SlideShare una empresa de Scribd logo
Universidad tecnológica del estado de zacatecas
Tecnologías de la información y la comunicación
Aplicación de las telecomunicaciones
Profesor: Eloy contreras de lira
Trabajo hecho por:
-Francisco Herrera Gómez
-Berenice Canizalez Martínez
Tema: Sistemas de Telecomunicaciones
Fecha: 13/08/2015
FIBRA OPTICA
Filamento de material dieléctrico, como el vidrio o los polímeros acrílicos, capaz de
conducir y transmitir impulsos luminosos de uno a otro de sus extremos; permite la
transmisión de comunicaciones telefónicas, de televisión, etc., a gran velocidad y
distancia, sin necesidad de utilizar señales eléctricas.
FUNCIONAMIENTO:
La fibra óptica designa una nueva red fija que se apoya en un soporte físico muy
delgado (fibra de vidrio o de plástico) utilizado para la transmisión de datos IP (por
internet) a alta velocidad.
La fibra óptica posee un núcleo de material transparente en el seno del cual la luz
"rebota", quedando atrapada en el cable. Así los datos, que corresponden a
impulsos luminosos muy cortos, viajan a la velocidad de la luz (o casi, porque la
velocidad de la luz en la fibra óptica siempre será menos elevada que la verdadera
velocidad de la luz que es medida en el vacío).
Actualmente, la fibra óptica asegura una velocidad (transmisión de datos por
internet) que llega hasta los 100 MB/s y multiplica así por 10 las realizaciones de
una red ADSL clásica. De ahora en adelante contemplamos velocidades que van
hasta varios TB/s. Pero el problema vendrá de nuestros ordenadores que no
sabrán tratar bastante rápido tal velocidad de datos.
Recordemos también que el Wi-Fi retiene estos rendimientos. Las normas Wi-Fi
actuales (802.11a o 802.11b) permiten sólo una velocidad teórica máximo de 54
MB/s que es inferior a la velocidad de la fibra. La norma en curso de expansión
(802.11n) permite velocidades mucho más elevadas (hasta 600 MB/s teóricos).
Hasta entonces, si deseas explotar tu fibra como máximo, conéctate a Ethernet.
Rendimientos de la fibra óptica en comparación al ADSL: algunos ejemplos
concretos
 Descargar en menos de 50 segundos 10 álbumes MP3 (cerca de 3 minutos con
ADSL).
 Descargar una película (de aproximadamente 700 megas) en un minuto (4
minutos con ADSL).
 Compartir en un segundo un álbum de fotos compuesto de cincuenta imágenes
(10 segundos para el ADLS).
 Ver películas o canales de TV en alta definición o 3D con una calidad de
imagen garantizada.
 Compartir en algunas décimas de segundo archivos voluminosos en internet
(por correos electrónicos o a través de servicios colaborativos y espacios de
almacenamiento en línea).
 Jugar en red en Internet con un tiempo de respuesta óptimo.
 Hacer videoconferencias HD.
Todas estas tareas y actividades pueden ser efectuadas simultáneamente sin
riesgo de disminución de velocidad o de pérdida de calidad.
CARACTERISTICAS
Atenuación
 Se pierde parte de la señal en el núcleo, pese a que no exista refracción.
 Se mide en decibelios (dB) por unidad de longitud (dB/Km).
 Las pérdidas están causadas por varios factores por lo que pueden clasificarse
en: Extrínsecas / Intrínsecas.
EXTRÍNSECAS:
Pérdidas por curvatura:
 Defectos de fabricación.
 Procedimientos de instalación.
 Se denominan microcurvaturas e influyen en largas distancias.
Perdidas por conexión y empalme:
 Pérdidas de inserción del conexionado (0,3 - 0,8 dB).
 Empalmes mecánicos (0,4 - 0,2 dB).
 Empalmes por fusión (<0,2 dB) valor típico (<0,1 dB).
 Preparación del empalme o conexión: Corte defectuoso; Suciedad de las
superficies a empalmar; Características distintas de las Fibras opticas; Etc.
-INTRÍNSECAS:
Pérdidas inherentes de la fibra óptica:
 Pérdidas por absorción por los metales de transición Fe, Cu, Cr, Ni, Mn.
 Pérdidas por absorción por el agua en forma de iones de OH.
Irregularidades del proceso de fabricación:
 Variación del ø del núcleo.
Reflexión de Fresnel:
 Cantidad de luz que es reflejada a causa de un cambio de medio. Luz
reflejada(%)= 100x (n1-n2)2/(n1+n2)2 donde:
n1 - Índice de refracción del núcleo.
n2 - Índice de refracción del aire.
DIAGRAMAS DE LA FIBRA OPTICA.
ILUSTRACIONES
MICROONDAS
Se denomina microondas a las ondas electromagnéticas; generalmente de entre
300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10−9 s) a
3 ps (3×10−12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras
definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su
rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre
30 centímetros a 1 milímetro.
El rango de las microondas está incluido en las bandas de radiofrecuencia,
concretamente en las de UHF (ultra-high frequency - frecuencia ultra alta) 0,3-
3 GHz, SHF (super-high frequency - frecuencia súper alta) 3-30 GHz
y EHF (extremely-high frequency - frecuencia extremadamente alta) 30-300 GHz.
Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor
longitud de onda que las microondas. Las microondas de mayor frecuencia y menor
longitud de onda —en el orden de milímetros— se denominanondas milimétricas.
La existencia de ondas electromagnéticas, de las cuales las microondas forman
parte del espectro de alta frecuencia, fueron predichas por Maxwell en 1864 a partir
de sus famosas Ecuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el
primero en demostrar la existencia de ondas electromagnéticas mediante la
construcción de un aparato para generar y detectar ondas de radiofrecuencia.
FUNCIONAMIENTO
En el espacio, los satélites se emplean como estaciones retransmisoras
de microondas. Estos satélites tienen una enorme capacidad y las nuevas
generaciones de satélites serán aún más potentes.
Las comunicaciones por satélite, se están volviendo muy importantes en el área
comercial. Muchas estaciones de televisión retransmiten a todo el mundo
mediante satélites.
La señal que éstas emiten se puede captar en lugares alejados, donde no existe el
servicio de televisión tradicional.
Aplicaciones
Diversas han sido las aplicaciones utilizando este tipo de señales
electromagnéticas, en este escrito se mencionaran 3 de los más reconocidos
empezando por la aplicación en telecomunicaciones, seguido del famoso Horno
Microondas y posteriormente la aplicación en la tecnología de Radares.
Comunicación vía Microondas
Constituyen una de las formas más eficientes de transmisión de señales en el
espacio libre por la cantidad de canales que pueden ser transportados, debido a
un ancho de banda óptimo para llevar a cabo procesos de telecomunicaciones
terrestres. La clasificación de señales microondas se subdividen en bandas de
operación, teniéndose un amplio rango de bandas por los cuales se puede llevar a
cabo procesos de comunicación.
Radar
Sistema que utiliza señales electromagnéticas para medir distancias, altitudes,
direcciones y velocidades. Su funcionamiento se basa en la emisión de una señal
electromagnética, que se reflejara en el objeto en cuestión para recibir este
impulso en el equipo y extraer la mayor cantidad de información.
Sus principales aplicaciones se dan en las áreas de meteorología, control de
tráfico aéreo y terrestre y usos militares.
Bibliografia
- "Sistemas de comunicaciones Electrónicas", Tomasi
- Funcionamiento del microondas, en
linea, http://eplaneta.blogspot.com/2006/01/funcionamiento-del-microondas.html
Ancho de Banda
Los sistemas de microondas ofrecen un ancho de banda sustancial. Los sistemas
digitales de microondas, con los cuales cuentan la mayoría de sistemas
contempor´neos, se ejecutan usualmente con tasas de señales de 1.544 mbps y
2.048 mbps, con muchas operando en tasas de 34 mbps y 45 mbps. Los sistemas
digitales emplean técnicas de modulación sofisticadas para incrementar la eficiencia
del espectro, al empaquetar múltiples bits en cada hertz disponible.
Error de Rendimiento
Las microondas, especialmente las digitales, ofrecen un excelente error de
rendimiento asumiendo un propio diseño y despliegue del sistema. las
obstrucciones físicas deben ser evitadas a toda costa, ya que las más pequeñas
obstrucciones tienen un gran impacto negativo en la fuerza de la señal de error
debido al fenómeno de las zonas de Fresnel. La radio microonda es también
particularmente susceptible a las interferencias del ambiente, tales como, neblina,
humo y precipitaciones. La atenuación por lluvia es un factor de error en frecuencias
sobre los 8 GHz y puede ser especialmente serio en frecuencias sobre los 11 GHz.
Distancia
La microonda está claramente limitada en cuanto a distancia, especialmente en las
altas frecuencias. Como un punto a punto, los sistemas de radio LOS, diseñan
consideraciones incluyendo topografía, la altura de la antena, el clima y la curvatura
de la tierra.
Seguridad Como es el caso de todos los sistemas de radio, las microondas son
inherentemente inseguras. Una antena de radio sintonizada en la frecuencia propia
y posicionada a proximidad del camino de la microonda puede capturar fácilmente
la señal.
Costo
Los costos de adquisición, despliegue y ordenamiento de las microondas puede ser
