 La teoría celular, propuesta en 1838 para los vegetales y
en 1839 para los animales,3 por Matthias Jakob
Schleiden y Theodor Schwann, postula que todos los
organismos están compuestos por células, y que todas las
células derivan de otras precedentes. De este modo, todas
las funciones vitales emanan de la maquinaria celular y de
la interacción entre células adyacentes; además, la
tenencia de lainformación genética, base de la herencia,
en su ADN permite la transmisión de aquella de
generación en generación.
1.3. la vida se produce en acuosa
El término vida (latín: vita )?, desde el punto de
vista de la biología, hace referencia a aquello que
distingue a los
reinos animal, vegetal, hongos, protistas, arqueas
y bacterias del resto de realidades naturales.
Implica las capacidades de nacer, crecer,
reproducirse y morir, y a lo largo de sucesivas
generaciones, evolucionar. A pesar de que no
puede indicarse con precisión, la evidencia
sugiere que la vida en la Tierra ha existido por
aproximadamente 3700 millones de años,1 2 cuyas
huellas fósiles más antiguas datan hace
3,4millardos de años.
 Científicamente, podría definirse como la capacidad de
administrar los recursos internos de un ser físico de
forma adaptada a los cambios producidos en su medio, sin
que exista una correspondencia directa
de causa y efecto entre el ser que administra los recursos y el
cambio introducido en el medio por ese ser, sino
una asíntota de aproximación al ideal establecido por dicho
ser, ideal que nunca llega a su consecución completa por la
dinámica del medio.
 Abarca una serie de conceptos del ser humano y su entorno
relacionados, directa o indirectamente, con la existencia.
 La vida en la Tierra se desarrolla en medio acuoso. Incluso en los
seres no acuáticos el medio interno es hídrico. La mayoría de las
reacciones bioquímicas se desarrollan en el agua y obedecen las
leyes fisicoquímicas de las disoluciones acuosas. Por ello, el agua
es el componente mayoritario de los seres vivos. El cuerpo
humano, por ej., está formado en un 75% por agua, aunque los
tejidos que con mucha actividad, como el nervioso, son agua en un
90%. Sólo los tejidos esqueléticos y las semillas de las plantas
presentan una baja proporción de agua.
 El agua reúne una serie de características que la convierten en un
disolvente único e insustituible en la Biosfera. En cuanto a sus
propiedades fisicoquímicas cabe destacar:
- las propias moléculas de agua formando uniones electrostáticas
llamadas puentes o enlaces de H: la carga parcial negativa del O
de una molécula ejerce atracción electrostática sobre las cargas
parciales positivas de los átomos de H de otras moléculas
adyacentes.
 Aunque son uniones débiles, el hecho de que alrededor de cada
molécula de agua se dispongan otras 3 moléculas unidas por
puentes de H permite que adquiera una estructura reticular,
responsable de su comportamiento anómalo y de sus propiedades
fisicoquímicas: todas las demás propiedades del agua son
consecuencia de ésta.
 El agua posee un elevado calor específico. Puede absorber grandes
cantidades de calor, mientras que, proporcionalmente, su
temperatura sólo se eleva ligeramente. Del mismo modo, su
temperatura desciende con más lentitud que la de otros líquidos a
medida que va liberando energía al enfriarse. Esta propiedad
permite que el contenido acuoso de las células sirva de protección a
las sensibles moléculas orgánicas ante los cambios bruscos de
temperatura.
1.4. generalidades de la célula
 Gran(división(celular.(
 •
Pérdida(de(diferenciación(de(la(célula(de(origen.(
 • Capacidad(de(emigrar.(
 • No(son(inhibidas(por(contacto.(
 • No(está(bien(regulada(la(tasa(de(crecimiento.
 • Relación( núcleo citoplasma grande.)
 Hay tres propiedades comunes a todos los tipos celulares:
• El ADN
• Las membranas biológicas
• Los Mecanismos básicos iguales de metabolismo
energético
 La característica fundamental de la molécula que originó la
vida es su capacidad de autorreplicación.
 Llevan información las proteínas y los ácidos nucleicos,
pero solo estos pueden autoreplicarse, es decir, dirigir su
propia síntesis gracias al apareamiento entre bases
complementarias.
 El ARN cataliza una serie de reacciones tales como la
polimerización de nucleótidos y es capaz de dirigir su
síntesis (con la ARN polimerasa), por ello se cree que el
ARN fue el material genético inicial: ARN autorreplicante.
 A lo largo de los años el ARN interaccionó con proteinas y
se formó el código genético y finalmente el ADN reemplazó
al ARN de forma oportunista.
 Hay dos tipos diferentes de bacterias en las procariotas,
las Arquebacterias (o Arqueas) y las Eubacterias. Estos
dos tipos divergieron en la evolución. Aún en la actualidad
hay representantes de estos dos tipos, siendo las arqueas
bastante raras.
 A) Arque bacterias: Viven en condiciones extremas como
las termoacidófilas, que son bacterias que viven en
manantiales sulfurosos a 80ºC y PH incluso 2, en áreas
volcánicas.
 Las bacterias en general pueden ser de tres tipos:
cocos, bacilos y espirilos.
 Tienen un tamaño variable entre 1 y 10 m.
 Su genoma se tiene entre 600.000 y 5 millones de pares
de bases con lo que son capaces de sintetizar unas 50.000
proteínas diferentes.
 Las bacterias más grandes y complejas son las
cianobacterias, en las que se supone que evolucionó la
fotosíntesis.
 La mayoría de los organismos pluricelulares están
formadas por células eucarioticas, también son eucariotas
muchos organismos unicelulares, son los llamados
eucariotas inferiores.
 Los eucariotas a diferencia de los procariotas, presentan
núcleo, orgánulos desarrollados y citoesqueleto.

