SlideShare una empresa de Scribd logo
Fracciones
introducción











Historia
Definición
Lectura de fracciones
Comparación de fracciones
Ubicación en la recta numérica
Tipos de fracción
Fracciones equivalentes
Simplificación de fracciones
Suma y resta de fracciones
Suma y resta de números
mixtos
 Multiplicación por un número
natural
historia
 Se considera que fueron los egipcios quienes usaron por primera vez las
1

fracciones, pero sólo aquellas de la forma 𝑛o las que pueden obtenerse como
combinación de ellas.
 Por su parte los babilonios desarrollaron un eficaz sistema de notación
fraccionaria, que permitió establecer aproximaciones decimales
verdaderamente sorprendentes.
 Por último, en china antigua se destaca el hecho de que en la división de
fracciones se exige la previa reducción de éstas a común denominador.
definición
El concepto matemático de fracción corresponde a la idea intuitiva de dividir una
totalidad en partes iguales. Una fracción es exactamente eso: una división.
Los términos de una fracción son el numerador y el denominador.

El denominador indica el número de partes iguales en que se divide la unidad.
El numerador indica el número de partes que se toman de la unidad.
lectura de fracciones
Para leer una fracción, primero se lee el numerador y a continuación
el denominador.
 Numerador: uno, dos, tres...catorce, etc.
 Denominador: 2 = medio; 3 = tercio; 4 = cuarto; 5 = quinto;
6 = sexto; 7 = séptimo; 8 = octavo; 9 = noveno; 10 = décimo
 A partir del 11, al nombre del número se le añade la terminación
“- avos”: onceavos, doceavos, treceavos, etc.
Fracciones
comparación de fracciones
 Fracciones de igual denominador: de dos fracciones con igual denominador es
mayor la que tiene mayor numerador.

2
3
4
<
<
6
6
6
 Fracciones de igual numerador: de dos fracciones con igual numerador es
mayor la que tiene menor denominador.

2
2
2
>
>
3
6
12
 Fracciones con diferente denominador: buscamos las fracciones
equivalentes con el mismo denominador y después comparamos los
numeradores.
3 x 6 = 18
10 x 6 = 60
2 x 10 = 20
6 x 10 = 60

luego

<
ubicación en la recta numérica
Para ubicar fracciones en la recta numérica
dividimos el entero (o los enteros) en tantas
partes como indica el denominador, y
tomamos las partes que indica el
numerador. Por ejemplo:
3
5

La fracción se ubica en la recta en el punto
marcado. El segmento de recta que representa
al número 1 lo dividimos en cinco partes iguales
que están indicadas de color rojo. De esas

cinco partes, tomamos las tres que están
señaladas con color lila.
tipos de fracción
 Fracciones propias
Las fracciones propias son
aquellas cuyo numerador es
menor que el denominador.
Su valor está comprendido
entre cero y uno.
 Fracciones impropias
Las fracciones impropias son
aquellas cuyo numerador es
mayor que el denominador.
Su valor es mayor que 1.
 Fracciones aparentes
Las fracciones aparentes son
aquellas en las que el numerador
es igual al denominador. La
fracción es igual a 1, es decir, el

entero.
 Números mixtos
El número mixto o fracción mixta está
compuesto de una parte entera y otra
fraccionaria.
Todas las fracciones mayores que la unidad
(fracciones impropias) se pueden expresar
en forma de número mixto.

Acá hay un video explicativo que está muy claro… véanlo!!
http://www.youtube.com/watch?feature=player_embedded&v=t-DpeWQIVZo
 Pasar de fracción a número
mixto
1) Dividimos el numerador por
el denominador.
2) El cociente de dicha división
es la parte entera del
número mixto.
3) El resto de la división es el
numerador de la fracción.
4) El denominador se
mantiene.
 Pasar de número mixto a
fracción (una manera)
1) El numerador se obtiene
multiplicando el número
entero por el denominador y
sumando a este resultado el
numerador.
2) El denominador se mantiene.
 Fracciones decimales
Las fracciones decimales son
aquellas que tienen como
denominador 10, 100, 1000, etc.,
es decir una potencia de 10 (la

unidad seguida de ceros).
 Pasar de fracción a número decimal
Dado que toda fracción es un cociente entre dos enteros, efectuando la
división la podemos representar mediante una expresión decimal.

