SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
FÍSICA
1. MEDICIÓN Y RESOLUCIÓN DE
PROBLEMAS
CIFRAS SIGNIFICATIVAS
COMPILADO POR: Dra. Zully Carvache Franco, MSc.
Las cifras significativas de un número son
aquellas que pueden ser usadas en forma
confiable; también se puede decir que son
los dígitos de un número que
consideramos no nulos.
Las cifras significativas aparecen en todo
el proceso de mediciones directas o
indirectas.
Están constituidas por cifras correctas y
una cifra estimada o dudosa.
 Imaginemos que realizamos una medición, como
seria por ejemplo la longitud de una barra,
considere que la menor división de la regla utilizada
es de 1mm. Al interpretar el resultado de esa
medida. Se da cuenta que esta comprendido entre
14.3 cm y 14.4 cm, la fracción de milímetro que
deberá aumentarse a 14.3 tendrá que ser
aproximada, pues la regla no presenta divisiones
inferiores a 1mm.
 Para efectuar esta aproximación, deberá imaginar el
intervalo entre 14.3 y 14.4 cm subdividido en 10
partes iguales, y con ello la fracción de milímetro
que debe aumentarse a 14.3 cm se podrá obtener
con una estimación razonable
 El error absoluto es un valor que da un
intervalo de confianza donde probablemente
se encuentra el valor medio.
 En esta medición de 2.6 ± 0.1 m el error
absoluto ±0.1 de un intervalo de confianza
de 2.5m hasta 2.7m donde probablemente se
encuentre la medición.
1. Todas las cifras escritas comprendidas entres 1-
9 son significativas.
2. Los ceros a la izquierda nunca son significativas
independientemente que estén en la parte
entera o decimal del numero. Ej.: 0.082058, los
dos primeros ceros no son significativos.
3. Los 0 intermedios son significativos.
4. Los 0 finales de un dato real (14.00) son
significativos.
5. Los ceros finales de un dato entero (300) no son
significativos, si se desea expresar que son
significativos se añade un punto final (300.) o
se expresa en notación de potencia de diez
(3.00 x 102
).
 Suma y resta
Al sumar o restar 2 números decimales, el
numero de cifras decimales del resultado es
igual al de la cantidad con el menor numero
de ellas.
Ej.:
30.3475 – 30.3472 = 0.0003
 Multiplicación y división
Es el resultado de una multiplicación,
división o elevación a una cierta potencia,
tiene el mismo numero de cifras
significativas que la cantidad de la
operación que tenga el menor numero de
cifras significativas.
Ej.:
2.62 / 8.14732116 = 0.322
Clase   cifras significativas

Más contenido relacionado

La actualidad más candente

Viviana alvarez calculo y manejo error
Viviana alvarez calculo y manejo errorViviana alvarez calculo y manejo error
Viviana alvarez calculo y manejo errorviviavaalvarezuft
 
UNIDAD 1. Calculo Numérico y Manejo de Errores.
UNIDAD 1. Calculo Numérico y Manejo de Errores.UNIDAD 1. Calculo Numérico y Manejo de Errores.
UNIDAD 1. Calculo Numérico y Manejo de Errores.faikerm
 
1.3 tipos de errores
1.3 tipos de errores1.3 tipos de errores
1.3 tipos de erroresmorenito9001
 
Error absolut i relatiu
Error absolut i relatiuError absolut i relatiu
Error absolut i relatiuHan Ge Liu
 
Coeficientes Indeterminados
Coeficientes IndeterminadosCoeficientes Indeterminados
Coeficientes Indeterminadososcar
 

La actualidad más candente (8)

Teoria de errores
Teoria de erroresTeoria de errores
Teoria de errores
 
Viviana alvarez calculo y manejo error
Viviana alvarez calculo y manejo errorViviana alvarez calculo y manejo error
Viviana alvarez calculo y manejo error
 
UNIDAD 1. Calculo Numérico y Manejo de Errores.
UNIDAD 1. Calculo Numérico y Manejo de Errores.UNIDAD 1. Calculo Numérico y Manejo de Errores.
UNIDAD 1. Calculo Numérico y Manejo de Errores.
 
