SlideShare una empresa de Scribd logo
1 de 27
UNIVERSIDAD NACIONAL
TORIBIO RODRIGUEZ DE MENDOZA
FACULTAD DE INGENIERÍA DE CIVIL Y AMBIENTAL
ESCUELA ACADEMICO PROFESIONAL
INGENIERÍA AMBIENTAL
ESTACIÓN METEOROLÓGICA
ESTUDIANTE : BAUTISTA ALCANTARA ROICER
GOSGOT ANGELES WILDOR
MEZA MORI GERSON
PEREZ OCAMPO JHORDY
RAMIREZ MAS IRINA
SANTILLAN GOMEZ HOMAR
DOCENTE : Ing. MIGUEL ÁNGEL BARRENA GURBILLÓN
CHACHAPOYAS – PERÚ
2016
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 1
Tabla de contenido
INTRODUCCIÓN. ......................................................................................................... 2
OBJETIVOS. .................................................................................................................. 2
OBJETIVO GENERAL:............................................................................................ 2
OBJETIVOS ESPECÍFICOS:................................................................................... 2
MARCO TEÓRICO....................................................................................................... 3
METEOROLOGÍA: ................................................................................................... 3
EQUIPOS E INSTRUMENTOS METEOROLÓGICOS....................................... 4
PARAMETROS DE MEDICIÓN:............................................................................ 5
UBICACIÓN Y EXPOSICIÓN DE LOS INSTRUMENTOS ................................ 7
COMPONENTES DE LA ESTACIÓN METEOROLOGICA OREGON
SCINTIFIC WMR300A................................................................................................. 9
COMPONENTES DE LA CONSOLA ................................................................... 15
DATOS QUE REGISTRA LA ESTACIÓN METOROLOGICA OREGON
SCINTIFIC WMR300A............................................................................................... 22
IMPORTANCIA Y FINALIDAD DE LA GESTIÓN DE DATOS...................... 22
VENTAJAS Y DESVENTAJAS DE UNA ESTACION METEOROLOGICAS ......... 23
RECOMENDACIONES: ............................................................................................. 24
CONCLUSION:............................................................................................................ 24
REFERENCIAS BIBLIOGRAFICAS........................................................................ 24
ANEXOS........................................................................................................................ 26
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 2
INTRODUCCIÓN.
Los fenómenos relacionados con la atmosfera, el tiempo y el clima inciden de diversas
maneras en el desarrollo y resultado de las actividades humanas sobre un determinado
territorio. El clima juega un papel relevante en muchos aspectos de nuestra vida. Uno de
ellos es el confort, en el cual influyen parámetros tales como la temperatura del aire, la
humedad, la presión atmosférica y la radiación, la lluvia, entre otros.
La fuerte incidencia de las tormentas tropicales que se han suscitados con mayor
intensidad en estos últimos años, en paralelo con un incremento en el nivel de temperatura
durante la época seca provocan un aumento en los efectos perjudícales ocasionados por
la naturaleza, cuya reiteración y persistencia evidencia un genuino cambio climático.
Estas condiciones atmosféricas climatológicas de hoy en día se han vuelto tan cambiantes,
que es de suma importancia conocer su comportamiento, esto se logra a través de
estaciones meteorológicas, dicha estación puede suministrar datos precisos y registros
diarios de parámetros climatológicos que afectan una región de determinado país.
El registro diario, mensual y anual de esta información, es importante también para la
evaluación del recurso solar con el objeto de predecir su comportamiento y estimar sus
posibilidades de aprovechamiento en aplicaciones relacionadas con la producción de
energía eólica, solar térmica y fotovoltaica.
OBJETIVOS.
OBJETIVO GENERAL:
 Conocer el funcionamiento de una estación meteorológica capaz de realizar la
medición y el registro de los diferentes parámetros climáticos ubicado en la
cuidada Universitaria a cargo del INDECES-CES/UNTRM-A.
OBJETIVOS ESPECÍFICOS:
 Conocer los componentes de una estación meteorológica OREGON
SCINTIFIC WMR300A
 El estudiante comprenda la importancia de conocer una estación meteorológica
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 3
MARCO TEÓRICO
METEOROLOGÍA:
Es la ciencia que estudia la atmósfera y los fenómenos que ocurren en ella. Es una rama
de la física que aborda el estado del tiempo, el medio atmosférico y las leyes que lo rigen.
Hay que recordar que la Tierra está constituida por tres partes fundamentales: una parte
sólida llamada litósfera, recubierta en buena proporción por agua (llamada hidrosfera) y
ambas envueltas por una tercera capa gaseosa, la atmósfera. Éstas se relacionan entre sí
produciendo modificaciones profundas en sus características. La ciencia que estudia estas
características, las propiedades y los movimientos de las tres capas fundamentales de la
Tierra, es la Geofísica. En ese sentido, la meteorología es una rama de la geofísica que
tiene por objeto el estudio detallado de la envoltura gaseosa de la Tierra y sus fenómenos.
Se debe distinguir entre las condiciones actuales y su evolución llamado tiempo
atmosférico, y las condiciones medias durante un largo periodo que se conoce como clima
del lugar o región. En este sentido, la meteorología es una ciencia auxiliar de la
climatología ya que los datos atmosféricos obtenidos en múltiples estaciones
meteorológicas durante largo tiempo se usan para definir el clima, predecir el tiempo,
comprender la interacción de la atmósfera con otros subsistemas, etc. El conocimiento de
las variaciones meteorológicas y el impacto de las mismas sobre el clima han sido siempre
de suma importancia para el desarrollo de la agricultura, la navegación, las operaciones
militares y la vida en general.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 4
EQUIPOS E INSTRUMENTOS METEOROLÓGICOS.
En general, cada ciencia tiene su propio equipamiento e instrumentos de laboratorio. Sin
embargo, la meteorología es una disciplina corta en equipos de laboratorio y amplia en
los equipos de observación en campo. En la atmósfera, hay muchos objetos o cualidades
que pueden ser medidos. La lluvia, por ejemplo, ha sido observada en cualquier lugar y
desde siempre, siendo uno de los primeros fenómenos en ser medidos históricamente.
Estación pluviométrica: es la estación meteorológica que tiene un pluviómetro o
recipiente que permite medir la cantidad de lluvia caída entre dos mediciones realizadas
consecutivas.
Estación pluviográfica: es cuando la estación meteorológica puede realizar de forma
continua y mecánica un registro de las precipitaciones, por lo que nos permite conocer la
cantidad, intensidad, duración y período en que ha ocurrido la lluvia.
Estación climatológica principal: es aquella estación meteorológica que esta provista
para realizar observaciones del tiempo atmosférico actual, cantidad, visibilidad,
precipitaciones, temperatura del aire, humedad, viento, radiación solar, evaporación y
otros fenómenos especiales. Normalmente se realizan unas tres mediciones diarias.
Estación climatológica ordinaria: esta estación meteorológica tiene que estar provista
obligatoriamente de psicrómetro, de un pluviómetro y un pluviográfo, para así poder
medir las precipitaciones y la temperatura de manera instantánea.
Estación sinóptica principal: este tipo de estación meteorológica realiza observaciones
de los principales elementos meteorológicos en horas convenidas internacionalmente. Los
datos se toman horariamente y corresponden a nubosidad, dirección y velocidad de los
vientos, presión atmosférica, temperatura del aire, tipo y altura de las nubes, visibilidad,
fenómenos especiales, características de humedad, precipitaciones, temperaturas
extremas, capa significativas de las nubes, recorrido del viento y secuencia de los
fenómenos atmosféricos. Esta información se codifica y se intercambia a través de los
centros mundiales con el fin de alimentar los modelos globales y locales de pronóstico y
para el servicio de la aviación.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 5
PARAMETROS DE MEDICIÓN:
Precipitación
Volumen de lluvia que llega al suelo en un período determinado, se expresa en función
del nivel que alcanzaría sobre una proyección horizontal de la superficie de la tierra.
Humedad Relativa
Es el vapor de agua contenida en un volumen dada de aire y la que podría contener el
mismo volumen si estuviese saturado a la misma temperatura.
Temperatura
La temperatura es la medición del clima o calor que posee los cuerpos. En la meteorología
se utiliza la escala Celsius (grados °C) cuyo dos puntos fijos son, el punto de fusión del
hielo (0 °C) y el punto de ebullición normal del agua (100grados °C).
Evaporación
Es la cantidad de agua evaporada desde una unidad de superficie durante una unidad de
tiempo en toda la superficie considerada. La unidad de tiempo es normalmente un día y
la altura se expresa en centímetros o milímetros.
Radiación solar
Tiene como fuente el sol y se propaga por medio de ondas electromagnéticas que sedifu
nden en todas las direcciones con velocidad cercana a los 300,000 Km. La energía solar se
absorbe parte por ciertos contribuyentes dela atmósfera como el oxígeno el ozono y el
vapor de agua y en parte es difundida por el polvo, la nubosidad y el humo.
Viento
Es el aire en movimiento. Por regla general la dirección del viento varía y su velocidad
crece con la altitud. El viento es una magnitud vectorial caracterizada por dos números
que presentan la dirección y la velocidad a una altura normal de 10 metros sobre el suelo.
El viento en superficie raramente es constante durante un período determinado. Varía
