SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
19                      OFICINA ESPAÑOLA DE
                                          PATENTES Y MARCAS
                                                                                         11 Número de publicación:             2 198 244
                                                                                         51 Int. Cl.7:   C07C 209/14, C07C 209/16
                                                                                                         C07C 213/04, C07C 213/08
                                          ESPAÑA
                                                                                                         C07C 217/52, C07C 233/52
                                                                                                         C07C 309/27




                  12                                   TRADUCCIÓN DE PATENTE EUROPEA                                                       T3
                                                   86 Número de solicitud europea: 00111787.8
                                                   86 Fecha de presentación: 03.06.2000
                                                   87 Número de presentación de la solicitud: 1059283
                                                   87 Fecha de publicación de la solicitud: 13.12.2000




                  54 Título: Procedimiento para la preparación de inhibidor RO-64-0796 de la neuraminidasa.



                  30 Prioridad: 11.06.1999 EP 99111418                                   73 Titular/es: F. HOFFMANN-LA ROCHE AG
                                21.02.2000 EP 00103588                                       4070 Basel, CH




                  45 Fecha de publicación de la mención BOPI:                            72 Inventor/es: Karpf, Martin y
                       01.02.2004                                                            Trussardi, René




                  45 Fecha de la publicación del folleto de la patente:                  74 Agente: Isern Jara, Jorge
                       01.02.2004
ES 2 198 244 T3




                  Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de
                           la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea
                           de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se
                           considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del
                           Convenio sobre concesión de Patentes Europeas).
                                            Venta de fascículos: Oficina Española de Patentes y Marcas. C/Panamá, 1 – 28036 Madrid
ES 2 198 244 T3

                                                        DESCRIPCIÓN
        Procedimiento para la preparación del inhibidor RO-64-0796 de la neuraminidasa.

 5      La presente invención se refiere a un nuevo procedimiento de pasos múltiples para la preparación de compuestos
     de 1,2-diamino, a partir de los 1,2-epóxidos, en particular compuestos de 1,2-diamino útiles como inhibidores de las
     neuraminidasas virales o bacterianas, así como a los compuestos intermedios específicos útiles en este procedimiento
     de pasos múltiples.

10       La patente WO-96/26933 describe una gran clase de compuestos útiles como inhibidores de las neuraminidasas
     virales o bacterianas y su preparación. Estos compuestos comprenden un sistema anular carbocíclico o heterocíclico
     parcialmente no saturado, de seis elementos, el cual puede substituirse con varios diferentes substituyentes.

        La patente WO-98/07685 describe varios métodos para preparar compuestos de la clase más arriba mencionada,
15   que son derivados del carboxilato de ciclohexeno.

         Un compuesto particularmente interesante es el éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-
     etil-propoxi)-ciclohex-1-en-carboxílico (C.U. Kim y col., J. Am. Chem. Soc., 1997, 119, 681-690). Un método de
     preparación de este compuesto de 1,2-diamino en 10 pasos partiendo del ácido shikímico o en 12 pasos partiendo del
20   ácido químico, se describe por J. C. Rohloff y col., J. Org. Chem., 1998, 63, 4545-4550. Este método implica una
     secuencia final de reacción de 4 pasos a partir del éster etílico del ácido 1,2-epóxido (1S,5R,6R)-5-(1-etil-propoxi)-7-
     oxa-bicíclico[4.1.0]hept-3-en-3-carboxílico mediante tres compuestos intermedios de azida potencialmente explosivos
     y altamente tóxicos. Se requiere una tecnología específica y un equipo costoso para llevar a cabo dicho procedimiento.
     En un procedimiento técnico el uso de los reactivos de azida y los compuestos intermedios de azida debe ser evitado.
25
         El problema que va a ser resuelto por la presente invención es por lo tanto, encontrar un procedimiento exento de
     azida para preparar los compuestos de 1,2-diamino a partir de los 1,2-epóxidos.

        Este problema se ha resuelto por la invención, como se describe más adelante y como se define en las reivindica-
30   ciones anexas.

        La invención proporciona un procedimiento para preparar compuestos de 1,2-diamino de fórmula


35




40




     y sales de adición farmacéuticamente aceptables de los mismos,
45
     en donde

        R1 , R1 , R2 , R2 , independientemente entre sí, son H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilalquilo
     de 1 a 6 átomos de carbono, cicloalquilalquenilo de 2 a 6 átomos de carbono, cicloalquilalquinilo de 2 a 6 átomos
50   de carbono, heterociclilo, heterociclilalquilo de 1 a 6 átomos de carbono, heterociclilalquenilo de 2 a 6 átomos de
     carbono, heterociclilalquinilo de 2 a 6 átomos de carbono, arilo o arilalquilo de 1 a 6 átomos de carbono, arilalquenilo
     de 2 a 6 átomos de carbono, arilalquinilo de 2 a 6 átomos de carbono, o

        R1 y R2 , R1 y R2 , R1 y R2 o R1 y R2 , tomados juntos con los dos átomos de carbono a los cuales están unidos,
55   son un sistema anular carbocíclico o heterocíclico, o

        R1 y R1 o R2 y R2 tomados juntos con el átomo de carbono al cual están unidos, son un sistema anular carbocíclico
     o heterocíclico,
60      con la condición de que al menos uno de R1 , R1 , R2 y R2 no es H,

        R3 y R4 , independientemente entre sí son H o significan un alcanoilo, con la condición de que R3 y R4 no sean los
     dos H,
65      el cual proceso está caracterizado porque comprende los pasos de:



                                                                 2
ES 2 198 244 T3
        (a) tratamiento del 1,2-epóxido de fórmula



 5




10
      en donde R1 , R1 , R2 , R2 son como se ha indicado más arriba, con una amina de fórmula R5 NHR6 en donde R5 y R6
     independientemente entre sí son H o un substituyente de un grupo amino, con la condición de que R5 y R6 no sean los
     dos H,
15      con lo cual se forma un 2-aminoalcohol de fórmula



20




25

     en donde R1 , R1 , R2 , R2 , R5 y R6 son como se ha indicado más arriba.

        (b) conversión del 2-aminoalcohol de fórmula (III) en un 2-aminoalcohol de fórmula
30




35




40
     en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba.

        c) transformación de este 2-aminoalcohol de fórmula (IV) en un compuesto 1,2-diamino de fórmula
45




50




55   en donde R1 , R1 , R2 , R2 , R5 y R6 son como más arriba.

        d) acilación de la función amino libre en la posición 1 para formar un compuesto 1,2-diamino acilado de fórmula


60




65




                                                                 3
ES 2 198 244 T3
     en donde R1 , R1 , R2 , R2 , R3 , R4 , R5 y R6 son como se ha indicado más arriba, y finalmente

        e) liberación del grupo amino en la posición 2, y si es necesario,

 5     transformación posterior del compuesto 1,2-diamino resultante de fórmula (I), en una sal de adición farmacéutica-
     mente aceptable.

         El término “alquilo” significa un grupo alquilo saturado de cadena lineal o ramificada de 1 a 20, de preferencia de
     1 a 12 átomos de carbono, el cual puede llevar uno o más substituyentes.
10
        El término “alquenilo” significa un grupo alquenilo de cadena lineal o ramificada de 2 a 20, de preferencia de 2 a
     12 átomos de carbono, el cual puede llevar uno o más substituyentes.

        El término “alquinilo” significa un grupo alquinilo de cadena lineal o ramificada de 2 a 20, de preferencia de 2 a
15   12 átomos de carbono, el cual puede llevar uno o más substituyentes.

         El término “cicloalquilo” significa un grupo hidrocarburo cíclico saturado de 3 a 12, de preferencia de 5 a 7 átomos
     de carbono, el cual puede llevar uno o más substituyentes.

20       El término “arilo” significa un grupo mononuclear o dinuclear aromático que puede llevar uno o más substituyentes,
     tales como por ejemplo, fenilo, fenilo substituido, naftilo o naftilo substituido.

         El término “heterociclilo” significa un grupo monocíclico o bicíclico, saturado o sin saturar, con 1 ó 2 átomos de
     nitrógeno, azufre y/o oxígeno, tales como por ejemplo piranilo, dihidropiranilo, tetrahidropiranilo, tiopiranilo, isoben-
25   zofuranilo, furanilo, tetrahidrofuranilo, tiofuranilo, dihidrotiofuranilo, benzo[b]dihidrofuranilo, tetrahidrotiofuranilo,
     tioxanilo, dioxanilo, ditianilo, cromanilo, isocromanilo, ditiolanilo, piridilo, piperidilo, imidazolidinilo, pirrolidinilo,
     quinolilo o isoquinolilo, los cuales pueden llevar uno o más substituyentes.

         El término “sistema anular carbocíclico” significa un grupo alquilo cíclico con 3 a 12, de preferencia 5 a 7, áto-
30   mos de carbono, el cual puede incluir uno o dos enlaces carbono-carbono dobles, y el cual puede llevar uno o más
     substituyente, tales como por ejemplo ciclopenteno, ciclopenteno substituido, ciclohexeno, ciclohexeno substituido,
     ciclohepteno o ciclohepteno substituido.

         El término “sistema anular heterocíclico” significa un grupo monocíclico o bicíclico de 1 ó 2 átomos de nitró-
35   geno, azufre y/o oxígeno, el cual puede incluir uno o dos dobles enlaces y llevar uno o más substituyentes como
     se ha ejemplificado más arriba con el término “heterociclilo”, por ejemplo tetrahidropirano, dihidropirano, dihidro-
     pirano substituido, tetrahidrofurano, isobenzotetrahidrofurano, tioxano, 1-4-dioxano, ditiano, ditiolano, piperidina, o
     piperazina.

40      Substituyentes apropiados de los grupos mencionados más arriba son aquellos que son inertes en las reacciones
     implicadas.

         Ejemplos de substituyentes adecuados sobre dichos alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo-alqui-
     lo inferior, cicloalquilo-alquenilo inferior, cicloalquilo-alquinilo inferior, heterociclilo, heterociclilo-alquilo inferior,
45   heterociclilo-alquenilo inferior, heterociclilo-alquinilo inferior, arilo o arilo-alquilo inferior, arilo-alquenilo inferior,
     arilo-alquinilo inferior, son alquilo inferior, alcoxilo inferior, carboxilato de alquilo inferior, ácido carboxílico, carbo-
     xamida, N-(mono/di-alquilo inferior)-carboxamida.

         Ejemplos de substituyentes adecuados sobre dichos sistemas anulares carbocíclico o heterocíclico son alquilo de
50   1 a 12 átomos de carbono, alquenilo de 2 a 12 átomos de carbono, alquinilo de 2 a 12 átomos de carbono, alcoxilo
     de 1 a 12 átomos de carbono, carboxilato de alquilo de 1 a 12 átomos de carbono, ácido carboxílico, carboxamida,
     N-(mono/di-alquilo de 1 a 12 átomos de carbono)-carboxamida. Los substituyentes preferidos son alquilo inferior,
     alquenilo inferior, alquinilo inferior, alcoxilo inferior, ácido carboxílico carboxilato de alquilo inferior, carboxamida,
     N-(mono/di-alquilo inferior)-carboxamida.
55
         El término “inferior” significa aquí un grupo de 1-6, de preferencia 1-4 átomos de carbono. Ejemplos de grupos
     alquilo inferior son metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec.-butilo, terc.-butilo, pentilo y sus isóme-
     ros y hexilo y sus isómeros. Ejemplos de grupos alcoxilo inferior son metoxilo, etoxilo, propoxilo, isopropoxilo, n-
     butoxilo, iso-butoxilo, sec-butoxilo, terc.-butoxilo y 1-etil-propoxilo. Ejemplos de carboxilatos de alquilo inferior son
60   carboxilato de metilo, carboxilato de etilo, carboxilato de propilo, carboxilato de isopropilo y carboxilato de butilo.
     Ejemplos de grupos alcanoilo inferior son acetilo, propionilo y butirilo.

         El término “substituyente de un grupo amino” se refiere aquí a cualesquiera substituyentes convencionalmente
     empleados, como se ha descrito en Green, T., “Protective Groups in Organic Synthesis” (“Grupos de protección en
65   síntesis orgánica”), capítulo 7. John Wiley and Sons, Inc., 1991, 315-385, incorporado aquí como referencia.

          Tales substituyentes preferidos son acilo, alquilo, alquenilo, alquinilo, arilo-alquilo inferior, sililo, metilo, en donde
     sililo está trisubstituido con alquilo inferior, alquenilo inferior, alquinilo inferior y/o arilo. Ventajosamente, la reacti-
                                                                   4
ES 2 198 244 T3
     vidad del grupo amino puede inhibirse también mediante protonación p. ej., con ácidos Lewis, incluyendo H+ .

        El término “acilo” significa alcanoilo, de preferencia alcanoilo inferior, alcoxi-carbonilo, de preferencia alcoxi-
     carbonilo inferior, ariloxi-carbonilo o aroilo como p. ej., benzoilo.
 5
         En una versión preferida, la invención comprende un procedimiento para la preparación de derivados del ácido
     4,5-diamino-shikímico de fórmula


10




15



     y sales de adición farmacéuticamente aceptables del mismo, en donde
20
        R11 es un grupo alquilo opcionalmente substituido, R12 es un grupo alquilo y R3 y R4 independientemente entre sí
     son H o un substituyente de un grupo amino, con la condición de que R3 y R4 no son los dos H,

        a partir de un óxido de ciclohexeno de fórmula
25




30




     en donde R11 y R12 son como se ha indicado más arriba.
35
         El término alquilo tiene en R11 el significado de un grupo alquilo de cadena lineal o ramificada de 1 a 20 átomos
     de carbono, principalmente de 1 a 12 átomos de carbono. Ejemplos de tales grupos alquilo son metilo, etilo, n-propilo,
     i-propilo, n-butilo, i-butilo, terc.-butilo, pentilo y sus isómeros, hexilo y sus isómeros, heptilo y sus isómeros, octilo y
     sus isómeros, nonilo y sus isómeros, decilo y sus isómeros, undecilo y sus isómeros y dodecilo y sus isómeros.
40
         Este grupo alquilo puede substituirse con uno o más substituyentes como se ha definido p. ej., en WO 98/07685.
     Substituyentes adecuados son alquilo de 1 a 20 átomos de carbono (como se ha definido más arriba), alquenilo de 2
     a 20 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, hidroxilo, alcoxilo de 1 a 20 átomos de carbono,
     alcoxicarbonilo de 1 a 20 átomos de carbono, F, Cl, Br y I.
45
        El significado preferido para R11 es 1-etilpropilo.

        R12 es aquí un grupo alquilo de cadena lineal o ramificada de 1 a 12 átomos de carbono, principalmente de 1 a 6
     átomos de carbono como se ha ejemplificado más arriba.
50
        El significado preferido para R12 es etilo.

        El término substituyente de un grupo amino en R3 y R4 es como se ha definido más arriba. Substituyentes adecuados
     de grupos amino vienen dados también en la patente WO 98/07685.
55
        Substituyentes preferidos de un grupo amino para R3 y R4 son grupos alcanoilo, más preferido alcanoilo inferior
     de 1 a 6 átomos de carbono tales como hexanoilo, pentanoilo, butanoilo (butirilo), propanoilo (propionilo), etanoilo
     (acetilo) y metanoilo (formilo). El grupo alcanoilo preferido y por lo tanto el significado preferido para R3 es acetilo y
     para R4 es H.
60
         El compuesto 1,2-diamino de fórmula (I) más preferido o derivado del ácido 4,5-diamino-shikímico de fórmula
     (VII), es por lo tanto el éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-
     carboxílico o el fosfato del éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-
     en-carboxílico (1:1). El 1,2-epóxido más preferido de fórmula (II) u óxido de ciclohexeno de formula (VIII) es por lo
65   tanto el éster etílico del ácido (1S,5R,6R)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico.

     Paso a)


                                                                  5
ES 2 198 244 T3
        El paso a) comprende el tratamiento del 1,2-epóxido de fórmula (II) con una amina de fórmula R5 NHR6 y la
     formación del respectivo 2-aminoalcohol de fórmula (III).

        La amina de fórmula R5 NHR6 del paso (a) es una amina primaria o secundaria que demuestra tener reactividad
 5   para la apertura del anillo 1,2-epóxido.

        R5 y R6 en la amina de fórmula R5 NHR6 son principalmente, alquenilo de cadena lineal o ramificada de 2 a 6
     átomos de carbono, opcionalmente bencilo substituido o silil metilo trisubstituido o heterociclil metilo.

