SlideShare una empresa de Scribd logo
Integrante: Diosnell Vargas
Facilitador: Wilmar Marrufo
Sección:IN0114
Conjuntos y valores absolutos
Republica Bolivariana De Venezuela Ministerio
Del poder Popular Para La Educacion
Universitaria
Universidad Politécnica Terriotorial
Andres Eloy Blanco
Trayecto Inicial
Definición de Conjuntos.
Operaciones con conjuntos.
Números Reales
Desigualdades.
Definición de Valor
Absoluto
Desigualdades con
Valor Absoluto
1.
1.
1.
1.
1.
1.
1.
1.
INDICE
CONJUNTOS
En matemáticas llamamos conjuntos a la colección o agrupación de
elementos siempre y cuando exista una condición para que tales
elementos pertenezcan a los conjuntos, los elementos del conjunto
también se les denomina objetos del conjunto. Los conjuntos también son
otro tipo de objeto pero de otra categoría, esto lo veremos en un capitulo
mas avanzado de conjuntos.
Si bien, el concepto de conjunto se podría atribuir con objetos reales como
una agrupación de animales, personas, países, capitales del mundo, tipos
de palomas, en fin cualquier cosa que tenga algo en común en la vida real
para agruparlos, no fue hasta el siglo XIX comenzo a aplicarse el concepto
de conjunto como un objeto abstracto donde sus elementos se
conformaban por ejemplo con números, otros conjuntos, agrupaciones de
signos matemáticos, etc.
Algunos ejemplos sencillos de conjuntos son: Los miembros de una familia
Una colección de piedras
Un equipo de fútbol
Un rebaño de ovejas
OPERACIONES CON CONJUNTOS
Unión de conjuntos
Supongamos que tenemos los conjuntos M y N
definidos como se muestra en la siguiente figura:
Podemos crear otro conjunto conformado con
los elementos que pertenezcan a M o a N A
este nuevo conjunto le llamamos unión de M
y N , y lo notamos de la siguiente manera: M
U N En la imagen de abajo puedes observar el
resultado de unir los conjuntos M y N.
Al elegir qué elementos estarán en la unión de
nuestros conjuntos M y N, debes preguntarte cuáles
están en el conjunto M “o” en el conjunto N. El
resultado de la operación será el conjunto
conformado por todos los elementos del conjunto
universal U , que cumplan la condición de estar en
uno o en otro.
Tenemos en este caso: M U N ={a,c,b,g,e,1,}:
Intersección de conjuntos
Sigamos tomando como ejemplo los conjuntos M y N definidos
anteriormente. Podemos determinar un nuevo conjunto
conformado por los elementos que nuestros conjuntos M y N tienen
en común. A este nuevo conjunto le llamamos intersección de M y N
, y lo notamos de la siguiente manera M N: .
15
Para determinar que elementos pertenecen a la
intersección de los conjuntos M y N te puedes preguntar
qué elementos están en M “y” en N Todos los elementos
del conjunto U que cumplan esta condición deberán
estar en el conjunto M.N En la figura de la arriba puedes
ver la intersección de nuestros conjuntos M y N: .
M . N= {b}.
Diferencia de conjuntos
Además de la unión y la intersección podemos realizar la
diferencia de conjuntos.
En este caso se deben seleccionar los elementos de un conjunto
que no estén en el otro. Por ejemplo, si realizas la operación M
menos ,N debes seleccionar los elementos M de que no están en
N . Representamos la diferencia M menos N así:M/N . Observa
que en este caso M/N={a,c}.
Numeros Reales
Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales,
enteros, racionales e irracionales.
En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta
real.
Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de
manera accidental, sino que tienen que buscarse expresamente.
Los números reales se representan mediante la letra R ↓
Dominio de los números reales
Entonces, tal y como hemos dicho, los números reales son los números comprendidos entre los extremos infinitos. Es decir, no incluiremos estos
infinitos en el conjunto.
Números reales en la recta real
Esta recta recibe el nombre de recta real dado que podemos representar en ella todos los números reales.
Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los
signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de
valores distintos.
Desigualdad
Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos objetos matemáticos expresan valores
desiguales.
Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean:
mayor que >
Menor que <
Menor o igual que ≤
Mayor o igual que ≥
1.
2.
3.
4.
Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual.
Ahora bien, los casos de aquellas desigualdades formuladas como:
Menor que <
Mayor que >
Son desigualdades conocidas como desigualdades “estrictas”.
En tanto, que los casos de desigualdades formuladas como:
Menor o igual que ≤
Mayor o igual que ≥
Son desigualdades conocidas como desigualdades “no estrictas o más bien, amplias”.
La desigualdad matemática es una expresión que está formada por dos miembros. El miembro de la izquierda, al lado izquierdo del signo igual y el miembro de la
derecha, al lado derecho del signo de igualdad. Veamos el ejemplo siguiente:
3x + 3 < 9
valor absoluto
El valor absoluto de un número real es la magnitud de este, independientemente del signo que le preceda.
El valor absoluto de un número, en otras palabras, es el valor que resulta de eliminar el signo correspondiente a este.
Para verlo en términos más formales, tenemos las siguientes condiciones que deben cumplirse, donde el x entre dos barras
significa que estamos hallando el valor absoluto de x:
|x|=x si x≥ 0
Es decir, el valor absoluto de un número positivo es este mismo número. En cambio, el valor absoluto de un número negativo es igual a este
número, pero con un signo negativo delante. Es decir, multiplicado por -1.
Asimismo, el valor absoluto de -10 es -(-10)=10. Así, debemos destacar que el valor absoluto siempre es positivo.
El valor absoluto de un número a se escribe como (a) y su valor numerico sin signo
ejemplos:
El valor absoluto de x, (x), es - x si x es negativo y es x si x es
positivo Ò 0
Desigualdades con valor absolutos
Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una
variable dentro.
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera numéros reales a y b , si | a | < b , entonces a < b Y
a > - b .
Desigualdades de valor absoluto (>):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera numéros reales a y b , si | a | > b , entonces a > b O a < - b .
Ejercicio
Desigualdades
Resuelva la desigualdad 2 + x < 9 x + 6 y dibuje la gráfica de la solución en la
línea recta
1.
2.
Bibliografia
https://www.mat.uson.mx/~jldiaz/Documents/Desigualdades/SistemasN.pdf
1.
https://www.conoce3000.com/html/espaniol/Libros/Matematica01/Cap10-03-
OperacionesConjuntos.php
1.
https://content.nroc.org/DevelopmentalMath.HTML5/U10L3T2/TopicText/es/textbook.html
1.
https://www.superprof.es/apuntes/escolar/matematicas/aritmetica/reales/los-numeros-
reales.html
1.

