LOS NÚMEROS
 DECIMALES
LOS NÚMEROS DECIMALES

Los números decimales surgieron por la necesidad de expresar cantidades
no enteras, y por la necesidad de expresar magnitudes físicas, o por la
necesidad de efectuar repartos de tierra o de víveres.

Con los números decimales, podemos expresar números no enteros , o
números mas pequeños que la unidad.

   Así por ejemplo podemos expresar:

            1 décima de una unidad               0,1

            1 centésima de una unidad            0,01

            1 milésima de una unidad             0,001

            1 diezmilésima de una unidad         0,0001

                      …                          …
COMO REPRESENTAR LOS NÚMEROS DECIMALES EN LA RECTA

DADO UN NÚMERO DECIMAL. Por ejemplo: 3,758

Para representarlo en la recta real, tenemos que tener en cuenta que este
compuesto por 3 unidades, 7 décimas, 5 centésimas y 8 milésimas. Luego:
                                                    | | | | | | | | | |
Primero representamos el 3                    3,7        3,75          3,8
|                 !              !              ! | | | | | | | | | |!
                                                              3,7
0                1              2               3                   4

Luego entre el 3 y el 4 tomamos 7 décimas
Luego entre el 3,7 y el 3,8 tomamos 5 centésimas.

    Luego entre el 3,75 y el 3,76 tomamos 8 milésimas.

                                     Obtenemos aproximadamente 3,758
TIPOS DE NÚMEROS DECIMALES

Los números decimales pueden ser:

EXÁCTOS.- Cuando tiene un número finito de cifras decimales (“que
puede ser cero”)
  EJEMPLO.-            3,789;       5,1;   65,111


PERIÓDICOS.- Cuando tiene infinitas cifras periódicas.

  EJEMPLO.-            3,787878787878 … = 3,78; 0,003333333 = 0,003


 NO EXÁCTOS Y NO PERIÓDICOS.- Cuando tiene infinitas cifras no
 periódicas.

   EJEMPLO.-            3,101001000100001 …
SUMA DE NÚMEROS DECIMALES

             8,5
SUMA:      + 3,6
           12,1      LUEGO:          8,5 + 3,6 =
                     121
Propiedades de la Suma:
CONMUTATIVA.- La suma no varía al cambiar el orden de los
sumandos. Ejemplo:         2,2 + 1,1 = 3,3
                           1,1 + 2,2 = 3,3
ASOCIATIVA.- Si tenemos que sumar varios números, el valor de la
suma es independiente de cómo se agrupen los sumandos. Ejemplo:

                      ( 2,2 +1,1 ) + 0,5 = 3,3 + 0,5 = 3,8
                         2,2 + (1,1 + 0,5 ) = 2,2 + 1,6 = 3,8
PRODUCTO DE NÚMEROS DECIMALES
                     8,5
PRODUCTO:          x 3,6
                   5 ,1 0
                 25 , 5
                 3 0 , 60       LUEGO: 8,5 • 3,6 = 30,60
Propiedades del Producto:

CONMUTATIVA.- El producto no varía al cambiar el orden de los
factores. Ejemplo:         2 • 1,1 = 2,2
                           1,1 • 2 = 2,2
ASOCIATIVA.- Si tenemos que multiplicar varios números, el valor del
producto es independiente de cómo se agrupen los factores. Ejemplo:
                         ( 2 • 1,1 ) • 0,3 = 2,2 • 0,3 = 0,66
                          2 • (1,1 • 0,3 ) = 2 • 0,33 = 0,66
RESTA DE NÚMEROS DECIMALES


                   8,5
    RESTA:       - 3,6
                   4,9         LUEGO: 8,5 – 3,6 = 49

Observa, que si efectuamos la resta:   3,6 – 8,5 = - 4,9

Obtendremos un número negativo.
IMPORTANTE.-

Si a cualquier número le sumamos o restamos 0, el número se queda
como está. Ejemplo:        7,1 + 0 = 7,1 = 7,1 – 0

Si cualquier número lo multiplicamos por 1, el número se queda
como está. Ejemplo:        7,12 • 1 = 7,12
EJEMPLOS DE DIVISIÓN DE NÚMEROS DECIMALES

Decimales en el        11,7        |_3 .
                       -9            3, 9
DIVIDENDO:               2,7
                       - 2,7
                          0                  LUEGO: 11,8 : 3 = 3,9

Decimales en el         3060 |_36
                        306 |_3,6
                      - 288    85
DIVISOR:
                          18 0
                        - 180
                            0                LUEGO: 306 : 3,6 = 85

Decimales en el          891.8
                         89,18      |_98
                                     |_9,8
                      - 882           9, 1
DIVIDENDO y
                            9, 8
en el DIVISOR:            - 9,8
                               0             LUEGO: 891,8 : 98 = 9,1
MULTIPLICACIÓN Y DIVISIÓN DE DECIMALES POR POTENCIAS DE 10.



 Cuando tenemos que multiplicar un número decimal por una potencia de 10, se
 mueve la coma decimal a la derecha, tantos lugares como números de ceros que
 tiene la potencia.

 EJEMPLO:             7,581 . 1.000.000 = 7.581.000;      0,03 . 10 = 0,3


 Cuando tenemos que dividir un número decimal por una potencia de 10, se mueve
 la coma decimal a la izquierda tantos, lugares como números de ceros que tiene la
 potencia.