10       Alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono es de preferencia alilo o un análogo del mismo
     tal como alilo o un grupo alilo substituido en el carbono α, β o γ, por un grupo alquilo inferior, alquenilo inferior,
     alquinilo inferior o grupo arilo. Ejemplos adecuados son p. ej., 2-metilalilo, 3,3-dimetilalilo, 2-fenilalilo o 3-metil-
     alilo. Aminas preferidas de fórmula R5 NHR6 con el significado de un grupo alquenilo de cadena lineal o ramificada
     de 1 a 6 átomos de carbono son por lo tanto alilamina, dialilamina o 2-metilalilamina, en donde alilamina es la más
15   preferida.

         Bencilo opcionalmente substituido es de preferencia bencilo o análogos de bencilo que están o bien substituidos
     en el átomo de carbono α con uno o dos alquilo inferior, alquenilo inferior, alquinilo inferior, o grupos arilo o subs-
     tituido en el anillo de benceno con uno o más grupos alquilo inferior, alquenilo inferior, alquinilo inferior, alcoxilo
20   inferior o grupos nitro. Ejemplos adecuados son α-metilbencilo, α-fenilbencilo, 2-metoxibencilo, 3-metoxi-bencilo,
     4-metoxibencilo, 4-nitrobencilo o 3-metilbencilo. Aminas preferidas de fórmula R5 NHR6 con el significado de un
     grupo bencilo opcionalmente substituido, son bencilamina, dibencilamina, metilbencilamina, 2-metoxibencilamina,
     3-metoxibencilamina o 4-metoxibencilamina, en donde bencilamina es la más preferida.

25       Silil metilo trisubstituido es de preferencia silil metilo trisubstituido con grupos arilo, alquilo inferior, alquenilo
     inferior y/o alquinilo inferior. Ejemplos adecuados son trimetilsililo, trietilsililo, difenilmetilsililo, fenildimetilsililo o
     terc.-butildimetilsililo. Una amina preferida de fórmula R5 NHR6 con el significado de silil metilo trisubstituido es la
     trimetilsilil metilamina.

30      Heterociclil metilo es de preferencia heterociclil metilo en donde cualquiera de los grupos metilo está substituido
     con uno o dos grupos alquilo inferior, alquenilo inferior, alquinilo inferior o grupos arilo o el anillo heterocíclico está
     substituido con uno o más grupos alquilo inferior, alquenilo inferior, alquinilo inferior o alcoxilo inferior. Ejemplos
     adecuados son furfurilo o picolilo.

35      La amina más preferida de fórmula R5 NHR6 es la alilamina.

        La amina de fórmula R5 NHR6 se emplea generalmente en una cantidad molar de 1,0 a 3,0 equivalentes, de prefe-
     rencia de 1,5 a 2,5 equivalentes, basados sobre un equivalente del 1,2-epóxido de fórmula (II).

40       El paso (a) puede efectuarse sin un catalizador a presión normal o elevada pero, sin embargo, el tiempo de reacción
     del paso (a) puede en general reducirse significativamente en presencia de un catalizador.

        De preferencia el catalizador es un catalizador metálico o un haluro de magnesio.

45       Los catalizadores metálicos adecuados conocidos para catalizar las reacciones de apertura de anillos de 1,2-epó-
     xidos con aminas son p. ej., compuestos lantánidos tales como trifluormetansulfonatos de lantánido como Yb(OTf)3 ,
     Gd(OTf)3 y Nd(OTf)3 (M. Chini y col., Tetrahedron Lett., 1994, 35, 433-436), yoduros de samario (P. Van de Weghe,
     Tetrahedron Lett., 1995, 36, 1649-1652) u otros catalizadores de metales tales como reactivos de cuprato de amida (Y.
     Yamamoto, J. Chem. Soc., Chem. Commun., 1993, 1201-1203) y Ti(O-i-Pr)4 (M. Caron y col., J. Org. Chem., 1985,
50   50, 1557 y M. Müller y col., J. Org. Chem., 1998, 68, 9753).

         Por regla general, la apertura de un anillo con catalizadores metálicos se efectúa en presencia de un disolvente
     inerte p. ej., en tetrahidrofurano a temperaturas entre 20ºC y 150ºC.

55       Se ha descubierto que los haluros de magnesio son los catalizadores preferidos para la apertura del anillo de los
     1,2-epóxidos con aminas. El término “derivado de haluro de magnesio” significa aquí cloruro de magnesio, bromuro
     de magnesio o yoduro de magnesio anhidros o hidratados, o un eterato en particular un eterato de dimetilo, un eterato
     de dietilo, un eterato de dipropilo, o un eterato de diisopropilo de los mismos.

60      El bromuro de magnesio dietil eterato, es el catalizador más preferido.

        El haluro de magnesio se usa adecuadamente en una cantidad molar de 0,01 a 2,0 equivalentes, de preferencia de
     0,15 a 0,25 equivalentes, basados sobre un equivalente de 1,2-epóxido de fórmula (II).

65       Un disolvente adecuado para la catálisis del haluro de magnesio es un disolvente prótico tal como el etanol o meta-
     nol; o de preferencia un disolvente aprótico tal como el tetrahidrofurano, dioxano, terc.-butil metil éter, diisopropiléter,
     acetato de isopropilo, acetato de etilo, acetato de metilo, acetonitrilo, benceno, tolueno, piridina, cloruro de metileno,
     dimetilformamida, N-metilformamida y sulfóxido de dimetilo o mezclas de los mismos.
                                                                   6
ES 2 198 244 T3
         El disolvente aprótico se selecciona de preferencia entre el tetrahidrofurano, diisopropiléter, terc.-butil metil éter,
     acetonitrilo, tolueno o una mezcla de los mismos, con mayor preferencia una mezcla de terc.-butil metil éter y aceto-
     nitrilo.

 5       La catálisis con haluro de magnesio se efectúa ventajosamente a temperaturas entre 0ºC y 20ºC, de preferencia
     entre 50ºC y 150ºC.

        El respectivo 2-aminoalcohol de fórmula (III) puede ser aislado después de que la reacción haya acabado, y si se
     desea, puede ser purificado mediante métodos conocidos por los expertos en la especialidad.
10
     Paso b)

        El paso b) comprende la conversión del 2-aminoalcohol de fórmula (III) en 2-aminoalcohol de fórmula (IV).

15      La conversión en el paso b), depende de los radicales R5 y R6 .

         Si R5 y R6 independientemente entre sí, son alquenilo de 2 a 6 átomos de carbono, de cadena lineal o ramificada,
     la conversión es una isomerización/hidrólisis efectuada en presencia de un catalizador metálico.

20       Si R5 y R6 independientemente entre sí, son bencilo o heterociclil metilo opcionalmente substituidos, la conversión
     es una hidrogenolisis efectuada con hidrógeno en presencia de un catalizador metálico o

        Si R5 y R6 independientemente entre sí son silil metilo trisubstituido, la conversión es una escisión oxidante.

25      El hecho de que el significado preferido para R5 y R6 sea alquenilo de cadena lineal o ramificada de 2 a 6 átomos
     de carbono como se ha descrito más arriba en el paso a) isomerización/hidrólisis, es el método preferido para la
     conversión en el paso b).

          La isomerización/hidrólisis tiene lugar en consecuencia en presencia de un catalizador metálico adecuado, princi-
30   palmente un catalizador de un metal precioso tal como el Pt, Pd o Rh, bien aplicados sobre un soporte inerte como p.
     ej., carbón vegetal o alúmina, o bien en forma de complejo. El catalizador preferido es de 5 a 10% de paladio sobre
     carbón (Pd/C).

        El catalizador se emplea adecuadamente en una cantidad del 2 al 30% en peso, de preferencia del 5 al 20% en peso
35   con respecto al 2-aminoalcohol de fórmula (III).

        La isomerización/hidrólisis se efectúa ventajosamente en un disolvente acuoso. El propio disolvente puede ser
     prótico o aprótico. Disolventes próticos adecuados son p. ej., alcoholes tales como el metanol, etanol o isopropanol.
     Disolventes apróticos adecuados son p. ej., el acetonitrilo o el dioxano.
40
        La temperatura de reacción se escoge de preferencia en el margen de 20ºC y 150ºC.

        Se ha descubierto que la isomerización/hidrólisis se efectúa de preferencia en presencia de una amina primaria.

45      Las aminas primarias empleadas adecuadamente son la etilendiamina, etanolamina o derivados adecuados de estas
     aminas primarias mencionadas. Una amina primaria particularmente interesante es la etanolamina.

        La amina primaria se emplea adecuadamente en una cantidad de 1,0 a 1,25 equivalentes, de preferencia de 1,05 a
     1,15 equivalentes con respecto al 2-aminoalcohol de fórmula (III).
50
        Como se ha mencionado más arriba, si R5 y R6 independientemente entre sí, son bencilo o heterociclil metilo
     opcionalmente substituidos, la conversión es una hidrogenolisis realizada en presencia de un catalizador metálico con
     hidrógeno. Las condiciones de hidrogenolisis son ya bien conocidas en la técnica y están descritas p. ej., en Green, T.,
     “Protective Groups in Organic Synthesis”, (“Grupos de protección en síntesis orgánica”), capítulo 7, John Wiley and
55   Sons, Inc., 1991, 364-365.

         La hidrogenolisis tiene lugar por lo tanto en presencia de un catalizador metálico adecuado, principalmente un
     catalizador de un metal precioso tal como el Pt, Pd o Rh aplicado bien sobre un soporte inerte tal como el carbón
     vegetal o la alúmina, o bien en forma de complejo. El catalizador preferido es el 5 a 10% de paladio sobre carbón
60   (Pd/C). El catalizador se emplea adecuadamente en una cantidad del 2 al 30% en peso, de preferencia del 5 al 20% en
     peso con respecto al 2-aminoalcohol de fórmula (III).

        La hidrogenolisis se efectúa ventajosamente en un disolvente acuoso. El propio disolvente puede ser prótico o
     aprótico. Disolventes próticos adecuados son p. ej., los alcoholes como el metanol, etanol o isopropanol. Disolventes
65   apróticos adecuados son p. ej., el acetonitrilo o el dioxano. La temperatura de reacción se escoge de preferencia en el
     margen de 20ºC y 150ºC.

        Como se ha mencionado más arriba, si R5 y R6 independientemente entre sí, son silil metilo trisubstituido, la
                                                                 7
ES 2 198 244 T3
     conversión es una escisión oxidante.

        Principalmente la reacción se efectúa en presencia de una haloimida.

 5      Haloimidas adecuadas para esta reacción son la N-clorosuccinimida, N-bromosuccinimida o la N-clorobencensul-
     fonamida (cloramina-T).

        La reacción puede efectuarse en presencia de un disolvente inerte a temperaturas de 20ºC a 150ºC.

10      Con el fin de hidrolizar completamente cualquier imina que pueda haberse formado en el paso b) la mezcla de
     reacción se trata habitualmente con un ácido p. ej., con ácido sulfúrico o ácido clorhídrico.

     Paso c)

15      El paso c) comprende la transformación del 2-aminoalcohol de fórmula (IV) en un compuesto 1,2-diamino de
     fórmula (V)

        En detalle el paso c) comprende los pasos,

20      (c1) introducción de un grupo amino substituyente en el 2-aminoalcohol de fórmula (IV) obtenido en el paso (b),

        (c2) transformación del grupo hidroxilo en un grupo lábil, y

         (c3) separación del substituyente del grupo amino y transformación del producto de reacción empleando una amina
25   de fórmula R5 NHR6 , en donde R5 y R6 son como se ha indicado más arriba, en un compuesto 1,2-diamino de fórmula
     (V).

     Paso c1)

30      El término “grupo amino substituido” empleado como se ha descrito más arriba se refiere a cualquier substituyente
     convencionalmente empleado para inhibir la reactividad del grupo amino. Substituyentes adecuados se describen en
     Green T., “Protective Groups in Organic Synthesis” (“Grupos de protección en síntesis orgánica”), capítulo 7, John
     Wiley and Sons, Inc., 1991, 315-385.

35      Particularmente interesante es la conversión del grupo amino con un compuesto que contiene un grupo carbonilo
     para formar una imina, que se conoce con el nombre de “base Schiff”.

        También son de interés los substituyentes acilo que se forman tratando el 2-aminoalcohol de fórmula (IV) con un
     agente acilante.
40
        La formación de una base Schiff es el método preferido para la conversión del grupo amino libre en el grupo amino
     substituido del 2-aminoalcohol de fórmula (IV).

        Los compuestos carbonilo adecuados para formar una base Schiff son o bien aldehidos o bien cetonas. Tanto los
45   aldehidos como las cetonas pueden ser alifáticos, alicíclicos o aromáticos, de preferencia aromáticos.

         Ejemplos de aldehidos alifáticos adecuados son el propionaldehido, 2-metilpentenal, 2-etilbutiraldehido, pivalde-
     hido, glioxalato de etilo y cloral. Un ejemplo de un aldehido alicíclico es el ciclopropan carbaldehido. Ejemplos de
     aldehidos aromáticos adecuados son el furfural, 2-piridincarboxilaldehido, 4-metoxibenzaldehido, 3-nitrobenzaldehi-
50   do, un sulfonato de benzaldehido, un sulfonato de furfural y benzaldehido. Un aldehido aromático particularmente
     interesante es el benzaldehido.

         Ejemplos de cetonas alifáticas adecuadas son la 1,1-dimetoxiacetona y la 1,1-dietoxiacetona. Ejemplos de cetonas
     alicíclicas adecuadas son la ciclopentanona, ciclohexanona, cicloheptanona, 2-etil ciclohexanona y 2-metil-ciclopen-
55   tanona. Un ejemplo de una cetona aromática es la acetofenona.

        El compuesto que contiene carbonilo más preferido, es el benzaldehido.

         El compuesto que contiene carbonilo se emplea principalmente en una cantidad de 1,0 a 1,50, de preferencia 1,10
60   a 1,40 equivalentes con respecto al 2-aminoalcohol de fórmula (IV).

        La formación de una base Schiff se efectúa ventajosamente en un disolvente prótico o aprótico, de preferencia en
     un disolvente aprótico.

65       Disolventes apróticos adecuados son por ejemplo el tetrahidrofurano, dioxano, terc.-butil metil éter, diisopropiléter,
     acetato de isopropilo, acetato de etilo, acetato de metilo, acetonitrilo, benceno, tolueno, piridina, cloruro de metileno,
     dimetilformamida, N-metilformamida y sulfóxido de dimetilo. Un disolvente aprótico preferido es el terc.-butil metil
     éter.
                                                                 8
ES 2 198 244 T3
        El agua formada se elimina habitualmente mediante destilación azeotrópica.

        La formación de la base Schiff se efectúa ventajosamente a temperaturas entre 30ºC y 180ºC, de preferencia entre
     60ºC y 140ºC.
 5
         Si el paso c1) comprende la acilación, como se ha mencionado más arriba, el 2-aminoalcohol de fórmula (IV) se
     transforma en un 2-acil aminoalcohol.

         El agente acilante puede ser un ácido carboxílico o un derivado activado del mismo, tal como un haluro de acilo, un
10   éster de ácido carboxílico o un anhídrido de ácido carboxílico. Agentes acilantes adecuados son el cloruro de acetilo,
     cloruro de trifluoracetilo, cloruro de benzoilo o anhídrido acético. Un grupo acilo preferido es el formilo. Un agente
     formilante adecuado es por lo tanto p. ej., un ácido fórmico mezclado con anhídrido tal como por ejemplo ácido
     fórmico anhídrido acético, o un éster de ácido fórmico, tal como el formiato de etilo o formiato de metilo o un éster
     activo de ácido fórmico tal como el formiato de cianometilo.
15
         El agente acilante se emplea adecuadamente en una cantidad de 1,0 a 1,3, de preferencia 1,1 a 1,2 equivalentes
     respecto al 2-aminoalcohol de fórmula (IV).

         La elección de disolvente no es crítica en tanto no interfiera con los reactantes. Se ha descubierto que p. ej.,
20   el acetato de etilo es un disolvente adecuado. La reacción puede sin embargo realizarse sin disolvente, a saber, en
     presencia del respectivo agente acilante, aplicado en exceso.

        La temperatura de reacción está habitualmente en el margen de -20ºC a 100ºC.

25   Paso c2)

        El paso (c2) comprende la transformación del grupo hidroxilo en un grupo lábil, formando con ello un 2-aminoal-
     cohol O-substituido.

30       Compuestos y métodos para efectuar esta transformación son ya bien conocidos en la técnica y están descritos
     p. ej., en “Advanced Organic Chemistry” (“Química Orgánica Moderna”), ed. March J., John Wiley & Sons, Nueva
     York, 1992, 353,357.

        Se ha descubierto que el grupo hidroxilo se transforma de preferencia en un éster de ácido sulfónico.
35
        Agentes habitualmente empleados para la producción de ésteres de ácido sulfónico p. ej., son los haluros o los
     anhídridos de los siguientes ácido sulfónicos: ácido metansulfónico, ácido p-toluensulfónico, ácido p-nitrobencensul-
     fónico, ácido p-bromobencensulfónico o ácido trifluormetansulfónico.

