SlideShare una empresa de Scribd logo
1 de 11
Procesos Industriales Área Manufactura



Materia: Estadística



Tema: Probabilidad



Docente: Lic. Edgar Gerardo Mata Ortiz



ALUMNO :Yovana Marin de la Fuente




                                                       18/mar/2012
DISTRIBUCIÓN DE PROBABILIDAD


Una distribución de probabilidad indica toda la gama de valores que pueden
representarse como resultado de un experimento si éste se llevase a cabo.
 Es decir, describe la probabilidad de que un evento se realice en el futuro,
constituye una herramienta fundamental para la prospectiva, puesto que se
puede diseñar un escenario de acontecimientos futuros considerándolas
tendencias actuales de diversos fenómenos naturales.
                   DISTRIBUCIÓN DE BERNOULLI
La distribución de Bernoulli (o distribución dicotómica), nombrada así por el
matemático y científico suizo Jakob Bernoulli, es una distribución de
probabilidad discreta, que toma valor 1 para la probabilidad de éxito ( ) y
valor 0 para la probabilidad de fracaso (          ).

Si es una variable aleatoria que mide "número de éxitos", y se realiza un
único experimento con dos posibles resultados (éxito o fracaso), se dice que
la variable aleatoria se distribuye como una Bernoulli de parámetro .



La fórmula será:



Su función de probabilidad viene definida por:




Un experimento al cual se aplica la distribución de Bernoulli se conoce como
Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos
como ensayos repetidos.
Ejemplo:

"Lanzar un dado y salir un 6".

Cuando lanzamos un dado tenemos 6 posibles resultados:



Estamos realizando un único experimento (lanzar el dado una sola vez).

Se considera éxito sacar un 6, por tanto, la probabilidad según el teorema de
Laplace (casos favorables dividido entre casos posibles) será 1/6.



Se considera fracaso no sacar un 6, por tanto, se considera fracaso sacar
cualquier otro resultado.



La variable aleatoria X medirá "número de veces que sale un 6", y solo existen
dos valores posibles, 0 (que no salga 6) y 1 (que salga un 6).

Por tanto, la variable aleatoria X se distribuye como una Bernoulli de
parámetro = 1/6



La probabilidad de que obtengamos un 6 viene definida como la probabilidad
de que X sea igual a 1.



La probabilidad de que NO obtengamos un 6 viene definida como la
probabilidad de que X sea igual a 0.
DISTRIBUCION BINOMIAL
• La distribución binomial es una distribución de probabilidad
  discreta que mide el número de éxitos en una secuencia de n
  ensayos de BERNOULLI independientes entre sí, con una
  probabilidad fija p de ocurrencia del éxito entre los ensayos.

• Existen muchas situaciones en las que se presenta una experiencia
  binomial. Cada uno de los experimentos es independiente de los
  restantes (la probabilidad del resultado de un experimento no
  depende del resultado del resto). El resultado de cada experimento
  ha de admitir sólo dos categorías (a las que se denomina éxito y
  fracaso). Las probabilidades de ambas posibilidades han de ser
  constantes en todos los experimentos (se denotan como p y q o p y
  1-p).

• Se designa por X a la variable que mide el número de éxitos que se
  han producido en los n experimentos.

• Cuando se dan estas circunstancias, se dice que la variable X sigue
  una distribución de probabilidad binomial, y se denota B(n,p)

• Ejemplo
•   Supongamos que se lanza un dado 50 veces y queremos la probabilidad de que el
    número 3 salga 20 veces. En este caso tenemos una X ~ B(50, 1/6) y la probabilidad
    sería P(X=20):


•
DISTRIBUCION POISSON
La Distribución de Poisson se llama así en honor a Simeón Dennis Poisson (1781-1840),
francés que desarrolló esta distribución basándose en estudios efectuados en la última parte
de su vida.

La distribución de Poisson se emplea para describir varios procesos, entre otros la distribución
de las llamadas telefónicas que llagan a un conmutador, la demanda (necesidades) de
servicios en una institución asistencial por parte de los pacientes, los arribos de los camiones
y automóviles a la caseta de cobro y el número de accidentes en un cruce. Los ejemplos
citados tienen un elemento en común, pueden ser descritos por una variable aleatoria discreta
que asume valores enteros (0,1,2,3,4,5 y así sucesivamente).

El número de enfermos que llegan a un consultorio en cierto intervalo de tiempo será de
0,1,2,3,4,5 o algún otro número entero. De manera análoga, si se cuenta el número de
automóviles que llegan a una caseta de cobro durante un periodo de diez minutos, el número
será entero.

Características de los procesos que producen una distribución de la probabilidad de Poisson.

El número de vehículos que pasan por una caseta de cobro en las horas de mayor tráfico sirve
como ejemplo para mostrar las características de una distribución de probabilidad de Poisson.

El promedio (media) de los arribos de vehículos por hora de gran tráfico puede estimarse a
partir de los datos anteriores del tráfico.