Los números fraccionarios se caracterizan por tener un desarrollo decimal
cuya expresión puede ser de dos tipos:
 Exacta: cuando podemos “terminar” la división con resto cero. La
parte decimal tiene un número finito de cifras.
 Periódica: cuando los restos se repiten indefinidamente, sin
anularse. En la parte decimal hay cifras que se repiten infinitamente.
 Pasar de número decimal a fracción
Un número decimal puede
expresarse en forma de fracción de la
siguiente manera: si la expresión
decimal es exacta, la fracción tiene
como numerador el número dado sin
la coma, y por denominador,
la unidad seguida de
tantos ceros como cifras
decimales tenga.
fracciones equivalentes
 Dos fracciones son equivalentes
cuando representan la misma
cantidad, es decir, misma parte

de la unidad.
 Para comprobar si dos fracciones
son equivalentes multiplicamos

sus términos en cruz. Si los
resultados obtenidos son
iguales, las fracciones son

equivalentes.
 Cómo obtener fracciones
equivalentes:
 Por amplificación: multiplicamos el
numerador y el denominador por el
mismo número.
 Por simplificación: dividimos el
numerador y el denominador por el

mismo número. El número que
elijas para dividir el numerador y el
denominador debe dar como
resultado una división exacta en

ambos casos.
Acá podemos ver algunas fracciones equivalentes ubicadas en la recta numérica.
simplificación de fracciones
 Para simplificar fracciones se divide el
numerador y el denominador por el mismo
número. Siempre que se pueda hay que
simplificar.
 La fracción es irreducible cuando no se
puede simplificar mas. Esto sucede cuando
el numerador y el denominador son primos
entre sí. A no confundir!! Que sean primos
entre sí significa que no tengan divisores en
común, no que cada uno sea número primo.
suma y resta de fracciones
 Con igual denominador
Sumamos o restamos los
numeradores y dejamos el mismo

denominador. Si el numerador de
una fracción es igual al
denominador, esa fracción

representa la unidad.
Por ejemplo: si dividimos una torta
en 5 porciones, yjuntamos una
1

2

porción (5), más dos porciones (5),
3

tenemos tres porciones (5).


Con distinto denominador

Tenemos dos formas:
o Para sumar o restar dos fracciones de
distinto denominador se deben encontrar
fracciones equivalentes que tengan igual
denominador y luego realizar la operación.
o Otra forma es que se reduzca a
común denominador. Los pasos a seguir son:
1º Se calcula el m.c.m. de los denominadores.
2º Dividimos el m.c.m. obtenido entre cada
uno de los denominadores y lo que nos dé lo
multiplicamos por el numerador.
3º Ya tenemos todas las fracciones con el
mismo denominador, sumamos o restamos
los numeradores y dejamos el mismo
denominador. Si podemos simplificamos.
suma y resta de números mixtos
Para sumar o restar dos
números mixtos se puede
reducir los mismos a fracción y
efectuar la operación.
Otro procedimiento es sumar o

restar las partes enteras, por un
lado, y las partes fraccionarias,
por otro.
Multiplicación de una fracción por un
número natural

Se multiplica el número natural por el
numerador y se deja el mismo
denominador.
Fracciones

Más contenido relacionado

La actualidad más candente

Fracciones equivalentes ppt
Fracciones equivalentes pptFracciones equivalentes ppt
Fracciones equivalentes ppt
Institución Educativa Jorge Isaacs
 
LA DIVISION
LA DIVISIONLA DIVISION
LA DIVISION
87718544
 
División de números decimales
División de números decimalesDivisión de números decimales
División de números decimales
Verónica Rodríguez Luján
 
Division
DivisionDivision
Division
melc81
 
Fracciones
FraccionesFracciones
Fracciones
Misslucero
 
Números decimales
Números decimalesNúmeros decimales
Números decimales
Gloria Lillo
 
Suma y resta de fracciones
Suma y resta de fraccionesSuma y resta de fracciones
Suma y resta de fracciones
asaeljaom8
 
Dobles y triples
Dobles y triplesDobles y triples
Dobles y triples
Pamela Parra
 
Escritura y lectura de decimales
Escritura y lectura de decimalesEscritura y lectura de decimales
Escritura y lectura de decimales
Jocy Villan
 
Los numeros naturales
Los numeros naturalesLos numeros naturales
Los numeros naturales
serg28
 
Presentación división
Presentación divisiónPresentación división
Presentación división
pepillete20
 
División de Números decimales.pptx
División de Números decimales.pptxDivisión de Números decimales.pptx
División de Números decimales.pptx
monica131735
 
La multiplicación
La multiplicaciónLa multiplicación
La multiplicación
Mónica Guzmán
 
Fracciones
FraccionesFracciones
Fracciones
angelencinas2
 
Fracciones equivalentes
Fracciones equivalentesFracciones equivalentes
Fracciones equivalentes
Adriana Barrios
 
Máximo común divisor y mínimo común múltiplo
Máximo común divisor y mínimo común múltiploMáximo común divisor y mínimo común múltiplo
Máximo común divisor y mínimo común múltiplo
nievess
 
maximo comun divisor
maximo comun divisormaximo comun divisor
maximo comun divisor
Carlos Andres Trujillo
 