1.3 tipos de errores
1.3 tipos de errores1.3 tipos de errores
1.3 tipos de errores
 
Mat ii
Mat iiMat ii
Mat ii
 
Error absolut i relatiu
Error absolut i relatiuError absolut i relatiu
Error absolut i relatiu
 
Coeficientes Indeterminados
Coeficientes IndeterminadosCoeficientes Indeterminados
Coeficientes Indeterminados
 
1.3 errores (1)
1.3 errores (1)1.3 errores (1)
1.3 errores (1)
 

Similar a Clase cifras significativas

Cifras significativas
Cifras significativas Cifras significativas
Cifras significativas nakirapamela1
 
Cifras significativas y Redondeo de numeros
Cifras significativas y Redondeo de numerosCifras significativas y Redondeo de numeros
Cifras significativas y Redondeo de numerosWilmer Fabian N
 
Cifras significativas
Cifras significativasCifras significativas
Cifras significativasyhonatan123
 
Unidad I. Análisis numérico
Unidad I.  Análisis numéricoUnidad I.  Análisis numérico
Unidad I. Análisis numéricoSaileth Prada
 
Resumen de lo más importante de la unidad 1
Resumen de lo más importante de la unidad  1Resumen de lo más importante de la unidad  1
Resumen de lo más importante de la unidad 1ismaelortega09
 
Sesion 02 unidades_conversiones (1)
Sesion 02 unidades_conversiones (1)Sesion 02 unidades_conversiones (1)
Sesion 02 unidades_conversiones (1)JANSEN TAZZA MUNIVE
 
Incertidumbres 3
Incertidumbres 3Incertidumbres 3
Incertidumbres 3Mferavi
 
Analisis numericos/ANGEL MATA
Analisis numericos/ANGEL MATA Analisis numericos/ANGEL MATA
Analisis numericos/ANGEL MATA Angelmata15
 
Notación cientif,cifras significativas y redondeo
Notación cientif,cifras significativas y redondeoNotación cientif,cifras significativas y redondeo
Notación cientif,cifras significativas y redondeolinjohnna
 
Presentacion Manejo de los números
Presentacion Manejo de los númerosPresentacion Manejo de los números
Presentacion Manejo de los númerosvillafrade
 
Cifras Significativas
Cifras SignificativasCifras Significativas
Cifras Significativasevewilmar
 

Similar a Clase cifras significativas (18)

Cifras significativas
Cifras significativas Cifras significativas
Cifras significativas
 
Medidas
MedidasMedidas
Medidas
 
5
55
5
 
Cifras significativas
Cifras significativas Cifras significativas
Cifras significativas
 
Cifras significativas y Redondeo de numeros
Cifras significativas y Redondeo de numerosCifras significativas y Redondeo de numeros
Cifras significativas y Redondeo de numeros
 
Cifras significativas
Cifras significativasCifras significativas
Cifras significativas
 
Unidad I. Análisis numérico
Unidad I.  Análisis numéricoUnidad I.  Análisis numérico
Unidad I. Análisis numérico
 
Calculo numerico
Calculo numericoCalculo numerico
Calculo numerico
 
Resumen de lo más importante de la unidad 1
Resumen de lo más importante de la unidad  1Resumen de lo más importante de la unidad  1
Resumen de lo más importante de la unidad 1
 
Sesion 02 unidades_conversiones (1)
Sesion 02 unidades_conversiones (1)Sesion 02 unidades_conversiones (1)
Sesion 02 unidades_conversiones (1)
 
Tarea nº1 análisis numérico
Tarea nº1 análisis numéricoTarea nº1 análisis numérico
Tarea nº1 análisis numérico
 
Incertidumbres 3
Incertidumbres 3Incertidumbres 3
Incertidumbres 3
 
Teoría de errores
Teoría de erroresTeoría de errores
Teoría de errores
 
Analisis numericos/ANGEL MATA
Analisis numericos/ANGEL MATA Analisis numericos/ANGEL MATA
Analisis numericos/ANGEL MATA
 
Slideshard
SlideshardSlideshard
Slideshard
 
Notación cientif,cifras significativas y redondeo
Notación cientif,cifras significativas y redondeoNotación cientif,cifras significativas y redondeo
Notación cientif,cifras significativas y redondeo
 
Presentacion Manejo de los números
Presentacion Manejo de los númerosPresentacion Manejo de los números
Presentacion Manejo de los números
 
Cifras Significativas
Cifras SignificativasCifras Significativas
Cifras Significativas
 

Más de Cristina Cotera (20)

Proyecto quimica
Proyecto quimicaProyecto quimica
Proyecto quimica
 
Taller. qimc2
Taller. qimc2Taller. qimc2
Taller. qimc2
 
Exposicion sales oxisales
Exposicion sales oxisalesExposicion sales oxisales
Exposicion sales oxisales
 