altos. Pero estos costos son a menudo muy favorables comparados con los
sistemas de cableado, los cuales requieren extensos procesos de obtención,
apertura de zanjas y posicionamiento de polos, sistemas de conducción, empalme,
entre otros.
Regulación
Los sistemas de microondas, en términos generales, operan en bandas de
frecuencia autorizada. El espectro asignado es responsabilidad del ITU-R a nivel
internacional. Las autoridades regionales incluyen dirección general de la Unión
Europea. Las autoridades nacionales incluyen el FCC en los Estados Unidos y la
autoridad de comunicaciones independientes de Sudáfrica (ICASA). Dentro del
espectro asignado, los sistemas de transmisión de microondas individuales debe
ser autorizado en una base caso por caso para evitar la interferencia entre sistemas
adyacentes.
http://blog.utp.edu.co/shannon/files/2012/02/Microondas.pdf
CARACTERISTICAS
 Son sistemas punto a punto
 Operan en el rango de frecuencia de los GHz
 La longitud de onda está en el rango de los milímetros. De ahí su nombre.
 Con frecuencias tan altas, las señales son susceptibles a atenuación,
entonces deben ser amplificadas o repetidas.
 Necesitan rayos bien enfocados.
 Tecnología con línea de visión.
 Susceptible al fenómeno de atenuación multicamino.
 Necesita una zona libre en forma de una Elipse de Fresnel
DIAGRAMAS
Estación Emisora y Receptora.
Dispositivos de microondas.
ILUSTRACIONES
Topología en una red microondas.
Sistema de microondas.
Laser en lugar de microondas.
El término radiofrecuencia (abreviado RF), también denominado espectro de
radiofrecuencia, se aplica a la porción menos energética del espectro electromagnético,
situada entre 3 hercios (Hz) y 300 gigahercios (GHz).1
El hercio es la unidad de medida de la frecuencia de las ondas, y corresponde a un
ciclo por segundo.2 Las ondas electromagnéticas de esta región del espectro, se
pueden transmitir aplicando la corriente alterna originada en un generador a
una antena.
La radiofrecuencia se puede dividir en las siguientes bandas del espectro:
Nombre de
frecuencia
Frecuencia
en inglés
Abreviatura
inglesa
Banda
UIT
Frecuencias Longitud de
onda
- - - - <3 Hz >100.000 km
Frecuencia
extremadamente
baja
Extremely
Low
Frequency
ELF 1 3-30 Hz 100.000–
10.000 km
Super baja
frecuencia
Super Low
Frequency
SLF 2 30-300 Hz 10.000–1.000
km
Ultra baja
frecuencia
Ultra Low
Frequency
ULF 3 300–3.000
Hz
1.000–100
km
Muy baja
frecuencia
Very Low
Frequency
VLF 4 3–30 kHz 100–10 km
Baja frecuencia Low
Frequency
LF 5 30–300 kHz 10–1 km
Media frecuencia Medium
Frequency
MF 6 300–3.000
kHz
1 km – 100 m
Alta Frecuencia High
Frequency
HF 9 3–30 MHz 100 m – 10 m
Muy alta
frecuencia
Very High
Frequency
VHF 11 30-300 MHz 10–1 m
Ultra alta
frecuencia
Ultra High
Frequency
UHF 10 300-3000
MHz
1 m–100 mm
Súper alta
frecuencia
Super High
Frequency
SHF 11 3-30 GHz 100–10 mm
Frecuencia
extremadamente
alta
Extremely
High
Frequency
EHF 11 30-300 GHz 10–1 mm
A partir de 1 GHz las bandas entran dentro del espectro de las microondas. Por
encima de 300 GHz la absorción de la radiación electromagnética por la atmósfera
terrestre es tan alta que la atmósfera se vuelve opaca a ella, hasta que, en los
denominados rangos de frecuencia infrarrojos y ópticos, vuelve de nuevo a ser
transparente.
Las bandas ELF, SLF, ULF y VLF comparten el espectro de la AF (audiofrecuencia),
que se encuentra entre 20 y 20.000 Hz aproximadamente. Sin embargo, éstas se
tratan de ondas de presión, como el sonido, por lo que se desplazan a la velocidad
del sonido sobre un medio material. Mientras que las ondas de radiofrecuencia, al
ser ondas electromagnéticas, se desplazan a la velocidad de la luz y sin necesidad
de un medio material.
HISTORIA
Las bases teóricas de la propagación de ondas electromagnéticas fueron descritas
por primera vez por James Clerk Maxwell. Heinrich Rudolf Hertz, entre 1886 y 1888,
fue el primero en validar experimentalmente la teoría de Maxwell.
El uso de esta tecnología por primera vez es atribuido a diferentes
personas: Alejandro Stepánovich Popov hizo sus primeras demostraciones en San
Petersburgo, Rusia; Nikola Tesla en San Luis (Misuri), Estados Unidos y Guillermo
Marconi en el Reino Unido.
USOS
-Radiocomunicaciones
-Sistemas de radio AM y FM.
-Radioastronomía
-Línea de HI o hidrógeno atómico. Centrada en 1,4204058 GHz.
-Línea de CO (transición rotacional 1-0) asociada al hidrógeno molecular. Centrada
en 115,271 GHz.
-Radar
-Resonancia magnética nuclear
-Resonancia magnética nuclear
-Otros usos de las ondas de radio
-Calentamiento
-Fuerza mecánica
-Metalurgia
-Templado de metales
-Soldaduras
-Industria alimentaria:
-Esterilización de alimentos
-Medicina
-Implante coclear
-Diatermia
Predecesor:
—
Radiofrecuencia
Lon. de onda: ∞ ← 3×10−1
m
Frecuencia: 0 ← 109
Hz
Sucesor:
Microondas
Fig. 1.1. Espectro electromagnético
Fig. 1.2. Onda de radio
SATÉLITE Y TELEFONÍA CELULAR
Un satélite artificial es una nave espacial fabricada en la Tierra o en otro lugar del
espacio y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una
carga útil al espacio. Los satélites artificiales pueden orbitar alrededor de
asteroides, planetas.
Teléfono Celular. Dispositivo inalámbrico electrónico que permite tener acceso a la
red de telefonía celular o móvil. Se denomina celular debido a las antenas
repetidoras que conforman la red, cada una de las cuales es una célula, si bien
existen redes telefónicas móviles satelitales. Su principal característica es su
portabilidad, que permite comunicarse desde casi cualquier lugar. Aunque su
principal función es la comunicación de voz, como el teléfono convencional, su
rápido desarrollo ha incorporado otras funciones como son cámara fotográfica,
agenda, acceso a Internet, reproducción de vídeo e incluso GPS y reproductor mp3.
Comunicaciones Móviles por Satélite
Su objetivo es el establecimiento de comunicaciones móviles, mediante satélites en
órbita, entre estaciones terrenas fijas y estaciones terrenas móviles.
La necesidad de este nuevo servicio se basa en el hecho de que al final del presente
siglo los sistemas de comunicaciones móviles celulares terrestres tales como GSM
o PCS, darán servicio al cincuenta por ciento de la población, pero sólo al quince
por ciento de la superficie terrestre.
Incluso el hecho de desplazarse a otra ciudad puede dar lugar a problemas debido
a la incompatibilidad entre los distintos sistemas de comunicaciones móviles (a
pesar del esfuerzo de estandarización, existen trece o catorce sistemas distintos de
los que GSM es sólo uno más)
La solución a todos estos problemas puede ser unos sistemas de global de
comunicaciones móviles por satélite que permita el acceso a lugares remotos sin
necesidad de grandes infraestructuras terrestres adicionales.
Los organismos regulatorios internacionales están buscando un estándar que
permita el uso de los terminales de comunicaciones móviles por satélite en cualquier
lugar del mundo. Las redes que ofrecen tales servicios reciben el nombre de Redes
de Comunicaciones Personales por Satélite (S-PCN - Satélite Personal
Communications Networks).
Aquellos que viajen a cualquier lugar del planeta, podrán usar el mismo terminal
móvil con el mismo conjunto de servicios a los que estén suscritos en cualquier lugar
del mundo, sin necesidad de familiarizarse con equipos diferentes cuando visiten
distintos países.
El estándar de telefonía del sistema de comunicaciones móviles por satélite, será
similar al proporcionado por las redes de comunicaciones móviles digitales según el
estándar GSM. Además de los servicios de voz, los usuarios de este sistema
tendrán acceso a otros servicios como fax o transmisión de ficheros en cualquier
momento y en cualquier lugar de la Tierra.
Mientras que todavía cualquier sistema de telefonía móvil presenta problemas
debidos a barreras regulatorias al cambiar de país, esto no sucederá con el sistema
de comunicaciones móviles por satélite, facilitando la definición y el lanzamiento de
los sistemas de comunicaciones móviles mundiales.
Varios operadores de Comunicaciones Personales por Satélite como GlobalStar,
Inmarsat-P, Iridium... ya están definiendo sus sistemas para empezar a operar en
los próximos años.
Sistemas basados en Diferentes Tecnologías como son sistemas de órbita baja
(LEO), sistemas de órbita intermedia (ICO)...
Los satélites LEO son una nueva forma de comunicación satelital. Aunque se basan
en recientes avances tecnológicos, la factibilidad de los sistemas LEO no será
conocida hasta que el primero de ellos entre en funcionamiento. Para proveer
cobertura total, los sistemas LEO requieren numerosos satélites. Globalstar, por
ejemplo, utilizará 48 satélites. Iridium planea utilizar 66 satélites. Para proveer
servicio global, los sistemas LEO también requieren ya sea utilizar enlaces entre
satélites como lo hace Iridium, o utilizar un gran número de estaciones terrestres
como lo hará Globalstar que planea tener de 100 a 200. Es más, los satélites LEO