Numeros racionales
Numeros racionalesNumeros racionales
Numeros racionales
Lauuhetfield
 
Fracciones presentacion
Fracciones presentacionFracciones presentacion
Fracciones presentacion
Edgar Mendoza Cárdenas
 
Fraccionarios para primaria grado segundo
Fraccionarios para primaria grado segundoFraccionarios para primaria grado segundo
Fraccionarios para primaria grado segundo
1052398126
 

La actualidad más candente (20)

Fracciones equivalentes ppt
Fracciones equivalentes pptFracciones equivalentes ppt
Fracciones equivalentes ppt
 
LA DIVISION
LA DIVISIONLA DIVISION
LA DIVISION
 
División de números decimales
División de números decimalesDivisión de números decimales
División de números decimales
 
Division
DivisionDivision
Division
 
Fracciones
FraccionesFracciones
Fracciones
 
Números decimales
Números decimalesNúmeros decimales
Números decimales
 
Suma y resta de fracciones
Suma y resta de fraccionesSuma y resta de fracciones
Suma y resta de fracciones
 
Dobles y triples
Dobles y triplesDobles y triples
Dobles y triples
 
Escritura y lectura de decimales
Escritura y lectura de decimalesEscritura y lectura de decimales
Escritura y lectura de decimales
 
Los numeros naturales
Los numeros naturalesLos numeros naturales
Los numeros naturales
 
Presentación división
Presentación divisiónPresentación división
Presentación división
 
División de Números decimales.pptx
División de Números decimales.pptxDivisión de Números decimales.pptx
División de Números decimales.pptx
 
La multiplicación
La multiplicaciónLa multiplicación
La multiplicación
 
Fracciones
FraccionesFracciones
Fracciones
 
Fracciones equivalentes
Fracciones equivalentesFracciones equivalentes
Fracciones equivalentes
 
Máximo común divisor y mínimo común múltiplo
Máximo común divisor y mínimo común múltiploMáximo común divisor y mínimo común múltiplo
Máximo común divisor y mínimo común múltiplo
 
maximo comun divisor
maximo comun divisormaximo comun divisor
maximo comun divisor
 
Numeros racionales
Numeros racionalesNumeros racionales
Numeros racionales
 
Fracciones presentacion
Fracciones presentacionFracciones presentacion
Fracciones presentacion
 
Fraccionarios para primaria grado segundo
Fraccionarios para primaria grado segundoFraccionarios para primaria grado segundo
Fraccionarios para primaria grado segundo
 

Destacado

UGC Fraccionarios
UGC FraccionariosUGC Fraccionarios
UGC Fraccionarios
josuesierra
 
Folleto de fracciones
Folleto de fraccionesFolleto de fracciones
Folleto de fracciones
V_Acevedo
 
Fracciones
FraccionesFracciones
Fracciones
Scrapy1995
 
Las Fracciones
Las FraccionesLas Fracciones
Las Fracciones
pachecomar25
 
67332002 fracciones-italo[1]
67332002 fracciones-italo[1]67332002 fracciones-italo[1]
67332002 fracciones-italo[1]
maximilianocortes78
 
Clasificación de fracciones
Clasificación de fraccionesClasificación de fracciones
Clasificación de fracciones
Sara Gutierrez Bermejo
 
Fracciones 4º primaria t6
Fracciones 4º primaria t6Fracciones 4º primaria t6
Fracciones 4º primaria t6
Ana Yelo Villalba
 
Cuadernillo de ejercicios matematicas 4°
Cuadernillo de ejercicios matematicas 4°Cuadernillo de ejercicios matematicas 4°
Cuadernillo de ejercicios matematicas 4°
grado4
 
Ejercicios de Fracciones + Soluciones 6º
Ejercicios de Fracciones + Soluciones 6ºEjercicios de Fracciones + Soluciones 6º
Ejercicios de Fracciones + Soluciones 6º
Julio López Rodríguez
 
01 problemas de fracciones
01 problemas de fracciones01 problemas de fracciones
01 problemas de fracciones
Marifé Pérez
 
Nombres naturals, potències i arrel quadrada
Nombres naturals, potències i arrel quadradaNombres naturals, potències i arrel quadrada
Nombres naturals, potències i arrel quadrada
Marta Barceló Romeu
 
Matemáticas 6º. tema 2. potencias y raíz cuadrada
Matemáticas 6º. tema 2. potencias y raíz cuadradaMatemáticas 6º. tema 2. potencias y raíz cuadrada
Matemáticas 6º. tema 2. potencias y raíz cuadrada
Dimas Muñoz Custodio
 