Más contenido relacionado

Similar a Presentación conjuntos.pdf

Actividad de matematica.docx
Actividad de matematica.docxActividad de matematica.docx
Actividad de matematica.docxJohannlealleged
 
CONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docx
CONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docxCONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docx
CONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docxrodriguezsgabrield20
 
Números Reales y Plano Numérico 2.docx
Números Reales y Plano Numérico 2.docxNúmeros Reales y Plano Numérico 2.docx
Números Reales y Plano Numérico 2.docxlilihergonzalez1
 
Conjunto, números reales y valor absoluto
Conjunto, números reales y valor absolutoConjunto, números reales y valor absoluto
Conjunto, números reales y valor absolutoemily99freitez
 
Matematica
MatematicaMatematica
MatematicaAleidys4
 
Presentación Matematicas
Presentación Matematicas Presentación Matematicas
Presentación Matematicas UptaebGK2022
 
Numeros reales Unidad 2
Numeros reales Unidad 2Numeros reales Unidad 2
Numeros reales Unidad 2WilderAcosta1
 
números reales.pptx
números reales.pptxnúmeros reales.pptx
números reales.pptxngelaRojas11
 
numeros reales alfredo.pptx
numeros reales alfredo.pptxnumeros reales alfredo.pptx
numeros reales alfredo.pptxtareasuptaeb
 
Presentación Matemática
Presentación MatemáticaPresentación Matemática
Presentación MatemáticaLeydiTimaure1
 
Números reales Luciana Martelli 0100
Números reales Luciana Martelli 0100Números reales Luciana Martelli 0100
Números reales Luciana Martelli 0100LucianaMartelli1
 
Operaciones matemáticas
Operaciones matemáticas Operaciones matemáticas
Operaciones matemáticas OrianaCoronel1
 

Similar a Presentación conjuntos.pdf (20)

Actividad de matematica.docx
Actividad de matematica.docxActividad de matematica.docx
Actividad de matematica.docx
 
CONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docx
CONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docxCONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docx
CONJUNTOS, NUMEROS REALES, VALOR ABSOLUTO Y DESIGUALDADES.docx
 
unidad II de matematicas.docx
unidad II de matematicas.docxunidad II de matematicas.docx
unidad II de matematicas.docx
 