Más contenido relacionado

La actualidad más candente

Diapositiva biología(brandon pineda alvear)
Diapositiva biología(brandon pineda alvear)Diapositiva biología(brandon pineda alvear)
Diapositiva biología(brandon pineda alvear)brandonpinedaalv
 
La Biologia como Ciencia
La Biologia como CienciaLa Biologia como Ciencia
La Biologia como CienciaVivi Aguilar
 
INTRODUCCIÓN A LA BIOLOGÍA
INTRODUCCIÓN A LA BIOLOGÍAINTRODUCCIÓN A LA BIOLOGÍA
INTRODUCCIÓN A LA BIOLOGÍAmaylinrojas
 
Biologia historia y ramas
Biologia historia y ramasBiologia historia y ramas
Biologia historia y ramasnidiaer60
 
Introduccion biologia
Introduccion biologiaIntroduccion biologia
Introduccion biologiametalrouss
 
Introducción al estudio de la biología
Introducción al estudio de la biologíaIntroducción al estudio de la biología
Introducción al estudio de la biologíacarolinataipearteaga
 
Introduccion a la biologia
Introduccion a la biologiaIntroduccion a la biologia
Introduccion a la biologiaFlavio Marcelo
 
Modulo ciencias de la salud area disciplinaria biologia
Modulo ciencias de la salud area disciplinaria biologiaModulo ciencias de la salud area disciplinaria biologia
Modulo ciencias de la salud area disciplinaria biologiaEdgar Hernandez
 
PresentacióN Biologia
PresentacióN BiologiaPresentacióN Biologia
PresentacióN BiologiaDiego
 
Tema 3 Biología y las relaciones con otras ciencias
Tema 3 Biología y las relaciones con otras ciencias Tema 3 Biología y las relaciones con otras ciencias
Tema 3 Biología y las relaciones con otras ciencias NorisGarcaJordn
 
Autoperpetuacion biologia form.
Autoperpetuacion biologia form.Autoperpetuacion biologia form.
Autoperpetuacion biologia form.Bren' Hernández
 