Power2doaño
Power2doañoPower2doaño
Power2doaño
Silvia Piñeiro
 
Problemas de sexto
Problemas de sextoProblemas de sexto
Problemas de sexto
abiabi275
 
fracciones sexto de primaria
fracciones sexto de primariafracciones sexto de primaria
fracciones sexto de primaria
guest2754b2d
 
Fracciones y números decimales tp final postítulo
Fracciones y números decimales tp final postítuloFracciones y números decimales tp final postítulo
Fracciones y números decimales tp final postítulo
Ailin Armando
 
Mediatriz de un segmento y bisectriz de un ángulo
Mediatriz de un segmento y bisectriz de un ánguloMediatriz de un segmento y bisectriz de un ángulo
Mediatriz de un segmento y bisectriz de un ángulo
josemanuelcremades
 
Fracciones equivalente fracción irreductible
Fracciones equivalente fracción irreductibleFracciones equivalente fracción irreductible
Fracciones equivalente fracción irreductible
Unidad Educativa Eugenio Espejo
 
Fracciones no mixto_equivalencias
Fracciones no mixto_equivalenciasFracciones no mixto_equivalencias
Fracciones no mixto_equivalencias
Ximena Matus Rivero
 
Sistema de Numeración Decimal
Sistema de Numeración DecimalSistema de Numeración Decimal
Sistema de Numeración Decimal
Alejandra Lopez Rosas
 

Destacado (20)

UGC Fraccionarios
UGC FraccionariosUGC Fraccionarios
UGC Fraccionarios
 
Folleto de fracciones
Folleto de fraccionesFolleto de fracciones
Folleto de fracciones
 
Fracciones
FraccionesFracciones
Fracciones
 
Las Fracciones
Las FraccionesLas Fracciones
Las Fracciones
 
67332002 fracciones-italo[1]
67332002 fracciones-italo[1]67332002 fracciones-italo[1]
67332002 fracciones-italo[1]
 
Clasificación de fracciones
Clasificación de fraccionesClasificación de fracciones
Clasificación de fracciones
 
Fracciones 4º primaria t6
Fracciones 4º primaria t6Fracciones 4º primaria t6
Fracciones 4º primaria t6
 
Cuadernillo de ejercicios matematicas 4°
Cuadernillo de ejercicios matematicas 4°Cuadernillo de ejercicios matematicas 4°
Cuadernillo de ejercicios matematicas 4°
 
Ejercicios de Fracciones + Soluciones 6º
Ejercicios de Fracciones + Soluciones 6ºEjercicios de Fracciones + Soluciones 6º
Ejercicios de Fracciones + Soluciones 6º
 
01 problemas de fracciones
01 problemas de fracciones01 problemas de fracciones
01 problemas de fracciones
 
Nombres naturals, potències i arrel quadrada
Nombres naturals, potències i arrel quadradaNombres naturals, potències i arrel quadrada
Nombres naturals, potències i arrel quadrada
 
Matemáticas 6º. tema 2. potencias y raíz cuadrada
Matemáticas 6º. tema 2. potencias y raíz cuadradaMatemáticas 6º. tema 2. potencias y raíz cuadrada
Matemáticas 6º. tema 2. potencias y raíz cuadrada
 
Power2doaño
Power2doañoPower2doaño
Power2doaño
 
Problemas de sexto
Problemas de sextoProblemas de sexto
Problemas de sexto
 
fracciones sexto de primaria
fracciones sexto de primariafracciones sexto de primaria
fracciones sexto de primaria
 
Fracciones y números decimales tp final postítulo
Fracciones y números decimales tp final postítuloFracciones y números decimales tp final postítulo
Fracciones y números decimales tp final postítulo
 
Mediatriz de un segmento y bisectriz de un ángulo
Mediatriz de un segmento y bisectriz de un ánguloMediatriz de un segmento y bisectriz de un ángulo
Mediatriz de un segmento y bisectriz de un ángulo
 
Fracciones equivalente fracción irreductible
Fracciones equivalente fracción irreductibleFracciones equivalente fracción irreductible
Fracciones equivalente fracción irreductible
 
Fracciones no mixto_equivalencias
Fracciones no mixto_equivalenciasFracciones no mixto_equivalencias
Fracciones no mixto_equivalencias
 
Sistema de Numeración Decimal
Sistema de Numeración DecimalSistema de Numeración Decimal
Sistema de Numeración Decimal
 

Similar a Fracciones

Fracciones
FraccionesFracciones
Fracciones
Sebas Filipuzzi
 
4.los números fraccionarios libro elio
4.los números fraccionarios libro elio 4.los números fraccionarios libro elio
4.los números fraccionarios libro elio
Elio33
 