rápida y constantemente y estas variaciones son irregulares tanto en frecuencia como en
duración. La dirección del viento es aquella de donde sopla.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 6
Presión atmosférica
Es la fuerza que la atmósfera ejerce, en razón de su peso, por unidad de superficie. Por
consiguiente, es igual al peso de una columna vertical de aire de base igual a la unidad de
superficie que se extiende desde la superficie considerada al límite superior de la
atmósfera.
Brillo solar
Es el tiempo durante el cual el sol brilla en el cielo durante un tiempo determinado horas,
días, meses.
 Requerimientos de mediciones de una estación meteorológica
 Una estación de superficie debe registrar:
 Tiempo presente
 Tiempo pasado
 Dirección e intensidad del viento
 Cobertura nubosa
 Tipo de nubes
 Altura de la base de nubes
 Visibilidad
 Temperatura
 Humedad relativa
 Presión atmosférica
 Precipitación
 Horas de sol/radiación solar
 Temperatura del suelo
 Evaporación
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 7
UBICACIÓN Y EXPOSICIÓN DE LOS INSTRUMENTOS
Se deben aplicar las siguientes consideraciones para la selección de la ubicación de la
estación y de la exposición de los instrumentos. Por ejemplo para una estación sinóptica
o climatológica, algunos factores que se deben tomar en cuenta para la ubicación de la
estación y el instrumental son los siguientes:
El instrumental que va ubicado en el parque meteorológico debe ser instalado en un área
de suelo no menor a 25 x 25 m . El suelo debe estar cubierto de pasto corto o una superficie
que sea representativa del lugar y debe estar cercado. Un área de 2x2m debe ser destinada
para la observación del estado del suelo y para las mediciones de temperatura del suelo
de menos de 20 cm de profundidad.
No debe existir pendientes abruptas cerca de la estación. Tampoco debe estar ubicada la
estación en un pozo del terreno.
El lugar debe estar alejado de árboles, edificios, paredes y otro tipo de obstáculos. La
distancia entre el pluviómetro y cualquier obstáculo debe ser por lo menos de 2 veces la
altura del obstáculo.
La posición utilizada por el observador para observar la nubosidad y visibilidad debe ser
un lugar lo más despejado posible.
 predicciones, ni siquiera en las próximas horas, ya que no registra históricos, por
lo que no permite conocer la tendencia o la evolución climática.
 Debe elegirse cuidadosamente su ubicación, ya que si está al sol o en una corriente
de aire frío, las mediciones se ven alteradas de forma notable.
 Las aves depositan sus excretas en los equipos y evitan el funcionamiento de éstas.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 8
 Según la organización mundial de meteorología (OMM) se debe tener
consideración:
a- los instrumentos exteriores deben instalarse en un terreno llano, aproximadamente
de 10 por 7 metros (el recinto), cubierto de hierba baja, o de una superficie
representativa de la localidad, rodeada de una cerca para impedir el acceso a
personas no autorizadas, en el recinto se reserva una parcela de 2 por 2 metros
para mediciones referidas al estado del suelo.
b- no debe haber laderas inclinadas en las proximidades, y el emplazamiento no debe
encontrarse en una hondonada. Si no se cumplen estas condiciones las
observaciones pueden presentar peculiaridades de significación puramente local.
c- el emplazamiento debe estar suficientemente alejado de árboles, edificios, muros
u otros obstáculos. La distancia entre cualquiera de esos obstáculos (incluidas las
vallas) y el pluviómetro no debe ser inferior al doble de la altura del objeto por
encima del borde del aparato y preferentemente debe de cuadriplicar la altura.
d- el registrador de luz solar, el pluviómetro y el anemómetro deben de encontrase
en emplazamientos con exposiciones que satisfagan sus requisitos, y en el mismo
lugar que los otros instrumentos.
e- debe señalarse que el recinto puede ser no el mejor lugar para estimar la velocidad
y dirección del viento, tal vez convenga otro punto de observación más expuesto
al viento.
f- emplazamientos muy abiertos sin ningún tipo de obstáculos cercanos,
satisfactorios para la mayoría de los instrumentos son inapropiados para los
pluviómetros. En estos lugares la captación del agua es reducida, salvo con vientos
débiles, y se necesita algún grado de protección.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 9
A parte de esto la OMM recomienda que los instrumentos manuales deben estar dentro
de una garita (en este caso, especie de caja protectora) que tenga las siguientes
características:
 De madera, pintada de blanco y esmaltada para reflejar bien la radiación.
 Con buena ventilación.
 Con techo doble y circulación del aire entre los dos tejados para evitar el
calentamiento del aire cuando la radiación es muy intensa.
 La puerta debe estar orientada al Norte en nuestro hemisferio, para evitar que al
realizar las observaciones los rayos solares incidan sobre los instrumentos.
 Con techo suficientemente inclinado para dejar escurrir el agua de lluvia la
inclinación puede variar de acuerdo a la cantidad de lluvia del sitio.
COMPONENTES DE LA ESTACIÓN METEOROLOGICA OREGON
SCINTIFIC WMR300A
Este sistema puede proporcionar información sobre el clima con varios sensores a través
con un alto nivel de precisión. Todos los sensores están cableados a una caja de
transmisor que es funciona con energía solar y con pilas para la comunicación y la
visualización de forma inalámbrica los datos sobre una unidad principal cubierta de
cristal líquido.
Este sistema recuerda los datos de un rango de tiempo para que usted pueda supervisar y
analizar el estado del tiempo. Puede exportar los datos para presentar la PC por cable y
gestionar y Sistemáticamente analizar los datos.
El sistema se puede ampliar hasta 8 sensores termómetro y humedad y apoyarse con
otros sensores meteorológicos.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 10
Los componentes son :
 Monitor o consola
 Transmisor solar
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 11
 Pluviómetro
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 12
 Sensor de temperatura y humedad
 Sensor de viento:
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 13
SISTEMA INSTALADO
1. Dirección del viento: Mide la dirección del viento en puntos cardinales o grados
2. Recolector de lluvia: Cumple con todos los lineamientos de área de recolección
establecidos.
3. Anemómetro: Resisten vientos con la fuerza con la fuerza de un huracán pero
sensibles a las brisas.
4. Poste de montaje opcional: Una de varias opciones de instalación.
2
3
4
1
3
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 14
5. Protección de radiación con succión: Contienen placas adicionales de protección
contra radiación.
6. Sensores de temperatura y humedad: Localizados dentro del protector contra
radiación que protege a los sensores de la radiación solar y de otras fuentes de calor.
6
5
Colector de lluvia
Diseñado para cumplir con los
Lineamientos de la Organización
Meteorológica Mundial, nuestro
Colector de lluvia de vaciado
Automático con cubo medidor
Tiene una exactitud excepcional.
Protector contra radiación
La protección pasiva más efectiva que
encontrará. Protege al sensor de temperatura de
la radiación solar y de otras fuentes de calor
radiado y reflejado. Fabricado con varias placas
para permitir el flujo máximo del aire.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 15
COMPONENTES DE LA CONSOLA
1.- Amanecida y puesta de sol
1.1.AM/PM
1.2. Indicador de la salida del sol.
1.3. Indicador de la puesta del sol.
1.4. Visualización de la hora.
Antena
Pantalla LCD
1
2
3
4
5
6
7
8
9
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 16
2.-Punto de rocio/índice de calor/zona de enfriamiento
2.1.HI / LO de alarma: Las alarmas de alta o baja temperatura
2.2. Canal seleccionado
2.3. Indicador de canal de enfriamiento por el viento seleccionadas (desde la CH1 sólo
lectura)
2.4. Calentar el indicador de índice
2.5. Rocío indicador de punto de rocío
2.6. Temperatura de sensación índice de punto / calor / viento
2.7. ˚ C / F: unidad de temperatura
2.8. Hoy / mes / MIN / MAX: Visualizar el máximo / mínimo de la lectura frío / punto
de rocío mensual / índice de calor / viento de hoy
3.-Temperatura exterior y la zona de la humedad
3.1 Indicador de temperatura / humedad exterior
3.2. HI / LO alarme: Alarmas para altas o bajas temperaturas al aire libre
3.3. Canal choisi
3.4. Lectura de temperatura exterior
3.5. C / F: unidad de temperatura
3.6. Tendencia de la temperatura exterior
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 17
3.7. Lectura de la humedad externa
3.9. Tendencia de la humedad exterior
3.10. HOY / MES / MIN / MAX: Muestra las lecturas de temperatura / humedad
máxima / mínima de la fecha externa / mensual
3.11. HI / LO alarme: alarma de alta o baja humedad exterior
4.-La temperatura interior y la humedad zona
4.11Indicador de la temperatura y la humedad interior
4.2. HI / LO de alarma: Las alarmas de temperatura baja o alta de interior
4.3. Reproducción de temperatura interior
4.4. C / F: Unidad de temperatura de temperatura
4.5. Tendencia interior
4.6. Reproducción de humedad en el interior
4.7. %: Unidad de humedad
4.8. Tendencia humedad interior
4.9. Hoy en día / mes / min / máx.: Muestra las lecturas de temperatura / humedad
máxima / mínima interior de la fecha
4.10. Alarma HI / LO / mensual: alarmas humedad interior baja o alta
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 18
5.-La velocidad del viento / área de dirección
5.1. HOY / MES / MAX: Muestra las lecturas de ráfagas máximas de fecha / mensuales.
5.2. Indicador.
5.3. Ráfagas indicador de velocidad del viento media.
5.4. Velocidad del viento Reproducción.
5.5. Moderada / suave / STRONG / TORMENTA: indicadores de nivel de velocidad del