40      Un agente sulfonilante preferido es un haluro o el anhídrido del ácido metansulfónico como p. ej., el cloruro de
     metansulfonilo.

         El agente sulfonilante se añade principalmente en una cantidad de 1,0 a 2,0 equivalentes con respecto a un equiva-
     lente del 2-aminoalcohol de fórmula (IV).
45
        Habitualmente la reacción en el paso c2) tiene lugar en un disolvente inerte, de preferencia en el mismo disolvente
     que se ha empleado en el paso previo c1) y a una temperatura de reacción de -20ºC a 100ºC.

     Paso c3)
50
        El paso (c3) comprende la separación del substituyente del grupo amino y la transformación del producto de
     reacción empleando una amina de fórmula R5 NHR6 en donde R5 y R6 son como se ha indicado más arriba, en el
     compuesto 1,2-diamino de fórmula (V).

55      En el curso de esta reacción se forma un producto intermedio de aziridina de fórmula




60




65
     en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba.



                                                               9
ES 2 198 244 T3
        Esta aziridina puede aislarse, pero por regla general sin aislarla, se transforma posteriormente en el compuesto 1,2-
     diamino de fórmula (V).

        La amina de fórmula R5 NHR6 es muy igual a la aplicada en el paso a). También son aplicables las mismas prefe-
 5   rencias que para la amina en el paso a). De acuerdo con ello, la amina más preferida de fórmula R5 NHR6 empleada
     para el paso c3), es la alilamina.

        El curso de la reacción en el paso c3) y las condiciones de la respectiva reacción dependen principalmente del tipo
     de protección del grupo amino en el paso c2).
10
         Con una base Schiff la transformación se efectúa directamente con la amina de fórmula R5 NHR6 , pero cuando
     tiene un grupo acetilo, antes de la transformación con la amina de fórmula R5 NHR6 tiene lugar primero un tratamiento
     de desacilación.

15       En el caso de una base Schiff, la amina de fórmula R5 NHR6 se emplea en una cantidad de por lo menos dos
     equivalentes, de preferencia de 2,0 a 5,0, con mayor preferencia de 2,5 a 4,0 equivalentes con respecto a un equivalente
     del 2-aminoalcohol de fórmula (IV).

         El disolvente empleado en este paso de reacción (c3) es por regla general el mismo del paso previo c2). De acuerdo
20   con ello, pueden emplearse disolventes próticos o apróticos, de preferencia disolventes apróticos, tales por ejemplo
     tetra-hidrofurano, dioxano, terc.-butil metil éter, diisopropiléter, acetato de isopropilo, acetato de etilo, acetato de
     metilo, acetonitrilo, benceno, tolueno, piridina, cloruro de metileno, dimetilformamida, N-metilformamida y sulfóxido
     de dimetilo. Un disolvente preferido es el terc.-butil metil éter.

25      En el caso de una base Schiff, la conversión se efectúa ventajosamente a una temperatura de 60ºC a 170ºC, de
     preferencia de 90ºC a 130ºC y aplicando una presión desde la presión normal a 10 bars.

         En el caso de que el grupo amino substituido sea acilo, antes del tratamiento con la amina de fórmula R5 NHR6
     tiene que efectuarse una desacilación como se ha mencionado más arriba.
30
         La desacilación puede efectuarse fácilmente en condiciones ácidas p. ej., empleando ácido sulfúrico, ácido metan-
     sulfónico o ácido p-toluensulfónico.

        Con ello se forma la respectiva sal de sulfonato o sulfato del 2-aminoalcohol O-substituido.
35
        La amina de fórmula R5 NHR6 se emplea a continuación adecuadamente en una cantidad de 1,0 a 5,0 equivalentes,
     de preferencia de 2,0 a 4,0 equivalentes con respecto a un equivalente del 2-aminoalcohol de fórmula (IV).

        La selección de los disolventes es aproximadamente la misma que para la conversión de la base Schiff, de prefe-
40   rencia acetato de etilo o terc.-butil metil éter.

         La temperatura de reacción se escoge entre 60ºC y 170ºC, de preferencia entre 90ºC y 130ºC y la presión se
     selecciona entre la presión normal y 10 bars.

45      Cuando se opera con una base Schiff, el paso c) puede efectuarse eficientemente efectuando la síntesis en una
     marmita, sin aislar los compuestos intermedios.

     Paso d)

50       El paso d) comprende la acilación de la función amino libre en la posición 1 para formar un compuesto 1,2-diamino
     acilado de fórmula (VI).

         La acilación puede efectuarse en condiciones ácidas fuertes empleando agentes acilantes ya conocidos por los
     expertos en la técnica. El agente acilante puede ser un ácido carboxílico alifático, o un derivado activado del mismo,
55   tal como un haluro de acilo, un éster de ácido carboxílico o un anhídrido de ácido carboxílico. Un agente acilante
     adecuado es de preferencia un agente acetilante tal como el cloruro de acetilo, cloruro de trifluoracetilo o anhídrido
     acético. Acidos fuertes empleados adecuadamente son p. ej., mezclas de ácido metansulfónico y ácido acético o ácido
     sulfúrico y ácido acético.

60      La acilación sin embargo puede también tener lugar en condiciones no ácidas empleando p. ej., N-acetil imidazol
     o N-acetil-N-metoxi acetamida.

         De preferencia, sin embargo la acilación tiene lugar en condiciones ácidas empleando una mezcla de 0,5 a 2,0
     equivalentes de anhídrido acético, 0 a 15,0 equivalentes de ácido acético y 0 a 2,0 equivalentes de ácido metansulfónico
65   en acetato de etilo.

         Puede añadirse un disolvente inerte tal como el terc.-butil metil éter, pero sin embargo es posible también efectuar
     la reacción sin adición de ningún disolvente.
                                                               10
ES 2 198 244 T3
        La temperatura se escoge por regla general en el margen de -20ºC a 100ºC.

     Paso e)

 5       El paso e) comprende la liberación de grupo amino de la posición 2 y, si es necesario, la transformación posterior
     del compuesto 1,2-diamino de fórmula (I) resultante, en una sal de adición farmacéuticamente aceptable.

         La liberación del grupo amino, es decir, la retirada del substituyente del grupo amino en la posición 2, tiene lugar
     siguiendo los mismos métodos y aplicando las mismas condiciones descritas en el paso b).
10
        La conversión en el paso e), por consiguiente, es también dependiente de los radicales R5 y R6 .

        Por lo tanto,

15      si R5 y R6 independientemente entre sí, son alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono, la
     conversión es una hidrólisis efectuada en presencia de un catalizador metálico,

         si R5 y R6 independientemente entre sí, son opcionalmente bencilo substituido o heterociclil metilo, la conversión
     es una hidrogenolisis efectuada con hidrógeno en presencia de un catalizador metálico, o
20
        si R5 y R6 independientemente entre sí, son silil metilo trisubstituido, la conversión es una escisión oxidante.

        Las mismas preferencias del paso b) son válidas para el paso e).

25      Para cualesquiera detalles complementarios, se hace referencia al paso b).

        Por regla general, el compuesto 1,2-diamino de fórmula (I) puede aislarse p. ej., por evaporación y cristalización,
     pero de preferencia se mantiene p. ej., en solución etanólica y a continuación se transforma en una sal de adición
     farmacéuticamente aceptable, siguiendo los métodos descritos en J. C. Rohloff y col., J. Org. Chem., 1988, 63, 4545-
30   4550; patente WO 98/07685).

         El término “sales de adición ácida farmacéuticamente aceptables” abarca las sales con ácidos inorgánicos y orgá-
     nicos, tales como el ácido clorhídrico, ácido bromhídrico, ácido nítrico, ácido sulfúrico, ácido fosfórico, ácido cítrico,
     ácido fórmico, ácido fumárico, ácido maleico, ácido acético, ácido succínico, ácido tartárico, ácido metansulfónico,
35   ácido p-toluensulfónico y similares.

         La formación de sal se efectúa de acuerdo con métodos ya conocidos de por sí, los cuales son familiares a cual-
     quier persona experta en la técnica. No solamente entran en consideración sales con ácidos inorgánicos sino también
     sales con ácidos orgánicos. Hidrocloruros, hidrobromuros, sulfatos, nitratos, citratos, acetatos, maleatos, succinatos,
40   metansulfonatos, p-toluensulfonatos y similares, son ejemplos de dichas sales.

        La sal de adición ácida farmacéuticamente aceptable preferida es la sal 1:1 con ácido fosfórico, la cual puede
     formarse de preferencia en solución etanólica a una temperatura de 50ºC a -20ºC.

45      La invención se refiere también a los siguientes nuevos compuestos intermedios:




50




55
     en donde R11 y R12 son como se ha mencionado más arriba, o una sal de adición de los mismos.

         Un representante preferido de los compuestos de fórmula (X) es el éster etílico del ácido (3R,4S,5R)-5-amino-
     3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en-carboxílico (R11 = 1-etil-propilo, R12 = etilo)
60




65




                                                                11
ES 2 198 244 T3



 5




10
     en donde R5 , R6 , R11 y R12 son como se ha mencionado más arriba, o una sal de adición de los mismos.

         Representantes preferidos de los compuestos de fórmula (XI) son el éster etílico del ácido (3R,4S,5R)-5-alilamino-
     3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico (con R11 = 1-etil-propilo, R12 = etilo, R5 = H y R6 = alilo); y el
15   éster etílico del ácido (3R,4R,5R)-5-formilamino-3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico (con R11 =
     1-etilpropilo, R12 = etilo, R5 = H y R6 = formilo)


20




25




          Compuestos de fórmula (XII) son el éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-alilamino-3-(1-etilpropo-
30
     xi)-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y R6 = alilo, R3 = H, R4 = acetilo) y el éster
     etílico del ácido (3R,4R,5S)-4-amino-5-alilamino-3-(1-etilpropoxi)-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo,
     R12 = etilo, R5 = H, R6 = alilo, R3 = H, R4 = H)

35




40




      en donde R5 , R6 , R11 y R12 son como se ha mencionado más arriba y R13 es un grupo sulfonilo, o una sal de adición
45   del mismo.

        Representantes preferidos de los compuestos de fórmula (XIII) son el éster etílico del ácido (3R,4R,5R)-5-formil-
     amino-4-metansulfonil-3-(1-etilpropoxi)-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y
     R6 = formilo, R13 = metansulfonilo) y el metansulfonato (1:1) del éster etílico del ácido (3R,4R,5R)-5-amino-4-
50   metansulfonil-3-(1-etilpropoxi)ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y R6 = H, R13 =
     metansulfonilo).

        La invención se ilustra a continuación con los siguientes ejemplos.
55   Ejemplo 1

     Preparación del éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxíli-
     co, a partir del éster etílico del ácido (1S,5R,6R)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico.
60      (a) Preparación del éster etílico del ácido (3R,4S,5R)-5-alilamino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encar-
     boxílico

         En un matraz de fondo redondo de 4 bocas de 2,5 litros, equipado con un condensador de reflujo, un termómetro, un
     agitador mecánico y una entrada de gas inerte, se disolvieron 254,3 g (1,0 moles) del éster etílico del ácido (1S,5R,6S)-
65   5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico en atmósfera de argón con agitación, en 900 ml de
     terc.-butil metil éter y 100 ml de acetonitrilo, con lo cual la temperatura descendió hasta aproximadamente 10ºC. A
     la solución transparente de color amarillento se añadieron 51,7 g (0,2 moles) de bromuro de magnesio dietil eterato,

                                                                12
ES 2 198 244 T3
     seguido de 150 ml (2,0 moles) de alilamina con lo que la temperatura aumentó hasta aproximadamente 20ºC. La
     suspensión de color amarillo se calentó a 55ºC con lo que se logró la disolución completa después de 1,5 horas. La
     solución transparente de color amarillo se calentó a reflujo durante 15 horas. La solución turbia de color amarillento
     se enfrió a aproximadamente 30ºC y se agitó vigorosamente con 1000 ml de sulfato de amonio acuoso 1M durante 15
 5   minutos con lo que se formó una mezcla transparente de dos fases después de una turbidez inicial. La fase orgánica se
     separó, se filtró y se evaporó en un evaporador rotativo a 48ºC/340 mbars hasta un volumen de aproximadamente 580
     ml. Las partículas sólidas se filtraron y la solución de color pardo se evaporó a 48ºC/340 a 15 mbars durante 2 horas
     para dar como producto crudo 312,8 g (97%) del éster etílico del ácido (3R,4S,5R)-5-alilamino-3-(1-etil-propoxi)-
     4-hidroxi-ciclohex-1-encarboxílico en forma de un aceite de color pardo-amarillento conteniendo aproximadamente
10   7,0% del isómero 4-alilamino-5-hidroxilo.

        IR (película): 2966, 1715, 1463, 1244, 1095 cm−1 ; EM (EI, 70eV): 311(M+ ), 280, 240, 210, 99 m/z.

         (b) Preparación del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarboxí-
15   lico

         En un matraz de fondo redondo de 4 bocas de 2,5 litros, equipado con un condensador de reflujo, un termómetro,
     un agitador mecánico y una entrada de gas inerte, se disolvieron 312,8 g del éster etílico del ácido (3R,4S,5R)-5-alila-
     mino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarboxílico obtenido de acuerdo con (a), se disolvieron a temperatura
20   ambiente y con agitación en atmósfera de argón, en 1560 ml de etanol. A la solución transparente de color amarillo
     oscuro se añadieron 66,2 g de etanolamina (d=1,015, 1,10 moles) y 31,3 g de paladio 10% sobre carbón vegetal. Se
     calentó la suspensión de color negro a 78ºC en el transcurso de 25 minutos y se calentó a reflujo durante 3 horas. Se
     enfrió la suspensión por debajo de 40ºC, se filtró a través de un filtro de papel y la torta del filtro se lavó con 100 ml de
     etanol. Los filtrados de color naranja combinados, se enfriaron de 0 a 5ºC, se trataron con 59,0 ml de ácido sulfúrico
25   (d=1,83, 1,10 moles) manteniendo la temperatura por debajo de 30ºC. La suspensión de color amarillo (pH=2,5) se
     evaporó en un evaporador rotativo a 48ºC/160 a 50 mbares y los cristales aceitosos residuales de color amarillo (956
     g) se disolvieron en 1000 ml de agua desionizada y la solución de color naranja se extrajo con una mezcla de 500 ml
     de terc.-butil metiléter y 500 ml de n-hexano. La fase orgánica se extrajo con 260 ml de ácido sulfúrico acuoso 0,5M y
     las fases acuosas combinadas (pH=2,3) se enfriaron a 10ºC y se trataron, con agitación, con aproximadamente 128 ml
30   de hidróxido de potasio acuoso al 50% hasta alcanzar un pH = 9,5 manteniendo la temperatura en el margen de 5ºC
     a 20ºC. La fase orgánica se separó y la fase acuosa se extrajo en primer lugar con 1000 ml, a continuación dos veces
     con 500 ml, en total con 2000 ml de terc.-butil metil éter. Los extractos orgánicos combinados se secaron con 1000 g
     de sulfato de sodio y se filtraron. La torta de filtración se lavó con aproximadamente 300 ml de terc.-butil metil éter y
     los filtrados combinados se evaporaron en un evaporador rotativo a 48ºC/360 a 20 mbars y se secaron a 48ºC/15 mbars
35   durante 2 horas, obteniéndose el éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-
     encarboxílico crudo (271,4 g) en forma de un aceite de color rojo conteniendo aproximadamente un 4% del isómero
     4-amino-5-hidroxilo.