Fracciones 1
Fracciones 1Fracciones 1
Fracciones y racionales.pdf
Fracciones y racionales.pdfFracciones y racionales.pdf
Fracciones y racionales.pdf
CarolinaChumaa
 
Comprenda Y Razone Las Fracciones
Comprenda Y Razone Las FraccionesComprenda Y Razone Las Fracciones
Comprenda Y Razone Las Fracciones
mvillacbtis11
 
Fracciones 3
Fracciones 3Fracciones 3
Fracciones 3
AnaMorenoVicente
 
Fracciones Equivalentes-4°a Colegio Ingles San Jose
Fracciones Equivalentes-4°a Colegio Ingles San JoseFracciones Equivalentes-4°a Colegio Ingles San Jose
Fracciones Equivalentes-4°a Colegio Ingles San Jose
sonia_mery
 
F9fd61 fracciones y-numeros-mixtos
F9fd61 fracciones y-numeros-mixtosF9fd61 fracciones y-numeros-mixtos
F9fd61 fracciones y-numeros-mixtos
Matematica Getsemani
 
Fracciones 12753
Fracciones 12753Fracciones 12753
Fracciones 12753
silviaylaura
 
Fracciones(slideshare)
Fracciones(slideshare)Fracciones(slideshare)
Fracciones(slideshare)
kampi79
 
Fracciones
FraccionesFracciones
Fracciones
20enmathe
 
Fracciones 1
Fracciones 1Fracciones 1
Fracciones 1
nory751
 
Fracciones 1
Fracciones 1Fracciones 1
Fracciones 1
nv0054
 
Fracciones y racionales
Fracciones y racionalesFracciones y racionales
Fracciones y racionales
Jennifer Ruiz Valencia
 
Fracciones 090319194839-phpapp02 (3)
Fracciones 090319194839-phpapp02 (3)Fracciones 090319194839-phpapp02 (3)
Fracciones 090319194839-phpapp02 (3)
Alci Madrid Padilla
 
Fracciones
FraccionesFracciones
Fracciones
RECURSOSEP
 
Guia I matematicas
Guia I matematicasGuia I matematicas
Guia I matematicas
Brian Bastidas
 
Fracciones
FraccionesFracciones
Fracciones 6EP
Fracciones 6EPFracciones 6EP
Fracciones 6EP
castillosekel
 
Fracciones
FraccionesFracciones

Similar a Fracciones (20)

Fracciones
FraccionesFracciones
Fracciones
 
4.los números fraccionarios libro elio
4.los números fraccionarios libro elio 4.los números fraccionarios libro elio
4.los números fraccionarios libro elio
 
Fracciones 1
Fracciones 1Fracciones 1
Fracciones 1
 
Fracciones y racionales.pdf
Fracciones y racionales.pdfFracciones y racionales.pdf
Fracciones y racionales.pdf
 
Comprenda Y Razone Las Fracciones
Comprenda Y Razone Las FraccionesComprenda Y Razone Las Fracciones
Comprenda Y Razone Las Fracciones
 
Fracciones 3
Fracciones 3Fracciones 3
Fracciones 3
 
Fracciones Equivalentes-4°a Colegio Ingles San Jose
Fracciones Equivalentes-4°a Colegio Ingles San JoseFracciones Equivalentes-4°a Colegio Ingles San Jose
Fracciones Equivalentes-4°a Colegio Ingles San Jose
 
F9fd61 fracciones y-numeros-mixtos
F9fd61 fracciones y-numeros-mixtosF9fd61 fracciones y-numeros-mixtos
F9fd61 fracciones y-numeros-mixtos
 
Fracciones 12753
Fracciones 12753Fracciones 12753
Fracciones 12753
 
Fracciones(slideshare)
Fracciones(slideshare)Fracciones(slideshare)
Fracciones(slideshare)
 
Fracciones
FraccionesFracciones
Fracciones
 
Fracciones 1
Fracciones 1Fracciones 1
Fracciones 1
 
Fracciones 1
Fracciones 1Fracciones 1
Fracciones 1
 
Fracciones y racionales
Fracciones y racionalesFracciones y racionales
Fracciones y racionales
 
Fracciones 090319194839-phpapp02 (3)
Fracciones 090319194839-phpapp02 (3)Fracciones 090319194839-phpapp02 (3)
Fracciones 090319194839-phpapp02 (3)
 
Fracciones
FraccionesFracciones
Fracciones
 
Guia I matematicas
Guia I matematicasGuia I matematicas
Guia I matematicas
 
Fracciones
FraccionesFracciones
Fracciones
 
Fracciones 6EP
Fracciones 6EPFracciones 6EP
Fracciones 6EP
 
Fracciones
FraccionesFracciones
Fracciones
 

Más de Hilda Bernabé

LENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docx
LENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docxLENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docx
LENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docx
Hilda Bernabé
 