tienen que ser reemplazados más a menudo que los satélites MEO y GEO (un
estimado de 5 años para los de Globalstar contra 15 años para los MEO de
Odyssey). En general, debido al gran número de satélites y estaciones terrestres,
sumado a la necesidad de reemplazos frecuentes los costos de sistemas LEO son
superiores a los de MEO y GEO.
Los sistemas LEO también se enfrentan a otros retos tecnológicos especiales.
Debido a que sus satélites están tan cerca de la tierra, estos son más susceptibles
a 'sombras', el bloqueo de las señales por edificaciones y colinas que algunas veces
interrumpen el servicio celular. Una sola llamada debe ser conmutada más
frecuentemente de un satélite a otro - un reto tecnológico complicado y caro - debido
a que los satélites LEO permanecen "visibles" a un usuario solamente por un corto
periodo de tiempo.
Los sistemas GEO tienen ventajas sobre los LEO, pero también enfrentan algunos
retos. Para proveer cobertura total, los sistemas GEO requieren únicamente tres
satélites y un pequeño número de estaciones terrestres. Sin embargo, los satélites
GEO tendrían que ser más grandes y más complejos que aquellos en sistemas LEO
o MEO para soportar las enormes antenas requeridas para comunicarse con
teléfonos de mano desde la órbita terrestre geoestacionaria. Es mas, los sistemas
GEO planeados hasta la fecha ofrecen cobertura solamente a algunas partes del
mundo y no soportan el 'roaming'(seguimiento) global.
No hay conmutación (handoff) en los sistemas GEO, por supuesto, son altamente
confiables y necesitan ser reemplazados menos frecuentemente que los satélites
LEO, pero estas ventajas tienen un alto precio en desempeño. La distancia de los
satélites GEO a la tierra significa que los usuarios deben enfrentar demoras en la
señal que degradan el servicio. Un problema que no ocurre con los sistemas LEO y
MEO.
El uso de satélites MEO para sistemas de telefonía móvil satelital, tiene ciertas
ventajas en costo y confiabilidad sobre los sistemas GEO. Un sistema MEO puede
cubrir cada parte inhabitada de la Tierra con un número pequeño de satélites y
estaciones terrestres. Por ejemplo Odyssey - que espera ofrecer servicio global de
telefonía satelital en el año 2000 y por el cual TRW ha recibido dos patentes
estadounidenses - utiliza solamente 12 satélites y siete estaciones terrestres. Es por
éstas razones que Odyssey planea ofrecer el servicio por menos de US$ 1 por
minuto, comparado con el estimado de Iridium de US$ 3 por minuto (ICO que
utilizará sistemas MEO planea cobrar US$ 2 por minuto).
GlobalStar
La constelación del sistema GlobalStar formada por 48 satélites de órbita baja
(LEO) proporcionarán servicios de comunicaciones móviles con servicios de voz y
datos, radiomensajería y radiodeterminación cubriendo alrededor del 98% de la
población.
GlobalStar enruta una llamada de un usuario del sistema hasta uno de los 48
satélites, volviéndola a bajar a la estación terrena de acceso a la Red Pública
conmutada a través de la cual llega al abonado al que se está llamando. Si la
llamada se hace a otro usuario del sistema GlobalStar, la llamada continuaría a
través de otra estación en tierra que actúa esta vez de puerta desde la Red Pública
conmutada al satélite, y regresa a tierra desde éste al receptor móvil al que iba
dirigida la llamada.
GlobalStar dará su servicio a través de una red mundial de proveedores locales de
telecomunicaciones. En éstos se incluyen por ejemplo las francesas France
Telecom (cuarto operador mundial) y Alcatel (mayor empresa mundial de
manufacturas de equipos de comunicación a distancia)
Pulse en el logotipo para obtener más información
Iridium
Sistema de comunicaciones móviles vía satélite basado en satélites de órbita baja
(LEO), apoyado por la empresa de telecomunicaciones Motorola.
Es un sistema global de comunicaciones móviles que utiliza la estructura de red
celular cuyas estaciones base se encuentran en el espacio en forma de 66 satélites
en órbita (aunque inicialmente se pensó en un sistema con 77 satélites -de ahí su
nombre: Iridium, elemento atómico con 77 electrones en su corteza-), estando 11
satélites en cada uno de los planos separados 420 millas naúticas sobre la
superficie terrestre.
Sistemas de satélites de Iridium
Su principal característica es que extenderá la red de comunicaciones móviles GSM,
ofreciendo servicios de voz y datos de carácter personal y con cobertura mundial.
Además también estarán disponibles servicios de radiomensajería o fax.
Teledesic
Este sistema de comunicación dispondrá de 840 satélites para, según uno de sus
más importantes inversores Microsoft, permitir a cualquier persona en cualquier
punto del mundo conectarse a Internet, aparte de dar también un servicio de
telefonía móvil.
Satélite de la constelación de Teledesic
Utiliza satélites de órbita baja, ya que el retardo que sufre una comunicación es este
tipo de órbita es muy inferior al que sufre en la órbita geoestacionaria (alrededor de
medio segundo en ésta última). Además utilizarán unas bandas frecuencias altas
(desde 18 GHz. a 28 GHz.) para de este mo do proporcionar servicios con una
calidad similar a la fibra óptica.
Sistemas de satélites de Teledesic
Uno de los puntos críticos de la constelación de Teledesic es el Polo Norte, ya que
por este punto pasan los satélites de todas las órbitas.
Cada satélite estará conectado a ocho satélites vecinos, para así conseguir una
robusta topología, los paquetes de datos podrán tomar diferentes caminos para
llegar a su destino dependiendo de la congestión de la red, de esta forma si se
perdiese algún satélite, los paquetes podrían tomar una r uta alternativa.
Este sistema tiene una inversión en investigación y desarrollo de nueve mil millones
de dólares.
Se prevé que Teledesic esté en funcionamiento alrededor del año 2001, por tanto
sus principales problemas son la construcción y puesta en órbita de tal cantidad de
satélites. La solución está en ir lanzando los satélites poco a poco e ir colocándolos
de manera estratégica de tal forma que desde un principio se pueda dar servicio,
pero que la capacidad de éste vaya aumentado con el tiempo.
Inmarsat-P
El sistema de comunicaciones móviles establecido por INMARSAT se basa en un
sistema de satélites de órbita intermedia circular (ICO).
Está formado por 10 satélites distribuidos en dos grupos de 5 en planos ortogonales
(más dos en exceso que no están en operación).
Satélite de la constelación de Inmarsat
Los efectos de las montañas y los edificios sobre la disponibilidad del servicio se
subsanan asegurando que al menos dos satélites vean cada punto en cada
momento: se basan en enlaces sin obstáculos entre los satélites y los terminales
móviles.
Dispondrán de doce nodos en satélites distribuidos alrededor del planeta y todos
interconectados entre sí, que darán servicio en tiempo real a todos aquellos que
accedan al sistema. Los satélites harán de enlace entre el terminal móvil y una de
las estaciones terrenas situadas a lo largo de la superficie terrestre de que dispondrá
el sistema. La estación terrena será la que proporcione el acceso a la Red
Telefónica Conmutada.
Los servicios ofrecidos por Inmarsat-P tendrán la apariencia de los servicios
ofrecidos por los sistemas celulares o el sistema PCS. Se ofrecerán servicios
adicionales de datos, fax y radiomensajería.
Odyssey
Odyssey se podría describir como un método que nos provee de comunicaciones a
través de satélites de órbita intermedia entre terminales de baja potencia con
antenas omnidireccionales y una estación terrena de enlace con uno de los satélites
que forman parte de la constelación de satélites de este sistema.
Satélite de la constelación de Odyssey
Está previsto que los satélites se encuentren en órbitas a altitudes que varían entre
los 10000 y 18000 Kms., estando orientadas cada una de las órbitas en diferentes
planos. Al menos uno de los satélites recibirá las señales de radiofrecuencia de los
terminales móviles. Para asegurar la continuidad de la comunicación existirá un área
de solape entre las diferentes regiones cubiertas por cada uno de los satélites
contiguos.
Estas características permiten a Odyssey proveer de comunicación telefónica sin
cable de alta calidad, así como servicio de fax y datos alrededor de todo el mundo,
con tan sólo una docena de satélites y ocho estaciones terrenas.
La empresa que impulsa este sistema es TRW, en conjunción con la empresa
canadiense de telecomunicaciones Teleglobe Inc..
Satélite Odyssey diseñado por TRW
Se espera que Odyssey este operativo alrededor del año 2000, con una inversión
de más de cinco mil millones de dólares.
https://es.wikipedia.org/wiki/Fibra_%C3%B3ptica
http://www.monografias.com/trabajos13/fibropt/fibropt.shtml
https://es.wikipedia.org/wiki/Radiocomunicaci%C3%B3n_por_microondas
https://es.wikipedia.org/wiki/Radiofrecuencia
http://www.esteticasincirugia.es/12_radiofrecuencia.htm
http://neutron.ing.ucv.ve/revista-e/No5/EVera.htm
Eloy trabajo