Cálculo de probabilidades mediante la distribución de Poisson.


La distribución de Poisson, según hemos señalado, se refiere a ciertos procesos que pueden
ser descritos con una variable aleatoria discreta. La letra X suele representar esa variable y
puede además asumir valores enteros (0,1,2,3 etc..) . Utilizamos la letra X mayúscula para
representar la variable aleatoria y la x minúscula para designar un valor específico que puede
asumir la X mayúscula. La probabilidad de exactamente x ocurrencias en una distribución de
Poisson se calcula mediante la fórmula:


P(x) = l x * e-l / x!


l x = Lambda
(número medio de ocurrencias por intervalo de tiempo) elevada a la potencia x.


e-l = e= 2.71828 elevado a la potencia de lambda negativa.
x! = x factorial.


Ejemplo :


Supóngase que estamos investigando la seguridad de un crucero muy peligroso. Los archivos
de la policía indican una media de cinco accidentes por mes en él. El número de accidentes
está distribuido conforme a la distribución de Poisson, y la división de seguridad en carreteras
quiere calcular la probabilidad de exactamente 0,1,2,3 y 4 accidentes en un mes determinado.


Aplicando la fórmula anterior:


P(0) = (5)0 (e-5) /0! = 0.00674


P(1) = (5)1 (e-5) /1! = 0.03370


P(2) = (5)2 (e-5) /2! = 0.08425


P(3) = (5)3 (e-5) /3! = 0.14042


P(4) = (5)4 (e-5) /4! = 0.17552


Para saber cual es la probabilidad en 3 o menos, sumaremos las probabilidades de 0,1,2,3 lo
que será igual a :


P(0) = 0.00674
P(1) = 0.03370
P(2) = 0.08425
P(3) = 0.14042
P(3 o menos) = 0.26511


Dado que la probabilidad de que haya 3 o menos accidentes es de 0.26511 entonces la
probabilidad de que ocurran más de tres debe ser = 1 –0.26511 = 0.73489.


La distribución de Poisson como una aproximación a la distribución binomial.
Algunas veces, si se desea evitar el tedioso trabajo de calcular las distribuciones binomiales,
se puede usar a cambio la de Poisson, pero debe cumplir con ciertas condiciones como :


n=>20
p=<0.05


En los casos en que se satisfacen tales condiciones, podemos sustituir la media de la
distribución binomial en lugar de la media de la distribución de Poisson de modo que la
fórmula quedaría así:


P(x) = (np) X * e-np /x!
DISTRIBUCIÓN NORMARL
En estadística y probabilidad se llama distribución normal, distribución de
Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de
variable continua que con más frecuencia aparece aproximada en fenómenos
reales.

La gráfica de su función de densidad tiene una forma acampanada y es
simétrica respecto de un determinado parámetro. Esta curva se conoce como
campana de Gauss y e es el gráfico de de una función gaussiana.

La importancia de esta distribución radica en que permite modelar numerosos
fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos
que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la
enorme cantidad de variables incontrolables que en ellos intervienen, el uso
del modelo normal puede justificarse asumiendo que cada observación se
obtiene como la suma de unas pocas causas independientes.

De hecho, la estadística es un modelo matemático que sólo permite describir
un fenómeno, sin explicación alguna. Para la explicación causal es preciso el
diseño experimental, de ahí que al uso de la estadística en psicología y
sociología sea conocido como método correlacionar.

La distribución normal también es importante por su relación con la
estimación por mínimos cuadrados, uno de los métodos de estimación más
simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el
modelo de la normal son:

      caracteres morfológicos de individuos como la estatura;
      caracteres fisiológicos como el efecto de un fármaco;
      caracteres sociológicos como el consumo de cierto producto por un
      mismo grupo de individuos;
      caracteres psicológicos como el cociente intelectual;
      nivel de ruido en telecomunicaciones;
      errores cometidos al medir ciertas magnitudes;
      etc.

La distribución normal también aparece en muchas áreas de la propia
estadística. Por ejemplo, la distribución muestral de las medias muéstrales es
aproximadamente normal, cuando la distribución de la población de la cual se
extrae la muestra no es normal.1 Además, la distribución normal maximiza la
entropía entre todas las distribuciones con media y varianza conocidas, lo cual
la convierte en la elección natural de la distribución subyacente a una lista de
datos resumidos en términos de media muestral y varianza. La distribución
normal es la más extendida en estadística y muchos test estadísticos están
basados en una supuesta "normalidad".

En probabilidad, la distribución normal aparece como el límite de varias
distribuciones de probabilidad continuas y discretas.



                        DISTRIBUCION GAMMA
En estadística la distribución gamma es una distribución de probabilidad continua con dos
parámetros k y λ cuya función de densidad para valores x > 0 es

Aquí e es el número e y Γ es la función gamma. Para valores la aquella es Γ(k) = (k − 1)!
(el factorial de k − 1). En este caso - por ejemplo para describir un proceso de Poisson - se
llaman la distribición distribución Erlang con un parámetro θ = 1 / λ.

