SlideShare una empresa de Scribd logo
1 de 16
TEMA :
INTRODUCCION
Los semiconductores son elementos que tienen una conductividad eléctrica
inferior a la de un conductor metálico pero superior a la de un buen
aislante. El semiconductor más utilizado es el silicio, que es el elemento
más abundante en la naturaleza, después del oxígeno. Otros
semiconductores son el germanio y el selenio.
Los átomos de silicio tienen su orbital externo incompleto con sólo cuatro
electrones, denominados electrones de valencia. Estos átomos forman una
red cristalina, en la que cada átomo comparte sus cuatro electrones de
valencia con los cuatro átomos vecinos, formando enlaces covalentes. A
temperatura ambiente, algunos electrones de valencia absorben suficiente
energía calorífica para librarse del enlace covalente y moverse a través de
la red cristalina, convirtiéndose en electrones libres. Si a estos electrones,
que han roto el enlace covalente, se les somete al potencial eléctrico de
una pila, se dirigen al polo positivo.
SEMICONDUCTORES INTRÍNSECOS
En un cristal de Silicio o Germanio que forma una estructura tetraédrica similar
a la del carbono mediante enlaces covalentes entre sus átomos, en la figura
representados en el plano por simplicidad. Cuando el cristal se encuentra a
temperatura ambiente algunos electrones pueden absorber la energía
necesaria para saltar a la banda de conducción dejando el correspondiente
hueco en la banda de valencia (1). Las energías requeridas, a temperatura
ambiente, son de 1,12 eV y 0,67 eV para el silicio y el germanio
respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones
pueden caer, desde el estado energético correspondiente a la banda de
conducción, a un hueco en la banda de valencia liberando energía. A este
fenómeno se le denomina recombinación. Sucede que, a una determinada
temperatura, las velocidades de creación de pares e-h, y de recombinación se
igualan, de modo que la concentración global de electrones y huecos
permanece constante. Siendo "n" la concentración de electrones (cargas
negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:
ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la
temperatura y del tipo de elemento.
Ejemplos de valores de ni a temperatura ambiente (27ºc):
ni(Si) = 1.5 1010cm-3
ni(Ge) = 1.73 1013cm-3
DENSIDAD DE ESTADOS
DEFINICIÓN
La densidad de estados es el número de estados electrónicos posibles por
unidad de volumen y por unidad de energía.
En un metal (los electrones son libres):
Puede considerarse como una función continua en E
Está expresión también será válida para un semiconductor
cristalino (electrones quasi-libres, ligados a un potencial periódico)
Para adaptarla, hemos de introducir EC, EV y m*
FUNCIÓN DE DISTRIBUCIÓN DE FERMI-DIRAC
Los electrones son fermiones, i. e., partículas que cumplen
el principio de exclusión de Pauli
Así, vendrán gobernados por la estadística de Fermi:

f(E) es la probabilidad que un estado de
energía E esté ocupado, EF es el nivel de
Fermi, k es la constante de Boltzmann y T es
la temperatura absoluta.
DENSIDAD DE PORTADORES
Densidad efectiva de estados de la banda de conducción

Densidad efectiva de estados de la banda de valencia
SEMICONDUCTORES DOPADOS
Existen dos clase de semiconductores dopados: semiconductores N y
semiconductores P.
Un semiconductor N se obtiene añadiendo un pequeño número de átomos
pentavalentes (con cinco electrones en su última capa) a un semiconductor
intrínseco. Estos átomos pueden ser de P, As o Sb. De los cinco electrones,
cuatro realizan enlaces covalentes con los átomos del semiconductor intrínseco
y el otro será libre. A temperatura ambiente los electrones libres de un
semiconductor N provienen de los electrones sobrantes de las impurezas y de
los electrones térmicos (o liberados por energía térmica). Así pues, un
semiconductor tipo N posee más electrones libres que el correspondiente
semiconductor intrínseco y por tanto la conductividad será mayor. También el
número de electrones libres es mayor que el de huecos. La corriente eléctrica
en el semiconductor N es también debida a electrones y huecos. Los electrones
son portadores mayoritarios y los huecos son portadores minoritarios.
Un semiconductor tipo P es el resultado de añadir un pequeño número de
átomos trivalentes (con tres electrones en la última capa) a un semiconductor
intrínseco. Estos tres electrones formaran enlaces covalentes con los átomos
del semiconductor intrínseco. Queda por lo tanto un electrón del
semiconductor intrínseco sin emparejar para formar el enlace covalente. Esto
es, habrá un hueco donde cabría un electrón.
Los átomos que se añaden pueden ser de Al, B o Bi.