Más contenido relacionado

La actualidad más candente

Aplicacion de las telecomunicaciones
Aplicacion de las telecomunicacionesAplicacion de las telecomunicaciones
Aplicacion de las telecomunicaciones
Sandy Montoya Reyes
 
La fibra optica
La fibra opticaLa fibra optica
La fibra opticarulotrik
 
Fibra óptica
Fibra ópticaFibra óptica
Fibra óptica
Arturo Izaguirre
 
8.1 El canal óptico: la fibra óptica
8.1 El canal óptico:  la fibra óptica8.1 El canal óptico:  la fibra óptica
8.1 El canal óptico: la fibra óptica
Edison Coimbra G.
 
MEDIOS DE TRANSMISION
MEDIOS DE TRANSMISIONMEDIOS DE TRANSMISION
MEDIOS DE TRANSMISION
Rodrigo Gomez
 
MEDIOS DE TRANSMISION
MEDIOS DE TRANSMISIONMEDIOS DE TRANSMISION
MEDIOS DE TRANSMISION
Rodrigo Gomez
 
Ervin torres medios_de_transmision
Ervin torres medios_de_transmisionErvin torres medios_de_transmision
Ervin torres medios_de_transmisionErvin_Gerardo
 
Ervin torres medios_de_transmision
Ervin torres medios_de_transmisionErvin torres medios_de_transmision
Ervin torres medios_de_transmisionErvin_Gerardo
 
Redes telecomunicaciones 2015-1_omar_cardenas
Redes telecomunicaciones 2015-1_omar_cardenasRedes telecomunicaciones 2015-1_omar_cardenas
Redes telecomunicaciones 2015-1_omar_cardenas
Omar Cardenas
 
MEDIOS DE TRANSMISIÓN
MEDIOS DE TRANSMISIÓNMEDIOS DE TRANSMISIÓN
MEDIOS DE TRANSMISIÓN
Yuly Tapias
 
Medios de transmision
Medios de transmisionMedios de transmision
Medios de transmisionErvin_Gerardo
 
Capitulo III estudiantes
Capitulo III estudiantesCapitulo III estudiantes
Capitulo III estudiantes
Derca Sanz Venegaz
 

La actualidad más candente (18)

Aplicacion de las telecomunicaciones
Aplicacion de las telecomunicacionesAplicacion de las telecomunicaciones
Aplicacion de las telecomunicaciones
 
La fibra optica
La fibra opticaLa fibra optica
La fibra optica
 
Fibra óptica
Fibra ópticaFibra óptica
Fibra óptica
 
8.1 El canal óptico: la fibra óptica
8.1 El canal óptico:  la fibra óptica8.1 El canal óptico:  la fibra óptica
8.1 El canal óptico: la fibra óptica
 
MEDIOS DE TRANSMISION
MEDIOS DE TRANSMISIONMEDIOS DE TRANSMISION
MEDIOS DE TRANSMISION
 
MEDIOS DE TRANSMISION
MEDIOS DE TRANSMISIONMEDIOS DE TRANSMISION
MEDIOS DE TRANSMISION
 
Fibra optica
Fibra opticaFibra optica
Fibra optica
 
Ervin torres medios_de_transmision
Ervin torres medios_de_transmisionErvin torres medios_de_transmision
Ervin torres medios_de_transmision
 
Ervin torres medios_de_transmision
Ervin torres medios_de_transmisionErvin torres medios_de_transmision
Ervin torres medios_de_transmision
 
Redes telecomunicaciones 2015-1_omar_cardenas
Redes telecomunicaciones 2015-1_omar_cardenasRedes telecomunicaciones 2015-1_omar_cardenas
Redes telecomunicaciones 2015-1_omar_cardenas
 
Andres yesid serrano
Andres yesid serranoAndres yesid serrano
Andres yesid serrano
 
Cuestionario #2
Cuestionario #2Cuestionario #2
Cuestionario #2
 
Cuestionario de Tanenbaum
Cuestionario de TanenbaumCuestionario de Tanenbaum
Cuestionario de Tanenbaum
 
Cuestionario #2
Cuestionario #2Cuestionario #2
Cuestionario #2
 
MEDIOS DE TRANSMISIÓN
MEDIOS DE TRANSMISIÓNMEDIOS DE TRANSMISIÓN
MEDIOS DE TRANSMISIÓN
 
301121 73 act6_77174299
301121 73 act6_77174299301121 73 act6_77174299
301121 73 act6_77174299
 
Medios de transmision
Medios de transmisionMedios de transmision
Medios de transmision
 
Capitulo III estudiantes
Capitulo III estudiantesCapitulo III estudiantes
Capitulo III estudiantes
 

Destacado

(794057433) actividad 5 pasar a pdf
(794057433) actividad 5 pasar a pdf(794057433) actividad 5 pasar a pdf
(794057433) actividad 5 pasar a pdf
diegotorrezz
 
Telecomunicaciones Perú
Telecomunicaciones PerúTelecomunicaciones Perú
Telecomunicaciones PerúNéstor López
 
Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...
Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...
Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...
MEDUCA
 
ANALISIS DE UN SISTEMA DE TELEVISION
ANALISIS DE UN SISTEMA DE TELEVISIONANALISIS DE UN SISTEMA DE TELEVISION
ANALISIS DE UN SISTEMA DE TELEVISIONkellygomezj
 
Trabajo sistemas de comunicacion
Trabajo sistemas de comunicacionTrabajo sistemas de comunicacion
Trabajo sistemas de comunicacion
Jesus Cisneros Morales
 
5 ATSC
5 ATSC5 ATSC
Sistema de radiodifusion sonora y television
Sistema de radiodifusion sonora y televisionSistema de radiodifusion sonora y television
Sistema de radiodifusion sonora y television
martin casares
 
Produccion publicitaria ll manual
Produccion publicitaria ll manualProduccion publicitaria ll manual
Produccion publicitaria ll manualUtt Cuarto B
 
Ccna 4.0 exploration 1 esp pdf by cisco net
Ccna 4.0 exploration 1 esp pdf by cisco netCcna 4.0 exploration 1 esp pdf by cisco net
Ccna 4.0 exploration 1 esp pdf by cisco net
K3yk33p3r
 
Redes de Telecomunicaciones cap3
Redes de Telecomunicaciones cap3Redes de Telecomunicaciones cap3
Redes de Telecomunicaciones cap3
Francisco Apablaza
 
Certificacion
CertificacionCertificacion
Certificacion
Aarón Candia
 
Actualizacion de medidion en cobre y fibra optica
Actualizacion de medidion en cobre y fibra opticaActualizacion de medidion en cobre y fibra optica
Actualizacion de medidion en cobre y fibra opticaFundación Proydesa
 
Capitulo9 5 Cisco Ccna 1
Capitulo9 5 Cisco Ccna 1Capitulo9 5 Cisco Ccna 1
Capitulo9 5 Cisco Ccna 1Isabel Yepes
 
Principios Básicos de Fibra Óptica
Principios Básicos de Fibra ÓpticaPrincipios Básicos de Fibra Óptica
Principios Básicos de Fibra Óptica
Luis Rinaldi Thome
 
Conectores de fibra óptica y termoencogible
Conectores de fibra óptica y termoencogibleConectores de fibra óptica y termoencogible
Conectores de fibra óptica y termoencogible
Andres Monroy
 
Segundo taller cietsi Televisión por Cable
Segundo taller cietsi Televisión por CableSegundo taller cietsi Televisión por Cable
Trabajo FIBRA OPTICA
Trabajo   FIBRA OPTICATrabajo   FIBRA OPTICA
Trabajo FIBRA OPTICA
moretadiaz
 

Destacado (20)

(794057433) actividad 5 pasar a pdf
(794057433) actividad 5 pasar a pdf(794057433) actividad 5 pasar a pdf
(794057433) actividad 5 pasar a pdf
 
radio y tv
radio y tvradio y tv
radio y tv
 
Fibra óptica
Fibra ópticaFibra óptica
Fibra óptica
 
Telecomunicaciones Perú
Telecomunicaciones PerúTelecomunicaciones Perú
Telecomunicaciones Perú
 
Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...
Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...
Un nuevo paradigma para Multimedia Móvil base de Radiodifusión Comunicación I...
 