        IR (película): 2966, 1715, 1463, 1247, 1100 cm−1 ; EM (EI, 70eV): 280(M+ ), 240, 183, 138, 110 m/z.
40
        (c1) Preparación del éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-ciclohex-1-encar-
     boxílico

         En un matraz de fondo redondo de 4 bocas de 4 litros, equipado con un purgador Dean-Strap, un termómetro, un
45   agitador mecánico y una entrada de gas inerte, se disolvieron 271,4 g del éster etílico del ácido (3R,4S,5R)-5-ami-
     no-3-(1-etil-propoxi)-4- hidroxi-ciclohex-1-encarboxíli-co obtenido de acuerdo con (b), se disolvieron a temperatura
     ambiente y con agitación en atmósfera de argón, en 2710 ml de terc.-butil metil éter. La solución de color rojo se
     trató con 102,1 ml de benzaldehido (d=1,05, 1,01 moles) y se calentó a reflujo durante 2 horas en cuyo tiempo se
     separaron aproximadamente 9 ml de agua. En el curso de 30 minutos se destilaron 1350 ml de terc.-butil metil éter. La
50   solución de color rojo conteniendo el compuesto intermedio se enfrió a 0ºC-5ºC y se trató con 167,3 ml de trietilamina
     (d=0,726, 1,18 moles). A continuación se añadieron gota a gota 77,7 ml de cloruro de metansulfonilo (d=1,452, 0,99
     moles) manteniendo la temperatura en el margen de 0ºC a 5ºC en el curso de 85 minutos durante cuyo tiempo se for-
     mó un precipitado de color naranja. Después de agitar durante 45 minutos sin enfriamiento, el análisis HPLC detectó
     aproximadamente un 15% del compuesto intermedio, el éster etílico del ácido (3R,4R,5S)-5-(benciliden-amino)-4-
55   hidroxi-ciclohex-1-encarboxílico. Después de la adición gota a gota de 7,8 ml de cloruro de metansulfonilo (d=1,452,
     0,09 moles) a temperatura ambiente y agitación durante 10 minutos, el análisis HPLC detectó aproximadamente un
     8% del compuesto intermedio indicado más arriba. Después de la adición gota a gota a temperatura ambiente de 7,8 ml
     de cloruro de metansulfonilo (d=1,452, 0,09 moles) y agitación durante 15 minutos, el análisis HPLC detectó menos
     de un 1% de dicho compuesto intermedio. La suspensión de color naranja se filtró y la torta del filtro de color amarillo-
60   naranja se lavó con 300 ml de terc.-butil metil éter. Los filtrados combinados (1291 g) que contenían el compuesto
     intermedio éster etílico del ácido (3R,4R,5S)-5-(benciliden-amino)-4-mesiloxi-ciclohex-1-en carboxílico, se trataron
     con 300,5 ml de alilamina (d=0,76, 4,0 moles) y la solución transparente de color rojo se calentó en un autoclave de
     3 litros en atmósfera de argón a 1 bar con agitación a 110ºC-111ºC en el curso de 45 minutos, a continuación se agitó
     a esta temperatura y a una presión de 3,5 a 4,5 bars durante 15 horas, se enfrió a menos de 45ºC durante 1 hora. La
65   solución de color rojo se evaporó en un evaporador rotativo a 48ºC/600 a 10 mbars y el gel de color rojo del residuo
     (566 g) se disolvió agitando fuertemente en una mezcla de dos fases de 1000 ml de ácido clorhídrico 2N y 1000 ml
     de acetato de etilo. La fase orgánica se extrajo con 1000 ml de ácido clorhídrico 2N, las fases acuosas combinadas se
     lavaron con 500 ml de acetato de etilo, se enfriaron a 10ºC y se trataron agitando con aproximadamente 256 ml de
                                                                13
ES 2 198 244 T3
     hidróxido de potasio acuoso al 50% hasta que se alcanzó un pH = 10,1 manteniendo la temperatura en el margen de
     10ºC a 20ºC. La fase orgánica se separó y la fase acuosa se extrajo en primer lugar con 1000 ml, a continuación con
     500 ml, en total con 1500 ml de terc.-butil metil éter y los extractos combinados se evaporaron en un evaporador rota-
     tivo a 48ºC/340 a 10 mbars obteniéndose el éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-
 5   ciclohex-1-encarboxílico crudo (277,9 g) en forma de un aceite de color rojo pardo.

        IR (película): 2966, 1715, 1463, 1244, 1090 cm−1 ; EM (EI, 70eV): 310(M), 222, 136, 98 m/z.

         (c2) Preparación de la sal de sodio del ácido (1R,5R,6S)-2-{[3-etoxicarbonil-5-(1-etil-propoxi)-6-hidroxiciclohex-
10   3- enilimino]-metil}-bencenosulfónico

         A una suspensión en agitación de 27,1 g (100 mmoles) de éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etilpro-
     poxi)-4-hidroxiciclohexen-1-carboxílico, y 20,8 g (100 mmoles) de sal de sodio del ácido 2-formilbencensulfónico,
     en 270 ml de etanol, se calentó a reflujo en atmósfera de argón durante 2 horas. La mezcla de reacción turbia, de color
15   pardo, se evaporó en un evaporador rotativo y el residuo se trató dos veces con 135 ml de acetato de etilo y se evaporó
     en un evaporador rotativo a 50ºC hasta sequedad obteniéndose 45,88 g (99%) de la sal de sodio del ácido (1R,5R,6S)-2-
     {[3-etoxicarbonil-5-(1-etil-propoxi)-6-hidroxiciclohex-3- enilimino]-metil}-bencenosulfónico, en forma de un sólido
     amorfo de color amarillo. IR (película): 3417, 2924, 2726, 1714, 1638, 1464, 1378, 1237, 1091, 970 cm−1 ; EM (ISP-
     EM): 438,3 (M+ -Na) m/z.
20
        Preparación del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-metansulfoniloxi-ciclohex-1-en-
     caroxílico

         A una suspensión en agitación de 9,23 g (20 mmoles) dela sal de sodio del ácido (1R,5R,6S)-2-{[3-etoxicarbonil-
25   5-(1-etil-propoxi)-6-hidroxi-ciclohex-3- enilimino]-metil}-bencenosulfónico, y 3,50 ml (25 mmoles) de trietilamina
     en 90 ml de acetato de etilo, se añadieron 1,80 ml (23 mmoles) de cloruro de metansulfonilo de 0 a 5ºC. La suspensión
     de color pardo amarillento resultante, se agitó a temperatura ambiente durante 2 horas, se trató con 2,70 ml (40
     mmoles) de etilendiamina y después de 10 minutos, con 90 ml de agua. Después de agitar el sistema de 2 fases
     vigorosamente durante 1 hora, la fase orgánica se separó y se extrajo con 100 ml de agua y 3 veces con 100 ml
30   de solución acuosa 1M de NaHCO3 , se secó con Na2 SO4 , se filtró y se evaporó en un evaporador rotativo a 48ºC/4
     mbars a sequedad obteniéndose 6,36 g (91%) del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-
     metansulfoniloxi-ciclohex-1-ncarboxílico en forma de un aceite de color naranja. Se obtuvo una muestra analítica del
     mismo mediante columna cromatográfica sobre silica gel empleando t-BuOMe conteniendo 1% de amoníaco al 25%
     como eluyente. IR(película): 2966, 2936, 2878, 1711, 1653, 1463, 1351, 1246, 1172, 1068, 961 cm−1 ; EM (EI, 70 eV):
35   350 (M+ ), 262, 224, 182, 166, 136 m/z.

        Preparación del éster etílico del ácido (1R,5R,6S)5-(1-etil-propoxi)-7-aza-biciclo[4.1.0]hept-3-en-3-carboxílico

          Una solución de color amarillento de 0,87 g (2,5 mmoles) del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-
40   propoxi)-4-metansulfoniloxi-ciclohex-1- encarboxílico, y 0,17 ml (2,5 mmoles) de etilendiamina en 4,4 ml de etanol
     se calentó a reflujo durante 1 hora. La suspensión resultante se evaporó en un evaporador rotativo hasta sequedad y el
     residuo se suspendió en 5 ml de acetato de etilo, se extrajo con 2 ml de solución 1M de NaHCO3 , se secó con Na2 SO4 ,
     se filtró y se evaporó en un evaporador rotativo a presión reducida hasta sequedad obteniéndose 0,52 g (82%) del éster
     etílico del ácido (1R,5R,6S)5-(1-etil-propoxi)-7-aza-bici-clo[4.1.0]hept-3-en-3-carboxílico en forma de un aceite de
45   color amarillo. IR(película): 3312, 2966, 2936, 2877, 1715, 1660, 1464, 1254, 1083, 1057, 799, cm−1 ; EM (EI, 70 eV):
     253 (M+ ), 224, 208, 182, 166, 110 m/z.

        d) Preparación del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5- alilamino-3-(1-etil-propoxi)-ciclohex-1-en-
     carboxílico
50
         En un matraz de fondo redondo de 4 bocas de 4 litros, equipado con un termómetro, un agitador mecánico, un
     condensador de Claisen y una entrada de gas inerte, se disolvieron 278,0 g del éster etílico del ácido (3R,4R,5S)-5-
     alilamino-4-amino- 3-(1-etil-propoxi)-ciclohex-1-encar-boxílico obtenido de acuerdo con (c), se disolvieron a tempe-
     ratura ambiente con agitación en atmósfera de argón en 2800 ml de terc.-butil metil éter. De la solución de color rojo
55   se destilaron 1400 ml de terc.-butil metil éter. De nuevo se añadieron 1400 ml de terc.-butil metil éter y se separaron
     por destilación. La solución de color rojo se enfrió a 0-5ºC y se trató con 512 ml de ácido acético (9,0 moles) con lo
     cual la temperatura alcanzó aproximadamente 23ºC. Después de enfriar a 0ºC-5ºC, se añadieron gota a gota 58,1 ml
     de ácido metansulfónico (d=1,482, 0,90 moles) en el curso de 27 minutos seguido de 84,7 ml de anhídrido acético
     (d=1,08, 0,90 moles) añadidos gota a gota en el curso de 40 minutos manteniendo la temperatura en el margen de
60   0ºC a 5ºC. La mezcla de reacción de color pardo se agitó sin enfriamiento durante 14 horas y a continuación se trató
     agitando vigorosamente con 1400 ml de agua (desionizada) durante 30 minutos y la fase orgánica de color pardo se
     extrajo con 450 ml de ácido metansulfónico acuoso 1M. Las fases acuosas combinadas (pH = 1,6) se trataron agitando,
     con aproximadamente 694 ml de hidróxido de potasio acuoso al 50% hasta alcanzar un pH = 10,0, manteniendo la
     temperatura en el margen de 10 a 25ºC. La mezcla turbia de color pardo se extrajo primeramente con 1000 ml y a
65   continuación con 400 ml, en total con 1400 ml de terc.-butil metil éter, los extractos orgánicos combinados se agitaron
     con 32 g de carbón vegetal y se filtraron. La torta del filtrado se lavó con aproximadamente 200 ml de terc.-butil metil
     éter y los filtrados combinados se evaporaron en un evaporador rotativo a 47ºC/380 a 10 mbars obteniéndose 285,4
     g de unos cristales amorfos de color pardo-rojo, los cuales se disolvieron con agitación en una mezcla de 570 ml de
                                                               14
ES 2 198 244 T3
     terc.-butil metil éter y 285 ml de n-hexano a 50ºC. La solución de color pardo se enfrió en 45 minutos con agitación de
     -20ºC a -25ºC y se agitó durante 5 horas con lo cual precipitaron unos cristales de color pardo. La suspensión se filtró
     por un embudo filtro de vidrio pre-enfriado (-20ºC) y la torta del filtro se lavó con una mezcla pre-enfriada (-20ºC) de
     285 ml de terc.-butil metil éter y 143 ml de n-hexano y se secó en un evaporador rotativo a 48ºC < 10 mbars obtenién-
 5   dose 200,33 g (83%) del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-alilami-no-3-(1-etil-propoxi)-ciclohex-1-
     encarboxílico; p.f. 100,2ºC - 104,2ºC.

        (e) Preparación del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5- amino-3-(1-etil-propoxi)-ciclohex-1-en-
     carboxílico
10
         En un matraz de fondo redondo de 4 bocas de 1 litro, equipado con un termómetro, un agitador mecánico, un
     condensador de reflujo y una entrada de gas inerte, se disolvieron 176,2 g del éster etílico del ácido (3R,4R,5S)-
     4-acetilamino-5- alilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxílico obtenido de acuerdo con (d), y 30,0 ml de
     etanolamina (d = 1,015, 0,54 moles) se disolvieron a temperatura ambiente en 880 ml de etanol y se trataron con 17,6
15   g de paladio 10% sobre carbón vegetal. La suspensión de color negro se calentó a reflujo durante 3 horas, se enfrió
     a temperatura ambiente y se filtró. La torta del filtrado se lavó con 100 ml de etanol y los filtrados combinados se
     evaporaron en un evaporador rotativo a 50ºC/< 20 mbars. El residuo aceitoso de color pardo (207,3 g) se trató con 600
     ml de ácido clorhídrico 2N y la solución de color pardo se destiló en un evaporador rotativo a 50ºC/75 mbars durante
     5 minutos. La solución se enfrió a temperatura ambiente, se lavó con 600 ml de terc.-butil metil éter y se trató con
20   agitación y enfriamiento con aproximadamente 110 ml de amoníaco acuoso al 25% manteniendo la temperatura por
     debajo de la temperatura ambiente hasta que se alcanzó un pH = 9-10 y se formó una emulsión de color pardo. La
     emulsión se extrajo tres veces con 600 ml, en total con 1800 ml de acetato de etilo. Los extractos combinados se secaron
     con aproximadamente 200 g de sulfato de sodio y se filtraron. La torta del filtrado se lavó con aproximadamente 200 ml
     de acetato de etilo y los filtrados combinados se evaporaron en un evaporador rotativo a 50ºC/ < 20 mbars obteniéndose
25   158,6 g de un aceite de color pardo el cual se disolvió en 650 ml de etanol. La solución de color pardo se añadió en el
     curso de 1 minuto con agitación a una solución caliente (50ºC) de 57,60 g de ácido orto fosfórico al 85% (d=1,71, 0,50
     moles) en 2500 ml de etanol. La solución resultante se enfrió en el curso de 1 hora a 22ºC. A 40ºC se añadieron cristales
     de siembra de éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-amino-3-(1-etil-propoxi)-ciclohex-1-encarboxílico
     (aproximadamente 10 mg) con lo que dio comienzo la cristalización. La suspensión de color beige se enfrió en el
30   curso de 2 horas de -20ºC a -25ºC y se agitó a esta temperatura durante 5 horas. La suspensión se filtró a través de
     un embudo filtro de vidrio pre-enfriado (-20ºC) durante 2 horas. La torta de filtrado se lavó primeramente con 200 ml
     de etanol pre-enfriado a -25ºC, a continuación dos veces con 850 ml, en total con 1700 ml de acetona, a continuación
     dos veces con 1000 ml, en total con 2000 ml de n-hexano, a continuación se secó a 50ºC/20 mbars durante 3 horas
     obteniéndose 124,9 g (70%) del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-amino-3-(1-etil-propoxi)-ciclo-
35   hex-1-encarboxílico, en forma de cristales de color blanco; p.f. 205-207ºC, con descomposición.

     Ejemplo 2

     Preparación del éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxíli-
40   co a partir del éster etílico del ácido (1S,5R,6S)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico

        Se efectuaron los pasos (a), (b), (d) y (e) como se han descrito más arriba en el ejemplo 1.

         El paso (c), preparación del éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-ciclohex-1-
45   encarboxílico a partir del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarbo-
     xílico, se efectuó como se describe a continuación.

         Un autoclave con un reactor de metal de 500 ml equipado con un termómetro, un agitador mecánico y una entrada
     para suministro de gas inerte, se cargó en atmósfera de argón con 40,70 g del éster etílico del ácido (3R,4S,5R)-5-
50   amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarboxílico (0,12 moles) obtenido de acuerdo con (b) y 200,0 ml de
     formiato de etilo y la solución se calentó con agitación a 100ºC de 4 a 5 bars en el curso de 35 minutos, se mantuvo a
     esta temperatura durante 6 horas, a continuación se enfrió a temperatura ambiente. La solución de color rojo se trató
     y evaporó dos veces con 150 ml, en total con 300 ml de tolueno y se evaporó a 45ºC/300-15 mbars obteniéndose
     como compuesto intermedio crudo, 46,24 g del éster etílico del ácido (3R,4R,5S)-5-formilamino-4-hidroxi-3-(1-etil-
55   propoxi)-ciclo-hex-1-encarboxílico, en forma de un aceite de color rojo.

        IR (película): 2967, 1715, 1385, 1247, 1100 cm−1 ; EM (haz de electrones): 300 (M+ H+ ), 270 (M+ COH), 253, 212,
     138 m/z.

60       En un matraz de fondo redondo de 4 bocas de 1 litro, equipado con un condensador de reflujo, un termómetro,
     un agitador mecánico y una entrada para suministro de gas inerte, se disolvieron 46,24 g del compuesto intermedio
     crudo de más arriba (0,15 moles), en 460 ml de acetato de etilo y 23,7 ml de trietilamina (d=0,726, 0,17 moles). La
     solución de color naranja se enfrió de 0ºC a 5ºC y se trató gota a gota en el curso de 30 minutos con 13,2 ml de cloruro
     de metansulfonilo (d=1,452, 0,17 moles) durante cuyo tiempo se formó un precipitado de color blanco. Después de
65   agitar durante 60 minutos sin enfriamiento la suspensión alcanzó la temperatura ambiente. Después de 45 minutos a
     temperatura ambiente la suspensión de color blanco se filtró y la torta del filtrado se lavó con 45 ml de acetato de etilo.
     Los filtrados combinados se lavaron con 116 ml de solución acuosa 1M de bicarbonato de sodio, se secaron con 130 g
     de sulfato de sodio, se filtraron y evaporaron en un evaporador rotativo a 45ºC/ 180 a > 10 mbars obteniéndose como
                                                                15
ES 2 198 244 T3
     compuesto intermedio crudo, 58,39 g del éster etílico del ácido (3R,4R,5R)-5-formilamino-4-metansulfoniloxi-3-(1-
     etil-propoxi)-ciclohex-1- encarboxílico, en forma de un aceite de color rojo naranja.