 EJEMPLO:             7,581 : 1.000.000 = 0,000007581;    0,03 : 10 = 0,003
Mas ayuda del tema de la página
 Matemática de DESCARTES del
Ministerio de Educación y ciencia
(http://recursostic.educacion.es/descartes/web/)
En la siguiente diapósitiva
Numeros decimales
Numeros decimales

Numeros decimales

  • 1.
  • 2.
    LOS NÚMEROS DECIMALES Losnúmeros decimales surgieron por la necesidad de expresar cantidades no enteras, y por la necesidad de expresar magnitudes físicas, o por la necesidad de efectuar repartos de tierra o de víveres. Con los números decimales, podemos expresar números no enteros , o números mas pequeños que la unidad. Así por ejemplo podemos expresar: 1 décima de una unidad 0,1 1 centésima de una unidad 0,01 1 milésima de una unidad 0,001 1 diezmilésima de una unidad 0,0001 … …
  • 3.
    COMO REPRESENTAR LOSNÚMEROS DECIMALES EN LA RECTA DADO UN NÚMERO DECIMAL. Por ejemplo: 3,758 Para representarlo en la recta real, tenemos que tener en cuenta que este compuesto por 3 unidades, 7 décimas, 5 centésimas y 8 milésimas. Luego: | | | | | | | | | | Primero representamos el 3 3,7 3,75 3,8 | ! ! ! | | | | | | | | | |! 3,7 0 1 2 3 4 Luego entre el 3 y el 4 tomamos 7 décimas Luego entre el 3,7 y el 3,8 tomamos 5 centésimas. Luego entre el 3,75 y el 3,76 tomamos 8 milésimas. Obtenemos aproximadamente 3,758
  • 4.
    TIPOS DE NÚMEROSDECIMALES Los números decimales pueden ser: EXÁCTOS.- Cuando tiene un número finito de cifras decimales (“que puede ser cero”) EJEMPLO.- 3,789; 5,1; 65,111 PERIÓDICOS.- Cuando tiene infinitas cifras periódicas. EJEMPLO.- 3,787878787878 … = 3,78; 0,003333333 = 0,003 NO EXÁCTOS Y NO PERIÓDICOS.- Cuando tiene infinitas cifras no periódicas. EJEMPLO.- 3,101001000100001 …
  • 5.
    SUMA DE NÚMEROSDECIMALES 8,5 SUMA: + 3,6 12,1 LUEGO: 8,5 + 3,6 = 121 Propiedades de la Suma: CONMUTATIVA.- La suma no varía al cambiar el orden de los sumandos. Ejemplo: 2,2 + 1,1 = 3,3 1,1 + 2,2 = 3,3 ASOCIATIVA.- Si tenemos que sumar varios números, el valor de la suma es independiente de cómo se agrupen los sumandos. Ejemplo: ( 2,2 +1,1 ) + 0,5 = 3,3 + 0,5 = 3,8 2,2 + (1,1 + 0,5 ) = 2,2 + 1,6 = 3,8
  • 6.
    PRODUCTO DE NÚMEROSDECIMALES 8,5 PRODUCTO: x 3,6 5 ,1 0 25 , 5 3 0 , 60 LUEGO: 8,5 • 3,6 = 30,60 Propiedades del Producto: CONMUTATIVA.- El producto no varía al cambiar el orden de los factores. Ejemplo: 2 • 1,1 = 2,2 1,1 • 2 = 2,2 ASOCIATIVA.- Si tenemos que multiplicar varios números, el valor del producto es independiente de cómo se agrupen los factores. Ejemplo: ( 2 • 1,1 ) • 0,3 = 2,2 • 0,3 = 0,66 2 • (1,1 • 0,3 ) = 2 • 0,33 = 0,66
  • 7.
    RESTA DE NÚMEROSDECIMALES 8,5 RESTA: - 3,6 4,9 LUEGO: 8,5 – 3,6 = 49 Observa, que si efectuamos la resta: 3,6 – 8,5 = - 4,9 Obtendremos un número negativo. IMPORTANTE.- Si a cualquier número le sumamos o restamos 0, el número se queda como está. Ejemplo: 7,1 + 0 = 7,1 = 7,1 – 0 Si cualquier número lo multiplicamos por 1, el número se queda como está. Ejemplo: 7,12 • 1 = 7,12
  • 8.
    EJEMPLOS DE DIVISIÓNDE NÚMEROS DECIMALES Decimales en el 11,7 |_3 . -9 3, 9 DIVIDENDO: 2,7 - 2,7 0 LUEGO: 11,8 : 3 = 3,9 Decimales en el 3060 |_36 306 |_3,6 - 288 85 DIVISOR: 18 0 - 180 0 LUEGO: 306 : 3,6 = 85 Decimales en el 891.8 89,18 |_98 |_9,8 - 882 9, 1 DIVIDENDO y 9, 8 en el DIVISOR: - 9,8 0 LUEGO: 891,8 : 98 = 9,1
  • 9.
    MULTIPLICACIÓN Y DIVISIÓNDE DECIMALES POR POTENCIAS DE 10. Cuando tenemos que multiplicar un número decimal por una potencia de 10, se mueve la coma decimal a la derecha, tantos lugares como números de ceros que tiene la potencia. EJEMPLO: 7,581 . 1.000.000 = 7.581.000; 0,03 . 10 = 0,3 Cuando tenemos que dividir un número decimal por una potencia de 10, se mueve la coma decimal a la izquierda tantos, lugares como números de ceros que tiene la potencia. EJEMPLO: 7,581 : 1.000.000 = 0,000007581; 0,03 : 10 = 0,003
  • 10.
    Mas ayuda deltema de la página Matemática de DESCARTES del Ministerio de Educación y ciencia (http://recursostic.educacion.es/descartes/web/) En la siguiente diapósitiva