ANALISIS DE UN SISTEMA DE TELEVISION
ANALISIS DE UN SISTEMA DE TELEVISIONANALISIS DE UN SISTEMA DE TELEVISION
ANALISIS DE UN SISTEMA DE TELEVISION
 
Televicion tarea
Televicion tareaTelevicion tarea
Televicion tarea
 
Trabajo sistemas de comunicacion
Trabajo sistemas de comunicacionTrabajo sistemas de comunicacion
Trabajo sistemas de comunicacion
 
5 ATSC
5 ATSC5 ATSC
5 ATSC
 
Sistema de radiodifusion sonora y television
Sistema de radiodifusion sonora y televisionSistema de radiodifusion sonora y television
Sistema de radiodifusion sonora y television
 
Produccion publicitaria ll manual
Produccion publicitaria ll manualProduccion publicitaria ll manual
Produccion publicitaria ll manual
 
Ccna 4.0 exploration 1 esp pdf by cisco net
Ccna 4.0 exploration 1 esp pdf by cisco netCcna 4.0 exploration 1 esp pdf by cisco net
Ccna 4.0 exploration 1 esp pdf by cisco net
 
Redes de Telecomunicaciones cap3
Redes de Telecomunicaciones cap3Redes de Telecomunicaciones cap3
Redes de Telecomunicaciones cap3
 
Certificacion
CertificacionCertificacion
Certificacion
 
Actualizacion de medidion en cobre y fibra optica
Actualizacion de medidion en cobre y fibra opticaActualizacion de medidion en cobre y fibra optica
Actualizacion de medidion en cobre y fibra optica
 
Capitulo9 5 Cisco Ccna 1
Capitulo9 5 Cisco Ccna 1Capitulo9 5 Cisco Ccna 1
Capitulo9 5 Cisco Ccna 1
 
Principios Básicos de Fibra Óptica
Principios Básicos de Fibra ÓpticaPrincipios Básicos de Fibra Óptica
Principios Básicos de Fibra Óptica
 
Conectores de fibra óptica y termoencogible
Conectores de fibra óptica y termoencogibleConectores de fibra óptica y termoencogible
Conectores de fibra óptica y termoencogible
 
Segundo taller cietsi Televisión por Cable
Segundo taller cietsi Televisión por CableSegundo taller cietsi Televisión por Cable
Segundo taller cietsi Televisión por Cable
 
Trabajo FIBRA OPTICA
Trabajo   FIBRA OPTICATrabajo   FIBRA OPTICA
Trabajo FIBRA OPTICA
 

Similar a Eloy trabajo

Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2
Alan Giani
 
Medios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiadosMedios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiados
mscamposl
 
Medios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiadosMedios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiados
mscamposl
 
Medios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiadosMedios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiadosmscamposl
 
Medios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiadosMedios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiados
mscamposl
 
Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2
Alan Giani
 
2.medios de transmision
2.medios de transmision2.medios de transmision
Medios de transmision guiados y no guiados sandra mercado alvarez
Medios de transmision guiados y no guiados sandra mercado alvarezMedios de transmision guiados y no guiados sandra mercado alvarez
Medios de transmision guiados y no guiados sandra mercado alvarezsandra500
 
Redes de Comunicación
Redes de ComunicaciónRedes de Comunicación
Redes de ComunicaciónWillemVanH
 
Medios de transmisión
Medios de transmisiónMedios de transmisión
Medios de transmisión
Beto Aristizabal
 
Primera fase chacon
Primera fase chaconPrimera fase chacon
Primera fase chacon
Luis Eduardo Chacon
 
TRABAJO DE REDES
TRABAJO DE REDESTRABAJO DE REDES
TRABAJO DE REDES
0992327210
 
Medios de transmisión 301121 3
Medios de transmisión 301121 3Medios de transmisión 301121 3
Medios de transmisión 301121 3
Heider Rosero Mauna
 
viaje señal
viaje señalviaje señal
viaje señaldnisse
 
Viaje De La SeñAl
Viaje De La SeñAlViaje De La SeñAl
Viaje De La SeñAldnisse
 
Viaje De La SeñAl
Viaje De La SeñAlViaje De La SeñAl
Viaje De La SeñAldnisse
 
Medios de transmicion
Medios de transmicionMedios de transmicion
Medios de transmicionJEBERNALC
 
Medios de transmisión
Medios de transmisiónMedios de transmisión
Medios de transmisiónnrmagdar
 
301121-7. act.6 medios de transmision
301121-7. act.6 medios de transmision301121-7. act.6 medios de transmision
301121-7. act.6 medios de transmision
Asuncion Meza Villanueva
 
Medios de transmision en redes
Medios de transmision en redesMedios de transmision en redes
Medios de transmision en redesLina Ruiz
 

Similar a Eloy trabajo (20)

Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2
 
Medios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiadosMedios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiados
 
Medios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiadosMedios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiados
 
Medios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiadosMedios de comunicación guiados y no guiados
Medios de comunicación guiados y no guiados
 
Medios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiadosMedios de transmisión guiados y no guiados
Medios de transmisión guiados y no guiados
 
Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2Fundamentos de redes informáticas 2
Fundamentos de redes informáticas 2
 
2.medios de transmision
2.medios de transmision2.medios de transmision
2.medios de transmision
 
Medios de transmision guiados y no guiados sandra mercado alvarez
Medios de transmision guiados y no guiados sandra mercado alvarezMedios de transmision guiados y no guiados sandra mercado alvarez
Medios de transmision guiados y no guiados sandra mercado alvarez
 
Redes de Comunicación
Redes de ComunicaciónRedes de Comunicación
Redes de Comunicación
 
Medios de transmisión
Medios de transmisiónMedios de transmisión
Medios de transmisión
 
Primera fase chacon
Primera fase chaconPrimera fase chacon
Primera fase chacon
 
TRABAJO DE REDES
TRABAJO DE REDESTRABAJO DE REDES
TRABAJO DE REDES
 
Medios de transmisión 301121 3
Medios de transmisión 301121 3Medios de transmisión 301121 3
Medios de transmisión 301121 3
 
viaje señal
viaje señalviaje señal
viaje señal
 
Viaje De La SeñAl
Viaje De La SeñAlViaje De La SeñAl
Viaje De La SeñAl
 
Viaje De La SeñAl
Viaje De La SeñAlViaje De La SeñAl
Viaje De La SeñAl
 
Medios de transmicion
Medios de transmicionMedios de transmicion
Medios de transmicion
 
Medios de transmisión
Medios de transmisiónMedios de transmisión
Medios de transmisión
 
301121-7. act.6 medios de transmision
301121-7. act.6 medios de transmision301121-7. act.6 medios de transmision
301121-7. act.6 medios de transmision
 
Medios de transmision en redes
Medios de transmision en redesMedios de transmision en redes
Medios de transmision en redes
 

Último

Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...
Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...
Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...
Telefónica
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
vazquezgarciajesusma
 
trabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6ftrabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6f
zoecaicedosalazar
 
Conceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación ProyectoConceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación Proyecto
cofferub
 
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdfDesarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
AlejandraCasallas7
 
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
sarasofiamontezuma
 
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVATECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
LilibethEstupian
 
maestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdfmaestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdf
JimmyTejadaSalizar
 
TRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
TRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdfTRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
TRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
thomasdcroz38
 
Conceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdfConceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdf
ValeriaAyala48
 
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdfEstructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
IsabellaRubio6
 
ACTIVIDAD 2P de Tecnología, 10-7, 2024..
ACTIVIDAD 2P de Tecnología, 10-7, 2024..ACTIVIDAD 2P de Tecnología, 10-7, 2024..
ACTIVIDAD 2P de Tecnología, 10-7, 2024..
IsabelQuintero36
 
EduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clasesEduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clases
PABLOCESARGARZONBENI
 
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
marianabz2403
 
Estructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdfEstructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdf
cristianrb0324
 
Posnarrativas en la era de la IA generativa
Posnarrativas en la era de la IA generativaPosnarrativas en la era de la IA generativa
Posnarrativas en la era de la IA generativa
Fernando Villares
 
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB  S2. PARA VSATMANUAL DEL DECODIFICADOR DVB  S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
Ing. Julio Iván Mera Casas
 
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTALINFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
CrystalRomero18
 
Estructuras básicas_ conceptos básicos de programación.pdf
Estructuras básicas_  conceptos básicos de programación.pdfEstructuras básicas_  conceptos básicos de programación.pdf
Estructuras básicas_ conceptos básicos de programación.pdf
ItsSofi
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
CesarPazosQuispe
 

Último (20)

Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...
Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...
Índice del libro "Big Data: Tecnologías para arquitecturas Data-Centric" de 0...
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
 
trabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6ftrabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6f
 
Conceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación ProyectoConceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación Proyecto
 
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdfDesarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
 
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
 
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVATECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
 
maestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdfmaestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdf
 
TRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
TRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdfTRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
TRABAJO DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
 
Conceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdfConceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdf
 
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdfEstructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
 
ACTIVIDAD 2P de Tecnología, 10-7, 2024..
ACTIVIDAD 2P de Tecnología, 10-7, 2024..ACTIVIDAD 2P de Tecnología, 10-7, 2024..
ACTIVIDAD 2P de Tecnología, 10-7, 2024..
 
EduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clasesEduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clases
 
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
 
Estructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdfEstructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdf
 
Posnarrativas en la era de la IA generativa
Posnarrativas en la era de la IA generativaPosnarrativas en la era de la IA generativa
Posnarrativas en la era de la IA generativa
 
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB  S2. PARA VSATMANUAL DEL DECODIFICADOR DVB  S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
 
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTALINFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
 
Estructuras básicas_ conceptos básicos de programación.pdf
Estructuras básicas_  conceptos básicos de programación.pdfEstructuras básicas_  conceptos básicos de programación.pdf
Estructuras básicas_ conceptos básicos de programación.pdf
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
 

Eloy trabajo

  • 1. Universidad tecnológica del estado de zacatecas Tecnologías de la información y la comunicación Aplicación de las telecomunicaciones Profesor: Eloy contreras de lira Trabajo hecho por: -Francisco Herrera Gómez -Berenice Canizalez Martínez Tema: Sistemas de Telecomunicaciones Fecha: 13/08/2015
  • 2. FIBRA OPTICA Filamento de material dieléctrico, como el vidrio o los polímeros acrílicos, capaz de conducir y transmitir impulsos luminosos de uno a otro de sus extremos; permite la transmisión de comunicaciones telefónicas, de televisión, etc., a gran velocidad y distancia, sin necesidad de utilizar señales eléctricas. FUNCIONAMIENTO: La fibra óptica designa una nueva red fija que se apoya en un soporte físico muy delgado (fibra de vidrio o de plástico) utilizado para la transmisión de datos IP (por internet) a alta velocidad. La fibra óptica posee un núcleo de material transparente en el seno del cual la luz "rebota", quedando atrapada en el cable. Así los datos, que corresponden a impulsos luminosos muy cortos, viajan a la velocidad de la luz (o casi, porque la velocidad de la luz en la fibra óptica siempre será menos elevada que la verdadera velocidad de la luz que es medida en el vacío). Actualmente, la fibra óptica asegura una velocidad (transmisión de datos por internet) que llega hasta los 100 MB/s y multiplica así por 10 las realizaciones de una red ADSL clásica. De ahora en adelante contemplamos velocidades que van hasta varios TB/s. Pero el problema vendrá de nuestros ordenadores que no sabrán tratar bastante rápido tal velocidad de datos. Recordemos también que el Wi-Fi retiene estos rendimientos. Las normas Wi-Fi actuales (802.11a o 802.11b) permiten sólo una velocidad teórica máximo de 54 MB/s que es inferior a la velocidad de la fibra. La norma en curso de expansión (802.11n) permite velocidades mucho más elevadas (hasta 600 MB/s teóricos). Hasta entonces, si deseas explotar tu fibra como máximo, conéctate a Ethernet.
  • 3. Rendimientos de la fibra óptica en comparación al ADSL: algunos ejemplos concretos  Descargar en menos de 50 segundos 10 álbumes MP3 (cerca de 3 minutos con ADSL).  Descargar una película (de aproximadamente 700 megas) en un minuto (4 minutos con ADSL).  Compartir en un segundo un álbum de fotos compuesto de cincuenta imágenes (10 segundos para el ADLS).  Ver películas o canales de TV en alta definición o 3D con una calidad de imagen garantizada.  Compartir en algunas décimas de segundo archivos voluminosos en internet (por correos electrónicos o a través de servicios colaborativos y espacios de almacenamiento en línea).  Jugar en red en Internet con un tiempo de respuesta óptimo.  Hacer videoconferencias HD. Todas estas tareas y actividades pueden ser efectuadas simultáneamente sin riesgo de disminución de velocidad o de pérdida de calidad.
  • 4. CARACTERISTICAS Atenuación  Se pierde parte de la señal en el núcleo, pese a que no exista refracción.  Se mide en decibelios (dB) por unidad de longitud (dB/Km).  Las pérdidas están causadas por varios factores por lo que pueden clasificarse en: Extrínsecas / Intrínsecas. EXTRÍNSECAS: Pérdidas por curvatura:  Defectos de fabricación.  Procedimientos de instalación.  Se denominan microcurvaturas e influyen en largas distancias. Perdidas por conexión y empalme:  Pérdidas de inserción del conexionado (0,3 - 0,8 dB).  Empalmes mecánicos (0,4 - 0,2 dB).  Empalmes por fusión (<0,2 dB) valor típico (<0,1 dB).  Preparación del empalme o conexión: Corte defectuoso; Suciedad de las superficies a empalmar; Características distintas de las Fibras opticas; Etc. -INTRÍNSECAS: Pérdidas inherentes de la fibra óptica:  Pérdidas por absorción por los metales de transición Fe, Cu, Cr, Ni, Mn.  Pérdidas por absorción por el agua en forma de iones de OH. Irregularidades del proceso de fabricación:  Variación del ø del núcleo.
  • 5. Reflexión de Fresnel:  Cantidad de luz que es reflejada a causa de un cambio de medio. Luz reflejada(%)= 100x (n1-n2)2/(n1+n2)2 donde: n1 - Índice de refracción del núcleo. n2 - Índice de refracción del aire.
  • 6. DIAGRAMAS DE LA FIBRA OPTICA.
  • 8. MICROONDAS Se denomina microondas a las ondas electromagnéticas; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10−9 s) a 3 ps (3×10−12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro. El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las de UHF (ultra-high frequency - frecuencia ultra alta) 0,3- 3 GHz, SHF (super-high frequency - frecuencia súper alta) 3-30 GHz y EHF (extremely-high frequency - frecuencia extremadamente alta) 30-300 GHz. Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominanondas milimétricas. La existencia de ondas electromagnéticas, de las cuales las microondas forman parte del espectro de alta frecuencia, fueron predichas por Maxwell en 1864 a partir de sus famosas Ecuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el primero en demostrar la existencia de ondas electromagnéticas mediante la construcción de un aparato para generar y detectar ondas de radiofrecuencia.
  • 9. FUNCIONAMIENTO En el espacio, los satélites se emplean como estaciones retransmisoras de microondas. Estos satélites tienen una enorme capacidad y las nuevas generaciones de satélites serán aún más potentes. Las comunicaciones por satélite, se están volviendo muy importantes en el área comercial. Muchas estaciones de televisión retransmiten a todo el mundo mediante satélites. La señal que éstas emiten se puede captar en lugares alejados, donde no existe el servicio de televisión tradicional. Aplicaciones Diversas han sido las aplicaciones utilizando este tipo de señales electromagnéticas, en este escrito se mencionaran 3 de los más reconocidos empezando por la aplicación en telecomunicaciones, seguido del famoso Horno Microondas y posteriormente la aplicación en la tecnología de Radares. Comunicación vía Microondas Constituyen una de las formas más eficientes de transmisión de señales en el espacio libre por la cantidad de canales que pueden ser transportados, debido a un ancho de banda óptimo para llevar a cabo procesos de telecomunicaciones terrestres. La clasificación de señales microondas se subdividen en bandas de operación, teniéndose un amplio rango de bandas por los cuales se puede llevar a cabo procesos de comunicación. Radar Sistema que utiliza señales electromagnéticas para medir distancias, altitudes, direcciones y velocidades. Su funcionamiento se basa en la emisión de una señal electromagnética, que se reflejara en el objeto en cuestión para recibir este impulso en el equipo y extraer la mayor cantidad de información. Sus principales aplicaciones se dan en las áreas de meteorología, control de tráfico aéreo y terrestre y usos militares. Bibliografia - "Sistemas de comunicaciones Electrónicas", Tomasi - Funcionamiento del microondas, en linea, http://eplaneta.blogspot.com/2006/01/funcionamiento-del-microondas.html
  • 10. Ancho de Banda Los sistemas de microondas ofrecen un ancho de banda sustancial. Los sistemas digitales de microondas, con los cuales cuentan la mayoría de sistemas contempor´neos, se ejecutan usualmente con tasas de señales de 1.544 mbps y 2.048 mbps, con muchas operando en tasas de 34 mbps y 45 mbps. Los sistemas digitales emplean técnicas de modulación sofisticadas para incrementar la eficiencia del espectro, al empaquetar múltiples bits en cada hertz disponible. Error de Rendimiento Las microondas, especialmente las digitales, ofrecen un excelente error de rendimiento asumiendo un propio diseño y despliegue del sistema. las obstrucciones físicas deben ser evitadas a toda costa, ya que las más pequeñas obstrucciones tienen un gran impacto negativo en la fuerza de la señal de error debido al fenómeno de las zonas de Fresnel. La radio microonda es también particularmente susceptible a las interferencias del ambiente, tales como, neblina, humo y precipitaciones. La atenuación por lluvia es un factor de error en frecuencias sobre los 8 GHz y puede ser especialmente serio en frecuencias sobre los 11 GHz. Distancia La microonda está claramente limitada en cuanto a distancia, especialmente en las altas frecuencias. Como un punto a punto, los sistemas de radio LOS, diseñan consideraciones incluyendo topografía, la altura de la antena, el clima y la curvatura de la tierra. Seguridad Como es el caso de todos los sistemas de radio, las microondas son inherentemente inseguras. Una antena de radio sintonizada en la frecuencia propia y posicionada a proximidad del camino de la microonda puede capturar fácilmente la señal. Costo Los costos de adquisición, despliegue y ordenamiento de las microondas puede ser altos. Pero estos costos son a menudo muy favorables comparados con los sistemas de cableado, los cuales requieren extensos procesos de obtención, apertura de zanjas y posicionamiento de polos, sistemas de conducción, empalme, entre otros.