La actualidad más candente (20)

TEMAS DE BIOLOGIA
TEMAS DE BIOLOGIA TEMAS DE BIOLOGIA
TEMAS DE BIOLOGIA
 
Diapositiva biología(brandon pineda alvear)
Diapositiva biología(brandon pineda alvear)Diapositiva biología(brandon pineda alvear)
Diapositiva biología(brandon pineda alvear)
 
UNIDAD 5
UNIDAD 5UNIDAD 5
UNIDAD 5
 
La Biologia como Ciencia
La Biologia como CienciaLa Biologia como Ciencia
La Biologia como Ciencia
 
Unidad 4
Unidad 4Unidad 4
Unidad 4
 
Diapositiva biología
Diapositiva biologíaDiapositiva biología
Diapositiva biología
 
INTRODUCCIÓN A LA BIOLOGÍA
INTRODUCCIÓN A LA BIOLOGÍAINTRODUCCIÓN A LA BIOLOGÍA
INTRODUCCIÓN A LA BIOLOGÍA
 
Biologia diapositivas
Biologia diapositivasBiologia diapositivas
Biologia diapositivas
 
Biologia historia y ramas
Biologia historia y ramasBiologia historia y ramas
Biologia historia y ramas
 
Introduccion biologia
Introduccion biologiaIntroduccion biologia
Introduccion biologia
 
La biología como ciencia
La biología como cienciaLa biología como ciencia
La biología como ciencia
 
Introducción al estudio de la biología
Introducción al estudio de la biologíaIntroducción al estudio de la biología
Introducción al estudio de la biología
 
Introduccion a la biologia
Introduccion a la biologiaIntroduccion a la biologia
Introduccion a la biologia
 
Modulo ciencias de la salud area disciplinaria biologia
Modulo ciencias de la salud area disciplinaria biologiaModulo ciencias de la salud area disciplinaria biologia
Modulo ciencias de la salud area disciplinaria biologia
 
Biologia
BiologiaBiologia
Biologia
 
Qué es la Biología Clase 1
Qué es la Biología Clase 1Qué es la Biología Clase 1
Qué es la Biología Clase 1
 
PresentacióN Biologia
PresentacióN BiologiaPresentacióN Biologia
PresentacióN Biologia
 
Tema 3 Biología y las relaciones con otras ciencias
Tema 3 Biología y las relaciones con otras ciencias Tema 3 Biología y las relaciones con otras ciencias
Tema 3 Biología y las relaciones con otras ciencias
 
La Biología
La BiologíaLa Biología
La Biología
 
Autoperpetuacion biologia form.
Autoperpetuacion biologia form.Autoperpetuacion biologia form.
Autoperpetuacion biologia form.
 

Similar a Biologia celular leo. (20)

Célula
CélulaCélula
Célula
 
La biología
La biologíaLa biología
La biología
 
Unidad i diapositivas
Unidad i diapositivasUnidad i diapositivas
Unidad i diapositivas
 
Biologia 1 2014
Biologia 1 2014Biologia 1 2014
Biologia 1 2014
 
Apuntes bloque 1
Apuntes bloque 1Apuntes bloque 1
Apuntes bloque 1
 
INSTITUTO PRIVADO RIO BLANCO (2).pdf
INSTITUTO PRIVADO RIO BLANCO (2).pdfINSTITUTO PRIVADO RIO BLANCO (2).pdf
INSTITUTO PRIVADO RIO BLANCO (2).pdf
 
La célula vegetal y animal
La célula vegetal y animalLa célula vegetal y animal
La célula vegetal y animal
 
La célula animal
La célula animalLa célula animal
La célula animal
 
17
1717
17
 
17
1717
17
 
Biología
BiologíaBiología
Biología
 
Trabajo de biologia jose
Trabajo de biologia joseTrabajo de biologia jose
Trabajo de biologia jose
 
Biologia celular originl
Biologia celular originlBiologia celular originl
Biologia celular originl
 