viento (moderada / suave / fuerte / Storm) 6. W (oeste) / S (sur) / E (este) / N (norte).
5.7. Reproducción de la dirección del viento / lectura del ángulo calibrada.
5.8. Indicador (s) de la dirección del viento durante la última hora.
5.9. Indicador de dirección de la tormenta / viento significa.
5.10. Nudos / km / h / mph / unidades m / s de medición de la velocidad del viento:
nodo / km / h / millas / h / m / s .
5.11. HI alarma: alarma de viento fuerte.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 19
6.-Área de gráfico de barras
1. MAX / MIN: Indicador de lectura máxima / mínima del gráfico de barras área
seleccionada
2. Zona
3. ÚLTIMO 24 H / 24DAYS / 24 MTHS: Nicho última vez 24 horas / días / meses
4. Lectura de la referencia mínima
5. reproducción de gráficos actuales de la zona correspondiente 6.
6. Escuchar la máxima referencia
7. en TEMP / HUM iN / OUT TEMP / HUM OUT / punto de rocío / INDICE de
CALOR / viento frío / WIND / barómetro / LLUVIA: indicadores gráficos
7.-Área de barómetro
1. Altitud indicador
2 .: alarma para la presión barométrica cambia
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 20
3. HOY / MES / MIN / MAX: Muestra la presión máxima / mínima barométrica de día /
mes / mini / maxi
4. Tendencia
5 barométrica. Indicador de grabación programada (de -24 a 0)
6. mb / hPa unidad barométrica M / pies en Hg / mmHg /
7.: unidad de altitud (metros / pies) 8. Juego barómetro
8.-Pluviometro
8.1. Alarma HI: Alarmas fuerte intensidad de lluvia y precipitaciones de las últimas 24
horas.
8.2. HOY / MES / MAX: Muestra el máximo de lluvia / precipitación de fecha /
grabaciones de itinerario mensual
8.3. Indicador (-24 a 0)
8.4. TIPO: intensidad de lluvia
8.5. Esta hora / ACCUM / Últimas 24 horas: Selección de tiempo: esta hora /
combinación /
8.6. En las últimas 24 horas / mm: Selección de tiempo: esto últimas 24 horas hora /
combinación /; En / h / mm / Rh: unidad de intensidad de lluvia (INS / h / mm / h)
8.7. Pantalla de lluvia leer
8.8. Indicador de la zona de la lluvia
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 21
9.-Hora / alarma / pronostico del tiempo / fase de la luna
9.1. El tiempo Pronóstico del área de iconos.
9.2. Desde: Fecha de inicio de la precipitación acumulada.
9.3. AM/PM.
9.4. Indicador de recepción de señal de reloj de RF.
9.5. El modo de visualización de la alarma.
9.6. Indicador de alarma diaria.
9.7. Puerto USB se conecta con éxito.
9.8. Registro de datos: Los datos de registro muestra información.
9.9. Longitud / latitud: longitud / latitud.
9.10. La zona horario.
9.11. Búsqueda: Busca transmisor solar.
9.12. De tiempo: el tiempo particular de la memoria seleccionada.
9.13. Transmisor solar es de batería baja.
9.14. La unidad principal es de batería baja.
9.15. Adaptador de corriente está conectado.
9.16. Área de la fase de la luna.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 22
DATOS QUE REGISTRA LA ESTACIÓN METOROLOGICA OREGON
SCINTIFIC WMR300A
 Fecha
 Tiempo
 Temperatura interna(C)
 Temperatura externa (C)
 índice de calor(C)
 Humedad interna (%)
 Humedad externa(%)
 Punto de rocío(C)
 Dirección del viento(deg)
 Velocidad de las rachas de viento(m/s)
 Dirección de las rachas(deg)
 Velocidad media del viento(m/s)
 Sensación de frío(C)
 índice de precipitaciones(mm/h)
 Precipitaciones por hora (mm)
 Precipitaciones acumuladas (mm)
 Fecha de inicio acumulada
 Hora de inicio acumulada
 Presión (hPa) Estado del tiempo
IMPORTANCIA Y FINALIDAD DE LA GESTIÓN DE DATOS
El objetivo fundamental de la gestión de los datos climáticos consiste en conservar, captar
y proporcionar datos y productos climáticos para que las instancias planificadoras y
decisorias así como los investigadores los utilicen. El archivo permanente es un objetivo
importante. El sistema de gestión de datos de un archivo climático debe suministrar la
información para describir el clima del ámbito para el que se haya establecido el archivo,
ya sea nacional, regional o mundial. Los datos que generan las redes meteorológicas y
climatológicas así como diversos proyectos de investigación representan unos recursos
valiosos y, a menudo, extraordinarios, adquiridos mediante una inversión sustancial de
tiempo, dinero y esfuerzo. Muchos de los usos que acaban por darse a los datos climáticos
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 23
no pueden preverse cuando los programas de adquisición de datos están en fase de
planificación y, con frecuencia, surgen nuevas aplicaciones para los mismos, mucho
después de haber adquirido la información. La utilización inicial de datos meteorológicos
y afines suele ser la primera de muchas aplicaciones futuras. El análisis posterior de los
datos con muchas y diversas finalidades permite aumentar notable y constantemente el
rédito de la inversión inicial en los programas de adquisición de datos. Por ejemplo, el
desafío que plantea el cambio climático mundial está incrementando las necesidades de
datos climáticos y sistemas de gestión de datos en una proporción mucho mayor a la
prevista cuando se establecieron las primeras redes. Con el fin de responder a estas
necesidades, es sumamente importante que tanto la información climática actual como la
histórica sean gestionadas de manera sistemática y exhaustiva. A los datos
meteorológicos convencionales se suman hoy en día los datos obtenidos de una amplia
gama de instrumentos y sistemas, tales como los satélites, sistemas de radar y otros
dispositivos de teledetección, lo que convierte a los sistemas de gestión de datos eficaces
y exhaustivos en un recurso indispensable para los centros climáticos modernos.
VENTAJAS Y DESVENTAJAS DE UNA ESTACION METEOROLOGICAS
VENTAJAS:
Las principales ventajas de una estación meteorológica analógica son:
o Funcionamiento sin electricidad, lo que evita que dejen de funcionar en caso de
interrupción del suministro eléctrico.
o Facilidad de uso.
o Fácil de leer, con lectura directa y escalas analógicas.
o Precisión aceptable, aunque inferior a una estación meteorológica digital.
o No requiere personal técnico en recolección de los datos generados.
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 24
DESVENTAJAS:
Como principales desventajas de una estación meteorológica analógica podemos citar:
o Cuentan con pocas funciones comparando con una estación meteorológica
digital, aunque los datos que proporcionan son suficientes si sólo pretendemos
conocer la temperatura y la humedad ambiente para ajustar la calefacción o el
aire acondicionado, evitando así el despilfarro de energía.
RECOMENDACIONES:
 Se recomienda instalar éstas centros en lugares donde no exista pendientes.
 Se debe tener en cuenta las operaciones de mantenimiento en un intervalo de 6
meses como mínimo.
 Se debe instalar una estación por cada cuenca para tener mayor información
CONCLUSION:
 Esta estación tiene como objetivo proporcionar información fiable de las
variables meteorológicas del entorno y al mismo tiempo evaluar el potencial
existente de energías renovables, concretamente solar y eólica, energías que no
se han explotado debido en parte a la falta de información climática que
demuestre su viabilidad.
 Se concluye que las variables obtenidas por cada estación meteorológica nos dan
datos representativos de acuerdo al estudio o investigación que esté realizando.
 Muchos de los instrumentos han de estar al aire libre, pero otros aunque también
han de estar al aire libre, deben estar protegidos de las radiaciones solares para
que estas no les alteren los datos, el aire debe circular por dicho interior. Los que
han de estar protegidos de las inclemencias del tiempo, se encuentran dentro de
una garitameteorológica.
REFERENCIAS BIBLIOGRAFICAS
Campbell Scientific Inc., Sitio de Internet, http://www.campbellsci.com, 2008
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 25
Koninklijk Nederlands Meteorologisch Instituut, Handbook for the Meteorological
Observation, Setiembre 2000
Organización Mundial de Meteorología, Guía de Instrumentos y Métodos de
Observación Meteorológica. 6ta edición, 1996
Organización Mundial de Meteorología, Guide to Climatological Practices, 2da edición,
1983
Organización Mundial de Meteorología, Guidelines on climate metadata and
homogenization, 2003
Organización Mundial de Meteorología, Guidelines on Climate Observation Networks
and Systems, 2003
N. Plummer et al., Guidelines on Climate Data Management Version 5.0, October 2005
Sitios web
http://www.oregonscientificstore.com/t-user-manuals.aspx
https://www.manualslib.com/manual/679563/Oregon-Scientific
Wmr300.html?page=2#manual
http://topogisperu.com/Estacion-meteorologica-PRO-VANTAGE.html
Energías Renovables E.A.P.IngenieríaAmbiental
Universidad Nacional Toribio Rodríguez de Mendoza 26
ANEXOS
Formato de registro de datos de la estación meteorológica en INDECES-CES/UNTRM
FechaTiempo
Temperatura
interna(C)
Temperatura
externa(C)
índicede
calor(C)
Humedad
interna(%)
Humedad
externa(%)
Puntode
rocío(C)
Direccióndel
viento(deg)
Velocidaddelas
rachasde
viento(m/s)
01/08/201600:111712.3NA659111830.6
01/08/201600:261712.2NA659211881.3
01/08/201600:411712.2NA659211841.1
01/08/201600:5616.912.2NA659211820.8
01/08/201601:1116.911.9NA6593112421.1
01/08/201601:2616.912NA6593111890.9
01/08/201601:4116.812.1NA6593111291.8
Direccióndelas
rachas(deg)
Velocidad
mediadel
viento(m/s)
Sensaciónde
frío(C)
índicede
precipitaciones(mm/
h)
Precipitacionespor
hora(mm)
Precipitaciones
acumuladas(mm)
Fechadeinicio
acumulada
Horadeinicio
acumulada
Presión(hPa)
860.9NA005.0829/06/201618:00775.86
750.9NA005.0829/06/201618:00775.86
1140.9NA005.0829/06/201618:00775.86
760.9NA005.0829/06/201618:00775.64
1861.1NA005.0829/06/201618:00775.41
1860.6NA005.0829/06/201618:00775.41
1090.9NA005.0829/06/201618:00775.26
1790.9NA005.0829/06/201618:00775.26
EstadodeltiempoIntervalo
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE
PARCIALMENTENUBLADOENLANOCHE