Números Reales y Plano Numérico 2.docx
Números Reales y Plano Numérico 2.docxNúmeros Reales y Plano Numérico 2.docx
Números Reales y Plano Numérico 2.docx
 
trabajo yoleida.ppt
trabajo yoleida.ppttrabajo yoleida.ppt
trabajo yoleida.ppt
 
Numeros reales.pdf
Numeros reales.pdfNumeros reales.pdf
Numeros reales.pdf
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjunto, números reales y valor absoluto
Conjunto, números reales y valor absolutoConjunto, números reales y valor absoluto
Conjunto, números reales y valor absoluto
 
Matematica
MatematicaMatematica
Matematica
 
Presentación Matematicas
Presentación Matematicas Presentación Matematicas
Presentación Matematicas
 
Numeros reales Unidad 2
Numeros reales Unidad 2Numeros reales Unidad 2
Numeros reales Unidad 2
 
Conjuntos, N reales.docx
Conjuntos, N reales.docxConjuntos, N reales.docx
Conjuntos, N reales.docx
 
Números reales.pdf
Números reales.pdfNúmeros reales.pdf
Números reales.pdf
 
matematica 2 0212.pdf
matematica 2  0212.pdfmatematica 2  0212.pdf
matematica 2 0212.pdf
 
Conjuntos SC 0101
Conjuntos SC 0101Conjuntos SC 0101
Conjuntos SC 0101
 
números reales.pptx
números reales.pptxnúmeros reales.pptx
números reales.pptx
 
numeros reales alfredo.pptx
numeros reales alfredo.pptxnumeros reales alfredo.pptx
numeros reales alfredo.pptx
 
Presentación Matemática
Presentación MatemáticaPresentación Matemática
Presentación Matemática
 
Números reales Luciana Martelli 0100
Números reales Luciana Martelli 0100Números reales Luciana Martelli 0100
Números reales Luciana Martelli 0100
 
Operaciones matemáticas
Operaciones matemáticas Operaciones matemáticas
Operaciones matemáticas
 

Último

Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialDanita2111
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxPabloPazmio14
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASAntoineMoltisanti
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónDanielGrajeda7
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativoharolbustamante1
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...Andrés Canale
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
Tema 8 Estructura y composición de la Tierra 2024
Tema 8 Estructura y composición de la Tierra 2024Tema 8 Estructura y composición de la Tierra 2024
Tema 8 Estructura y composición de la Tierra 2024IES Vicent Andres Estelles
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )portafoliodigitalyos
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)JonathanCovena1
 
Presentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesPresentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesGustavo Cano
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...crcamora123
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdfnataliavera27
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºCEIP TIERRA DE PINARES
 
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfPresentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfjuancmendez1405
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxmatepura
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxNoe Castillo
 

Último (20)

Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencial
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDAS
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu Remodelación
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
Tema 8 Estructura y composición de la Tierra 2024
Tema 8 Estructura y composición de la Tierra 2024Tema 8 Estructura y composición de la Tierra 2024
Tema 8 Estructura y composición de la Tierra 2024
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 
Power Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptxPower Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptx
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
 
PLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTE
PLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTEPLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTE
PLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTE
 
Presentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesPresentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clases
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6º
 
4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico
 
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfPresentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 