El valor esperado y la varianza de una variable aleatoria X de distribución gamma son E[X]
= k / λ = kθ V[X] = k / λ2 = kθ2

La formula para la función de densidad gamma contiene dos parámetros α y β. El
parámetro β llamado parámetro de escala, refleja el tamaño de las unidades en que se mide
y es parámetro α se conoce como parámetro de forma, si se modifica su valor cambia la
forma de la distribución gamma, esto nos permite obtener funciones de densidad de muchas
formas distintas para modelar distribuciones de frecuencia relativa de datos experimentales.

La función de densidad de probabilidad de una variable tipo gama esta dada por

en donde α

Cuando α = 1, la función de densidad gamma se denomina distribución exponencial. Esta
importante función de densidad se emplea como modelo para la distribución de frecuencias
relativa del tiempo entre llegadas a un mostrador de servicio (centros de cómputo, caja de
súper mercado, clínica hospitalaria, etc.) Cuando la probabilidad de que un cliente llegue en
cierta unidad de tiempo es igual ala probabilidad de que llegue en cualquier otra. La
función también se utiliza como modelo para la duración de equipos o productos
industriales cuando la probabilidad de que un componente viejo opere por lo menos t
unidades de tiempo adicionales, dado que esta funcionando ahora. Es igual a la
probabilidad de que un componente nuevo opere al menos t unidades de tiempo. El equipo
sujeto a mantenimiento periódico y recambio de piezas a menudo exhibe esta propiedad de
nunca envejecer.


                       DISTRIBUCION T STUDENT
En probabilidad y estadística, la distribución t (de Student) es una distribución de probabilidad que
surge del problema de estimar la media de una población normalmente distribuida cuando el
tamaño de la muestra es pequeño. Surge, en la mayoría de los estudios estadísticos prácticos,
cuando la desviación típica de una población se desconoce y debe ser estimada a partir de los
datos de una muestra.

Existen dos versiones de la prueba t-Student: una que supone que las varianzas poblacionales son
iguales y otra versión que no asume esto último. Para decidir si se puede suponer o no la igualdad
de varianza en las dos poblaciones, se debe realizar previamente la prueba F-Snedecor de
comparación de dos varianzas.

Un poco de historia.

La prueba t-Student fue desarrollada en 1899 por el químico inglés William Sealey Gosset (1876-
1937), mientras trabajaba en técnicas de control de calidad para las destilerías Guiness en Dublín .
Debido a que en la destilería, su puesto de trabajo no era inicialmente de estadístico y su
dedicación debía estar exclusivamente encaminada a mejorar los costes de producción, publicó
sus hallazgos anónimamente firmando sus artículos con el nombre de "Student".

La distribución t de Student es la distribución de probabilidad del cociente:




donde
Z tiene una distribución normal de media nula y varianza 1
V tiene una distribución chi-cuadrado con ν grados de libertad
Z y V son independientes




Si μ es una constante no nula, el cociente es una variable aleatoria que sigue la distribución t de
Student no central con parámetro de no-centralidad μ.



Intervalos de confianza derivados de la distribución t de Student
El procedimiento para el cálculo del intervalo de confianza basado en la t de Student consiste en
estimar la desviación típica de los datos S y calcular el error estándar de la media= S/(raíz
cuadrada de n), siendo entonces el intervalo de confianza para la media = x media +- t (alfa/2)
multiplicado por (S/(raíz cuadradada de n)).

Es este resultado el que se utiliza en el test de Student: puesto que la diferencia de las medias de
muestras de dos distribuciones normales se distribuye también normalmente, la distribución t
puede usarse para examinar si esa diferencia puede razonablemente suponerse igual a cero.
para efectos prácticos el valor esperado y la varianza son :
E(t(n))= 0 y Var (t(n-1)) = n/(n-2) para > 3

Más contenido relacionado

La actualidad más candente

Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidadLaksmi Rodriguez
 
DISTRIBUCION DE PROBABILIDADES. Estadistica
DISTRIBUCION DE PROBABILIDADES. EstadisticaDISTRIBUCION DE PROBABILIDADES. Estadistica
DISTRIBUCION DE PROBABILIDADES. EstadisticaGERENCIA MTTO 3ER CORTE
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidadRodolfo Mejía
 
Distribución de probabilidades.
Distribución de probabilidades.Distribución de probabilidades.
Distribución de probabilidades.ildemar120389
 
Presentación Distribución de Probabilidad
Presentación Distribución de ProbabilidadPresentación Distribución de Probabilidad
Presentación Distribución de ProbabilidadCarlosdbarradasm
 
Tipos de distribucion
Tipos de distribucionTipos de distribucion
Tipos de distribucionkaoko7
 