Más contenido relacionado

La actualidad más candente

Propiedades químicas y bioloógicas del suelo
Propiedades químicas y bioloógicas del sueloPropiedades químicas y bioloógicas del suelo
Propiedades químicas y bioloógicas del sueloblogpsunan
 
Informe final de calicata
Informe final de calicataInforme final de calicata
Informe final de calicataYasmani RQ
 
Informe 1 muestreo y clase textural del suelo
Informe 1 muestreo y clase textural del sueloInforme 1 muestreo y clase textural del suelo
Informe 1 muestreo y clase textural del suelojholibeth
 
Clasificacion de zonas de vida
Clasificacion de zonas de vidaClasificacion de zonas de vida
Clasificacion de zonas de vidaclarettesandoval
 
¿Qué es una Cuenca Hidrologica?
¿Qué es una Cuenca Hidrologica?¿Qué es una Cuenca Hidrologica?
¿Qué es una Cuenca Hidrologica?Daniel Delgado
 
Zonas de vida según holdridge
Zonas de vida según holdridgeZonas de vida según holdridge
Zonas de vida según holdridgeJorge Enrique
 
Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)Bruno More
 
Densidad del suelo. exposicion
Densidad del suelo. exposicionDensidad del suelo. exposicion
Densidad del suelo. exposicionmishelle cano
 
Fenologias de cultivos
Fenologias de cultivosFenologias de cultivos
Fenologias de cultivosAntony Varela
 
Coloides del suelo
Coloides del sueloColoides del suelo
Coloides del sueloverinque
 
Informe n°2 humedad gravimetrica
Informe n°2 humedad gravimetricaInforme n°2 humedad gravimetrica
Informe n°2 humedad gravimetricaNiky Rodriguez
 

La actualidad más candente (20)

Propiedades químicas y bioloógicas del suelo
Propiedades químicas y bioloógicas del sueloPropiedades químicas y bioloógicas del suelo
Propiedades químicas y bioloógicas del suelo
 
Informe 1 muestreo
Informe 1 muestreoInforme 1 muestreo
Informe 1 muestreo
 
Informe final de calicata
Informe final de calicataInforme final de calicata
Informe final de calicata
 
Capacidad de campo
Capacidad de campoCapacidad de campo
Capacidad de campo
 
Informe 1 muestreo y clase textural del suelo
Informe 1 muestreo y clase textural del sueloInforme 1 muestreo y clase textural del suelo
Informe 1 muestreo y clase textural del suelo
 
Clasificacion de zonas de vida
Clasificacion de zonas de vidaClasificacion de zonas de vida
Clasificacion de zonas de vida
 
Contenido de humedad del suelo
Contenido de humedad del sueloContenido de humedad del suelo
Contenido de humedad del suelo
 
Textura del suelo
Textura del sueloTextura del suelo
Textura del suelo
 
DETERMINACIÓN DE LA DENSIDAD APARENTE
DETERMINACIÓN DE LA DENSIDAD APARENTEDETERMINACIÓN DE LA DENSIDAD APARENTE
DETERMINACIÓN DE LA DENSIDAD APARENTE
 
¿Qué es una Cuenca Hidrologica?
¿Qué es una Cuenca Hidrologica?¿Qué es una Cuenca Hidrologica?
¿Qué es una Cuenca Hidrologica?
 
Densidad real y aparente
Densidad real y aparenteDensidad real y aparente
Densidad real y aparente
 
Zonas de vida según holdridge
Zonas de vida según holdridgeZonas de vida según holdridge
Zonas de vida según holdridge
 
Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)
 
Densidad del suelo. exposicion
Densidad del suelo. exposicionDensidad del suelo. exposicion
Densidad del suelo. exposicion
 
Fenologias de cultivos
Fenologias de cultivosFenologias de cultivos
Fenologias de cultivos
 
Suelos del Orden Molisol
Suelos del Orden MolisolSuelos del Orden Molisol
Suelos del Orden Molisol
 
Inceptisoles y entisoles
Inceptisoles y entisolesInceptisoles y entisoles
Inceptisoles y entisoles
 
evapotranspiracion
evapotranspiracionevapotranspiracion
evapotranspiracion
 
Coloides del suelo
Coloides del sueloColoides del suelo
Coloides del suelo
 
Informe n°2 humedad gravimetrica
Informe n°2 humedad gravimetricaInforme n°2 humedad gravimetrica
Informe n°2 humedad gravimetrica
 

Destacado

Collaborative Construction of Telecommunications Services
Collaborative Construction of Telecommunications ServicesCollaborative Construction of Telecommunications Services
Collaborative Construction of Telecommunications ServicesVanea Chiprianov
 
An Approach for Constructing a Domain Definition Metamodel with ATL
An Approach for Constructing a Domain Definition Metamodel with ATLAn Approach for Constructing a Domain Definition Metamodel with ATL
An Approach for Constructing a Domain Definition Metamodel with ATLVanea Chiprianov
 
Kef10 b diadikasies
Kef10 b diadikasiesKef10 b diadikasies
Kef10 b diadikasiesmnikol
 
Parastaseis
ParastaseisParastaseis
ParastaseisA Z
 
A 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
A 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝA 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
A 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝΚΩΣΤΑΣ ΓΚΑΒΕΡΑΣ
 
Study abroad consultants,Dream Global Consultants
Study abroad consultants,Dream Global ConsultantsStudy abroad consultants,Dream Global Consultants
Study abroad consultants,Dream Global ConsultantsDream Global Consultants
 
Agios therapontas
Agios therapontasAgios therapontas
Agios therapontasgymespm
 
Teacher Training Courses (NTT, NPTT, B.ED)
Teacher Training Courses (NTT, NPTT, B.ED)Teacher Training Courses (NTT, NPTT, B.ED)
Teacher Training Courses (NTT, NPTT, B.ED)iips
 
Mετέωρα Power point
Mετέωρα Power pointMετέωρα Power point
Mετέωρα Power pointfaidratsi
 
Προστασια λογισμικου κακοβουλο λογισμικο
Προστασια λογισμικου κακοβουλο λογισμικοΠροστασια λογισμικου κακοβουλο λογισμικο
Προστασια λογισμικου κακοβουλο λογισμικοmnikol
 
A report about my country - Greece
A report about my country - GreeceA report about my country - Greece
A report about my country - Greece5dimpfalir
 
Seminar on patterns of nursing education in india non university bsc & ms...
Seminar on patterns of nursing education in india non university bsc & ms...Seminar on patterns of nursing education in india non university bsc & ms...
Seminar on patterns of nursing education in india non university bsc & ms...Pranay Shelokar
 
οικοσύστημα
οικοσύστημαοικοσύστημα
οικοσύστημαchrisplev
 
Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄
Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄
Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄Χρήστος Χαρμπής
 
Χαράξεις με διαβήτη και χάρακα. Ορθές γωνίες
Χαράξεις με διαβήτη και χάρακα. Ορθές γωνίεςΧαράξεις με διαβήτη και χάρακα. Ορθές γωνίες
Χαράξεις με διαβήτη και χάρακα. Ορθές γωνίεςstamatiademogianni
 

Destacado (19)

Collaborative Construction of Telecommunications Services
Collaborative Construction of Telecommunications ServicesCollaborative Construction of Telecommunications Services
Collaborative Construction of Telecommunications Services
 