Unidad i diapositivas
Unidad i diapositivasUnidad i diapositivas
Unidad i diapositivas
 
Biologia celular
Biologia celularBiologia celular
Biologia celular
 
Biologia celular
Biologia celularBiologia celular
Biologia celular
 
EVOLUCIONISMO 02 (1).ppt
EVOLUCIONISMO 02 (1).pptEVOLUCIONISMO 02 (1).ppt
EVOLUCIONISMO 02 (1).ppt
 
Revistaa
RevistaaRevistaa
Revistaa
 
Biologia celular
Biologia celularBiologia celular
Biologia celular
 
Biología libro
Biología libroBiología libro
Biología libro
 

Biologia celular leo.

  • 1. 1.1 fundamentos de biología NOMBRE: Jesús Leobardo Piza Almazán Domingo Pérez Matiano La biología (del griego «βιος» bios, vida, y «λογος» logos, estudio) es una de lasciencias naturales que tiene como objeto de estudio a los seres vivos y, más específicamente, su origen, su evolución y sus propiedades: génesis, nutrición,morfogénesis, reproducción, patogenia, etc. Se ocupa tanto de la descripción de las características y los comportamientos de los organismos individuales como de las especies en su conjunto, así como de la reproducción de los seres vivos y de las interacciones entre ellos y el entorno. De este modo, se ocupa de la estructura y la dinámica funcional comunes a todos los seres vivos con el fin de establecer las leyes generales que rigen la vida orgánica y los principios explicativos fundamentales de ésta. La palabra «biología» en su sentido moderno parece haber sido introducida independientemente por Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 1802) y por Jean-Baptiste Lamarck (Hidrogeología, 1802). Generalmente se dice que el término fue acuñado en 1800 por Karl Friedrich Burdach, aunque se menciona en el título del tercer volumen de Philosophiae naturalis sive physicae dogmaticae.
  • 2.  La biología abarca un amplio espectro de campos de estudio que, a menudo, se tratan como disciplinas independientes. Juntas, estudian la vida en un amplio campo de escalas. La vida se estudia a escala atómica y molecular en la biología molecular, en la bioquímica y en la genética molecular. Desde el punto de vista celular, se estudia en la biología celular, y a escala pluricelular se estudia en la fisiología, la anatomía y la histología. La biología del desarrollo estudia el desarrollo o la ontogenia de un organismo individual.
  • 3.  La evolución biológica es un fenómeno natural real, observable y comprobable empíricamente. La llamada Síntesis Evolutiva Moderna es una robusta teoría que actualmente proporciona explicaciones y modelos matemáticos sobre los mecanismos generales de la evolución o los fenómenos evolutivos como la adaptación o la especiación. Como cualquier teoría científica, sus hipótesis están sujetas a constante crítica y comprobación experimental.
  • 4.  La síntesis moderna de la evolución se basa en tres aspectos fundamentales:  1. La ascendencia común de todos los organismos de un único ancestro. 2. El origen de nuevos caracteres en un linaje evolutivo. 3. Los mecanismos por los que algunos caracteres persisten mientras que otros desaparecen.
  • 5.  BIOQUIMICA: es la ciencia que estudia los componentes químicos de los seres vivos, especialmente las proteínas, carbohidratos, lípidos y ácidos nucleicos, además de otras pequeñas moléculas presentes en las células. La bioquímica se basa en el concepto de que todo ser vivo contiene carbono y en general las moléculas biológicas están compuestas principalmente de carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre. Es la ciencia que estudia la mismísima base de la vida: las moléculas que componen las células y los tejidos, que catalizan las reacciones químicas de la digestión, la fotosíntesis y la inmunidad, entre otras.