Horario de clases
Horario de clases Horario de clases
Horario de clases
Hilda Bernabé
 
Adecuacion curricular-a-partir-de-las-necesidades-educativas-especiales
Adecuacion curricular-a-partir-de-las-necesidades-educativas-especialesAdecuacion curricular-a-partir-de-las-necesidades-educativas-especiales
Adecuacion curricular-a-partir-de-las-necesidades-educativas-especiales
Hilda Bernabé
 
Actualizacion y fortalecimiento curricular 8 9 10
Actualizacion y fortalecimiento curricular 8 9 10Actualizacion y fortalecimiento curricular 8 9 10
Actualizacion y fortalecimiento curricular 8 9 10
Hilda Bernabé
 
Actividad 10-4
Actividad 10-4Actividad 10-4
Actividad 10-4
Hilda Bernabé
 
Libra meter meter buddy handbook
Libra meter   meter buddy handbookLibra meter   meter buddy handbook
Libra meter meter buddy handbook
Hilda Bernabé
 
Fraccionesclase1ro 091013193405-phpapp01
Fraccionesclase1ro 091013193405-phpapp01Fraccionesclase1ro 091013193405-phpapp01
Fraccionesclase1ro 091013193405-phpapp01
Hilda Bernabé
 
8 potenciaso hojas_de_trabajo_u2
8 potenciaso hojas_de_trabajo_u28 potenciaso hojas_de_trabajo_u2
8 potenciaso hojas_de_trabajo_u2
Hilda Bernabé
 
La globalización
La globalizaciónLa globalización
La globalización
Hilda Bernabé
 

Más de Hilda Bernabé (9)

LENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docx
LENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docxLENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docx
LENGUA SEMANA 1 PLANIF. NIVELACIÓN FORMATIVA HILDA.docx
 
Horario de clases
Horario de clases Horario de clases
Horario de clases
 
Adecuacion curricular-a-partir-de-las-necesidades-educativas-especiales
Adecuacion curricular-a-partir-de-las-necesidades-educativas-especialesAdecuacion curricular-a-partir-de-las-necesidades-educativas-especiales
Adecuacion curricular-a-partir-de-las-necesidades-educativas-especiales
 
Actualizacion y fortalecimiento curricular 8 9 10
Actualizacion y fortalecimiento curricular 8 9 10Actualizacion y fortalecimiento curricular 8 9 10
Actualizacion y fortalecimiento curricular 8 9 10
 
Actividad 10-4
Actividad 10-4Actividad 10-4
Actividad 10-4
 
Libra meter meter buddy handbook
Libra meter   meter buddy handbookLibra meter   meter buddy handbook
Libra meter meter buddy handbook
 
Fraccionesclase1ro 091013193405-phpapp01
Fraccionesclase1ro 091013193405-phpapp01Fraccionesclase1ro 091013193405-phpapp01
Fraccionesclase1ro 091013193405-phpapp01
 
8 potenciaso hojas_de_trabajo_u2
8 potenciaso hojas_de_trabajo_u28 potenciaso hojas_de_trabajo_u2
8 potenciaso hojas_de_trabajo_u2
 
La globalización
La globalizaciónLa globalización
La globalización
 

Último

Enseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdfEnseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
Como hacer que te pasen cosas buenas  MRE3  Ccesa007.pdfComo hacer que te pasen cosas buenas  MRE3  Ccesa007.pdf
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Juan Martín Martín
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdfSEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
GavieLitiumGarcia
 
Escuelas Creativas Ken Robinson Ccesa007.pdf
Escuelas Creativas Ken Robinson   Ccesa007.pdfEscuelas Creativas Ken Robinson   Ccesa007.pdf
Escuelas Creativas Ken Robinson Ccesa007.pdf
Demetrio Ccesa Rayme
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
Cátedra Banco Santander
 
Transformando la Evaluacion con Inteligencia Artificial Ccesa007.pdf
Transformando la Evaluacion con Inteligencia Artificial  Ccesa007.pdfTransformando la Evaluacion con Inteligencia Artificial  Ccesa007.pdf
Transformando la Evaluacion con Inteligencia Artificial Ccesa007.pdf
Demetrio Ccesa Rayme
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
Universidad de Deusto - Deustuko Unibertsitatea - University of Deusto
 
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Cátedra Banco Santander
 
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
Yulietcharcaapaza
 
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipaTOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
alexandrachura18255
 
Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024
maria larios
 
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLADIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
Cátedra Banco Santander
 
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
nelsontobontrujillo
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
Cátedra Banco Santander
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
Cátedra Banco Santander
 