An Approach for Constructing a Domain Definition Metamodel with ATL
An Approach for Constructing a Domain Definition Metamodel with ATLAn Approach for Constructing a Domain Definition Metamodel with ATL
An Approach for Constructing a Domain Definition Metamodel with ATL
 
Butsilitsa logo
Butsilitsa logoButsilitsa logo
Butsilitsa logo
 
Kef10 b diadikasies
Kef10 b diadikasiesKef10 b diadikasies
Kef10 b diadikasies
 
Parastaseis
ParastaseisParastaseis
Parastaseis
 
DR. Taufik Hasan - Aplikasi Pendukung Interoperabilitas Dokumen untuk Indonesia
DR. Taufik Hasan - Aplikasi Pendukung Interoperabilitas Dokumen untuk IndonesiaDR. Taufik Hasan - Aplikasi Pendukung Interoperabilitas Dokumen untuk Indonesia
DR. Taufik Hasan - Aplikasi Pendukung Interoperabilitas Dokumen untuk Indonesia
 
Doc2
Doc2Doc2
Doc2
 
A 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
A 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝA 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
A 1.3 ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
 
Study abroad consultants,Dream Global Consultants
Study abroad consultants,Dream Global ConsultantsStudy abroad consultants,Dream Global Consultants
Study abroad consultants,Dream Global Consultants
 
Agios therapontas
Agios therapontasAgios therapontas
Agios therapontas
 
Teacher Training Courses (NTT, NPTT, B.ED)
Teacher Training Courses (NTT, NPTT, B.ED)Teacher Training Courses (NTT, NPTT, B.ED)
Teacher Training Courses (NTT, NPTT, B.ED)
 
Mετέωρα Power point
Mετέωρα Power pointMετέωρα Power point
Mετέωρα Power point
 
Προστασια λογισμικου κακοβουλο λογισμικο
Προστασια λογισμικου κακοβουλο λογισμικοΠροστασια λογισμικου κακοβουλο λογισμικο
Προστασια λογισμικου κακοβουλο λογισμικο
 
A report about my country - Greece
A report about my country - GreeceA report about my country - Greece
A report about my country - Greece
 
Seminar on patterns of nursing education in india non university bsc & ms...
Seminar on patterns of nursing education in india non university bsc & ms...Seminar on patterns of nursing education in india non university bsc & ms...
Seminar on patterns of nursing education in india non university bsc & ms...
 
οικοσύστημα
οικοσύστημαοικοσύστημα
οικοσύστημα
 
Teaching aids
Teaching aidsTeaching aids
Teaching aids
 
Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄
Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄
Γλώσσα Γ΄ - Επανάληψη 1ης ενότητας: ΄΄Πάλι μαζί΄΄
 
Χαράξεις με διαβήτη και χάρακα. Ορθές γωνίες
Χαράξεις με διαβήτη και χάρακα. Ορθές γωνίεςΧαράξεις με διαβήτη και χάρακα. Ορθές γωνίες
Χαράξεις με διαβήτη και χάρακα. Ορθές γωνίες
 

Similar a estación meteorológica

CAPITULO I Meteorología y monitoreos climaticos
CAPITULO I Meteorología y monitoreos climaticosCAPITULO I Meteorología y monitoreos climaticos
CAPITULO I Meteorología y monitoreos climaticosJULIOROSENDOSUAREZGA
 
INTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdf
INTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdfINTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdf
INTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdfElybe Hernandez
 
EcologíA Para Arquitectos 4 V2009
EcologíA Para Arquitectos 4 V2009EcologíA Para Arquitectos 4 V2009
EcologíA Para Arquitectos 4 V2009UCA
 
Meteorologia, generalidades (Principios Básicos de la Climatología Básica)
Meteorologia, generalidades (Principios Básicos de la Climatología Básica)Meteorologia, generalidades (Principios Básicos de la Climatología Básica)
Meteorologia, generalidades (Principios Básicos de la Climatología Básica)Bruno More
 
Conocimiento meteorológico.pptx
Conocimiento meteorológico.pptxConocimiento meteorológico.pptx
Conocimiento meteorológico.pptxAlessandro7395
 
Informe de práctica 5
Informe de práctica 5Informe de práctica 5
Informe de práctica 5Zarela Gomez
 
CLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdf
CLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdfCLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdf
CLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdfEvaPaolaChambillaQui
 
Cdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodo
CdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodoCdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodo
Cdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodomaria fernanda madariaga rendon
 
279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf
279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf
279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdfssuser2b8a18
 
6°_GRADO_-_AGOSTO_17.doc
6°_GRADO_-_AGOSTO_17.doc6°_GRADO_-_AGOSTO_17.doc
6°_GRADO_-_AGOSTO_17.docIndiraVera2
 
Práctica nº 02
Práctica nº 02Práctica nº 02
Práctica nº 02erickmeza
 
Medición de factores climáticos en la
Medición de factores climáticos en laMedición de factores climáticos en la
Medición de factores climáticos en laRoy Peralta Barboza
 

Similar a estación meteorológica (20)

CAPITULO I Meteorología y monitoreos climaticos
CAPITULO I Meteorología y monitoreos climaticosCAPITULO I Meteorología y monitoreos climaticos
CAPITULO I Meteorología y monitoreos climaticos
 
INTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdf
INTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdfINTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdf
INTRODUCCION_A_LA_METEOROLOGIA_Y_CLIMATO.pdf
 
EcologíA Para Arquitectos 4 V2009
EcologíA Para Arquitectos 4 V2009EcologíA Para Arquitectos 4 V2009
EcologíA Para Arquitectos 4 V2009
 
Meteorologia, generalidades (Principios Básicos de la Climatología Básica)
Meteorologia, generalidades (Principios Básicos de la Climatología Básica)Meteorologia, generalidades (Principios Básicos de la Climatología Básica)
Meteorologia, generalidades (Principios Básicos de la Climatología Básica)
 
Climatologia parte 1
Climatologia parte 1Climatologia parte 1
Climatologia parte 1
 
Conocimiento meteorológico.pptx
Conocimiento meteorológico.pptxConocimiento meteorológico.pptx
Conocimiento meteorológico.pptx
 
El Cambio Climatico
El Cambio ClimaticoEl Cambio Climatico
El Cambio Climatico
 
Informe de práctica 5
Informe de práctica 5Informe de práctica 5
Informe de práctica 5
 
Como se predice el clima?
Como se predice el clima?Como se predice el clima?
Como se predice el clima?
 
clase 1.pptx
clase 1.pptxclase 1.pptx
clase 1.pptx
 
S.02 climatología
S.02 climatologíaS.02 climatología
S.02 climatología
 
CLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdf
CLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdfCLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdf
CLASE 1 INTRODUCCION A LA METEOROLOGIA Y CLIMATOLOGIA.pdf
 
Cdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodo
CdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodoCdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodo
Cdocumentsandsettingsadministradormisdocumentoslaclimatologiaterminadadeltodo
 
Informe 01 hidrologia
Informe 01 hidrologiaInforme 01 hidrologia
Informe 01 hidrologia
 
279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf
279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf
279338211-AGROCLIMATOLOGIA-UNIDAD1 (1).pdf
 
6°_GRADO_-_AGOSTO_17.doc
6°_GRADO_-_AGOSTO_17.doc6°_GRADO_-_AGOSTO_17.doc
6°_GRADO_-_AGOSTO_17.doc
 
Práctica nº 02
Práctica nº 02Práctica nº 02
Práctica nº 02
 
tema2.pptx
tema2.pptxtema2.pptx
tema2.pptx
 
Medición de factores climáticos en la
Medición de factores climáticos en laMedición de factores climáticos en la
Medición de factores climáticos en la
 
Ppt
Ppt Ppt
Ppt
 

Último

SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadANDECE
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRyanimarca23
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdfEdwinAlexanderSnchez2
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Físicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y VectoresFísicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y VectoresSegundo Silva Maguiña
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...ssuser646243
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxLuisvila35
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfSandXmovex
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfCAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfReneBellido1
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendioseduardochavezg1
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 

Último (20)

SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidad
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Físicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y VectoresFísicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y Vectores
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfCAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendios
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 

estación meteorológica

  • 1. UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA FACULTAD DE INGENIERÍA DE CIVIL Y AMBIENTAL ESCUELA ACADEMICO PROFESIONAL INGENIERÍA AMBIENTAL ESTACIÓN METEOROLÓGICA ESTUDIANTE : BAUTISTA ALCANTARA ROICER GOSGOT ANGELES WILDOR MEZA MORI GERSON PEREZ OCAMPO JHORDY RAMIREZ MAS IRINA SANTILLAN GOMEZ HOMAR DOCENTE : Ing. MIGUEL ÁNGEL BARRENA GURBILLÓN CHACHAPOYAS – PERÚ 2016
  • 2. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 1 Tabla de contenido INTRODUCCIÓN. ......................................................................................................... 2 OBJETIVOS. .................................................................................................................. 2 OBJETIVO GENERAL:............................................................................................ 2 OBJETIVOS ESPECÍFICOS:................................................................................... 2 MARCO TEÓRICO....................................................................................................... 3 METEOROLOGÍA: ................................................................................................... 3 EQUIPOS E INSTRUMENTOS METEOROLÓGICOS....................................... 4 PARAMETROS DE MEDICIÓN:............................................................................ 5 UBICACIÓN Y EXPOSICIÓN DE LOS INSTRUMENTOS ................................ 7 COMPONENTES DE LA ESTACIÓN METEOROLOGICA OREGON SCINTIFIC WMR300A................................................................................................. 9 COMPONENTES DE LA CONSOLA ................................................................... 15 DATOS QUE REGISTRA LA ESTACIÓN METOROLOGICA OREGON SCINTIFIC WMR300A............................................................................................... 22 IMPORTANCIA Y FINALIDAD DE LA GESTIÓN DE DATOS...................... 22 VENTAJAS Y DESVENTAJAS DE UNA ESTACION METEOROLOGICAS ......... 23 RECOMENDACIONES: ............................................................................................. 24 CONCLUSION:............................................................................................................ 24 REFERENCIAS BIBLIOGRAFICAS........................................................................ 24 ANEXOS........................................................................................................................ 26
  • 3. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 2 INTRODUCCIÓN. Los fenómenos relacionados con la atmosfera, el tiempo y el clima inciden de diversas maneras en el desarrollo y resultado de las actividades humanas sobre un determinado territorio. El clima juega un papel relevante en muchos aspectos de nuestra vida. Uno de ellos es el confort, en el cual influyen parámetros tales como la temperatura del aire, la humedad, la presión atmosférica y la radiación, la lluvia, entre otros. La fuerte incidencia de las tormentas tropicales que se han suscitados con mayor intensidad en estos últimos años, en paralelo con un incremento en el nivel de temperatura durante la época seca provocan un aumento en los efectos perjudícales ocasionados por la naturaleza, cuya reiteración y persistencia evidencia un genuino cambio climático. Estas condiciones atmosféricas climatológicas de hoy en día se han vuelto tan cambiantes, que es de suma importancia conocer su comportamiento, esto se logra a través de estaciones meteorológicas, dicha estación puede suministrar datos precisos y registros diarios de parámetros climatológicos que afectan una región de determinado país. El registro diario, mensual y anual de esta información, es importante también para la evaluación del recurso solar con el objeto de predecir su comportamiento y estimar sus posibilidades de aprovechamiento en aplicaciones relacionadas con la producción de energía eólica, solar térmica y fotovoltaica. OBJETIVOS. OBJETIVO GENERAL:  Conocer el funcionamiento de una estación meteorológica capaz de realizar la medición y el registro de los diferentes parámetros climáticos ubicado en la cuidada Universitaria a cargo del INDECES-CES/UNTRM-A. OBJETIVOS ESPECÍFICOS:  Conocer los componentes de una estación meteorológica OREGON SCINTIFIC WMR300A  El estudiante comprenda la importancia de conocer una estación meteorológica
  • 4. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 3 MARCO TEÓRICO METEOROLOGÍA: Es la ciencia que estudia la atmósfera y los fenómenos que ocurren en ella. Es una rama de la física que aborda el estado del tiempo, el medio atmosférico y las leyes que lo rigen. Hay que recordar que la Tierra está constituida por tres partes fundamentales: una parte sólida llamada litósfera, recubierta en buena proporción por agua (llamada hidrosfera) y ambas envueltas por una tercera capa gaseosa, la atmósfera. Éstas se relacionan entre sí produciendo modificaciones profundas en sus características. La ciencia que estudia estas características, las propiedades y los movimientos de las tres capas fundamentales de la Tierra, es la Geofísica. En ese sentido, la meteorología es una rama de la geofísica que tiene por objeto el estudio detallado de la envoltura gaseosa de la Tierra y sus fenómenos. Se debe distinguir entre las condiciones actuales y su evolución llamado tiempo atmosférico, y las condiciones medias durante un largo periodo que se conoce como clima del lugar o región. En este sentido, la meteorología es una ciencia auxiliar de la climatología ya que los datos atmosféricos obtenidos en múltiples estaciones meteorológicas durante largo tiempo se usan para definir el clima, predecir el tiempo, comprender la interacción de la atmósfera con otros subsistemas, etc. El conocimiento de las variaciones meteorológicas y el impacto de las mismas sobre el clima han sido siempre de suma importancia para el desarrollo de la agricultura, la navegación, las operaciones militares y la vida en general.
  • 5. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 4 EQUIPOS E INSTRUMENTOS METEOROLÓGICOS. En general, cada ciencia tiene su propio equipamiento e instrumentos de laboratorio. Sin embargo, la meteorología es una disciplina corta en equipos de laboratorio y amplia en los equipos de observación en campo. En la atmósfera, hay muchos objetos o cualidades que pueden ser medidos. La lluvia, por ejemplo, ha sido observada en cualquier lugar y desde siempre, siendo uno de los primeros fenómenos en ser medidos históricamente. Estación pluviométrica: es la estación meteorológica que tiene un pluviómetro o recipiente que permite medir la cantidad de lluvia caída entre dos mediciones realizadas consecutivas. Estación pluviográfica: es cuando la estación meteorológica puede realizar de forma continua y mecánica un registro de las precipitaciones, por lo que nos permite conocer la cantidad, intensidad, duración y período en que ha ocurrido la lluvia. Estación climatológica principal: es aquella estación meteorológica que esta provista para realizar observaciones del tiempo atmosférico actual, cantidad, visibilidad, precipitaciones, temperatura del aire, humedad, viento, radiación solar, evaporación y otros fenómenos especiales. Normalmente se realizan unas tres mediciones diarias. Estación climatológica ordinaria: esta estación meteorológica tiene que estar provista obligatoriamente de psicrómetro, de un pluviómetro y un pluviográfo, para así poder medir las precipitaciones y la temperatura de manera instantánea. Estación sinóptica principal: este tipo de estación meteorológica realiza observaciones de los principales elementos meteorológicos en horas convenidas internacionalmente. Los datos se toman horariamente y corresponden a nubosidad, dirección y velocidad de los vientos, presión atmosférica, temperatura del aire, tipo y altura de las nubes, visibilidad, fenómenos especiales, características de humedad, precipitaciones, temperaturas extremas, capa significativas de las nubes, recorrido del viento y secuencia de los fenómenos atmosféricos. Esta información se codifica y se intercambia a través de los centros mundiales con el fin de alimentar los modelos globales y locales de pronóstico y para el servicio de la aviación.
  • 6. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 5 PARAMETROS DE MEDICIÓN: Precipitación Volumen de lluvia que llega al suelo en un período determinado, se expresa en función del nivel que alcanzaría sobre una proyección horizontal de la superficie de la tierra. Humedad Relativa Es el vapor de agua contenida en un volumen dada de aire y la que podría contener el mismo volumen si estuviese saturado a la misma temperatura. Temperatura La temperatura es la medición del clima o calor que posee los cuerpos. En la meteorología se utiliza la escala Celsius (grados °C) cuyo dos puntos fijos son, el punto de fusión del hielo (0 °C) y el punto de ebullición normal del agua (100grados °C). Evaporación Es la cantidad de agua evaporada desde una unidad de superficie durante una unidad de tiempo en toda la superficie considerada. La unidad de tiempo es normalmente un día y la altura se expresa en centímetros o milímetros. Radiación solar Tiene como fuente el sol y se propaga por medio de ondas electromagnéticas que sedifu nden en todas las direcciones con velocidad cercana a los 300,000 Km. La energía solar se absorbe parte por ciertos contribuyentes dela atmósfera como el oxígeno el ozono y el vapor de agua y en parte es difundida por el polvo, la nubosidad y el humo. Viento Es el aire en movimiento. Por regla general la dirección del viento varía y su velocidad crece con la altitud. El viento es una magnitud vectorial caracterizada por dos números que presentan la dirección y la velocidad a una altura normal de 10 metros sobre el suelo. El viento en superficie raramente es constante durante un período determinado. Varía rápida y constantemente y estas variaciones son irregulares tanto en frecuencia como en duración. La dirección del viento es aquella de donde sopla.