  • 11. Regulación Los sistemas de microondas, en términos generales, operan en bandas de frecuencia autorizada. El espectro asignado es responsabilidad del ITU-R a nivel internacional. Las autoridades regionales incluyen dirección general de la Unión Europea. Las autoridades nacionales incluyen el FCC en los Estados Unidos y la autoridad de comunicaciones independientes de Sudáfrica (ICASA). Dentro del espectro asignado, los sistemas de transmisión de microondas individuales debe ser autorizado en una base caso por caso para evitar la interferencia entre sistemas adyacentes. http://blog.utp.edu.co/shannon/files/2012/02/Microondas.pdf
  • 12. CARACTERISTICAS  Son sistemas punto a punto  Operan en el rango de frecuencia de los GHz  La longitud de onda está en el rango de los milímetros. De ahí su nombre.  Con frecuencias tan altas, las señales son susceptibles a atenuación, entonces deben ser amplificadas o repetidas.  Necesitan rayos bien enfocados.  Tecnología con línea de visión.  Susceptible al fenómeno de atenuación multicamino.  Necesita una zona libre en forma de una Elipse de Fresnel
  • 13. DIAGRAMAS Estación Emisora y Receptora. Dispositivos de microondas.
  • 14. ILUSTRACIONES Topología en una red microondas. Sistema de microondas.
  • 15. Laser en lugar de microondas.
  • 16. El término radiofrecuencia (abreviado RF), también denominado espectro de radiofrecuencia, se aplica a la porción menos energética del espectro electromagnético, situada entre 3 hercios (Hz) y 300 gigahercios (GHz).1 El hercio es la unidad de medida de la frecuencia de las ondas, y corresponde a un ciclo por segundo.2 Las ondas electromagnéticas de esta región del espectro, se pueden transmitir aplicando la corriente alterna originada en un generador a una antena. La radiofrecuencia se puede dividir en las siguientes bandas del espectro: Nombre de frecuencia Frecuencia en inglés Abreviatura inglesa Banda UIT Frecuencias Longitud de onda - - - - <3 Hz >100.000 km Frecuencia extremadamente baja Extremely Low Frequency ELF 1 3-30 Hz 100.000– 10.000 km Super baja frecuencia Super Low Frequency SLF 2 30-300 Hz 10.000–1.000 km Ultra baja frecuencia Ultra Low Frequency ULF 3 300–3.000 Hz 1.000–100 km Muy baja frecuencia Very Low Frequency VLF 4 3–30 kHz 100–10 km Baja frecuencia Low Frequency LF 5 30–300 kHz 10–1 km
  • 17. Media frecuencia Medium Frequency MF 6 300–3.000 kHz 1 km – 100 m Alta Frecuencia High Frequency HF 9 3–30 MHz 100 m – 10 m Muy alta frecuencia Very High Frequency VHF 11 30-300 MHz 10–1 m Ultra alta frecuencia Ultra High Frequency UHF 10 300-3000 MHz 1 m–100 mm Súper alta frecuencia Super High Frequency SHF 11 3-30 GHz 100–10 mm Frecuencia extremadamente alta Extremely High Frequency EHF 11 30-300 GHz 10–1 mm A partir de 1 GHz las bandas entran dentro del espectro de las microondas. Por encima de 300 GHz la absorción de la radiación electromagnética por la atmósfera terrestre es tan alta que la atmósfera se vuelve opaca a ella, hasta que, en los denominados rangos de frecuencia infrarrojos y ópticos, vuelve de nuevo a ser transparente. Las bandas ELF, SLF, ULF y VLF comparten el espectro de la AF (audiofrecuencia), que se encuentra entre 20 y 20.000 Hz aproximadamente. Sin embargo, éstas se tratan de ondas de presión, como el sonido, por lo que se desplazan a la velocidad del sonido sobre un medio material. Mientras que las ondas de radiofrecuencia, al ser ondas electromagnéticas, se desplazan a la velocidad de la luz y sin necesidad de un medio material.
  • 18. HISTORIA Las bases teóricas de la propagación de ondas electromagnéticas fueron descritas por primera vez por James Clerk Maxwell. Heinrich Rudolf Hertz, entre 1886 y 1888, fue el primero en validar experimentalmente la teoría de Maxwell. El uso de esta tecnología por primera vez es atribuido a diferentes personas: Alejandro Stepánovich Popov hizo sus primeras demostraciones en San Petersburgo, Rusia; Nikola Tesla en San Luis (Misuri), Estados Unidos y Guillermo Marconi en el Reino Unido. USOS -Radiocomunicaciones -Sistemas de radio AM y FM. -Radioastronomía -Línea de HI o hidrógeno atómico. Centrada en 1,4204058 GHz. -Línea de CO (transición rotacional 1-0) asociada al hidrógeno molecular. Centrada en 115,271 GHz. -Radar -Resonancia magnética nuclear -Resonancia magnética nuclear -Otros usos de las ondas de radio -Calentamiento -Fuerza mecánica -Metalurgia
  • 19. -Templado de metales -Soldaduras -Industria alimentaria: -Esterilización de alimentos -Medicina -Implante coclear -Diatermia Predecesor: — Radiofrecuencia Lon. de onda: ∞ ← 3×10−1 m Frecuencia: 0 ← 109 Hz Sucesor: Microondas
  • 20. Fig. 1.1. Espectro electromagnético Fig. 1.2. Onda de radio SATÉLITE Y TELEFONÍA CELULAR Un satélite artificial es una nave espacial fabricada en la Tierra o en otro lugar del espacio y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio. Los satélites artificiales pueden orbitar alrededor de asteroides, planetas. Teléfono Celular. Dispositivo inalámbrico electrónico que permite tener acceso a la red de telefonía celular o móvil. Se denomina celular debido a las antenas repetidoras que conforman la red, cada una de las cuales es una célula, si bien existen redes telefónicas móviles satelitales. Su principal característica es su
  • 21. portabilidad, que permite comunicarse desde casi cualquier lugar. Aunque su principal función es la comunicación de voz, como el teléfono convencional, su rápido desarrollo ha incorporado otras funciones como son cámara fotográfica, agenda, acceso a Internet, reproducción de vídeo e incluso GPS y reproductor mp3. Comunicaciones Móviles por Satélite Su objetivo es el establecimiento de comunicaciones móviles, mediante satélites en órbita, entre estaciones terrenas fijas y estaciones terrenas móviles. La necesidad de este nuevo servicio se basa en el hecho de que al final del presente siglo los sistemas de comunicaciones móviles celulares terrestres tales como GSM o PCS, darán servicio al cincuenta por ciento de la población, pero sólo al quince por ciento de la superficie terrestre. Incluso el hecho de desplazarse a otra ciudad puede dar lugar a problemas debido a la incompatibilidad entre los distintos sistemas de comunicaciones móviles (a pesar del esfuerzo de estandarización, existen trece o catorce sistemas distintos de los que GSM es sólo uno más) La solución a todos estos problemas puede ser unos sistemas de global de comunicaciones móviles por satélite que permita el acceso a lugares remotos sin necesidad de grandes infraestructuras terrestres adicionales. Los organismos regulatorios internacionales están buscando un estándar que permita el uso de los terminales de comunicaciones móviles por satélite en cualquier lugar del mundo. Las redes que ofrecen tales servicios reciben el nombre de Redes de Comunicaciones Personales por Satélite (S-PCN - Satélite Personal Communications Networks). Aquellos que viajen a cualquier lugar del planeta, podrán usar el mismo terminal móvil con el mismo conjunto de servicios a los que estén suscritos en cualquier lugar
  • 22. del mundo, sin necesidad de familiarizarse con equipos diferentes cuando visiten distintos países. El estándar de telefonía del sistema de comunicaciones móviles por satélite, será similar al proporcionado por las redes de comunicaciones móviles digitales según el estándar GSM. Además de los servicios de voz, los usuarios de este sistema tendrán acceso a otros servicios como fax o transmisión de ficheros en cualquier momento y en cualquier lugar de la Tierra. Mientras que todavía cualquier sistema de telefonía móvil presenta problemas debidos a barreras regulatorias al cambiar de país, esto no sucederá con el sistema de comunicaciones móviles por satélite, facilitando la definición y el lanzamiento de los sistemas de comunicaciones móviles mundiales. Varios operadores de Comunicaciones Personales por Satélite como GlobalStar, Inmarsat-P, Iridium... ya están definiendo sus sistemas para empezar a operar en los próximos años. Sistemas basados en Diferentes Tecnologías como son sistemas de órbita baja (LEO), sistemas de órbita intermedia (ICO)... Los satélites LEO son una nueva forma de comunicación satelital. Aunque se basan en recientes avances tecnológicos, la factibilidad de los sistemas LEO no será conocida hasta que el primero de ellos entre en funcionamiento. Para proveer cobertura total, los sistemas LEO requieren numerosos satélites. Globalstar, por ejemplo, utilizará 48 satélites. Iridium planea utilizar 66 satélites. Para proveer servicio global, los sistemas LEO también requieren ya sea utilizar enlaces entre satélites como lo hace Iridium, o utilizar un gran número de estaciones terrestres como lo hará Globalstar que planea tener de 100 a 200. Es más, los satélites LEO tienen que ser reemplazados más a menudo que los satélites MEO y GEO (un estimado de 5 años para los de Globalstar contra 15 años para los MEO de Odyssey). En general, debido al gran número de satélites y estaciones terrestres,