Universidad tecnológica de Torreón Distribuciones
Universidad tecnológica de Torreón DistribucionesUniversidad tecnológica de Torreón Distribuciones
Universidad tecnológica de Torreón DistribucionesCarlos Garcia Godoy
 
Distribuciones de probabilidad.
Distribuciones de probabilidad.Distribuciones de probabilidad.
Distribuciones de probabilidad.VicNoee
 
Distribuciones comúnmente usadas
Distribuciones comúnmente usadasDistribuciones comúnmente usadas
Distribuciones comúnmente usadasrossee2012
 
TIPOS DE DISTRIBUCIONES
TIPOS DE  DISTRIBUCIONESTIPOS DE  DISTRIBUCIONES
TIPOS DE DISTRIBUCIONESYovana Marin
 
INFERENCIA REFERENTE A MEDIAS Y VARIANZAS
INFERENCIA REFERENTE A MEDIAS Y VARIANZASINFERENCIA REFERENTE A MEDIAS Y VARIANZAS
INFERENCIA REFERENTE A MEDIAS Y VARIANZASGERENCIA MTTO 3ER CORTE
 
2.-Distribuciones de Probabilidad introducción y conceptos
2.-Distribuciones de Probabilidad introducción y conceptos2.-Distribuciones de Probabilidad introducción y conceptos
2.-Distribuciones de Probabilidad introducción y conceptosJose Armando Rubio Reyes
 

La actualidad más candente (20)

Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
DISTRIBUCION DE PROBABILIDADES. Estadistica
DISTRIBUCION DE PROBABILIDADES. EstadisticaDISTRIBUCION DE PROBABILIDADES. Estadistica
DISTRIBUCION DE PROBABILIDADES. Estadistica
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
distribución de probabilidad
distribución de probabilidaddistribución de probabilidad
distribución de probabilidad
 
Distribución de probabilidades.
Distribución de probabilidades.Distribución de probabilidades.
Distribución de probabilidades.
 
Presentación Distribución de Probabilidad
Presentación Distribución de ProbabilidadPresentación Distribución de Probabilidad
Presentación Distribución de Probabilidad
 
Tipos de distribucion
Tipos de distribucionTipos de distribucion
Tipos de distribucion
 
Universidad tecnológica de Torreón Distribuciones
Universidad tecnológica de Torreón DistribucionesUniversidad tecnológica de Torreón Distribuciones
Universidad tecnológica de Torreón Distribuciones
 
Distribuciones de probabilidad.
Distribuciones de probabilidad.Distribuciones de probabilidad.
Distribuciones de probabilidad.
 
Distribuciones comúnmente usadas
Distribuciones comúnmente usadasDistribuciones comúnmente usadas
Distribuciones comúnmente usadas
 
Conceptos de probabilidad
Conceptos de probabilidadConceptos de probabilidad
Conceptos de probabilidad
 
Estadística aplicada ing civil
Estadística aplicada ing civilEstadística aplicada ing civil
Estadística aplicada ing civil
 
TIPOS DE DISTRIBUCIONES
TIPOS DE  DISTRIBUCIONESTIPOS DE  DISTRIBUCIONES
TIPOS DE DISTRIBUCIONES
 
INFERENCIA REFERENTE A MEDIAS Y VARIANZAS
INFERENCIA REFERENTE A MEDIAS Y VARIANZASINFERENCIA REFERENTE A MEDIAS Y VARIANZAS
INFERENCIA REFERENTE A MEDIAS Y VARIANZAS
 
2.-Distribuciones de Probabilidad introducción y conceptos
2.-Distribuciones de Probabilidad introducción y conceptos2.-Distribuciones de Probabilidad introducción y conceptos
2.-Distribuciones de Probabilidad introducción y conceptos
 
Distribuciones de probalidad
Distribuciones de probalidadDistribuciones de probalidad
Distribuciones de probalidad
 
Clase02 distribuciones de probabilidad
Clase02   distribuciones de probabilidadClase02   distribuciones de probabilidad
Clase02 distribuciones de probabilidad
 
Diapositivas 2
Diapositivas 2Diapositivas 2
Diapositivas 2
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 

Similar a Procesos industriales área manufactura

Distribuciòn binominal y otras distribuciones
Distribuciòn binominal y otras distribucionesDistribuciòn binominal y otras distribuciones
Distribuciòn binominal y otras distribucionessarilitmaita
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidadzooneerborre
 
Universidad tecnologica de torreon
Universidad tecnologica de torreonUniversidad tecnologica de torreon
Universidad tecnologica de torreonLúaz Garcia
 
Universidad tecnologica de torreon
Universidad tecnologica de torreonUniversidad tecnologica de torreon
Universidad tecnologica de torreonLúaz Garcia
 
Presentacion power point
Presentacion power pointPresentacion power point
Presentacion power pointricardolaguna
 
Presentacion power point
Presentacion power pointPresentacion power point
Presentacion power pointricardolaguna
 