En un semiconductor P existen, pues, huecos debidos a la falta de electrones
para formar enlaces covalentes, electrones libres térmicos y sus
correspondientes huecos. El número de huecos será por lo tanto mayor en un
semiconductor dopado P que en el correspondientes semiconductor intrínseco.
Al conectar un generador externo, los huecos se moverán hacia el polo
negativo del generador y los electrones libres hacia el polo positivo. Los huecos
serán los portadores mayoritarios y los electrones térmicos los portadores
minoritarios.
UNIÓN PN: EL DIODO. APLICACIONES
Cuando se unen dos semiconductores dopados, P y N, aparece un fenómeno
interesante: los electrones libres del semiconductor N que están cerca de la
unión saltan a los huecos del semiconductor P para completar los enlaces
covalentes que faltaban. Por cada electrón que salta de N a P aparece una
carga negativa en la zona P (la carga del electrón que ha saltado) y aparece una
carga positiva en N (la del núcleo del átomo al que pertenecía el electrón
fugado). Al cabo de un cierto tiempo la zona P, cerca de la unión, se queda
cargada negativamente y la zona N cargada positivamente. Estas cargas
producen un campo eléctrico dirigido de N a P el cual se opone a que pasen
más electrones de N a P. Los electrones que han conseguido saltar a P se
mantienen cerca de la unión ya que son atraidos por los núcleos positivos de la
zona N.
La unión de los dos semiconductores P y N se denomina diodo. Si se conecta un
generador de continua a un diodo, ocurren fenómenos que tienen gran aplicación. La
conexión de un generador de continua a un diodo se denomina polarización del
diodo. La polarización de un diodo puede ser directa o inversa y el comportamiento
del diodo depende de esta polarización.
BIBLIOGRAFÍA
• http://es.wikipedia.org/wiki/Semiconductor
• http://www.etitudela.com/Electrotecnia/downloads/introduccion.pdf
• http://www.uv.es/~navasqui/Tecnologia/Tema3.pdf

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

6.2 Propagacion de oonda en linea de transmision
6.2 Propagacion de oonda en linea de transmision6.2 Propagacion de oonda en linea de transmision
6.2 Propagacion de oonda en linea de transmision
 
6 lineas de transmision
6 lineas de transmision6 lineas de transmision
6 lineas de transmision
 
Amplificador de instrumentación.pptx
Amplificador de instrumentación.pptxAmplificador de instrumentación.pptx
Amplificador de instrumentación.pptx
 
Informe555
Informe555Informe555
Informe555
 
Reloj Digital - Proyectos de electronica digital
Reloj Digital - Proyectos de electronica digitalReloj Digital - Proyectos de electronica digital
Reloj Digital - Proyectos de electronica digital
 
Resonancia en un Circuito Serie RLC.
Resonancia en un Circuito Serie RLC.Resonancia en un Circuito Serie RLC.
Resonancia en un Circuito Serie RLC.
 
El tiristor
El tiristorEl tiristor
El tiristor
 
ATENUACION
ATENUACIONATENUACION
ATENUACION
 
Aplicaciones de los diodos recortadores
Aplicaciones  de los  diodos recortadoresAplicaciones  de los  diodos recortadores
Aplicaciones de los diodos recortadores
 
Sistema de comunicaciones_via_satelite_2
Sistema de comunicaciones_via_satelite_2Sistema de comunicaciones_via_satelite_2
Sistema de comunicaciones_via_satelite_2
 
Frecuencia modulada (FM) UAS
Frecuencia modulada (FM) UASFrecuencia modulada (FM) UAS
Frecuencia modulada (FM) UAS
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Antena helicoidal
Antena helicoidalAntena helicoidal
Antena helicoidal
 
Tiristor Desactivado Por Compuerta - GTO
Tiristor Desactivado Por Compuerta - GTOTiristor Desactivado Por Compuerta - GTO
Tiristor Desactivado Por Compuerta - GTO
 
Tema 4
Tema 4Tema 4
Tema 4
 
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
Diagramas de bloque y funciones de transferencia Utpl Eet 2010 V1 0
 
3.3. Configuración en Base Común
3.3. Configuración en Base Común3.3. Configuración en Base Común
3.3. Configuración en Base Común
 