        IR(película): 2967, 1715, 1358, 1177, 968 cm−1 ; EM (EI, 70 eV): 377 (M), 290, 244, 148, 96 m/z.
 5
         En un matraz de fondo redondo de 4 bocas de 1 litro, equipado con un condensador de reflujo, un termómetro, un
     agitador mecánico y una entrada para suministro de gas inerte, se disolvieron 58,39 g del producto intermedio crudo
     anterior en 290 ml de etanol. La solución de color naranja se trató con 10,7 ml de ácido metansulfónico (d=1,482,
     0,17 moles) y se calentó a reflujo durante 160 minutos. La reacción de color rojo pardo se evaporó en un evaporador
10   rotativo a 45ºC/190 a 30 mbars y el residuo en forma de un aceite de color rojo-pardo se trató con 260 ml de agua
     desionizada y se lavó con 260 ml de terc.-butil metil éter. La fase orgánica se extrajo con 52 ml de agua desionizada y
     las fases acuosas combinadas (pH = 1,3) se enfriaron de 0ºC a 5ºC y se trataron con 13,7 ml de hidróxido de potasio
     acuoso al 50%, manteniendo la temperatura por debajo de 10ºC hasta alcanzar un pH = 9,4, con lo cual se formó una
     emulsión de color beige. A un pH de 6,6, se añadieron 260 ml de acetato de etilo. La fase acuosa se extrajo con 70
15   ml de acetato de etilo y los extractos orgánicos combinados se secaron con 160 g de sulfato de sodio, se filtraron y se
     evaporaron en un evaporador rotativo a 45ºC/190 a 20 mbars obteniéndose como compuesto intermedio crudo 45,66
     g del éster etílico del ácido (3R,4R,5R)-5-amino-4-metansulfoniloxi-3-(1-etil- propoxi)-ciclohex-1-en-carboxílico, en
     forma de un aceite de color rojo.

20      IR(película): 1720, 1362, 1250, 1170, 1070; EM (haz de electrones): 350,3 (M+ H+ ), 290,3, 262,1, 202,2, 184,3
     m/z.

         Un autoclave con un reactor de vidrio de 500 ml equipado con un termómetro, un agitador mecánico y una entrada
     para suministro de gas inerte, se cargó en atmósfera de argón con una solución de 45,66 g (0,13 moles) del compuesto
25   intermedio crudo de más arriba y 29,5 ml de alilamina (d=0,76, 0,39 mol) y 250 ml de acetato de etilo. La mezcla
     se calentó en atmósfera de argón a 1 bar con agitación de 111ºC a 112ºC en el curso de 45 minutos, se mantuvo a
     esta temperatura a aproximadamente 3,5 bars durante 6 horas, a continuación se enfrió a temperatura ambiente en
     el curso de 50 minutos. La suspensión de color naranja se agitó vigorosamente durante 20 minutos con 230 ml de
     solución acuosa 1M de bicarbonato de sodio. La fase orgánica de color pardo rojo se secó con 100 g de sulfato de
30   sodio y se filtró. La torta del filtro se lavó con aproximadamente 50 ml de acetato de etilo y los filtrados combinados se
     evaporaron en un evaporador rotativo a 45ºC/160 a 10 mbars obteniéndose como compuesto intermedio crudo, 41,80
     g del éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-ciclohex-1-en carboxílico en forma de
     un aceite de color rojo.

35      IR (película): 3441, 1707, 1462, 1262, 1063 cm−1 ; EM (haz de electrones): 311,2 (M+ ,H+ ), 297,2, 266,3, 245,8,
     223,2 m/z.

     Ejemplo 3

40   Preparación de la trans-2-(alilamino)-ciclohexan amina a partir del óxido de ciclohexeno

        (a) Preparación del trans-2-alilaminociclohexanol

         En un matraz de fondo redondo de 2 bocas de 250 ml equipado con un condensador de reflujo, un termómetro,
45   un agitador magnético y una entrada para suministro de gas inerte, se disolvieron 10,1 ml de óxido de ciclohexeno
     (100 mmoles) en atmósfera de argón a temperatura ambiente en 90 ml de terc.-butil metil éter y 10 ml de acetonitrilo.
     Bajo agitación, se añadieron 5,16 g de bromuro de magnesio dietil eterato (20 mmoles) y 15 ml de alilamina (200
     mmoles). La solución amarillenta se calentó a reflujo en atmósfera de argón durante 4,5 horas. Después de enfriar
     a temperatura ambiente la mezcla de reacción se agitó vigorosamente con 50 ml de cloruro de amonio acuoso 5M
50   durante 15 minutos. La fase acuosa se separó y se extrajo dos veces con 100 ml, en total con 200 ml de terc.-butil
     metil éter. Las fases orgánicas combinadas se secaron con 100 g de sulfato de sodio y el disolvente se evaporó en un
     evaporador rotativo (45ºC/340-10 mbars) obteniéndose 13,7 g de un aceite de color amarillo-pardo. Este último por
     análisis GC mostró un contenido aproximadamente del 90% de trans-2-alilamino-ciclohexanol racémico.

55      IR (película): 2928, 1450, 1071, 1030, 916 cm−1 ; EM (EI, 70eV): 155 (M+ ), 112, 96, 83, 68 m/z.

        (b) Preparación del trans-2-amino-ciclohexanol

         En un matraz de fondo redondo de 2 bocas de 250 ml equipado con un condensador de reflujo, agitador magnético
60   y una entrada para suministro de gas inerte, se disolvieron 13,6 g de trans-2-alilaminociclohexanol racémico (0,87
     mmoles), obtenido de acuerdo con (a), a temperatura ambiente en 140 ml de etanol y se añadieron a la solución 2,88
     g de Pd/C 10% (66,1 mmoles). Después de calentar a reflujo durante 2 horas y enfriar a temperatura ambiente, la
     suspensión de color negro, se filtró a través de un filtro de fibra de vidrio y la torta del filtro se lavó con 60 ml de
     etanol. La solución de color amarillo se mezcló con 2,55 ml de ácido sulfúrico (d=1,83, 47,7 mmoles), con lo cual
65   se formó inmediatamente un precipitado de color amarillo. El disolvente se eliminó en un evaporador rotativo. Los
     cristales de color amarillo-beige se recristalizaron en 75 ml de etanol (0,5 horas de reflujo, enfriamiento a 0ºC). Los
     cristales de color blanco obtenidos se lavaron con 60 ml de etanol y se secaron en un evaporador rotativo hasta alcanzar
     un peso constante. Se obtuvieron 11,17 g de sal sulfato en forma de cristales de color blanco.
                                                               16
ES 2 198 244 T3
         Este material se suspendió en 110 ml de metanol y se mezcló con 13,6 ml de solución 5N de hidróxido de sodio
     en metanol. La suspensión de color blanco se agitó durante 30 minutos a 55ºC. El disolvente se eliminó y los cristales
     de color blanco se suspendieron en 110 ml de acetato de etilo. Después de añadir aproximadamente 4 g de sulfato
     de sodio y 2 ml de agua, la suspensión se filtró y los cristales se secaron en un evaporador rotativo. De esta forma se
 5   obtuvieron aproximadamente 7,28 g de cristales de color blanco beige de trans-2-amino-ciclohexanol racémico, p.f.
     65ºC-66ºC.

        (c) Preparación del trans-2-(bencilidenamino)-ciclohexanol

10       En un matraz de fondo redondo de 250 ml equipado con un condensador de reflujo y un purgador Dean-Stark, se
     disolvieron 6,91 g de trans-2-aminociclohexanol racémico (60 mmoles) obtenido de acuerdo con (b), en atmósfera de
     argón en 70 ml de diisopropiléter, y se añadieron 6,1 ml de benzaldehido (60 mmoles) a la solución la cual se calentó
     a reflujo en atmósfera de argón a 110ºC durante 50 minutos hasta que se separó aproximadamente 1 ml de agua. El
     disolvente se eliminó en un evaporador rotativo (45ºC/250-10 mbars) para obtener 12,11 g de cristales de color blanco-
15   beige de trans-2-bencilidenamino)-ciclohexanol racémico, p.f. 86ºC.

        (d) Preparación del éster del ácido trans-2-(bencilidenamino)-ciclohexil metansulfónico.

         En un matraz de fondo redondo de 250 ml equipado con un condensador de reflujo, 11,79 g de trans-2-(benciliden-
20   amino)-ciclohexanol racémico (58 mmoles) obtenidos de acuerdo con (d), se disolvieron a temperatura ambiente en
     atmósfera de argón en 120 ml de acetato de etilo y se añadieron 8,9 ml de trietilamina (63,8 mmoles). Después de
     enfriar en un baño de hielo, se añadieron 4,6 ml de cloruro de metan-sulfonilo (58 mmoles) a la solución durante
     6 minutos. La solución de color blanco obtenida se agitó durante 2,5 horas, a continuación se mezcló con 120 ml
     de bicarbonato de sodio 1M y se agitó durante 10 minutos. Las dos capas se separaron y la fase acuosa se extrajo
25   dos veces con 120 ml de acetato de etilo. Las fases orgánicas combinadas se secaron con 100 g de sulfato de sodio y
     después de filtrar se eliminó el disolvente en un evaporador rotativo (45ºC/240-10 mbar). Los cristales de color amarillo
     naranja del residuo se suspendieron en 60 ml de n-hexano, y la suspensión de color naranja se agitó vigorosamente
     durante 15 minutos, se filtró y se lavó con 20 ml de n-hexano. Los cristales se secaron en un evaporador rotativo, se
     añadieron a las aguas madres y se mezclaron con 30 ml de terc.-butil metil éter. La suspensión de color naranja se
30   agitó vigorosamente durante 15 minutos, los cristales se separaron por filtración y se secaron en un evaporador rotativo
     a 45ºC/10 mbars para obtener 13,39 g de cristales de color casi blanco del éster del ácido trans-2-(bencilidenamino)-
     ciclohexil metansulfónico, p.f. 94ºC.

        (e) Preparación de la trans-2-(alilamino)-ciclohexilamina
35
         En un reactor a presión de 75 ml equipado con un agitador magnético, 4,16 g del éster del ácido trans-2-(benciliden-
     amino)-ciclohexil metansulfónico racémico (14,7 mmoles) obtenido de acuerdo con (d), se disolvieron en 20 ml de
     acetonitrilo y la solución de color blanco amarillo se mezcló con 4,50 ml de alilamina (59,2 mmoles). El sistema
     cerrado se calentó durante 20 horas a 115ºC, a continuación se enfrió a 0ºC y la solución viscosa se concentró. 20 ml
40   de tolueno y 22 ml de HCl 4N (88,2 mmoles) se añadieron y la mezcla de dos fases se agitó vigorosamente durante 2
     horas, y las dos fases fueron separadas. La fase acuosa se extrajo con 20 ml de tolueno. A la fase acuosa, se añadieron
     7,9 ml de solución acuosa al 50% de hidróxido de potasio (102,9 mmoles) agitando vigorosamente y la mezcla se
     extrajo con 20 ml de tolueno. La fase orgánica de color pardo se secó con 10 g de sulfato de sodio, se filtró y se
     lavó con 10 ml de tolueno. El disolvente se eliminó en un evaporador rotativo (45ºC/60-10 mbars). El producto se
45   obtuvo por purificación mediante destilación al alto vacío en un evaporador Diekmann a 34ºC-36ºC/0,25-0,3 mbars
     obteniéndose 0,95 g de trans-2-(alilamino)-ciclohexilamina racémico en forma de un líquido viscoso de color blanco.

        IR (película): 3340, 2940, 1450, 920, 758 cm−1 ; EM(EI, 70eV): 155 (M), 125, 96, 70, 56 m/z.

50   Ejemplo 4

     Preparación del (S)-2-(N,N-dialilamino)-2-feniletanol y (R)-2-(N,N-dialilamino)-1-feniletanol)

         En un matraz de 2 bocas de 100 ml equipado con un condensador de reflujo, un termómetro, un agitador mag-
55   nético y una entrada para suministro de gas inerte, se añadieron 20 ml de tetrahidrofurano a 2,3 ml (R)-feniloxirano
     (20 mmoles) y se disolvieron en el mismo, 1,03 g de bromuro de magnesio etil eterato (4 mmoles). La solución de
     color amarillento se mezcló con 4,9 ml de dialilamina y se calentó a reflujo durante 2 horas. La solución de color
     naranja-pardo se enfrió a temperatura ambiente, se agitó durante 15 minutos con 20 ml de solución 5M de cloruro de
     amonio y se separó la fase acuosa. La fase orgánica se secó con 8,5 g de sulfato de sodio, se filtró y se lavó con 10 ml
60   de tetrahidrofurano. El disolvente se concentró y el aceite de color naranja-pardo se secó durante 1 hora obteniéndose
     4,2 g (97%) de (S)-2-(N,N-dialilamino)-2-feniletanol y (R)-2-(N,N-dialilamino)-1-feniletanol).

        IR (película): 2820, 1640, 1452, 1062, 700 cm−1 ; EM(haz de electrones): 218,3 (M+H+ ), 200,2, 172,2, 158,2, 130,2
     m/z.
65




                                                               17
ES 2 198 244 T3
     Ejemplo 5

     Preparación del trans-2-((S)-metilbencilamino)-ciclohexanol

 5        En un matraz de fondo redondo de 100 ml equipado con un condensador de reflujo, un termómetro, un agitador
     magnético y una boca de entrada para suministro de gas inerte, se disolvieron 4,6 ml de óxido de ciclohexeno (45
     mmoles) en atmósfera de argón en 30 ml de tetrahidrofurano. La solución incolora se mezcló con agitación con 1,17
     g de bromuro de magnesio dietil eterato (4,5 mmoles) y 3,6 ml de (S)-α-metilbencilamina (30 mmoles, 1 equiv.). La
     solución de color débilmente amarillento se calentó a reflujo en atmósfera de argón durante 5,5 horas, a continuación
10   se enfrió a temperatura ambiente, se mezcló con 30 ml de solución 5M de cloruro de amonio y 15 ml de HCl 4M
     (60 mmoles, 2 equiv.) y se agitó fuertemente. Se añadieron 9 ml de una solución al 25% de hidróxido de amonio
     acuoso (120 mmoles), y las dos fases se separaron después de agitar. La fase orgánica se secó con 20 g de sulfato
     de sodio, se filtró, se lavó con 20 ml de tetrahidrofurano y se concentró en un evaporador rotativo (45ºC/357-10
     mbars) obteniéndose 7,47 g de un aceite de color amarillo. Se demostró que este último contenía una mezcla de dos
15   diastereoisómeros A y B de trans-2-(S)-metilbencilamino)-ciclohexanol separados mediante columna cromatográfica
     (silica/terc.-butil metil éter +1% de amoníaco).

        Datos del diastereoisómero A: IR (película): 2928, 2857, 1449, 1062, 761, 701 cm−1 ; EM (haz de electrones):
     220,4 (M+ , H+ ), 174,2, 148,9, 116,2, 105,1 m/z.
20
        Datos del diastereoisómero B: IR (película): 2930, 2858, 1450, 1067, 762, 701 cm−1 ; EM (haz de electrones): 220,3
     (M+ H+ ), 176,9, 159,2, 139,8, 116,2, 105,1 m/z.

     Ejemplo 6
25
     Preparación del éster etílico del ácido (3R,4S,5R)-5-bencilamino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en-carboxí-
     lico

         A una solución de 5,08 g (20 mmoles) del éster etílico del ácido (1S,5R,6S)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]
30   hept-3-en-3-carboxílico, en 20 ml de tetrahidrofurano, se añadieron 1,03 g (4 mmoles) de bromuro de magnesio dietil
     eterato, a temperatura ambiente. La suspensión resultante se trató con 4,40 ml (40 mmoles) de bencilamina y se calentó
     a reflujo en atmósfera de argón con agitación durante 12 horas. La mezcla de reacción se evaporó en un evaporador
     rotativo, el residuo se trató con 20 ml de acetato de etilo y se extrajo 6 veces con 20 ml de solución acuosa 5N de
     cloruro de amonio. La fase orgánica se secó con 5 g de sulfato de sodio, se filtró y se evaporó obteniéndose 6,88 g del
35   éster etílico del ácido (3R,4S,5R)-5-bencilamino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en-carboxílico, en forma de
     un aceite de color pardo. IR (película): 2966, 2935, 2877, 1715, 1654, 1495, 1465, 1250, 1090, 976 cm−1 ; EM (EI, 70
     eV): 361 (M+ ), 343, 330, 290, 274, 260, 242, 218, 200, 182, 166, 149, 138, 120, 106, 91 m/z.