Presentacion power point
Presentacion power pointPresentacion power point
Presentacion power pointricardolaguna
 
Amastal Cuetlach_INVESTIGACIÓN FINAL.pptx
Amastal Cuetlach_INVESTIGACIÓN FINAL.pptxAmastal Cuetlach_INVESTIGACIÓN FINAL.pptx
Amastal Cuetlach_INVESTIGACIÓN FINAL.pptxvaliciaamastal
 
Distribuciones de probabilidades
Distribuciones de probabilidadesDistribuciones de probabilidades
Distribuciones de probabilidadesAlexis Rodriguez
 
Qué es probabilidad
Qué es probabilidadQué es probabilidad
Qué es probabilidadgustavo475
 
Distribuciones2 de probabilidad.lm
Distribuciones2 de probabilidad.lmDistribuciones2 de probabilidad.lm
Distribuciones2 de probabilidad.lmLMartiinez
 
tipos de distribuciones
tipos de distribuciones tipos de distribuciones
tipos de distribuciones Yazmin Galvan'
 
tipos de distribuciones
tipos de distribuciones tipos de distribuciones
tipos de distribuciones Yazmin Galvan'
 
Unidad dos punto n° 2
Unidad dos punto n° 2Unidad dos punto n° 2
Unidad dos punto n° 2eduardobarco
 

Similar a Procesos industriales área manufactura (20)

Trabajo de informatica
Trabajo de informaticaTrabajo de informatica
Trabajo de informatica
 
Distribuciones
DistribucionesDistribuciones
Distribuciones
 
Distribuciòn binominal y otras distribuciones
Distribuciòn binominal y otras distribucionesDistribuciòn binominal y otras distribuciones
Distribuciòn binominal y otras distribuciones
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
Universidad tecnologica de torreon
Universidad tecnologica de torreonUniversidad tecnologica de torreon
Universidad tecnologica de torreon
 
Universidad tecnologica de torreon
Universidad tecnologica de torreonUniversidad tecnologica de torreon
Universidad tecnologica de torreon
 
Presentacion power point
Presentacion power pointPresentacion power point
Presentacion power point
 
Presentacion power point
Presentacion power pointPresentacion power point
Presentacion power point
 
Presentacion power point
Presentacion power pointPresentacion power point
Presentacion power point
 
Amastal Cuetlach_INVESTIGACIÓN FINAL.pptx
Amastal Cuetlach_INVESTIGACIÓN FINAL.pptxAmastal Cuetlach_INVESTIGACIÓN FINAL.pptx
Amastal Cuetlach_INVESTIGACIÓN FINAL.pptx
 
Distribuciones de probabilidades
Distribuciones de probabilidadesDistribuciones de probabilidades
Distribuciones de probabilidades
 
Qué es probabilidad
Qué es probabilidadQué es probabilidad
Qué es probabilidad
 
Distribuciones2 de probabilidad.lm
Distribuciones2 de probabilidad.lmDistribuciones2 de probabilidad.lm
Distribuciones2 de probabilidad.lm
 
Fase2 100402 grupo_292
Fase2 100402 grupo_292Fase2 100402 grupo_292
Fase2 100402 grupo_292
 
Fase2 100402 grupo_292
Fase2 100402 grupo_292Fase2 100402 grupo_292
Fase2 100402 grupo_292
 
Trabajo de informatica
Trabajo de informaticaTrabajo de informatica
Trabajo de informatica
 
Investigacion uni4
Investigacion uni4Investigacion uni4
Investigacion uni4
 
tipos de distribuciones
tipos de distribuciones tipos de distribuciones
tipos de distribuciones
 
tipos de distribuciones
tipos de distribuciones tipos de distribuciones
tipos de distribuciones
 
Unidad dos punto n° 2
Unidad dos punto n° 2Unidad dos punto n° 2
Unidad dos punto n° 2
 

Más de Yovana Marin

EJEMPLOS PRUEBA DE HIPÓTESIS
EJEMPLOS PRUEBA DE HIPÓTESISEJEMPLOS PRUEBA DE HIPÓTESIS
EJEMPLOS PRUEBA DE HIPÓTESISYovana Marin
 
manual prueba de hipótesis
manual prueba de hipótesis manual prueba de hipótesis
manual prueba de hipótesis Yovana Marin
 
manual prueba de hipótesis
manual prueba de hipótesis manual prueba de hipótesis
manual prueba de hipótesis Yovana Marin
 
LAGUNA YO TE QUIERO
LAGUNA YO TE QUIERO LAGUNA YO TE QUIERO
LAGUNA YO TE QUIERO Yovana Marin
 
Artículo del mes de mayo
Artículo del mes de mayoArtículo del mes de mayo
Artículo del mes de mayoYovana Marin
 
Que es variabilidad01
Que es variabilidad01Que es variabilidad01
Que es variabilidad01Yovana Marin
 