  • 6. 1.2. teoría celular  Las fotografías que podemos obtener con el microscopio electrónico, unidas a las avanzadas técnicas de la bioquímica, nos permiten conocer mejor la estructura y funcionamiento de las células. Pero no siempre hemos tenido un acceso tan fácil al mundo celular. La visión que tenían los científicos hace 300 años era muy diferente. Galileo fue el primer científico que registró una observación microscópica: los ojos compuestos de un insecto. La primera referencia directa de las células se debe a Robert Hooke, quien en 1665, tras examinar una fina lámina de corcho con su microscopio, indicó la existencia de una serie de celdillas con paredes rígidas, a las que llamó células.
  • 7.  Sin embargo, no llegó a descubrir la verdadera naturaleza de las células, ya que supuso que tenían la misma función en las plantas que los vasos sanguíneos en los animales. Con el paso del tiempo se ha conseguido una progresiva mejora en los mecanismos y en las lentes de los microscopios. Con el descubrimiento de los infusorios, seres vivos de pequeño tamaño, leeuwenhoek hizo aparecer un mundo microscópico que revolucionó el conocimiento científico del siglo XVII. Se multiplicaron las observaciones y los resultados no tardaron en aparecer: el descubrimiento del núcleo celular, las estructuras del citoplasma..  En 1838, el botánico alemán SCHLEIDEN, después de mu-chas observaciones microscópicas, llega a afirmar que todas las plantas están formadas por células. 
  • 8.  En 1850, FERDINAND COHN, después de estudiar el com-portamiento de numerosas células, enuncia que la célula que forma a los animales, la que forma a los vegetales y las células de los microbios son estructuras equivalentes. Dis-tingue, por tanto, entre seres unicelulares, formados por una sola célula, como los microorganismos; y seres pluri-celulares, formados por muchas células, como las plantas y los animales.  En 1855, VIRCHOW aplica a la célula las conclusiones de los experimentos de Pasteur (1822-1895) que demostraban que no existe la generación espontánea de seres vivos, sino que todo ser vivo procede de otro ser vivo. Según eso, Vir-chow emite el principio omnis cellula ex cellula, que significa que toda célula procede de otra célula. 
  • 9.  Una célula (del latín cellula, diminutivo de cella, "hueco")1 es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.2 De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano. Las células suelen poseer un tamaño de 10 µm y una masa de 1 ng, si bien existen células mucho mayores.
  • 10.  La teoría celular, propuesta en 1838 para los vegetales y en 1839 para los animales,3 por Matthias Jakob Schleiden y Theodor Schwann, postula que todos los organismos están compuestos por células, y que todas las células derivan de otras precedentes. De este modo, todas las funciones vitales emanan de la maquinaria celular y de la interacción entre células adyacentes; además, la tenencia de lainformación genética, base de la herencia, en su ADN permite la transmisión de aquella de generación en generación.
  • 11. 1.3. la vida se produce en acuosa El término vida (latín: vita )?, desde el punto de vista de la biología, hace referencia a aquello que distingue a los reinos animal, vegetal, hongos, protistas, arqueas y bacterias del resto de realidades naturales. Implica las capacidades de nacer, crecer, reproducirse y morir, y a lo largo de sucesivas generaciones, evolucionar. A pesar de que no puede indicarse con precisión, la evidencia sugiere que la vida en la Tierra ha existido por aproximadamente 3700 millones de años,1 2 cuyas huellas fósiles más antiguas datan hace 3,4millardos de años.
  • 12.  Científicamente, podría definirse como la capacidad de administrar los recursos internos de un ser físico de forma adaptada a los cambios producidos en su medio, sin que exista una correspondencia directa de causa y efecto entre el ser que administra los recursos y el cambio introducido en el medio por ese ser, sino una asíntota de aproximación al ideal establecido por dicho ser, ideal que nunca llega a su consecución completa por la dinámica del medio.  Abarca una serie de conceptos del ser humano y su entorno relacionados, directa o indirectamente, con la existencia.