     Ejemplo 7
40
     Preparación del 2-alilamino-1-feniletanol y 2-alilami-no-2-feniletanol

         A una solución de 0,57 ml (5 mmoles) de 2-fenil-oxirano en 5 ml de tetrahidrofurano se añadieron 0,26 g (1 mmol)
     de bromuro de magnesio dietil eterato, a temperatura ambiente. La mezcla se trató en atmósfera de argón con agitación
45   con 0,56 ml (7,5 mmoles) de alilamina con lo cual se formó una suspensión de color blanco la cual se disolvió después
     de calentar a 100ºC en un recipiente cerrado. La solución de color amarillo se calentó a 100ºC durante 2 horas, se
     enfrió a temperatura ambiente y se agitó vigorosamente con 5 ml de solución acuosa 5N de cloruro de amonio durante
     10 minutos. La fase orgánica se separó, se secó con 3 g de sulfato de sodio, se filtró y se evaporó en un evaporador
     rotativo. El residuo aceitoso que contenía los productos se separó mediante cromatografía sobre una columna de silica
50   gel empleando terc.-butil metil éter que contenía 1% de amoníaco acuoso concentrado como eluyente para obtener
     0,3 g de 2-alilamino-1-fenil- etanol (compuesto A) y 0,2 g de 2-alilamino-2-fenil-etanol (compuesto B) en forma de
     aceites amarillentos.

        Datos del compuesto A: IR (película): 1460, 1115, 1061, 919, 758, 701 cm−1 ; EM (EI, 70 eV): 177 (M+ ), 163, 146,
55   132, 117, 105, 97, 91, 83, 79, 77, 55, 43, 41 m/z.

       Datos del compuesto B: IR (película): 1500, 1460, 1049, 1027, 970, 759, 701 cm−1 ; EM (70 eV): 146 (M+ -
     CH2 OH), 129, 117, 106, 104, 91, 77, 41 m/z.

60   Ejemplo 8

     Preparación del 3-(1-feniletil-amino)-butan-2-ol

        A una solución de 0,445 ml (5 mmoles) de cis-2,3-dimetil-oxirano en 5 ml de tetrahidrofurano se añadieron a
65   temperatura ambiente 0,26 g (1 mmol) de bromuro de magnesio dietil eterato. La mezcla se trató en atmósfera de
     argón con agitación con 0,67 ml (5,5 mmoles) de (S)-(-)-1-fenil-etilamina. La suspensión de color amarillo se calentó
     a 90ºC en un recipiente cerrado durante 110 horas, con lo cual después de 21 y 64 horas se añadieron 0,25 ml y 0,122
     ml respectivamente de cis-2,3-dimetil-oxirano. La mezcla de reacción se enfrió a temperatura ambiente y se agitó
                                                               18
ES 2 198 244 T3
     vigorosamente con 5 ml de solución acuosa 5N de cloruro de amonio durante 10 minutos. La fase orgánica se separó,
     se secó con 2 g de sulfato de sodio, se filtró y se evaporó en un evaporador rotativo para obtener 0,58 g de 3-(1-fenil-
     etilamino)-butan-2-ol como mezcla de diastereo-isómeros en forma de un aceite de color pardo. El residuo aceitoso se
     separó mediante cromatografía sobre una columna de silica gel empleando acetato de etilo como eluyente para obtener
 5   los dos diastereoisómeros A y B en forma de aceites de color amarillento.

        Datos del diastereoisómero A: IR (película): 1451, 1180, 1053, 919, 759, 698 cm−1 ; EM (haz de electrones) 194,3
     (M+ +H), 216,3 (M+ +Na) m/z.

10      Datos del diastereoisómero B: IR (película): 1458, 1075, 761, 700 cm−1 ; EM (haz de electrones) 194,3 (M+ +H) m/z.




15




20




25




30




35




40




45




50




55




60




65




                                                               19
ES 2 198 244 T3

                                                     REIVINDICACIONES
        1. Procedimiento para la preparación de compuestos de 1,2-diamino de fórmula
 5




10




15
     y sales de adición farmacéuticamente aceptables de los mismos, en donde,

        R1 , R1 , R2 y R2 , independientemente entre sí, son H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquil-alquilo
     de 1 a 6 átomos de carbono, cicloalquilalquenilo de 2 a 6 átomos de carbono, cicloalquilalquinilo de 2 a 6 átomos
20
     de carbono, heterociclilo, heterociclilalquilo de 1 a 6 átomos de carbono, heterociclilalquenilo de 2 a 6 átomos de
     carbono, heterociclilalquinilo de 2 a 6 átomos de carbono, arilo o arilalquilo de 1 a 6 átomos de carbono, arilalquenilo
     de 2 a 6 átomos de carbono, arilalquinilo de 2 a 6 átomos de carbono, o

        R1 y R2 , R1 y R2 , R1 y R2 o R1 y R2 , tomados juntos con los dos átomos de carbono a los cuales están unidos,
25
     son un sistema anular carbocíclico o heterocíclico, o

        R1 y R1 o R2 y R2 tomados juntos con el átomo de carbono al cual están unidos, son un sistema anular carbocíclico
     o heterocíclico,
30
        con la condición de que al menos uno de R1 , R1 , R2 y R2 no sea H,

        R3 y R4 , independientemente entre sí son H o significan un alcanoilo, con la condición de que R3 y R4 no sean los
     dos, H,
35
        el cual procedimiento se caracteriza porque comprende los pasos de:

        a) tratamiento del 1,2-epóxido de fórmula

40




45




     en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba,
50
        con una amina de fórmula R5 NHR6 en donde R5 y R6 independientemente entre sí, son H o un substituyente de un
     grupo amino, con la condición de que R5 y R6 no sean los dos, H,

        con lo cual se forma un 2-aminoalcohol de fórmula
55




60




65   en donde R1 , R1 , R2 , R2 , R5 y R6 son como se ha indicado más arriba.



                                                                 20
ES 2 198 244 T3
        b) conversión del 2-aminoalcohol de fórmula (III) en un 2-aminoalcohol de fórmula



 5




10



     en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba,
15      c) transformación de este 2-aminoalcohol de fórmula (IV) en un compuesto 1,2-diamino de fórmula



20




25

     en donde R1 , R1 , R2 , R2 , R5 y R6 son como se ha indicado más arriba,

        d) acilación de la función amino libre en la posición 1 para formar un compuesto 1,2-diamino acilado de fórmula
30




35




40
     en donde R1 , R1 , R2 , R2 , R3 , R4 , R5 y R6 son como se ha indicado más arriba, y finalmente

        e) liberación del grupo amino en la posición 2, y si es necesario,

45     posterior transformación del compuesto 1,2-diamino resultante de fórmula (I), en una sal de adición farmacéutica-
     mente aceptable.

        2. Procedimiento de la reivindicación 1, caracterizado porque comprende un procedimiento para la preparación
     de derivados del ácido 4,5-diamino-shikímico, de fórmula
50




55




60

     y sales de adición farmacéuticamente aceptables del mismo, en donde

        R11 es un grupo alquilo opcionalmente substituido, R12 es un grupo alquilo y R3 y R4 independientemente entre sí
65   son H o significan alcanoilo, con la condición de que los dos R3 y R4 no son H,




                                                               21
ES 2 198 244 T3
        a partir de un óxido de ciclohexeno de fórmula



 5




10
     en donde R11 y R12 son como se ha indicado más arriba.

         3. Procedimiento de la reivindicación 1 ó 2, caracterizado porque el compuesto 1,2-diamino de fórmula (I) o
     los derivados del ácido 4,5-diamino-shikímico de fórmula (VII) es el éster etílico del ácido (3R,4R,5S)-5-amino-
15   4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxílico o el fosfato (1:1) del éster etílico del ácido (3R,4R,5S)-
     5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxílico, ó el 1,2-epóxido de fórmula (II) o el óxido de
     ciclohexeno de fórmula (VIII) es el éster etílico del ácido (1S,5R,6R)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-
     en-3-carboxílico.
20       4. Procedimiento de la reivindicación 1 a 3, caracterizado porque R5 y R6 en la amina de fórmula R5 NHR6
     aplicada al paso a) independientemente entre sí son alquenilo de cadena lineal o ramificada de 2 a 6 átomos de
     carbono, opcionalmente bencilo substituido o silil metilo trisubstituido o heterociclil metilo.

        5. Procedimiento de la reivindicación 4, caracterizado porque la amina de fórmula R5 NHR6 es alilamina, dialil-
25   amina, bencilamina, dibencilamina o trimetilsilil amina.

        6. Procedimiento de la reivindicación 4 ó 5, caracterizado porque la amina de fórmula R5 NHR6 es alilamina.

        7. Procedimiento de la reivindicación 1 a 6, caracterizado porque la reacción en el paso a) se efectúa en presencia
30   de un catalizador.

        8. Procedimiento de la reivindicación 7, caracterizado porque el catalizador es un catalizador metálico o un haluro
     de magnesio.
35       9. Procedimiento de la reivindicación 7 u 8, caracterizado porque el catalizador es el bromuro de magnesio dietil
     eterato.

        10. Procedimiento de la reivindicación 1 a 9, caracterizado porque la conversión en el paso b),
40      si R5 y R6 independientemente entre sí son alquenilo de 2 a 6 átomos de carbono, de cadena lineal o ramificada, es
     una isomerización/hidrólisis efectuada en presencia de un catalizador metálico,

        si R5 y R6 independientemente entre sí son bencilo o heterociclil metilo opcionalmente substituidos, es una hidro-
     genolisis efectuada con hidrógeno en presencia de un catalizador metálico o
45
        si R5 y R6 independientemente entre sí es silil metilo trisubstituido, es una escisión oxidante.

        11. Procedimiento de la reivindicación 10, caracterizado porque la reacción en el paso b) es una isomeriza-
     ción/hidrólisis efectuada en presencia de un catalizador metálico.
50
        12. Procedimiento de la reivindicación 11, caracterizado porque se emplea un catalizador de Pd/C.

        13. Procedimiento de la reivindicación 11 y 12, caracterizado porque se añade posteriormente una amina primaria.
55      14. Procedimiento de la reivindicación 13, caracterizado porque la amina primaria es la etanolamina.

        15. Procedimiento de la reivindicación 1 a 14, caracterizado porque el paso c) comprende los pasos

            (c1) introducción de un grupo amino substituyente en el 2-aminoalcohol de fórmula (IV) obtenido en el paso
60          (b),

            (c2) transformación del grupo hidroxilo en un grupo lábil, y

            (c3) separación del substituyente del grupo amino y transformación del producto de reacción empleando una
65          amina de fórmula R5 NHR6 , en donde R5 y R6 son como se ha indicado más arriba, en un compuesto 1,2-
            diamino de fórmula (V).


                                                               22
ES 2 198 244 T3
        16. Procedimiento de la reivindicación 15, caracterizado porque el grupo amino substituido en el paso c1) es una
     base Schiff formada por la reacción del 2-aminoalcohol de fórmula (IV) con un compuesto que contiene el grupo
     carbonilo o un grupo acilo formado por la reacción del 2-aminoalcohol de fórmula (IV) con un agente acilante.

 5      17. Procedimiento de la reivindicación 16, caracterizado porque la base Schiff se forma con benzaldehido.

        18. Procedimiento de la reivindicación 15, caracterizado porque el paso c2) comprende la transformación del
     grupo hidroxilo en un éster de ácido sulfónico.

10      19. Procedimiento de la reivindicación 18, caracterizado porque el paso c2) comprende la transformación del
     grupo hidroxilo en un éster de ácido metansulfónico.

        20. Procedimiento de la reivindicación 15, caracterizado porque la amina de fórmula R5 NHR6 empleada en el
     paso c3) es alilamina, dialilamina, bencilamina, dibencilamina o trimetilsililamina.
15
        21. Procedimiento de la reivindicación 20, caracterizado porque la amina de fórmula R5 NHR6 es la alilamina.

        22. Procedimiento de la reivindicación 1 a 21, caracterizado porque el paso d) comprende la acetilación de la
     función amino libre de la posición 1.
20
        23. Procedimiento de la reivindicación 1 a 22, caracterizado porque la conversión en el paso e),

        si R5 y R6 independientemente entre sí, son alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono, es
     una isomerización/hidrólisis efectuada en presencia de un catalizador metálico,
25
        si R5 y R6 independientemente entre sí, son opcionalmente bencilo o heterociclil metilo, es una hidrogenolisis
     efectuada con hidrógeno en presencia de un catalizador metálico, o

        si R5 y R6 independientemente entre sí, son silil metilo tri-substituido, es una escisión oxidante.
30
        24. Procedimiento de la reivindicación 23, caracterizado porque la reacción en el paso e) es una isomeriza-
     ción/hidrólisis efectuada en presencia de un catalizador metálico.

        25. Procedimiento de la reivindicación 24, caracterizado porque el catalizador metálico es un catalizador de Pd/C.
35
        26. Procedimiento de la reivindicación 24 y 25, caracterizado porque se añade posteriormente una amina primaria.

        27. Procedimiento de la reivindicación 26, caracterizado porque la amina primaria es la etanolamina.

40      28. Compuestos de fórmula




45




50

     en donde R11 es un grupo alquilo opcionalmente substituido y R12 es un grupo alquilo y sus sales de adición.

        29. Ester etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en carboxílico.
55
        30. Compuestos de fórmula



60




65

     en donde R11 es un grupo alquilo opcionalmente substituido y R12 es un grupo alquilo,

                                                                23
ES 2 198 244 T3
        R5 y R6 , independientemente entre sí, son H, alquilo, cicloalquilo, alquenilo o arilo, con la condición de que R5 y
     R6 no sean H los dos, y sus sales de adición.

          31. Ester etílico del ácido (3R,4S,5R)-5-alilamino-3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico.
 5
          32. Ester etílico del ácido (3R,4R,5R)-5-formilamino-3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico.

          33. Ester etílico del ácido (3R,4R,5S)-4-acetilamino-5-alilamino-3-(1-etil propoxi)-ciclohex-1-en carboxílico.

10        34. Ester etílico del ácido (3R,4R,5S)-4-amino-5-alilamino-3-(1-etilpropoxi)-ciclohex-1-en carboxílico.

          35. Compuestos de fórmula


15




20



     en donde
25
       R5 y R6 , independientemente entre sí, son H, o un substituyente de un grupo amino, con la condición de que R5 y
      6
     R no sean H los dos, y

          R11 es un grupo alquilo opcionalmente substituido,
30
          R12 es un grupo alquilo, y

          R13 es un grupo sulfonilo, y sus sales de adición.

          36. Ester etílico del ácido (3R,4R,5R)-5-formilamino-4-metansulfonil-3-(1-etilpropoxi)-ciclohex-1-en carboxílico.
35
        37. Metansulfonato (1:1) del éster etílico del ácido (3R,4R,5R)-5-amino-4-metansulfonil-3-(1-etilpropoxi)-ciclo-
     hex-1-en carboxílico.

40




45




50




55




60

     NOTA INFORMATIVA: Conforme a la reserva del art. 167.2 del Convenio de Patentes Europeas (CPE) y a la
                       Disposición Transitoria del RD 2424/1986, de 10 de octubre, relativo a la aplicación del
                       Convenio de Patente Europea, las patentes europeas que designen a España y solicitadas
65                     antes del 7-10-1992, no producirán ningún efecto en España en la medida en que confieran
                       protección a productos químicos y farmacéuticos como tales.
                                  Esta información no prejuzga que la patente esté o no incluida en la mencionada reserva.

                                                                24

Más contenido relacionado

Similar a Aliloam

Extracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello Galisteo
Extracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello GalisteoExtracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello Galisteo
Extracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello GalisteoFrancisco Cabello Galisteo
 
Tb craqueo catalitico de fluidos
Tb craqueo catalitico de fluidosTb craqueo catalitico de fluidos
Tb craqueo catalitico de fluidosLucia Pardo
 
Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...
Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...
Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...Soipuerta Soy-puerta
 
Presentacion de refinacion de petroleo U 2 - 4.pdf
Presentacion de refinacion de petroleo U 2 - 4.pdfPresentacion de refinacion de petroleo U 2 - 4.pdf
Presentacion de refinacion de petroleo U 2 - 4.pdfMicaelaGuzmanBolivar
 
Los hidrocarburos
Los hidrocarburosLos hidrocarburos
Los hidrocarburosJULIO PEREZ
 
PRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptx
PRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptxPRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptx
PRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptxssusercaa1c5
 
balacance de materia y energia.pdf
balacance de materia y energia.pdfbalacance de materia y energia.pdf
balacance de materia y energia.pdfLuisFernandoUriona
 
Aldehídos, cetonas y ácidos carboxílicos
Aldehídos, cetonas y ácidos carboxílicosAldehídos, cetonas y ácidos carboxílicos
Aldehídos, cetonas y ácidos carboxílicosDany Martinez Julio
 
Producción de ácido acético
Producción de ácido acéticoProducción de ácido acético
Producción de ácido acéticoDavid Ballena
 
Catalogo ferroli climatizacion_2013303135121
Catalogo ferroli climatizacion_2013303135121Catalogo ferroli climatizacion_2013303135121
Catalogo ferroli climatizacion_2013303135121Rooibos13
 

Similar a Aliloam (20)

Extracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello Galisteo
Extracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello GalisteoExtracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello Galisteo
Extracto Tesis Doctoral sobre catálisis ambiental de Francisco Cabello Galisteo
 
La trazabilidad de residuos RAEES. Origen y Destino. Posición del sector rec...
La trazabilidad de residuos RAEES. Origen y Destino.  Posición del sector rec...La trazabilidad de residuos RAEES. Origen y Destino.  Posición del sector rec...
La trazabilidad de residuos RAEES. Origen y Destino. Posición del sector rec...
 