Guion Ideográfico
Guion IdeográficoGuion Ideográfico
Guion IdeográficoYovana Marin
 
De Barbaros a Búrocratas
De Barbaros a Búrocratas De Barbaros a Búrocratas
De Barbaros a Búrocratas Yovana Marin
 
Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...Yovana Marin
 
TIPOS DE DISTRIBUCIONES
TIPOS DE DISTRIBUCIONESTIPOS DE DISTRIBUCIONES
TIPOS DE DISTRIBUCIONESYovana Marin
 

Más de Yovana Marin (20)

EJEMPLOS PRUEBA DE HIPÓTESIS
EJEMPLOS PRUEBA DE HIPÓTESISEJEMPLOS PRUEBA DE HIPÓTESIS
EJEMPLOS PRUEBA DE HIPÓTESIS
 
manual prueba de hipótesis
manual prueba de hipótesis manual prueba de hipótesis
manual prueba de hipótesis
 
manual prueba de hipótesis
manual prueba de hipótesis manual prueba de hipótesis
manual prueba de hipótesis
 
LAGUNA YO TE QUIERO
LAGUNA YO TE QUIERO LAGUNA YO TE QUIERO
LAGUNA YO TE QUIERO
 
Ejemplos poisson
Ejemplos poissonEjemplos poisson
Ejemplos poisson
 
Ejemplos binomial
Ejemplos binomialEjemplos binomial
Ejemplos binomial
 
Ejemplos binomial
Ejemplos binomialEjemplos binomial
Ejemplos binomial
 
Malos jefes
Malos jefesMalos jefes
Malos jefes
 
Estratificación
EstratificaciónEstratificación
Estratificación
 
Artículo del mes de mayo
Artículo del mes de mayoArtículo del mes de mayo
Artículo del mes de mayo
 
Checklist
ChecklistChecklist
Checklist
 
Gossiping at work
Gossiping at workGossiping at work
Gossiping at work
 
Que es variabilidad01
Que es variabilidad01Que es variabilidad01
Que es variabilidad01
 
Guion Ideográfico
Guion IdeográficoGuion Ideográfico
Guion Ideográfico
 
Chumaseras
ChumaserasChumaseras
Chumaseras
 
De Barbaros a Búrocratas
De Barbaros a Búrocratas De Barbaros a Búrocratas
De Barbaros a Búrocratas
 
Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estas aprendiendo para...
 