Introducción a los Sistemas Integrados de Gestión
Introducción a los Sistemas Integrados de GestiónIntroducción a los Sistemas Integrados de Gestión
Introducción a los Sistemas Integrados de Gestión
JonathanCovena1
 
Discurso de Ceremonia de Graduación da la Generación 2021-2024.docx
Discurso de Ceremonia de Graduación da la Generación 2021-2024.docxDiscurso de Ceremonia de Graduación da la Generación 2021-2024.docx
Discurso de Ceremonia de Graduación da la Generación 2021-2024.docx
Centro de Bachillerato Tecnológico industrial y de servicios No. 209
 

Último (20)

Enseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdfEnseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdf
 
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
Como hacer que te pasen cosas buenas  MRE3  Ccesa007.pdfComo hacer que te pasen cosas buenas  MRE3  Ccesa007.pdf
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
 
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
 
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdfSEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
 
Escuelas Creativas Ken Robinson Ccesa007.pdf
Escuelas Creativas Ken Robinson   Ccesa007.pdfEscuelas Creativas Ken Robinson   Ccesa007.pdf
Escuelas Creativas Ken Robinson Ccesa007.pdf
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
 
Transformando la Evaluacion con Inteligencia Artificial Ccesa007.pdf
Transformando la Evaluacion con Inteligencia Artificial  Ccesa007.pdfTransformando la Evaluacion con Inteligencia Artificial  Ccesa007.pdf
Transformando la Evaluacion con Inteligencia Artificial Ccesa007.pdf
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
 
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)
 
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
 
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipaTOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
 
Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024
 
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLADIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
 
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
 
Introducción a los Sistemas Integrados de Gestión
Introducción a los Sistemas Integrados de GestiónIntroducción a los Sistemas Integrados de Gestión
Introducción a los Sistemas Integrados de Gestión
 
Discurso de Ceremonia de Graduación da la Generación 2021-2024.docx
Discurso de Ceremonia de Graduación da la Generación 2021-2024.docxDiscurso de Ceremonia de Graduación da la Generación 2021-2024.docx
Discurso de Ceremonia de Graduación da la Generación 2021-2024.docx
 