  • 13.  La vida en la Tierra se desarrolla en medio acuoso. Incluso en los seres no acuáticos el medio interno es hídrico. La mayoría de las reacciones bioquímicas se desarrollan en el agua y obedecen las leyes fisicoquímicas de las disoluciones acuosas. Por ello, el agua es el componente mayoritario de los seres vivos. El cuerpo humano, por ej., está formado en un 75% por agua, aunque los tejidos que con mucha actividad, como el nervioso, son agua en un 90%. Sólo los tejidos esqueléticos y las semillas de las plantas presentan una baja proporción de agua.  El agua reúne una serie de características que la convierten en un disolvente único e insustituible en la Biosfera. En cuanto a sus propiedades fisicoquímicas cabe destacar:
  • 14. - las propias moléculas de agua formando uniones electrostáticas llamadas puentes o enlaces de H: la carga parcial negativa del O de una molécula ejerce atracción electrostática sobre las cargas parciales positivas de los átomos de H de otras moléculas adyacentes.  Aunque son uniones débiles, el hecho de que alrededor de cada molécula de agua se dispongan otras 3 moléculas unidas por puentes de H permite que adquiera una estructura reticular, responsable de su comportamiento anómalo y de sus propiedades fisicoquímicas: todas las demás propiedades del agua son consecuencia de ésta.
  • 15.  El agua posee un elevado calor específico. Puede absorber grandes cantidades de calor, mientras que, proporcionalmente, su temperatura sólo se eleva ligeramente. Del mismo modo, su temperatura desciende con más lentitud que la de otros líquidos a medida que va liberando energía al enfriarse. Esta propiedad permite que el contenido acuoso de las células sirva de protección a las sensibles moléculas orgánicas ante los cambios bruscos de temperatura.
  • 16. 1.4. generalidades de la célula  Gran(división(celular.(  • Pérdida(de(diferenciación(de(la(célula(de(origen.(  • Capacidad(de(emigrar.(  • No(son(inhibidas(por(contacto.(  • No(está(bien(regulada(la(tasa(de(crecimiento.  • Relación( núcleo citoplasma grande.)
  • 17.  Hay tres propiedades comunes a todos los tipos celulares: • El ADN • Las membranas biológicas • Los Mecanismos básicos iguales de metabolismo energético  La característica fundamental de la molécula que originó la vida es su capacidad de autorreplicación.  Llevan información las proteínas y los ácidos nucleicos, pero solo estos pueden autoreplicarse, es decir, dirigir su propia síntesis gracias al apareamiento entre bases complementarias.
  • 18.  El ARN cataliza una serie de reacciones tales como la polimerización de nucleótidos y es capaz de dirigir su síntesis (con la ARN polimerasa), por ello se cree que el ARN fue el material genético inicial: ARN autorreplicante.  A lo largo de los años el ARN interaccionó con proteinas y se formó el código genético y finalmente el ADN reemplazó al ARN de forma oportunista.
  • 19.  Hay dos tipos diferentes de bacterias en las procariotas, las Arquebacterias (o Arqueas) y las Eubacterias. Estos dos tipos divergieron en la evolución. Aún en la actualidad hay representantes de estos dos tipos, siendo las arqueas bastante raras.  A) Arque bacterias: Viven en condiciones extremas como las termoacidófilas, que son bacterias que viven en manantiales sulfurosos a 80ºC y PH incluso 2, en áreas volcánicas.
  • 20.  Las bacterias en general pueden ser de tres tipos: cocos, bacilos y espirilos.  Tienen un tamaño variable entre 1 y 10 m.  Su genoma se tiene entre 600.000 y 5 millones de pares de bases con lo que son capaces de sintetizar unas 50.000 proteínas diferentes.  Las bacterias más grandes y complejas son las cianobacterias, en las que se supone que evolucionó la fotosíntesis.  La mayoría de los organismos pluricelulares están formadas por células eucarioticas, también son eucariotas muchos organismos unicelulares, son los llamados eucariotas inferiores.  Los eucariotas a diferencia de los procariotas, presentan núcleo, orgánulos desarrollados y citoesqueleto.