Presentación conjuntos.pdf

  • 1. Integrante: Diosnell Vargas Facilitador: Wilmar Marrufo Sección:IN0114 Conjuntos y valores absolutos Republica Bolivariana De Venezuela Ministerio Del poder Popular Para La Educacion Universitaria Universidad Politécnica Terriotorial Andres Eloy Blanco Trayecto Inicial
  • 2. Definición de Conjuntos. Operaciones con conjuntos. Números Reales Desigualdades. Definición de Valor Absoluto Desigualdades con Valor Absoluto 1. 1. 1. 1. 1. 1. 1. 1. INDICE
  • 3. CONJUNTOS En matemáticas llamamos conjuntos a la colección o agrupación de elementos siempre y cuando exista una condición para que tales elementos pertenezcan a los conjuntos, los elementos del conjunto también se les denomina objetos del conjunto. Los conjuntos también son otro tipo de objeto pero de otra categoría, esto lo veremos en un capitulo mas avanzado de conjuntos. Si bien, el concepto de conjunto se podría atribuir con objetos reales como una agrupación de animales, personas, países, capitales del mundo, tipos de palomas, en fin cualquier cosa que tenga algo en común en la vida real para agruparlos, no fue hasta el siglo XIX comenzo a aplicarse el concepto de conjunto como un objeto abstracto donde sus elementos se conformaban por ejemplo con números, otros conjuntos, agrupaciones de signos matemáticos, etc. Algunos ejemplos sencillos de conjuntos son: Los miembros de una familia Una colección de piedras Un equipo de fútbol Un rebaño de ovejas
  • 4. OPERACIONES CON CONJUNTOS Unión de conjuntos Supongamos que tenemos los conjuntos M y N definidos como se muestra en la siguiente figura: Podemos crear otro conjunto conformado con los elementos que pertenezcan a M o a N A este nuevo conjunto le llamamos unión de M y N , y lo notamos de la siguiente manera: M U N En la imagen de abajo puedes observar el resultado de unir los conjuntos M y N. Al elegir qué elementos estarán en la unión de nuestros conjuntos M y N, debes preguntarte cuáles están en el conjunto M “o” en el conjunto N. El resultado de la operación será el conjunto conformado por todos los elementos del conjunto universal U , que cumplan la condición de estar en uno o en otro. Tenemos en este caso: M U N ={a,c,b,g,e,1,}: Intersección de conjuntos Sigamos tomando como ejemplo los conjuntos M y N definidos anteriormente. Podemos determinar un nuevo conjunto conformado por los elementos que nuestros conjuntos M y N tienen en común. A este nuevo conjunto le llamamos intersección de M y N , y lo notamos de la siguiente manera M N: . 15 Para determinar que elementos pertenecen a la intersección de los conjuntos M y N te puedes preguntar qué elementos están en M “y” en N Todos los elementos del conjunto U que cumplan esta condición deberán estar en el conjunto M.N En la figura de la arriba puedes ver la intersección de nuestros conjuntos M y N: . M . N= {b}. Diferencia de conjuntos Además de la unión y la intersección podemos realizar la diferencia de conjuntos. En este caso se deben seleccionar los elementos de un conjunto que no estén en el otro. Por ejemplo, si realizas la operación M menos ,N debes seleccionar los elementos M de que no están en N . Representamos la diferencia M menos N así:M/N . Observa que en este caso M/N={a,c}.
  • 5. Numeros Reales Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Los números reales se representan mediante la letra R ↓ Dominio de los números reales Entonces, tal y como hemos dicho, los números reales son los números comprendidos entre los extremos infinitos. Es decir, no incluiremos estos infinitos en el conjunto. Números reales en la recta real Esta recta recibe el nombre de recta real dado que podemos representar en ella todos los números reales.
  • 6. Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de valores distintos. Desigualdad Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos objetos matemáticos expresan valores desiguales. Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean: mayor que > Menor que < Menor o igual que ≤ Mayor o igual que ≥ 1. 2. 3. 4. Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual. Ahora bien, los casos de aquellas desigualdades formuladas como: Menor que < Mayor que > Son desigualdades conocidas como desigualdades “estrictas”. En tanto, que los casos de desigualdades formuladas como: Menor o igual que ≤ Mayor o igual que ≥ Son desigualdades conocidas como desigualdades “no estrictas o más bien, amplias”. La desigualdad matemática es una expresión que está formada por dos miembros. El miembro de la izquierda, al lado izquierdo del signo igual y el miembro de la derecha, al lado derecho del signo de igualdad. Veamos el ejemplo siguiente: 3x + 3 < 9
  • 7. valor absoluto El valor absoluto de un número real es la magnitud de este, independientemente del signo que le preceda. El valor absoluto de un número, en otras palabras, es el valor que resulta de eliminar el signo correspondiente a este. Para verlo en términos más formales, tenemos las siguientes condiciones que deben cumplirse, donde el x entre dos barras significa que estamos hallando el valor absoluto de x: |x|=x si x≥ 0 Es decir, el valor absoluto de un número positivo es este mismo número. En cambio, el valor absoluto de un número negativo es igual a este número, pero con un signo negativo delante. Es decir, multiplicado por -1. Asimismo, el valor absoluto de -10 es -(-10)=10. Así, debemos destacar que el valor absoluto siempre es positivo. El valor absoluto de un número a se escribe como (a) y su valor numerico sin signo ejemplos: El valor absoluto de x, (x), es - x si x es negativo y es x si x es positivo Ò 0
  • 8. Desigualdades con valor absolutos Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera numéros reales a y b , si | a | < b , entonces a < b Y a > - b .
  • 9. Desigualdades de valor absoluto (>): La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. En otras palabras, para cualesquiera numéros reales a y b , si | a | > b , entonces a > b O a < - b .
  • 10. Ejercicio Desigualdades Resuelva la desigualdad 2 + x < 9 x + 6 y dibuje la gráfica de la solución en la línea recta 1. 2.