áTomo
áTomoáTomo
áTomo
 
Materia
MateriaMateria
Materia
 
Equilibrio ionico
Equilibrio ionicoEquilibrio ionico
Equilibrio ionico
 
Equilibrio quìmico
Equilibrio quìmicoEquilibrio quìmico
Equilibrio quìmico
 
Sistemas dispersos
Sistemas dispersosSistemas dispersos
Sistemas dispersos
 
Balanceo de ecuaciones químicas
Balanceo de ecuaciones químicasBalanceo de ecuaciones químicas
Balanceo de ecuaciones químicas
 
Ecuaciones químicas de oxi-red
Ecuaciones químicas de oxi-redEcuaciones químicas de oxi-red
Ecuaciones químicas de oxi-red
 
Ecuaciones químicas
Ecuaciones químicasEcuaciones químicas
Ecuaciones químicas
 
Relaciones cuantitativas
Relaciones cuantitativasRelaciones cuantitativas
Relaciones cuantitativas
 
Nomenclatura
NomenclaturaNomenclatura
Nomenclatura
 
Tabla periodica
Tabla periodicaTabla periodica
Tabla periodica
 
Radiación electromagnética
Radiación electromagnéticaRadiación electromagnética
Radiación electromagnética
 
Configuración electrónica
Configuración electrónicaConfiguración electrónica
Configuración electrónica
 
Teorias atomicas
Teorias atomicasTeorias atomicas
Teorias atomicas
 
Modelo atòmico de Bohr
Modelo atòmico de BohrModelo atòmico de Bohr
Modelo atòmico de Bohr
 
Taller 4
Taller 4Taller 4
Taller 4
 
Taller 3
Taller 3Taller 3
Taller 3
 

Clase cifras significativas

  • 1. FÍSICA 1. MEDICIÓN Y RESOLUCIÓN DE PROBLEMAS CIFRAS SIGNIFICATIVAS COMPILADO POR: Dra. Zully Carvache Franco, MSc.
  • 2. Las cifras significativas de un número son aquellas que pueden ser usadas en forma confiable; también se puede decir que son los dígitos de un número que consideramos no nulos. Las cifras significativas aparecen en todo el proceso de mediciones directas o indirectas. Están constituidas por cifras correctas y una cifra estimada o dudosa.
  • 3.  Imaginemos que realizamos una medición, como seria por ejemplo la longitud de una barra, considere que la menor división de la regla utilizada es de 1mm. Al interpretar el resultado de esa medida. Se da cuenta que esta comprendido entre 14.3 cm y 14.4 cm, la fracción de milímetro que deberá aumentarse a 14.3 tendrá que ser aproximada, pues la regla no presenta divisiones inferiores a 1mm.  Para efectuar esta aproximación, deberá imaginar el intervalo entre 14.3 y 14.4 cm subdividido en 10 partes iguales, y con ello la fracción de milímetro que debe aumentarse a 14.3 cm se podrá obtener con una estimación razonable
  • 4.  El error absoluto es un valor que da un intervalo de confianza donde probablemente se encuentra el valor medio.  En esta medición de 2.6 ± 0.1 m el error absoluto ±0.1 de un intervalo de confianza de 2.5m hasta 2.7m donde probablemente se encuentre la medición.
  • 5. 1. Todas las cifras escritas comprendidas entres 1- 9 son significativas. 2. Los ceros a la izquierda nunca son significativas independientemente que estén en la parte entera o decimal del numero. Ej.: 0.082058, los dos primeros ceros no son significativos. 3. Los 0 intermedios son significativos. 4. Los 0 finales de un dato real (14.00) son significativos. 5. Los ceros finales de un dato entero (300) no son significativos, si se desea expresar que son significativos se añade un punto final (300.) o se expresa en notación de potencia de diez (3.00 x 102 ).
  • 6.  Suma y resta Al sumar o restar 2 números decimales, el numero de cifras decimales del resultado es igual al de la cantidad con el menor numero de ellas. Ej.: 30.3475 – 30.3472 = 0.0003
  • 7.  Multiplicación y división Es el resultado de una multiplicación, división o elevación a una cierta potencia, tiene el mismo numero de cifras significativas que la cantidad de la operación que tenga el menor numero de cifras significativas. Ej.: 2.62 / 8.14732116 = 0.322