Antena Ranurada
Antena RanuradaAntena Ranurada
Antena Ranurada
 
Filtros
FiltrosFiltros
Filtros
 
03 osciladores-1
03 osciladores-103 osciladores-1
03 osciladores-1
 

Destacado

Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinosVictor Rojas
 
Pilas e baterias
Pilas e bateriasPilas e baterias
Pilas e bateriasiesasorey
 
Elaboración de la botella de vidrio
Elaboración de la botella de vidrioElaboración de la botella de vidrio
Elaboración de la botella de vidrioCamySwag
 
Tabla periódica con los número de oxidación de los elementos más comunes
Tabla periódica con los número de oxidación de los elementos más comunesTabla periódica con los número de oxidación de los elementos más comunes
Tabla periódica con los número de oxidación de los elementos más comunesU.E.N "14 de Febrero"
 
Creative Traction Methodology - For Early Stage Startups
Creative Traction Methodology - For Early Stage StartupsCreative Traction Methodology - For Early Stage Startups
Creative Traction Methodology - For Early Stage StartupsTommaso Di Bartolo
 

Destacado (12)

Transistores
TransistoresTransistores
Transistores
 
Taller baterias grupo k
Taller baterias grupo kTaller baterias grupo k
Taller baterias grupo k
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Litio li
Litio   liLitio   li
Litio li
 
Acetato de polivinilo
Acetato de poliviniloAcetato de polivinilo
Acetato de polivinilo
 
Pilas e baterias
Pilas e bateriasPilas e baterias
Pilas e baterias
 
El vidrio y las grandes empresas
El vidrio y las grandes empresasEl vidrio y las grandes empresas
El vidrio y las grandes empresas
 
Valencias numero de oxidación
Valencias   numero de oxidaciónValencias   numero de oxidación
Valencias numero de oxidación
 
Elaboración de la botella de vidrio
Elaboración de la botella de vidrioElaboración de la botella de vidrio
Elaboración de la botella de vidrio
 
Tabla periódica con los número de oxidación de los elementos más comunes
Tabla periódica con los número de oxidación de los elementos más comunesTabla periódica con los número de oxidación de los elementos más comunes
Tabla periódica con los número de oxidación de los elementos más comunes
 
ISOTOPOS CTA PROFESORA DORIS SAIRITUPAC
ISOTOPOS CTA PROFESORA DORIS SAIRITUPACISOTOPOS CTA PROFESORA DORIS SAIRITUPAC
ISOTOPOS CTA PROFESORA DORIS SAIRITUPAC
 
Creative Traction Methodology - For Early Stage Startups
Creative Traction Methodology - For Early Stage StartupsCreative Traction Methodology - For Early Stage Startups
Creative Traction Methodology - For Early Stage Startups
 

Similar a Semiconductores

Similar a Semiconductores (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
SEMICONDUCTORES - FISICA ELECTRONICA
SEMICONDUCTORES - FISICA ELECTRONICASEMICONDUCTORES - FISICA ELECTRONICA
SEMICONDUCTORES - FISICA ELECTRONICA
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
Semiconductores Semiconductores
Semiconductores
 
Semiconductoress
SemiconductoressSemiconductoress
Semiconductoress
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semi conductors jorge condor
Semi conductors jorge condorSemi conductors jorge condor
Semi conductors jorge condor
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
 

Último

Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 

Último (20)

Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 

Semiconductores

  • 2. INTRODUCCION Los semiconductores son elementos que tienen una conductividad eléctrica inferior a la de un conductor metálico pero superior a la de un buen aislante. El semiconductor más utilizado es el silicio, que es el elemento más abundante en la naturaleza, después del oxígeno. Otros semiconductores son el germanio y el selenio. Los átomos de silicio tienen su orbital externo incompleto con sólo cuatro electrones, denominados electrones de valencia. Estos átomos forman una red cristalina, en la que cada átomo comparte sus cuatro electrones de valencia con los cuatro átomos vecinos, formando enlaces covalentes. A temperatura ambiente, algunos electrones de valencia absorben suficiente energía calorífica para librarse del enlace covalente y moverse a través de la red cristalina, convirtiéndose en electrones libres. Si a estos electrones, que han roto el enlace covalente, se les somete al potencial eléctrico de una pila, se dirigen al polo positivo.
  • 3. SEMICONDUCTORES INTRÍNSECOS En un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 1,12 eV y 0,67 eV para el silicio y el germanio respectivamente.
  • 4. Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (27ºc): ni(Si) = 1.5 1010cm-3 ni(Ge) = 1.73 1013cm-3
  • 5.
  • 6. DENSIDAD DE ESTADOS DEFINICIÓN La densidad de estados es el número de estados electrónicos posibles por unidad de volumen y por unidad de energía. En un metal (los electrones son libres):
  • 7. Puede considerarse como una función continua en E Está expresión también será válida para un semiconductor cristalino (electrones quasi-libres, ligados a un potencial periódico) Para adaptarla, hemos de introducir EC, EV y m*
  • 8. FUNCIÓN DE DISTRIBUCIÓN DE FERMI-DIRAC Los electrones son fermiones, i. e., partículas que cumplen el principio de exclusión de Pauli Así, vendrán gobernados por la estadística de Fermi: f(E) es la probabilidad que un estado de energía E esté ocupado, EF es el nivel de Fermi, k es la constante de Boltzmann y T es la temperatura absoluta.
  • 9. DENSIDAD DE PORTADORES Densidad efectiva de estados de la banda de conducción Densidad efectiva de estados de la banda de valencia
  • 10. SEMICONDUCTORES DOPADOS Existen dos clase de semiconductores dopados: semiconductores N y semiconductores P. Un semiconductor N se obtiene añadiendo un pequeño número de átomos pentavalentes (con cinco electrones en su última capa) a un semiconductor intrínseco. Estos átomos pueden ser de P, As o Sb. De los cinco electrones, cuatro realizan enlaces covalentes con los átomos del semiconductor intrínseco y el otro será libre. A temperatura ambiente los electrones libres de un semiconductor N provienen de los electrones sobrantes de las impurezas y de los electrones térmicos (o liberados por energía térmica). Así pues, un semiconductor tipo N posee más electrones libres que el correspondiente semiconductor intrínseco y por tanto la conductividad será mayor. También el número de electrones libres es mayor que el de huecos. La corriente eléctrica en el semiconductor N es también debida a electrones y huecos. Los electrones son portadores mayoritarios y los huecos son portadores minoritarios.
  • 11.
  • 12. Un semiconductor tipo P es el resultado de añadir un pequeño número de átomos trivalentes (con tres electrones en la última capa) a un semiconductor intrínseco. Estos tres electrones formaran enlaces covalentes con los átomos del semiconductor intrínseco. Queda por lo tanto un electrón del semiconductor intrínseco sin emparejar para formar el enlace covalente. Esto es, habrá un hueco donde cabría un electrón. Los átomos que se añaden pueden ser de Al, B o Bi. En un semiconductor P existen, pues, huecos debidos a la falta de electrones para formar enlaces covalentes, electrones libres térmicos y sus correspondientes huecos. El número de huecos será por lo tanto mayor en un semiconductor dopado P que en el correspondientes semiconductor intrínseco. Al conectar un generador externo, los huecos se moverán hacia el polo negativo del generador y los electrones libres hacia el polo positivo. Los huecos serán los portadores mayoritarios y los electrones térmicos los portadores minoritarios.
  • 13.
  • 14. UNIÓN PN: EL DIODO. APLICACIONES Cuando se unen dos semiconductores dopados, P y N, aparece un fenómeno interesante: los electrones libres del semiconductor N que están cerca de la unión saltan a los huecos del semiconductor P para completar los enlaces covalentes que faltaban. Por cada electrón que salta de N a P aparece una carga negativa en la zona P (la carga del electrón que ha saltado) y aparece una carga positiva en N (la del núcleo del átomo al que pertenecía el electrón fugado). Al cabo de un cierto tiempo la zona P, cerca de la unión, se queda cargada negativamente y la zona N cargada positivamente. Estas cargas producen un campo eléctrico dirigido de N a P el cual se opone a que pasen más electrones de N a P. Los electrones que han conseguido saltar a P se mantienen cerca de la unión ya que son atraidos por los núcleos positivos de la zona N.
  • 15. La unión de los dos semiconductores P y N se denomina diodo. Si se conecta un generador de continua a un diodo, ocurren fenómenos que tienen gran aplicación. La conexión de un generador de continua a un diodo se denomina polarización del diodo. La polarización de un diodo puede ser directa o inversa y el comportamiento del diodo depende de esta polarización.