Confianza
ConfianzaConfianza
Confianza
 
Hipotesis
HipotesisHipotesis
Hipotesis
 
TIPOS DE DISTRIBUCIONES
TIPOS DE DISTRIBUCIONESTIPOS DE DISTRIBUCIONES
TIPOS DE DISTRIBUCIONES
 

Procesos industriales área manufactura

  • 1. Procesos Industriales Área Manufactura Materia: Estadística Tema: Probabilidad Docente: Lic. Edgar Gerardo Mata Ortiz ALUMNO :Yovana Marin de la Fuente 18/mar/2012
  • 2. DISTRIBUCIÓN DE PROBABILIDAD Una distribución de probabilidad indica toda la gama de valores que pueden representarse como resultado de un experimento si éste se llevase a cabo. Es decir, describe la probabilidad de que un evento se realice en el futuro, constituye una herramienta fundamental para la prospectiva, puesto que se puede diseñar un escenario de acontecimientos futuros considerándolas tendencias actuales de diversos fenómenos naturales. DISTRIBUCIÓN DE BERNOULLI La distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito ( ) y valor 0 para la probabilidad de fracaso ( ). Si es una variable aleatoria que mide "número de éxitos", y se realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria se distribuye como una Bernoulli de parámetro . La fórmula será: Su función de probabilidad viene definida por: Un experimento al cual se aplica la distribución de Bernoulli se conoce como Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos como ensayos repetidos.
  • 3. Ejemplo: "Lanzar un dado y salir un 6". Cuando lanzamos un dado tenemos 6 posibles resultados: Estamos realizando un único experimento (lanzar el dado una sola vez). Se considera éxito sacar un 6, por tanto, la probabilidad según el teorema de Laplace (casos favorables dividido entre casos posibles) será 1/6. Se considera fracaso no sacar un 6, por tanto, se considera fracaso sacar cualquier otro resultado. La variable aleatoria X medirá "número de veces que sale un 6", y solo existen dos valores posibles, 0 (que no salga 6) y 1 (que salga un 6). Por tanto, la variable aleatoria X se distribuye como una Bernoulli de parámetro = 1/6 La probabilidad de que obtengamos un 6 viene definida como la probabilidad de que X sea igual a 1. La probabilidad de que NO obtengamos un 6 viene definida como la probabilidad de que X sea igual a 0.
  • 4. DISTRIBUCION BINOMIAL • La distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de BERNOULLI independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. • Existen muchas situaciones en las que se presenta una experiencia binomial. Cada uno de los experimentos es independiente de los restantes (la probabilidad del resultado de un experimento no depende del resultado del resto). El resultado de cada experimento ha de admitir sólo dos categorías (a las que se denomina éxito y fracaso). Las probabilidades de ambas posibilidades han de ser constantes en todos los experimentos (se denotan como p y q o p y 1-p). • Se designa por X a la variable que mide el número de éxitos que se han producido en los n experimentos. • Cuando se dan estas circunstancias, se dice que la variable X sigue una distribución de probabilidad binomial, y se denota B(n,p) • Ejemplo • Supongamos que se lanza un dado 50 veces y queremos la probabilidad de que el número 3 salga 20 veces. En este caso tenemos una X ~ B(50, 1/6) y la probabilidad sería P(X=20): •
  • 5. DISTRIBUCION POISSON La Distribución de Poisson se llama así en honor a Simeón Dennis Poisson (1781-1840), francés que desarrolló esta distribución basándose en estudios efectuados en la última parte de su vida. La distribución de Poisson se emplea para describir varios procesos, entre otros la distribución de las llamadas telefónicas que llagan a un conmutador, la demanda (necesidades) de servicios en una institución asistencial por parte de los pacientes, los arribos de los camiones y automóviles a la caseta de cobro y el número de accidentes en un cruce. Los ejemplos citados tienen un elemento en común, pueden ser descritos por una variable aleatoria discreta que asume valores enteros (0,1,2,3,4,5 y así sucesivamente). El número de enfermos que llegan a un consultorio en cierto intervalo de tiempo será de 0,1,2,3,4,5 o algún otro número entero. De manera análoga, si se cuenta el número de automóviles que llegan a una caseta de cobro durante un periodo de diez minutos, el número será entero. Características de los procesos que producen una distribución de la probabilidad de Poisson. El número de vehículos que pasan por una caseta de cobro en las horas de mayor tráfico sirve como ejemplo para mostrar las características de una distribución de probabilidad de Poisson. El promedio (media) de los arribos de vehículos por hora de gran tráfico puede estimarse a partir de los datos anteriores del tráfico. Cálculo de probabilidades mediante la distribución de Poisson. La distribución de Poisson, según hemos señalado, se refiere a ciertos procesos que pueden ser descritos con una variable aleatoria discreta. La letra X suele representar esa variable y puede además asumir valores enteros (0,1,2,3 etc..) . Utilizamos la letra X mayúscula para representar la variable aleatoria y la x minúscula para designar un valor específico que puede asumir la X mayúscula. La probabilidad de exactamente x ocurrencias en una distribución de Poisson se calcula mediante la fórmula: P(x) = l x * e-l / x! l x = Lambda (número medio de ocurrencias por intervalo de tiempo) elevada a la potencia x. e-l = e= 2.71828 elevado a la potencia de lambda negativa.
  • 6. x! = x factorial. Ejemplo : Supóngase que estamos investigando la seguridad de un crucero muy peligroso. Los archivos de la policía indican una media de cinco accidentes por mes en él. El número de accidentes está distribuido conforme a la distribución de Poisson, y la división de seguridad en carreteras quiere calcular la probabilidad de exactamente 0,1,2,3 y 4 accidentes en un mes determinado. Aplicando la fórmula anterior: P(0) = (5)0 (e-5) /0! = 0.00674 P(1) = (5)1 (e-5) /1! = 0.03370 P(2) = (5)2 (e-5) /2! = 0.08425 P(3) = (5)3 (e-5) /3! = 0.14042 P(4) = (5)4 (e-5) /4! = 0.17552 Para saber cual es la probabilidad en 3 o menos, sumaremos las probabilidades de 0,1,2,3 lo que será igual a : P(0) = 0.00674 P(1) = 0.03370 P(2) = 0.08425 P(3) = 0.14042 P(3 o menos) = 0.26511 Dado que la probabilidad de que haya 3 o menos accidentes es de 0.26511 entonces la probabilidad de que ocurran más de tres debe ser = 1 –0.26511 = 0.73489. La distribución de Poisson como una aproximación a la distribución binomial.