  • 7. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 6 Presión atmosférica Es la fuerza que la atmósfera ejerce, en razón de su peso, por unidad de superficie. Por consiguiente, es igual al peso de una columna vertical de aire de base igual a la unidad de superficie que se extiende desde la superficie considerada al límite superior de la atmósfera. Brillo solar Es el tiempo durante el cual el sol brilla en el cielo durante un tiempo determinado horas, días, meses.  Requerimientos de mediciones de una estación meteorológica  Una estación de superficie debe registrar:  Tiempo presente  Tiempo pasado  Dirección e intensidad del viento  Cobertura nubosa  Tipo de nubes  Altura de la base de nubes  Visibilidad  Temperatura  Humedad relativa  Presión atmosférica  Precipitación  Horas de sol/radiación solar  Temperatura del suelo  Evaporación
  • 8. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 7 UBICACIÓN Y EXPOSICIÓN DE LOS INSTRUMENTOS Se deben aplicar las siguientes consideraciones para la selección de la ubicación de la estación y de la exposición de los instrumentos. Por ejemplo para una estación sinóptica o climatológica, algunos factores que se deben tomar en cuenta para la ubicación de la estación y el instrumental son los siguientes: El instrumental que va ubicado en el parque meteorológico debe ser instalado en un área de suelo no menor a 25 x 25 m . El suelo debe estar cubierto de pasto corto o una superficie que sea representativa del lugar y debe estar cercado. Un área de 2x2m debe ser destinada para la observación del estado del suelo y para las mediciones de temperatura del suelo de menos de 20 cm de profundidad. No debe existir pendientes abruptas cerca de la estación. Tampoco debe estar ubicada la estación en un pozo del terreno. El lugar debe estar alejado de árboles, edificios, paredes y otro tipo de obstáculos. La distancia entre el pluviómetro y cualquier obstáculo debe ser por lo menos de 2 veces la altura del obstáculo. La posición utilizada por el observador para observar la nubosidad y visibilidad debe ser un lugar lo más despejado posible.  predicciones, ni siquiera en las próximas horas, ya que no registra históricos, por lo que no permite conocer la tendencia o la evolución climática.  Debe elegirse cuidadosamente su ubicación, ya que si está al sol o en una corriente de aire frío, las mediciones se ven alteradas de forma notable.  Las aves depositan sus excretas en los equipos y evitan el funcionamiento de éstas.
  • 9. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 8  Según la organización mundial de meteorología (OMM) se debe tener consideración: a- los instrumentos exteriores deben instalarse en un terreno llano, aproximadamente de 10 por 7 metros (el recinto), cubierto de hierba baja, o de una superficie representativa de la localidad, rodeada de una cerca para impedir el acceso a personas no autorizadas, en el recinto se reserva una parcela de 2 por 2 metros para mediciones referidas al estado del suelo. b- no debe haber laderas inclinadas en las proximidades, y el emplazamiento no debe encontrarse en una hondonada. Si no se cumplen estas condiciones las observaciones pueden presentar peculiaridades de significación puramente local. c- el emplazamiento debe estar suficientemente alejado de árboles, edificios, muros u otros obstáculos. La distancia entre cualquiera de esos obstáculos (incluidas las vallas) y el pluviómetro no debe ser inferior al doble de la altura del objeto por encima del borde del aparato y preferentemente debe de cuadriplicar la altura. d- el registrador de luz solar, el pluviómetro y el anemómetro deben de encontrase en emplazamientos con exposiciones que satisfagan sus requisitos, y en el mismo lugar que los otros instrumentos. e- debe señalarse que el recinto puede ser no el mejor lugar para estimar la velocidad y dirección del viento, tal vez convenga otro punto de observación más expuesto al viento. f- emplazamientos muy abiertos sin ningún tipo de obstáculos cercanos, satisfactorios para la mayoría de los instrumentos son inapropiados para los pluviómetros. En estos lugares la captación del agua es reducida, salvo con vientos débiles, y se necesita algún grado de protección.
  • 10. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 9 A parte de esto la OMM recomienda que los instrumentos manuales deben estar dentro de una garita (en este caso, especie de caja protectora) que tenga las siguientes características:  De madera, pintada de blanco y esmaltada para reflejar bien la radiación.  Con buena ventilación.  Con techo doble y circulación del aire entre los dos tejados para evitar el calentamiento del aire cuando la radiación es muy intensa.  La puerta debe estar orientada al Norte en nuestro hemisferio, para evitar que al realizar las observaciones los rayos solares incidan sobre los instrumentos.  Con techo suficientemente inclinado para dejar escurrir el agua de lluvia la inclinación puede variar de acuerdo a la cantidad de lluvia del sitio. COMPONENTES DE LA ESTACIÓN METEOROLOGICA OREGON SCINTIFIC WMR300A Este sistema puede proporcionar información sobre el clima con varios sensores a través con un alto nivel de precisión. Todos los sensores están cableados a una caja de transmisor que es funciona con energía solar y con pilas para la comunicación y la visualización de forma inalámbrica los datos sobre una unidad principal cubierta de cristal líquido. Este sistema recuerda los datos de un rango de tiempo para que usted pueda supervisar y analizar el estado del tiempo. Puede exportar los datos para presentar la PC por cable y gestionar y Sistemáticamente analizar los datos. El sistema se puede ampliar hasta 8 sensores termómetro y humedad y apoyarse con otros sensores meteorológicos.
  • 11. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 10 Los componentes son :  Monitor o consola  Transmisor solar
  • 12. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 11  Pluviómetro
  • 13. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 12  Sensor de temperatura y humedad  Sensor de viento:
  • 14. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 13 SISTEMA INSTALADO 1. Dirección del viento: Mide la dirección del viento en puntos cardinales o grados 2. Recolector de lluvia: Cumple con todos los lineamientos de área de recolección establecidos. 3. Anemómetro: Resisten vientos con la fuerza con la fuerza de un huracán pero sensibles a las brisas. 4. Poste de montaje opcional: Una de varias opciones de instalación. 2 3 4 1 3
  • 15. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 14 5. Protección de radiación con succión: Contienen placas adicionales de protección contra radiación. 6. Sensores de temperatura y humedad: Localizados dentro del protector contra radiación que protege a los sensores de la radiación solar y de otras fuentes de calor. 6 5 Colector de lluvia Diseñado para cumplir con los Lineamientos de la Organización Meteorológica Mundial, nuestro Colector de lluvia de vaciado Automático con cubo medidor Tiene una exactitud excepcional. Protector contra radiación La protección pasiva más efectiva que encontrará. Protege al sensor de temperatura de la radiación solar y de otras fuentes de calor radiado y reflejado. Fabricado con varias placas para permitir el flujo máximo del aire.
  • 16. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 15 COMPONENTES DE LA CONSOLA 1.- Amanecida y puesta de sol 1.1.AM/PM 1.2. Indicador de la salida del sol. 1.3. Indicador de la puesta del sol. 1.4. Visualización de la hora. Antena Pantalla LCD 1 2 3 4 5 6 7 8 9
  • 17. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 16 2.-Punto de rocio/índice de calor/zona de enfriamiento 2.1.HI / LO de alarma: Las alarmas de alta o baja temperatura 2.2. Canal seleccionado 2.3. Indicador de canal de enfriamiento por el viento seleccionadas (desde la CH1 sólo lectura) 2.4. Calentar el indicador de índice 2.5. Rocío indicador de punto de rocío 2.6. Temperatura de sensación índice de punto / calor / viento 2.7. ˚ C / F: unidad de temperatura 2.8. Hoy / mes / MIN / MAX: Visualizar el máximo / mínimo de la lectura frío / punto de rocío mensual / índice de calor / viento de hoy 3.-Temperatura exterior y la zona de la humedad 3.1 Indicador de temperatura / humedad exterior 3.2. HI / LO alarme: Alarmas para altas o bajas temperaturas al aire libre 3.3. Canal choisi 3.4. Lectura de temperatura exterior 3.5. C / F: unidad de temperatura 3.6. Tendencia de la temperatura exterior
  • 18. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 17 3.7. Lectura de la humedad externa 3.9. Tendencia de la humedad exterior 3.10. HOY / MES / MIN / MAX: Muestra las lecturas de temperatura / humedad máxima / mínima de la fecha externa / mensual 3.11. HI / LO alarme: alarma de alta o baja humedad exterior 4.-La temperatura interior y la humedad zona 4.11Indicador de la temperatura y la humedad interior 4.2. HI / LO de alarma: Las alarmas de temperatura baja o alta de interior 4.3. Reproducción de temperatura interior 4.4. C / F: Unidad de temperatura de temperatura 4.5. Tendencia interior 4.6. Reproducción de humedad en el interior 4.7. %: Unidad de humedad 4.8. Tendencia humedad interior 4.9. Hoy en día / mes / min / máx.: Muestra las lecturas de temperatura / humedad máxima / mínima interior de la fecha 4.10. Alarma HI / LO / mensual: alarmas humedad interior baja o alta