Fracciones

  • 2. introducción           Historia Definición Lectura de fracciones Comparación de fracciones Ubicación en la recta numérica Tipos de fracción Fracciones equivalentes Simplificación de fracciones Suma y resta de fracciones Suma y resta de números mixtos  Multiplicación por un número natural
  • 3. historia  Se considera que fueron los egipcios quienes usaron por primera vez las 1 fracciones, pero sólo aquellas de la forma 𝑛o las que pueden obtenerse como combinación de ellas.  Por su parte los babilonios desarrollaron un eficaz sistema de notación fraccionaria, que permitió establecer aproximaciones decimales verdaderamente sorprendentes.  Por último, en china antigua se destaca el hecho de que en la división de fracciones se exige la previa reducción de éstas a común denominador.
  • 4. definición El concepto matemático de fracción corresponde a la idea intuitiva de dividir una totalidad en partes iguales. Una fracción es exactamente eso: una división. Los términos de una fracción son el numerador y el denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica el número de partes que se toman de la unidad.
  • 5. lectura de fracciones Para leer una fracción, primero se lee el numerador y a continuación el denominador.  Numerador: uno, dos, tres...catorce, etc.  Denominador: 2 = medio; 3 = tercio; 4 = cuarto; 5 = quinto; 6 = sexto; 7 = séptimo; 8 = octavo; 9 = noveno; 10 = décimo  A partir del 11, al nombre del número se le añade la terminación “- avos”: onceavos, doceavos, treceavos, etc.
  • 7. comparación de fracciones  Fracciones de igual denominador: de dos fracciones con igual denominador es mayor la que tiene mayor numerador. 2 3 4 < < 6 6 6  Fracciones de igual numerador: de dos fracciones con igual numerador es mayor la que tiene menor denominador. 2 2 2 > > 3 6 12
  • 8.  Fracciones con diferente denominador: buscamos las fracciones equivalentes con el mismo denominador y después comparamos los numeradores. 3 x 6 = 18 10 x 6 = 60 2 x 10 = 20 6 x 10 = 60 luego <
  • 9. ubicación en la recta numérica Para ubicar fracciones en la recta numérica dividimos el entero (o los enteros) en tantas partes como indica el denominador, y tomamos las partes que indica el numerador. Por ejemplo: 3 5 La fracción se ubica en la recta en el punto marcado. El segmento de recta que representa al número 1 lo dividimos en cinco partes iguales que están indicadas de color rojo. De esas cinco partes, tomamos las tres que están señaladas con color lila.
  • 10. tipos de fracción  Fracciones propias Las fracciones propias son aquellas cuyo numerador es menor que el denominador. Su valor está comprendido entre cero y uno.
  • 11.  Fracciones impropias Las fracciones impropias son aquellas cuyo numerador es mayor que el denominador. Su valor es mayor que 1.
  • 12.  Fracciones aparentes Las fracciones aparentes son aquellas en las que el numerador es igual al denominador. La fracción es igual a 1, es decir, el entero.
  • 13.  Números mixtos El número mixto o fracción mixta está compuesto de una parte entera y otra fraccionaria. Todas las fracciones mayores que la unidad (fracciones impropias) se pueden expresar en forma de número mixto. Acá hay un video explicativo que está muy claro… véanlo!! http://www.youtube.com/watch?feature=player_embedded&v=t-DpeWQIVZo
  • 14.  Pasar de fracción a número mixto 1) Dividimos el numerador por el denominador. 2) El cociente de dicha división es la parte entera del número mixto. 3) El resto de la división es el numerador de la fracción. 4) El denominador se mantiene.
  • 15.  Pasar de número mixto a fracción (una manera) 1) El numerador se obtiene multiplicando el número entero por el denominador y sumando a este resultado el numerador. 2) El denominador se mantiene.
  • 16.  Fracciones decimales Las fracciones decimales son aquellas que tienen como denominador 10, 100, 1000, etc., es decir una potencia de 10 (la unidad seguida de ceros).
  • 17.  Pasar de fracción a número decimal Dado que toda fracción es un cociente entre dos enteros, efectuando la división la podemos representar mediante una expresión decimal. Los números fraccionarios se caracterizan por tener un desarrollo decimal cuya expresión puede ser de dos tipos:  Exacta: cuando podemos “terminar” la división con resto cero. La parte decimal tiene un número finito de cifras.  Periódica: cuando los restos se repiten indefinidamente, sin anularse. En la parte decimal hay cifras que se repiten infinitamente.
  • 18.  Pasar de número decimal a fracción Un número decimal puede expresarse en forma de fracción de la siguiente manera: si la expresión decimal es exacta, la fracción tiene como numerador el número dado sin la coma, y por denominador, la unidad seguida de tantos ceros como cifras decimales tenga.
  • 19. fracciones equivalentes  Dos fracciones son equivalentes cuando representan la misma cantidad, es decir, misma parte de la unidad.  Para comprobar si dos fracciones son equivalentes multiplicamos sus términos en cruz. Si los resultados obtenidos son iguales, las fracciones son equivalentes.
  • 20.  Cómo obtener fracciones equivalentes:  Por amplificación: multiplicamos el numerador y el denominador por el mismo número.  Por simplificación: dividimos el numerador y el denominador por el mismo número. El número que elijas para dividir el numerador y el denominador debe dar como resultado una división exacta en ambos casos.
  • 21. Acá podemos ver algunas fracciones equivalentes ubicadas en la recta numérica.
  • 22. simplificación de fracciones  Para simplificar fracciones se divide el numerador y el denominador por el mismo número. Siempre que se pueda hay que simplificar.  La fracción es irreducible cuando no se puede simplificar mas. Esto sucede cuando el numerador y el denominador son primos entre sí. A no confundir!! Que sean primos entre sí significa que no tengan divisores en común, no que cada uno sea número primo.
  • 23. suma y resta de fracciones  Con igual denominador Sumamos o restamos los numeradores y dejamos el mismo denominador. Si el numerador de una fracción es igual al denominador, esa fracción representa la unidad. Por ejemplo: si dividimos una torta en 5 porciones, yjuntamos una 1 2 porción (5), más dos porciones (5), 3 tenemos tres porciones (5).
  • 24.  Con distinto denominador Tenemos dos formas: o Para sumar o restar dos fracciones de distinto denominador se deben encontrar fracciones equivalentes que tengan igual denominador y luego realizar la operación. o Otra forma es que se reduzca a común denominador. Los pasos a seguir son: 1º Se calcula el m.c.m. de los denominadores. 2º Dividimos el m.c.m. obtenido entre cada uno de los denominadores y lo que nos dé lo multiplicamos por el numerador. 3º Ya tenemos todas las fracciones con el mismo denominador, sumamos o restamos los numeradores y dejamos el mismo denominador. Si podemos simplificamos.
  • 25. suma y resta de números mixtos Para sumar o restar dos números mixtos se puede reducir los mismos a fracción y efectuar la operación. Otro procedimiento es sumar o restar las partes enteras, por un lado, y las partes fraccionarias, por otro.
  • 26. Multiplicación de una fracción por un número natural Se multiplica el número natural por el numerador y se deja el mismo denominador.