  • 23. sumado a la necesidad de reemplazos frecuentes los costos de sistemas LEO son superiores a los de MEO y GEO. Los sistemas LEO también se enfrentan a otros retos tecnológicos especiales. Debido a que sus satélites están tan cerca de la tierra, estos son más susceptibles a 'sombras', el bloqueo de las señales por edificaciones y colinas que algunas veces interrumpen el servicio celular. Una sola llamada debe ser conmutada más frecuentemente de un satélite a otro - un reto tecnológico complicado y caro - debido a que los satélites LEO permanecen "visibles" a un usuario solamente por un corto periodo de tiempo. Los sistemas GEO tienen ventajas sobre los LEO, pero también enfrentan algunos retos. Para proveer cobertura total, los sistemas GEO requieren únicamente tres satélites y un pequeño número de estaciones terrestres. Sin embargo, los satélites GEO tendrían que ser más grandes y más complejos que aquellos en sistemas LEO o MEO para soportar las enormes antenas requeridas para comunicarse con teléfonos de mano desde la órbita terrestre geoestacionaria. Es mas, los sistemas GEO planeados hasta la fecha ofrecen cobertura solamente a algunas partes del mundo y no soportan el 'roaming'(seguimiento) global. No hay conmutación (handoff) en los sistemas GEO, por supuesto, son altamente confiables y necesitan ser reemplazados menos frecuentemente que los satélites LEO, pero estas ventajas tienen un alto precio en desempeño. La distancia de los satélites GEO a la tierra significa que los usuarios deben enfrentar demoras en la señal que degradan el servicio. Un problema que no ocurre con los sistemas LEO y MEO. El uso de satélites MEO para sistemas de telefonía móvil satelital, tiene ciertas ventajas en costo y confiabilidad sobre los sistemas GEO. Un sistema MEO puede cubrir cada parte inhabitada de la Tierra con un número pequeño de satélites y estaciones terrestres. Por ejemplo Odyssey - que espera ofrecer servicio global de telefonía satelital en el año 2000 y por el cual TRW ha recibido dos patentes estadounidenses - utiliza solamente 12 satélites y siete estaciones terrestres. Es por
  • 24. éstas razones que Odyssey planea ofrecer el servicio por menos de US$ 1 por minuto, comparado con el estimado de Iridium de US$ 3 por minuto (ICO que utilizará sistemas MEO planea cobrar US$ 2 por minuto). GlobalStar La constelación del sistema GlobalStar formada por 48 satélites de órbita baja (LEO) proporcionarán servicios de comunicaciones móviles con servicios de voz y datos, radiomensajería y radiodeterminación cubriendo alrededor del 98% de la población. GlobalStar enruta una llamada de un usuario del sistema hasta uno de los 48 satélites, volviéndola a bajar a la estación terrena de acceso a la Red Pública conmutada a través de la cual llega al abonado al que se está llamando. Si la llamada se hace a otro usuario del sistema GlobalStar, la llamada continuaría a través de otra estación en tierra que actúa esta vez de puerta desde la Red Pública conmutada al satélite, y regresa a tierra desde éste al receptor móvil al que iba dirigida la llamada. GlobalStar dará su servicio a través de una red mundial de proveedores locales de telecomunicaciones. En éstos se incluyen por ejemplo las francesas France Telecom (cuarto operador mundial) y Alcatel (mayor empresa mundial de
  • 25. manufacturas de equipos de comunicación a distancia) Pulse en el logotipo para obtener más información Iridium Sistema de comunicaciones móviles vía satélite basado en satélites de órbita baja (LEO), apoyado por la empresa de telecomunicaciones Motorola. Es un sistema global de comunicaciones móviles que utiliza la estructura de red celular cuyas estaciones base se encuentran en el espacio en forma de 66 satélites en órbita (aunque inicialmente se pensó en un sistema con 77 satélites -de ahí su nombre: Iridium, elemento atómico con 77 electrones en su corteza-), estando 11 satélites en cada uno de los planos separados 420 millas naúticas sobre la superficie terrestre.
  • 26. Sistemas de satélites de Iridium Su principal característica es que extenderá la red de comunicaciones móviles GSM, ofreciendo servicios de voz y datos de carácter personal y con cobertura mundial. Además también estarán disponibles servicios de radiomensajería o fax. Teledesic Este sistema de comunicación dispondrá de 840 satélites para, según uno de sus más importantes inversores Microsoft, permitir a cualquier persona en cualquier punto del mundo conectarse a Internet, aparte de dar también un servicio de telefonía móvil.
  • 27. Satélite de la constelación de Teledesic Utiliza satélites de órbita baja, ya que el retardo que sufre una comunicación es este tipo de órbita es muy inferior al que sufre en la órbita geoestacionaria (alrededor de medio segundo en ésta última). Además utilizarán unas bandas frecuencias altas (desde 18 GHz. a 28 GHz.) para de este mo do proporcionar servicios con una calidad similar a la fibra óptica. Sistemas de satélites de Teledesic Uno de los puntos críticos de la constelación de Teledesic es el Polo Norte, ya que por este punto pasan los satélites de todas las órbitas. Cada satélite estará conectado a ocho satélites vecinos, para así conseguir una robusta topología, los paquetes de datos podrán tomar diferentes caminos para
  • 28. llegar a su destino dependiendo de la congestión de la red, de esta forma si se perdiese algún satélite, los paquetes podrían tomar una r uta alternativa. Este sistema tiene una inversión en investigación y desarrollo de nueve mil millones de dólares. Se prevé que Teledesic esté en funcionamiento alrededor del año 2001, por tanto sus principales problemas son la construcción y puesta en órbita de tal cantidad de satélites. La solución está en ir lanzando los satélites poco a poco e ir colocándolos de manera estratégica de tal forma que desde un principio se pueda dar servicio, pero que la capacidad de éste vaya aumentado con el tiempo. Inmarsat-P El sistema de comunicaciones móviles establecido por INMARSAT se basa en un sistema de satélites de órbita intermedia circular (ICO).
  • 29. Está formado por 10 satélites distribuidos en dos grupos de 5 en planos ortogonales (más dos en exceso que no están en operación). Satélite de la constelación de Inmarsat Los efectos de las montañas y los edificios sobre la disponibilidad del servicio se subsanan asegurando que al menos dos satélites vean cada punto en cada momento: se basan en enlaces sin obstáculos entre los satélites y los terminales móviles. Dispondrán de doce nodos en satélites distribuidos alrededor del planeta y todos interconectados entre sí, que darán servicio en tiempo real a todos aquellos que accedan al sistema. Los satélites harán de enlace entre el terminal móvil y una de las estaciones terrenas situadas a lo largo de la superficie terrestre de que dispondrá el sistema. La estación terrena será la que proporcione el acceso a la Red Telefónica Conmutada. Los servicios ofrecidos por Inmarsat-P tendrán la apariencia de los servicios
  • 30. ofrecidos por los sistemas celulares o el sistema PCS. Se ofrecerán servicios adicionales de datos, fax y radiomensajería. Odyssey Odyssey se podría describir como un método que nos provee de comunicaciones a través de satélites de órbita intermedia entre terminales de baja potencia con antenas omnidireccionales y una estación terrena de enlace con uno de los satélites que forman parte de la constelación de satélites de este sistema.
  • 31. Satélite de la constelación de Odyssey Está previsto que los satélites se encuentren en órbitas a altitudes que varían entre los 10000 y 18000 Kms., estando orientadas cada una de las órbitas en diferentes planos. Al menos uno de los satélites recibirá las señales de radiofrecuencia de los terminales móviles. Para asegurar la continuidad de la comunicación existirá un área de solape entre las diferentes regiones cubiertas por cada uno de los satélites contiguos. Estas características permiten a Odyssey proveer de comunicación telefónica sin cable de alta calidad, así como servicio de fax y datos alrededor de todo el mundo, con tan sólo una docena de satélites y ocho estaciones terrenas.
  • 32. La empresa que impulsa este sistema es TRW, en conjunción con la empresa canadiense de telecomunicaciones Teleglobe Inc.. Satélite Odyssey diseñado por TRW Se espera que Odyssey este operativo alrededor del año 2000, con una inversión de más de cinco mil millones de dólares. https://es.wikipedia.org/wiki/Fibra_%C3%B3ptica http://www.monografias.com/trabajos13/fibropt/fibropt.shtml https://es.wikipedia.org/wiki/Radiocomunicaci%C3%B3n_por_microondas https://es.wikipedia.org/wiki/Radiofrecuencia http://www.esteticasincirugia.es/12_radiofrecuencia.htm http://neutron.ing.ucv.ve/revista-e/No5/EVera.htm