  • 19. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 18 5.-La velocidad del viento / área de dirección 5.1. HOY / MES / MAX: Muestra las lecturas de ráfagas máximas de fecha / mensuales. 5.2. Indicador. 5.3. Ráfagas indicador de velocidad del viento media. 5.4. Velocidad del viento Reproducción. 5.5. Moderada / suave / STRONG / TORMENTA: indicadores de nivel de velocidad del viento (moderada / suave / fuerte / Storm) 6. W (oeste) / S (sur) / E (este) / N (norte). 5.7. Reproducción de la dirección del viento / lectura del ángulo calibrada. 5.8. Indicador (s) de la dirección del viento durante la última hora. 5.9. Indicador de dirección de la tormenta / viento significa. 5.10. Nudos / km / h / mph / unidades m / s de medición de la velocidad del viento: nodo / km / h / millas / h / m / s . 5.11. HI alarma: alarma de viento fuerte.
  • 20. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 19 6.-Área de gráfico de barras 1. MAX / MIN: Indicador de lectura máxima / mínima del gráfico de barras área seleccionada 2. Zona 3. ÚLTIMO 24 H / 24DAYS / 24 MTHS: Nicho última vez 24 horas / días / meses 4. Lectura de la referencia mínima 5. reproducción de gráficos actuales de la zona correspondiente 6. 6. Escuchar la máxima referencia 7. en TEMP / HUM iN / OUT TEMP / HUM OUT / punto de rocío / INDICE de CALOR / viento frío / WIND / barómetro / LLUVIA: indicadores gráficos 7.-Área de barómetro 1. Altitud indicador 2 .: alarma para la presión barométrica cambia
  • 21. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 20 3. HOY / MES / MIN / MAX: Muestra la presión máxima / mínima barométrica de día / mes / mini / maxi 4. Tendencia 5 barométrica. Indicador de grabación programada (de -24 a 0) 6. mb / hPa unidad barométrica M / pies en Hg / mmHg / 7.: unidad de altitud (metros / pies) 8. Juego barómetro 8.-Pluviometro 8.1. Alarma HI: Alarmas fuerte intensidad de lluvia y precipitaciones de las últimas 24 horas. 8.2. HOY / MES / MAX: Muestra el máximo de lluvia / precipitación de fecha / grabaciones de itinerario mensual 8.3. Indicador (-24 a 0) 8.4. TIPO: intensidad de lluvia 8.5. Esta hora / ACCUM / Últimas 24 horas: Selección de tiempo: esta hora / combinación / 8.6. En las últimas 24 horas / mm: Selección de tiempo: esto últimas 24 horas hora / combinación /; En / h / mm / Rh: unidad de intensidad de lluvia (INS / h / mm / h) 8.7. Pantalla de lluvia leer 8.8. Indicador de la zona de la lluvia
  • 22. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 21 9.-Hora / alarma / pronostico del tiempo / fase de la luna 9.1. El tiempo Pronóstico del área de iconos. 9.2. Desde: Fecha de inicio de la precipitación acumulada. 9.3. AM/PM. 9.4. Indicador de recepción de señal de reloj de RF. 9.5. El modo de visualización de la alarma. 9.6. Indicador de alarma diaria. 9.7. Puerto USB se conecta con éxito. 9.8. Registro de datos: Los datos de registro muestra información. 9.9. Longitud / latitud: longitud / latitud. 9.10. La zona horario. 9.11. Búsqueda: Busca transmisor solar. 9.12. De tiempo: el tiempo particular de la memoria seleccionada. 9.13. Transmisor solar es de batería baja. 9.14. La unidad principal es de batería baja. 9.15. Adaptador de corriente está conectado. 9.16. Área de la fase de la luna.
  • 23. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 22 DATOS QUE REGISTRA LA ESTACIÓN METOROLOGICA OREGON SCINTIFIC WMR300A  Fecha  Tiempo  Temperatura interna(C)  Temperatura externa (C)  índice de calor(C)  Humedad interna (%)  Humedad externa(%)  Punto de rocío(C)  Dirección del viento(deg)  Velocidad de las rachas de viento(m/s)  Dirección de las rachas(deg)  Velocidad media del viento(m/s)  Sensación de frío(C)  índice de precipitaciones(mm/h)  Precipitaciones por hora (mm)  Precipitaciones acumuladas (mm)  Fecha de inicio acumulada  Hora de inicio acumulada  Presión (hPa) Estado del tiempo IMPORTANCIA Y FINALIDAD DE LA GESTIÓN DE DATOS El objetivo fundamental de la gestión de los datos climáticos consiste en conservar, captar y proporcionar datos y productos climáticos para que las instancias planificadoras y decisorias así como los investigadores los utilicen. El archivo permanente es un objetivo importante. El sistema de gestión de datos de un archivo climático debe suministrar la información para describir el clima del ámbito para el que se haya establecido el archivo, ya sea nacional, regional o mundial. Los datos que generan las redes meteorológicas y climatológicas así como diversos proyectos de investigación representan unos recursos valiosos y, a menudo, extraordinarios, adquiridos mediante una inversión sustancial de tiempo, dinero y esfuerzo. Muchos de los usos que acaban por darse a los datos climáticos
  • 24. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 23 no pueden preverse cuando los programas de adquisición de datos están en fase de planificación y, con frecuencia, surgen nuevas aplicaciones para los mismos, mucho después de haber adquirido la información. La utilización inicial de datos meteorológicos y afines suele ser la primera de muchas aplicaciones futuras. El análisis posterior de los datos con muchas y diversas finalidades permite aumentar notable y constantemente el rédito de la inversión inicial en los programas de adquisición de datos. Por ejemplo, el desafío que plantea el cambio climático mundial está incrementando las necesidades de datos climáticos y sistemas de gestión de datos en una proporción mucho mayor a la prevista cuando se establecieron las primeras redes. Con el fin de responder a estas necesidades, es sumamente importante que tanto la información climática actual como la histórica sean gestionadas de manera sistemática y exhaustiva. A los datos meteorológicos convencionales se suman hoy en día los datos obtenidos de una amplia gama de instrumentos y sistemas, tales como los satélites, sistemas de radar y otros dispositivos de teledetección, lo que convierte a los sistemas de gestión de datos eficaces y exhaustivos en un recurso indispensable para los centros climáticos modernos. VENTAJAS Y DESVENTAJAS DE UNA ESTACION METEOROLOGICAS VENTAJAS: Las principales ventajas de una estación meteorológica analógica son: o Funcionamiento sin electricidad, lo que evita que dejen de funcionar en caso de interrupción del suministro eléctrico. o Facilidad de uso. o Fácil de leer, con lectura directa y escalas analógicas. o Precisión aceptable, aunque inferior a una estación meteorológica digital. o No requiere personal técnico en recolección de los datos generados.
  • 25. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 24 DESVENTAJAS: Como principales desventajas de una estación meteorológica analógica podemos citar: o Cuentan con pocas funciones comparando con una estación meteorológica digital, aunque los datos que proporcionan son suficientes si sólo pretendemos conocer la temperatura y la humedad ambiente para ajustar la calefacción o el aire acondicionado, evitando así el despilfarro de energía. RECOMENDACIONES:  Se recomienda instalar éstas centros en lugares donde no exista pendientes.  Se debe tener en cuenta las operaciones de mantenimiento en un intervalo de 6 meses como mínimo.  Se debe instalar una estación por cada cuenca para tener mayor información CONCLUSION:  Esta estación tiene como objetivo proporcionar información fiable de las variables meteorológicas del entorno y al mismo tiempo evaluar el potencial existente de energías renovables, concretamente solar y eólica, energías que no se han explotado debido en parte a la falta de información climática que demuestre su viabilidad.  Se concluye que las variables obtenidas por cada estación meteorológica nos dan datos representativos de acuerdo al estudio o investigación que esté realizando.  Muchos de los instrumentos han de estar al aire libre, pero otros aunque también han de estar al aire libre, deben estar protegidos de las radiaciones solares para que estas no les alteren los datos, el aire debe circular por dicho interior. Los que han de estar protegidos de las inclemencias del tiempo, se encuentran dentro de una garitameteorológica. REFERENCIAS BIBLIOGRAFICAS Campbell Scientific Inc., Sitio de Internet, http://www.campbellsci.com, 2008
  • 26. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 25 Koninklijk Nederlands Meteorologisch Instituut, Handbook for the Meteorological Observation, Setiembre 2000 Organización Mundial de Meteorología, Guía de Instrumentos y Métodos de Observación Meteorológica. 6ta edición, 1996 Organización Mundial de Meteorología, Guide to Climatological Practices, 2da edición, 1983 Organización Mundial de Meteorología, Guidelines on climate metadata and homogenization, 2003 Organización Mundial de Meteorología, Guidelines on Climate Observation Networks and Systems, 2003 N. Plummer et al., Guidelines on Climate Data Management Version 5.0, October 2005 Sitios web http://www.oregonscientificstore.com/t-user-manuals.aspx https://www.manualslib.com/manual/679563/Oregon-Scientific Wmr300.html?page=2#manual http://topogisperu.com/Estacion-meteorologica-PRO-VANTAGE.html
  • 27. Energías Renovables E.A.P.IngenieríaAmbiental Universidad Nacional Toribio Rodríguez de Mendoza 26 ANEXOS Formato de registro de datos de la estación meteorológica en INDECES-CES/UNTRM FechaTiempo Temperatura interna(C) Temperatura externa(C) índicede calor(C) Humedad interna(%) Humedad externa(%) Puntode rocío(C) Direccióndel viento(deg) Velocidaddelas rachasde viento(m/s) 01/08/201600:111712.3NA659111830.6 01/08/201600:261712.2NA659211881.3 01/08/201600:411712.2NA659211841.1 01/08/201600:5616.912.2NA659211820.8 01/08/201601:1116.911.9NA6593112421.1 01/08/201601:2616.912NA6593111890.9 01/08/201601:4116.812.1NA6593111291.8 Direccióndelas rachas(deg) Velocidad mediadel viento(m/s) Sensaciónde frío(C) índicede precipitaciones(mm/ h) Precipitacionespor hora(mm) Precipitaciones acumuladas(mm) Fechadeinicio acumulada Horadeinicio acumulada Presión(hPa) 860.9NA005.0829/06/201618:00775.86 750.9NA005.0829/06/201618:00775.86 1140.9NA005.0829/06/201618:00775.86 760.9NA005.0829/06/201618:00775.64 1861.1NA005.0829/06/201618:00775.41 1860.6NA005.0829/06/201618:00775.41 1090.9NA005.0829/06/201618:00775.26 1790.9NA005.0829/06/201618:00775.26 EstadodeltiempoIntervalo PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE PARCIALMENTENUBLADOENLANOCHE