  • 7. Algunas veces, si se desea evitar el tedioso trabajo de calcular las distribuciones binomiales, se puede usar a cambio la de Poisson, pero debe cumplir con ciertas condiciones como : n=>20 p=<0.05 En los casos en que se satisfacen tales condiciones, podemos sustituir la media de la distribución binomial en lugar de la media de la distribución de Poisson de modo que la fórmula quedaría así: P(x) = (np) X * e-np /x!
  • 8. DISTRIBUCIÓN NORMARL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece aproximada en fenómenos reales. La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro. Esta curva se conoce como campana de Gauss y e es el gráfico de de una función gaussiana. La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes. De hecho, la estadística es un modelo matemático que sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacionar. La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos. Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son: caracteres morfológicos de individuos como la estatura; caracteres fisiológicos como el efecto de un fármaco; caracteres sociológicos como el consumo de cierto producto por un mismo grupo de individuos; caracteres psicológicos como el cociente intelectual; nivel de ruido en telecomunicaciones; errores cometidos al medir ciertas magnitudes; etc. La distribución normal también aparece en muchas áreas de la propia estadística. Por ejemplo, la distribución muestral de las medias muéstrales es
  • 9. aproximadamente normal, cuando la distribución de la población de la cual se extrae la muestra no es normal.1 Además, la distribución normal maximiza la entropía entre todas las distribuciones con media y varianza conocidas, lo cual la convierte en la elección natural de la distribución subyacente a una lista de datos resumidos en términos de media muestral y varianza. La distribución normal es la más extendida en estadística y muchos test estadísticos están basados en una supuesta "normalidad". En probabilidad, la distribución normal aparece como el límite de varias distribuciones de probabilidad continuas y discretas. DISTRIBUCION GAMMA En estadística la distribución gamma es una distribución de probabilidad continua con dos parámetros k y λ cuya función de densidad para valores x > 0 es Aquí e es el número e y Γ es la función gamma. Para valores la aquella es Γ(k) = (k − 1)! (el factorial de k − 1). En este caso - por ejemplo para describir un proceso de Poisson - se llaman la distribición distribución Erlang con un parámetro θ = 1 / λ. El valor esperado y la varianza de una variable aleatoria X de distribución gamma son E[X] = k / λ = kθ V[X] = k / λ2 = kθ2 La formula para la función de densidad gamma contiene dos parámetros α y β. El parámetro β llamado parámetro de escala, refleja el tamaño de las unidades en que se mide y es parámetro α se conoce como parámetro de forma, si se modifica su valor cambia la forma de la distribución gamma, esto nos permite obtener funciones de densidad de muchas formas distintas para modelar distribuciones de frecuencia relativa de datos experimentales. La función de densidad de probabilidad de una variable tipo gama esta dada por en donde α Cuando α = 1, la función de densidad gamma se denomina distribución exponencial. Esta importante función de densidad se emplea como modelo para la distribución de frecuencias relativa del tiempo entre llegadas a un mostrador de servicio (centros de cómputo, caja de súper mercado, clínica hospitalaria, etc.) Cuando la probabilidad de que un cliente llegue en
  • 10. cierta unidad de tiempo es igual ala probabilidad de que llegue en cualquier otra. La función también se utiliza como modelo para la duración de equipos o productos industriales cuando la probabilidad de que un componente viejo opere por lo menos t unidades de tiempo adicionales, dado que esta funcionando ahora. Es igual a la probabilidad de que un componente nuevo opere al menos t unidades de tiempo. El equipo sujeto a mantenimiento periódico y recambio de piezas a menudo exhibe esta propiedad de nunca envejecer. DISTRIBUCION T STUDENT En probabilidad y estadística, la distribución t (de Student) es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño. Surge, en la mayoría de los estudios estadísticos prácticos, cuando la desviación típica de una población se desconoce y debe ser estimada a partir de los datos de una muestra. Existen dos versiones de la prueba t-Student: una que supone que las varianzas poblacionales son iguales y otra versión que no asume esto último. Para decidir si se puede suponer o no la igualdad de varianza en las dos poblaciones, se debe realizar previamente la prueba F-Snedecor de comparación de dos varianzas. Un poco de historia. La prueba t-Student fue desarrollada en 1899 por el químico inglés William Sealey Gosset (1876- 1937), mientras trabajaba en técnicas de control de calidad para las destilerías Guiness en Dublín . Debido a que en la destilería, su puesto de trabajo no era inicialmente de estadístico y su dedicación debía estar exclusivamente encaminada a mejorar los costes de producción, publicó sus hallazgos anónimamente firmando sus artículos con el nombre de "Student". La distribución t de Student es la distribución de probabilidad del cociente: donde Z tiene una distribución normal de media nula y varianza 1 V tiene una distribución chi-cuadrado con ν grados de libertad Z y V son independientes Si μ es una constante no nula, el cociente es una variable aleatoria que sigue la distribución t de Student no central con parámetro de no-centralidad μ. Intervalos de confianza derivados de la distribución t de Student
  • 11. El procedimiento para el cálculo del intervalo de confianza basado en la t de Student consiste en estimar la desviación típica de los datos S y calcular el error estándar de la media= S/(raíz cuadrada de n), siendo entonces el intervalo de confianza para la media = x media +- t (alfa/2) multiplicado por (S/(raíz cuadradada de n)). Es este resultado el que se utiliza en el test de Student: puesto que la diferencia de las medias de muestras de dos distribuciones normales se distribuye también normalmente, la distribución t puede usarse para examinar si esa diferencia puede razonablemente suponerse igual a cero. para efectos prácticos el valor esperado y la varianza son : E(t(n))= 0 y Var (t(n-1)) = n/(n-2) para > 3