2237902 t3
2237902 t32237902 t3
2237902 t3
 
BALANCE DE MATERIA Y ENERGÍA
BALANCE DE MATERIA Y ENERGÍABALANCE DE MATERIA Y ENERGÍA
BALANCE DE MATERIA Y ENERGÍA
 
Tb craqueo catalitico de fluidos
Tb craqueo catalitico de fluidosTb craqueo catalitico de fluidos
Tb craqueo catalitico de fluidos
 
Amoniaco
AmoniacoAmoniaco
Amoniaco
 
Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...
Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...
Inventos patentados en españa Patentes de SOCIETE MINIERE ET METALLURGIQUE DE...
 
Presentacion de refinacion de petroleo U 2 - 4.pdf
Presentacion de refinacion de petroleo U 2 - 4.pdfPresentacion de refinacion de petroleo U 2 - 4.pdf
Presentacion de refinacion de petroleo U 2 - 4.pdf
 
Vicente Tanasi Caschini mejoramiento continuo en las plantas lgn el tablazo b...
Vicente Tanasi Caschini mejoramiento continuo en las plantas lgn el tablazo b...Vicente Tanasi Caschini mejoramiento continuo en las plantas lgn el tablazo b...
Vicente Tanasi Caschini mejoramiento continuo en las plantas lgn el tablazo b...
 
Los hidrocarburos
Los hidrocarburosLos hidrocarburos
Los hidrocarburos
 
PRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptx
PRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptxPRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptx
PRODUCCION DE METIL ETIL CETONA A PARTIR DE.pptx
 
balacance de materia y energia.pdf
balacance de materia y energia.pdfbalacance de materia y energia.pdf
balacance de materia y energia.pdf
 
Aldehídos, cetonas y ácidos carboxílicos
Aldehídos, cetonas y ácidos carboxílicosAldehídos, cetonas y ácidos carboxílicos
Aldehídos, cetonas y ácidos carboxílicos
 
Producción de ácido acético
Producción de ácido acéticoProducción de ácido acético
Producción de ácido acético
 
Defensa tesis gabriel cara 20130621
Defensa tesis gabriel cara 20130621Defensa tesis gabriel cara 20130621
Defensa tesis gabriel cara 20130621
 
Catalogo ferroli climatizacion_2013303135121
Catalogo ferroli climatizacion_2013303135121Catalogo ferroli climatizacion_2013303135121
Catalogo ferroli climatizacion_2013303135121
 
Reformadocatalitico
ReformadocataliticoReformadocatalitico
Reformadocatalitico
 
Hidr+ogeno
Hidr+ogenoHidr+ogeno
Hidr+ogeno
 
Unidad VI. Alquinos
Unidad VI. AlquinosUnidad VI. Alquinos
Unidad VI. Alquinos
 
Alquinos
AlquinosAlquinos
Alquinos
 

Último

Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperiomiralbaipiales2016
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxdkmeza
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoJosDanielEstradaHern
 

Último (20)

Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 

Aliloam

  • 1. 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS 11 Número de publicación: 2 198 244 51 Int. Cl.7: C07C 209/14, C07C 209/16 C07C 213/04, C07C 213/08 ESPAÑA C07C 217/52, C07C 233/52 C07C 309/27 12 TRADUCCIÓN DE PATENTE EUROPEA T3 86 Número de solicitud europea: 00111787.8 86 Fecha de presentación: 03.06.2000 87 Número de presentación de la solicitud: 1059283 87 Fecha de publicación de la solicitud: 13.12.2000 54 Título: Procedimiento para la preparación de inhibidor RO-64-0796 de la neuraminidasa. 30 Prioridad: 11.06.1999 EP 99111418 73 Titular/es: F. HOFFMANN-LA ROCHE AG 21.02.2000 EP 00103588 4070 Basel, CH 45 Fecha de publicación de la mención BOPI: 72 Inventor/es: Karpf, Martin y 01.02.2004 Trussardi, René 45 Fecha de la publicación del folleto de la patente: 74 Agente: Isern Jara, Jorge 01.02.2004 ES 2 198 244 T3 Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas). Venta de fascículos: Oficina Española de Patentes y Marcas. C/Panamá, 1 – 28036 Madrid
  • 2. ES 2 198 244 T3 DESCRIPCIÓN Procedimiento para la preparación del inhibidor RO-64-0796 de la neuraminidasa. 5 La presente invención se refiere a un nuevo procedimiento de pasos múltiples para la preparación de compuestos de 1,2-diamino, a partir de los 1,2-epóxidos, en particular compuestos de 1,2-diamino útiles como inhibidores de las neuraminidasas virales o bacterianas, así como a los compuestos intermedios específicos útiles en este procedimiento de pasos múltiples. 10 La patente WO-96/26933 describe una gran clase de compuestos útiles como inhibidores de las neuraminidasas virales o bacterianas y su preparación. Estos compuestos comprenden un sistema anular carbocíclico o heterocíclico parcialmente no saturado, de seis elementos, el cual puede substituirse con varios diferentes substituyentes. La patente WO-98/07685 describe varios métodos para preparar compuestos de la clase más arriba mencionada, 15 que son derivados del carboxilato de ciclohexeno. Un compuesto particularmente interesante es el éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1- etil-propoxi)-ciclohex-1-en-carboxílico (C.U. Kim y col., J. Am. Chem. Soc., 1997, 119, 681-690). Un método de preparación de este compuesto de 1,2-diamino en 10 pasos partiendo del ácido shikímico o en 12 pasos partiendo del 20 ácido químico, se describe por J. C. Rohloff y col., J. Org. Chem., 1998, 63, 4545-4550. Este método implica una secuencia final de reacción de 4 pasos a partir del éster etílico del ácido 1,2-epóxido (1S,5R,6R)-5-(1-etil-propoxi)-7- oxa-bicíclico[4.1.0]hept-3-en-3-carboxílico mediante tres compuestos intermedios de azida potencialmente explosivos y altamente tóxicos. Se requiere una tecnología específica y un equipo costoso para llevar a cabo dicho procedimiento. En un procedimiento técnico el uso de los reactivos de azida y los compuestos intermedios de azida debe ser evitado. 25 El problema que va a ser resuelto por la presente invención es por lo tanto, encontrar un procedimiento exento de azida para preparar los compuestos de 1,2-diamino a partir de los 1,2-epóxidos. Este problema se ha resuelto por la invención, como se describe más adelante y como se define en las reivindica- 30 ciones anexas. La invención proporciona un procedimiento para preparar compuestos de 1,2-diamino de fórmula 35 40 y sales de adición farmacéuticamente aceptables de los mismos, 45 en donde R1 , R1 , R2 , R2 , independientemente entre sí, son H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilalquilo de 1 a 6 átomos de carbono, cicloalquilalquenilo de 2 a 6 átomos de carbono, cicloalquilalquinilo de 2 a 6 átomos 50 de carbono, heterociclilo, heterociclilalquilo de 1 a 6 átomos de carbono, heterociclilalquenilo de 2 a 6 átomos de carbono, heterociclilalquinilo de 2 a 6 átomos de carbono, arilo o arilalquilo de 1 a 6 átomos de carbono, arilalquenilo de 2 a 6 átomos de carbono, arilalquinilo de 2 a 6 átomos de carbono, o R1 y R2 , R1 y R2 , R1 y R2 o R1 y R2 , tomados juntos con los dos átomos de carbono a los cuales están unidos, 55 son un sistema anular carbocíclico o heterocíclico, o R1 y R1 o R2 y R2 tomados juntos con el átomo de carbono al cual están unidos, son un sistema anular carbocíclico o heterocíclico, 60 con la condición de que al menos uno de R1 , R1 , R2 y R2 no es H, R3 y R4 , independientemente entre sí son H o significan un alcanoilo, con la condición de que R3 y R4 no sean los dos H, 65 el cual proceso está caracterizado porque comprende los pasos de: 2
  • 3. ES 2 198 244 T3 (a) tratamiento del 1,2-epóxido de fórmula 5 10 en donde R1 , R1 , R2 , R2 son como se ha indicado más arriba, con una amina de fórmula R5 NHR6 en donde R5 y R6 independientemente entre sí son H o un substituyente de un grupo amino, con la condición de que R5 y R6 no sean los dos H, 15 con lo cual se forma un 2-aminoalcohol de fórmula 20 25 en donde R1 , R1 , R2 , R2 , R5 y R6 son como se ha indicado más arriba. (b) conversión del 2-aminoalcohol de fórmula (III) en un 2-aminoalcohol de fórmula 30 35 40 en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba. c) transformación de este 2-aminoalcohol de fórmula (IV) en un compuesto 1,2-diamino de fórmula 45 50 55 en donde R1 , R1 , R2 , R2 , R5 y R6 son como más arriba. d) acilación de la función amino libre en la posición 1 para formar un compuesto 1,2-diamino acilado de fórmula 60 65 3
  • 4. ES 2 198 244 T3 en donde R1 , R1 , R2 , R2 , R3 , R4 , R5 y R6 son como se ha indicado más arriba, y finalmente e) liberación del grupo amino en la posición 2, y si es necesario, 5 transformación posterior del compuesto 1,2-diamino resultante de fórmula (I), en una sal de adición farmacéutica- mente aceptable. El término “alquilo” significa un grupo alquilo saturado de cadena lineal o ramificada de 1 a 20, de preferencia de 1 a 12 átomos de carbono, el cual puede llevar uno o más substituyentes. 10 El término “alquenilo” significa un grupo alquenilo de cadena lineal o ramificada de 2 a 20, de preferencia de 2 a 12 átomos de carbono, el cual puede llevar uno o más substituyentes. El término “alquinilo” significa un grupo alquinilo de cadena lineal o ramificada de 2 a 20, de preferencia de 2 a 15 12 átomos de carbono, el cual puede llevar uno o más substituyentes. El término “cicloalquilo” significa un grupo hidrocarburo cíclico saturado de 3 a 12, de preferencia de 5 a 7 átomos de carbono, el cual puede llevar uno o más substituyentes. 20 El término “arilo” significa un grupo mononuclear o dinuclear aromático que puede llevar uno o más substituyentes, tales como por ejemplo, fenilo, fenilo substituido, naftilo o naftilo substituido. El término “heterociclilo” significa un grupo monocíclico o bicíclico, saturado o sin saturar, con 1 ó 2 átomos de nitrógeno, azufre y/o oxígeno, tales como por ejemplo piranilo, dihidropiranilo, tetrahidropiranilo, tiopiranilo, isoben- 25 zofuranilo, furanilo, tetrahidrofuranilo, tiofuranilo, dihidrotiofuranilo, benzo[b]dihidrofuranilo, tetrahidrotiofuranilo, tioxanilo, dioxanilo, ditianilo, cromanilo, isocromanilo, ditiolanilo, piridilo, piperidilo, imidazolidinilo, pirrolidinilo, quinolilo o isoquinolilo, los cuales pueden llevar uno o más substituyentes. El término “sistema anular carbocíclico” significa un grupo alquilo cíclico con 3 a 12, de preferencia 5 a 7, áto- 30 mos de carbono, el cual puede incluir uno o dos enlaces carbono-carbono dobles, y el cual puede llevar uno o más substituyente, tales como por ejemplo ciclopenteno, ciclopenteno substituido, ciclohexeno, ciclohexeno substituido, ciclohepteno o ciclohepteno substituido. El término “sistema anular heterocíclico” significa un grupo monocíclico o bicíclico de 1 ó 2 átomos de nitró- 35 geno, azufre y/o oxígeno, el cual puede incluir uno o dos dobles enlaces y llevar uno o más substituyentes como se ha ejemplificado más arriba con el término “heterociclilo”, por ejemplo tetrahidropirano, dihidropirano, dihidro- pirano substituido, tetrahidrofurano, isobenzotetrahidrofurano, tioxano, 1-4-dioxano, ditiano, ditiolano, piperidina, o piperazina. 40 Substituyentes apropiados de los grupos mencionados más arriba son aquellos que son inertes en las reacciones implicadas. Ejemplos de substituyentes adecuados sobre dichos alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo-alqui- lo inferior, cicloalquilo-alquenilo inferior, cicloalquilo-alquinilo inferior, heterociclilo, heterociclilo-alquilo inferior, 45 heterociclilo-alquenilo inferior, heterociclilo-alquinilo inferior, arilo o arilo-alquilo inferior, arilo-alquenilo inferior, arilo-alquinilo inferior, son alquilo inferior, alcoxilo inferior, carboxilato de alquilo inferior, ácido carboxílico, carbo- xamida, N-(mono/di-alquilo inferior)-carboxamida. Ejemplos de substituyentes adecuados sobre dichos sistemas anulares carbocíclico o heterocíclico son alquilo de 50 1 a 12 átomos de carbono, alquenilo de 2 a 12 átomos de carbono, alquinilo de 2 a 12 átomos de carbono, alcoxilo de 1 a 12 átomos de carbono, carboxilato de alquilo de 1 a 12 átomos de carbono, ácido carboxílico, carboxamida, N-(mono/di-alquilo de 1 a 12 átomos de carbono)-carboxamida. Los substituyentes preferidos son alquilo inferior, alquenilo inferior, alquinilo inferior, alcoxilo inferior, ácido carboxílico carboxilato de alquilo inferior, carboxamida, N-(mono/di-alquilo inferior)-carboxamida. 55 El término “inferior” significa aquí un grupo de 1-6, de preferencia 1-4 átomos de carbono. Ejemplos de grupos alquilo inferior son metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec.-butilo, terc.-butilo, pentilo y sus isóme- ros y hexilo y sus isómeros. Ejemplos de grupos alcoxilo inferior son metoxilo, etoxilo, propoxilo, isopropoxilo, n- butoxilo, iso-butoxilo, sec-butoxilo, terc.-butoxilo y 1-etil-propoxilo. Ejemplos de carboxilatos de alquilo inferior son 60 carboxilato de metilo, carboxilato de etilo, carboxilato de propilo, carboxilato de isopropilo y carboxilato de butilo. Ejemplos de grupos alcanoilo inferior son acetilo, propionilo y butirilo. El término “substituyente de un grupo amino” se refiere aquí a cualesquiera substituyentes convencionalmente empleados, como se ha descrito en Green, T., “Protective Groups in Organic Synthesis” (“Grupos de protección en 65 síntesis orgánica”), capítulo 7. John Wiley and Sons, Inc., 1991, 315-385, incorporado aquí como referencia. Tales substituyentes preferidos son acilo, alquilo, alquenilo, alquinilo, arilo-alquilo inferior, sililo, metilo, en donde sililo está trisubstituido con alquilo inferior, alquenilo inferior, alquinilo inferior y/o arilo. Ventajosamente, la reacti- 4
  • 5. ES 2 198 244 T3 vidad del grupo amino puede inhibirse también mediante protonación p. ej., con ácidos Lewis, incluyendo H+ . El término “acilo” significa alcanoilo, de preferencia alcanoilo inferior, alcoxi-carbonilo, de preferencia alcoxi- carbonilo inferior, ariloxi-carbonilo o aroilo como p. ej., benzoilo. 5 En una versión preferida, la invención comprende un procedimiento para la preparación de derivados del ácido 4,5-diamino-shikímico de fórmula 10 15 y sales de adición farmacéuticamente aceptables del mismo, en donde 20 R11 es un grupo alquilo opcionalmente substituido, R12 es un grupo alquilo y R3 y R4 independientemente entre sí son H o un substituyente de un grupo amino, con la condición de que R3 y R4 no son los dos H, a partir de un óxido de ciclohexeno de fórmula 25 30 en donde R11 y R12 son como se ha indicado más arriba. 35 El término alquilo tiene en R11 el significado de un grupo alquilo de cadena lineal o ramificada de 1 a 20 átomos de carbono, principalmente de 1 a 12 átomos de carbono. Ejemplos de tales grupos alquilo son metilo, etilo, n-propilo, i-propilo, n-butilo, i-butilo, terc.-butilo, pentilo y sus isómeros, hexilo y sus isómeros, heptilo y sus isómeros, octilo y sus isómeros, nonilo y sus isómeros, decilo y sus isómeros, undecilo y sus isómeros y dodecilo y sus isómeros. 40 Este grupo alquilo puede substituirse con uno o más substituyentes como se ha definido p. ej., en WO 98/07685. Substituyentes adecuados son alquilo de 1 a 20 átomos de carbono (como se ha definido más arriba), alquenilo de 2 a 20 átomos de carbono, cicloalquilo de 3 a 6 átomos de carbono, hidroxilo, alcoxilo de 1 a 20 átomos de carbono, alcoxicarbonilo de 1 a 20 átomos de carbono, F, Cl, Br y I. 45 El significado preferido para R11 es 1-etilpropilo. R12 es aquí un grupo alquilo de cadena lineal o ramificada de 1 a 12 átomos de carbono, principalmente de 1 a 6 átomos de carbono como se ha ejemplificado más arriba. 50 El significado preferido para R12 es etilo. El término substituyente de un grupo amino en R3 y R4 es como se ha definido más arriba. Substituyentes adecuados de grupos amino vienen dados también en la patente WO 98/07685. 55 Substituyentes preferidos de un grupo amino para R3 y R4 son grupos alcanoilo, más preferido alcanoilo inferior de 1 a 6 átomos de carbono tales como hexanoilo, pentanoilo, butanoilo (butirilo), propanoilo (propionilo), etanoilo (acetilo) y metanoilo (formilo). El grupo alcanoilo preferido y por lo tanto el significado preferido para R3 es acetilo y para R4 es H. 60 El compuesto 1,2-diamino de fórmula (I) más preferido o derivado del ácido 4,5-diamino-shikímico de fórmula (VII), es por lo tanto el éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en- carboxílico o el fosfato del éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1- en-carboxílico (1:1). El 1,2-epóxido más preferido de fórmula (II) u óxido de ciclohexeno de formula (VIII) es por lo 65 tanto el éster etílico del ácido (1S,5R,6R)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico. Paso a) 5
  • 6. ES 2 198 244 T3 El paso a) comprende el tratamiento del 1,2-epóxido de fórmula (II) con una amina de fórmula R5 NHR6 y la formación del respectivo 2-aminoalcohol de fórmula (III). La amina de fórmula R5 NHR6 del paso (a) es una amina primaria o secundaria que demuestra tener reactividad 5 para la apertura del anillo 1,2-epóxido. R5 y R6 en la amina de fórmula R5 NHR6 son principalmente, alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono, opcionalmente bencilo substituido o silil metilo trisubstituido o heterociclil metilo. 10 Alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono es de preferencia alilo o un análogo del mismo tal como alilo o un grupo alilo substituido en el carbono α, β o γ, por un grupo alquilo inferior, alquenilo inferior, alquinilo inferior o grupo arilo. Ejemplos adecuados son p. ej., 2-metilalilo, 3,3-dimetilalilo, 2-fenilalilo o 3-metil- alilo. Aminas preferidas de fórmula R5 NHR6 con el significado de un grupo alquenilo de cadena lineal o ramificada de 1 a 6 átomos de carbono son por lo tanto alilamina, dialilamina o 2-metilalilamina, en donde alilamina es la más 15 preferida. Bencilo opcionalmente substituido es de preferencia bencilo o análogos de bencilo que están o bien substituidos en el átomo de carbono α con uno o dos alquilo inferior, alquenilo inferior, alquinilo inferior, o grupos arilo o subs- tituido en el anillo de benceno con uno o más grupos alquilo inferior, alquenilo inferior, alquinilo inferior, alcoxilo 20 inferior o grupos nitro. Ejemplos adecuados son α-metilbencilo, α-fenilbencilo, 2-metoxibencilo, 3-metoxi-bencilo, 4-metoxibencilo, 4-nitrobencilo o 3-metilbencilo. Aminas preferidas de fórmula R5 NHR6 con el significado de un grupo bencilo opcionalmente substituido, son bencilamina, dibencilamina, metilbencilamina, 2-metoxibencilamina, 3-metoxibencilamina o 4-metoxibencilamina, en donde bencilamina es la más preferida. 25 Silil metilo trisubstituido es de preferencia silil metilo trisubstituido con grupos arilo, alquilo inferior, alquenilo inferior y/o alquinilo inferior. Ejemplos adecuados son trimetilsililo, trietilsililo, difenilmetilsililo, fenildimetilsililo o terc.-butildimetilsililo. Una amina preferida de fórmula R5 NHR6 con el significado de silil metilo trisubstituido es la trimetilsilil metilamina. 30 Heterociclil metilo es de preferencia heterociclil metilo en donde cualquiera de los grupos metilo está substituido con uno o dos grupos alquilo inferior, alquenilo inferior, alquinilo inferior o grupos arilo o el anillo heterocíclico está substituido con uno o más grupos alquilo inferior, alquenilo inferior, alquinilo inferior o alcoxilo inferior. Ejemplos adecuados son furfurilo o picolilo. 35 La amina más preferida de fórmula R5 NHR6 es la alilamina. La amina de fórmula R5 NHR6 se emplea generalmente en una cantidad molar de 1,0 a 3,0 equivalentes, de prefe- rencia de 1,5 a 2,5 equivalentes, basados sobre un equivalente del 1,2-epóxido de fórmula (II). 40 El paso (a) puede efectuarse sin un catalizador a presión normal o elevada pero, sin embargo, el tiempo de reacción del paso (a) puede en general reducirse significativamente en presencia de un catalizador. De preferencia el catalizador es un catalizador metálico o un haluro de magnesio. 45 Los catalizadores metálicos adecuados conocidos para catalizar las reacciones de apertura de anillos de 1,2-epó- xidos con aminas son p. ej., compuestos lantánidos tales como trifluormetansulfonatos de lantánido como Yb(OTf)3 , Gd(OTf)3 y Nd(OTf)3 (M. Chini y col., Tetrahedron Lett., 1994, 35, 433-436), yoduros de samario (P. Van de Weghe, Tetrahedron Lett., 1995, 36, 1649-1652) u otros catalizadores de metales tales como reactivos de cuprato de amida (Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1993, 1201-1203) y Ti(O-i-Pr)4 (M. Caron y col., J. Org. Chem., 1985, 50 50, 1557 y M. Müller y col., J. Org. Chem., 1998, 68, 9753). Por regla general, la apertura de un anillo con catalizadores metálicos se efectúa en presencia de un disolvente inerte p. ej., en tetrahidrofurano a temperaturas entre 20ºC y 150ºC. 55 Se ha descubierto que los haluros de magnesio son los catalizadores preferidos para la apertura del anillo de los 1,2-epóxidos con aminas. El término “derivado de haluro de magnesio” significa aquí cloruro de magnesio, bromuro de magnesio o yoduro de magnesio anhidros o hidratados, o un eterato en particular un eterato de dimetilo, un eterato de dietilo, un eterato de dipropilo, o un eterato de diisopropilo de los mismos. 60 El bromuro de magnesio dietil eterato, es el catalizador más preferido. El haluro de magnesio se usa adecuadamente en una cantidad molar de 0,01 a 2,0 equivalentes, de preferencia de 0,15 a 0,25 equivalentes, basados sobre un equivalente de 1,2-epóxido de fórmula (II). 65 Un disolvente adecuado para la catálisis del haluro de magnesio es un disolvente prótico tal como el etanol o meta- nol; o de preferencia un disolvente aprótico tal como el tetrahidrofurano, dioxano, terc.-butil metil éter, diisopropiléter, acetato de isopropilo, acetato de etilo, acetato de metilo, acetonitrilo, benceno, tolueno, piridina, cloruro de metileno, dimetilformamida, N-metilformamida y sulfóxido de dimetilo o mezclas de los mismos. 6
  • 7. ES 2 198 244 T3 El disolvente aprótico se selecciona de preferencia entre el tetrahidrofurano, diisopropiléter, terc.-butil metil éter, acetonitrilo, tolueno o una mezcla de los mismos, con mayor preferencia una mezcla de terc.-butil metil éter y aceto- nitrilo. 5 La catálisis con haluro de magnesio se efectúa ventajosamente a temperaturas entre 0ºC y 20ºC, de preferencia entre 50ºC y 150ºC. El respectivo 2-aminoalcohol de fórmula (III) puede ser aislado después de que la reacción haya acabado, y si se desea, puede ser purificado mediante métodos conocidos por los expertos en la especialidad. 10 Paso b) El paso b) comprende la conversión del 2-aminoalcohol de fórmula (III) en 2-aminoalcohol de fórmula (IV). 15 La conversión en el paso b), depende de los radicales R5 y R6 . Si R5 y R6 independientemente entre sí, son alquenilo de 2 a 6 átomos de carbono, de cadena lineal o ramificada, la conversión es una isomerización/hidrólisis efectuada en presencia de un catalizador metálico. 20 Si R5 y R6 independientemente entre sí, son bencilo o heterociclil metilo opcionalmente substituidos, la conversión es una hidrogenolisis efectuada con hidrógeno en presencia de un catalizador metálico o Si R5 y R6 independientemente entre sí son silil metilo trisubstituido, la conversión es una escisión oxidante. 25 El hecho de que el significado preferido para R5 y R6 sea alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono como se ha descrito más arriba en el paso a) isomerización/hidrólisis, es el método preferido para la conversión en el paso b). La isomerización/hidrólisis tiene lugar en consecuencia en presencia de un catalizador metálico adecuado, princi- 30 palmente un catalizador de un metal precioso tal como el Pt, Pd o Rh, bien aplicados sobre un soporte inerte como p. ej., carbón vegetal o alúmina, o bien en forma de complejo. El catalizador preferido es de 5 a 10% de paladio sobre carbón (Pd/C). El catalizador se emplea adecuadamente en una cantidad del 2 al 30% en peso, de preferencia del 5 al 20% en peso 35 con respecto al 2-aminoalcohol de fórmula (III). La isomerización/hidrólisis se efectúa ventajosamente en un disolvente acuoso. El propio disolvente puede ser prótico o aprótico. Disolventes próticos adecuados son p. ej., alcoholes tales como el metanol, etanol o isopropanol. Disolventes apróticos adecuados son p. ej., el acetonitrilo o el dioxano. 40 La temperatura de reacción se escoge de preferencia en el margen de 20ºC y 150ºC. Se ha descubierto que la isomerización/hidrólisis se efectúa de preferencia en presencia de una amina primaria. 45 Las aminas primarias empleadas adecuadamente son la etilendiamina, etanolamina o derivados adecuados de estas aminas primarias mencionadas. Una amina primaria particularmente interesante es la etanolamina. La amina primaria se emplea adecuadamente en una cantidad de 1,0 a 1,25 equivalentes, de preferencia de 1,05 a 1,15 equivalentes con respecto al 2-aminoalcohol de fórmula (III). 50 Como se ha mencionado más arriba, si R5 y R6 independientemente entre sí, son bencilo o heterociclil metilo opcionalmente substituidos, la conversión es una hidrogenolisis realizada en presencia de un catalizador metálico con hidrógeno. Las condiciones de hidrogenolisis son ya bien conocidas en la técnica y están descritas p. ej., en Green, T., “Protective Groups in Organic Synthesis”, (“Grupos de protección en síntesis orgánica”), capítulo 7, John Wiley and 55 Sons, Inc., 1991, 364-365. La hidrogenolisis tiene lugar por lo tanto en presencia de un catalizador metálico adecuado, principalmente un catalizador de un metal precioso tal como el Pt, Pd o Rh aplicado bien sobre un soporte inerte tal como el carbón vegetal o la alúmina, o bien en forma de complejo. El catalizador preferido es el 5 a 10% de paladio sobre carbón 60 (Pd/C). El catalizador se emplea adecuadamente en una cantidad del 2 al 30% en peso, de preferencia del 5 al 20% en peso con respecto al 2-aminoalcohol de fórmula (III). La hidrogenolisis se efectúa ventajosamente en un disolvente acuoso. El propio disolvente puede ser prótico o aprótico. Disolventes próticos adecuados son p. ej., los alcoholes como el metanol, etanol o isopropanol. Disolventes 65 apróticos adecuados son p. ej., el acetonitrilo o el dioxano. La temperatura de reacción se escoge de preferencia en el margen de 20ºC y 150ºC. Como se ha mencionado más arriba, si R5 y R6 independientemente entre sí, son silil metilo trisubstituido, la 7
  • 8. ES 2 198 244 T3 conversión es una escisión oxidante. Principalmente la reacción se efectúa en presencia de una haloimida. 5 Haloimidas adecuadas para esta reacción son la N-clorosuccinimida, N-bromosuccinimida o la N-clorobencensul- fonamida (cloramina-T). La reacción puede efectuarse en presencia de un disolvente inerte a temperaturas de 20ºC a 150ºC. 10 Con el fin de hidrolizar completamente cualquier imina que pueda haberse formado en el paso b) la mezcla de reacción se trata habitualmente con un ácido p. ej., con ácido sulfúrico o ácido clorhídrico. Paso c) 15 El paso c) comprende la transformación del 2-aminoalcohol de fórmula (IV) en un compuesto 1,2-diamino de fórmula (V) En detalle el paso c) comprende los pasos, 20 (c1) introducción de un grupo amino substituyente en el 2-aminoalcohol de fórmula (IV) obtenido en el paso (b), (c2) transformación del grupo hidroxilo en un grupo lábil, y (c3) separación del substituyente del grupo amino y transformación del producto de reacción empleando una amina 25 de fórmula R5 NHR6 , en donde R5 y R6 son como se ha indicado más arriba, en un compuesto 1,2-diamino de fórmula (V). Paso c1) 30 El término “grupo amino substituido” empleado como se ha descrito más arriba se refiere a cualquier substituyente convencionalmente empleado para inhibir la reactividad del grupo amino. Substituyentes adecuados se describen en Green T., “Protective Groups in Organic Synthesis” (“Grupos de protección en síntesis orgánica”), capítulo 7, John Wiley and Sons, Inc., 1991, 315-385. 35 Particularmente interesante es la conversión del grupo amino con un compuesto que contiene un grupo carbonilo para formar una imina, que se conoce con el nombre de “base Schiff”. También son de interés los substituyentes acilo que se forman tratando el 2-aminoalcohol de fórmula (IV) con un agente acilante. 40 La formación de una base Schiff es el método preferido para la conversión del grupo amino libre en el grupo amino substituido del 2-aminoalcohol de fórmula (IV). Los compuestos carbonilo adecuados para formar una base Schiff son o bien aldehidos o bien cetonas. Tanto los 45 aldehidos como las cetonas pueden ser alifáticos, alicíclicos o aromáticos, de preferencia aromáticos. Ejemplos de aldehidos alifáticos adecuados son el propionaldehido, 2-metilpentenal, 2-etilbutiraldehido, pivalde- hido, glioxalato de etilo y cloral. Un ejemplo de un aldehido alicíclico es el ciclopropan carbaldehido. Ejemplos de aldehidos aromáticos adecuados son el furfural, 2-piridincarboxilaldehido, 4-metoxibenzaldehido, 3-nitrobenzaldehi- 50 do, un sulfonato de benzaldehido, un sulfonato de furfural y benzaldehido. Un aldehido aromático particularmente interesante es el benzaldehido. Ejemplos de cetonas alifáticas adecuadas son la 1,1-dimetoxiacetona y la 1,1-dietoxiacetona. Ejemplos de cetonas alicíclicas adecuadas son la ciclopentanona, ciclohexanona, cicloheptanona, 2-etil ciclohexanona y 2-metil-ciclopen- 55 tanona. Un ejemplo de una cetona aromática es la acetofenona. El compuesto que contiene carbonilo más preferido, es el benzaldehido. El compuesto que contiene carbonilo se emplea principalmente en una cantidad de 1,0 a 1,50, de preferencia 1,10 60 a 1,40 equivalentes con respecto al 2-aminoalcohol de fórmula (IV). La formación de una base Schiff se efectúa ventajosamente en un disolvente prótico o aprótico, de preferencia en un disolvente aprótico. 65 Disolventes apróticos adecuados son por ejemplo el tetrahidrofurano, dioxano, terc.-butil metil éter, diisopropiléter, acetato de isopropilo, acetato de etilo, acetato de metilo, acetonitrilo, benceno, tolueno, piridina, cloruro de metileno, dimetilformamida, N-metilformamida y sulfóxido de dimetilo. Un disolvente aprótico preferido es el terc.-butil metil éter. 8
  • 9. ES 2 198 244 T3 El agua formada se elimina habitualmente mediante destilación azeotrópica. La formación de la base Schiff se efectúa ventajosamente a temperaturas entre 30ºC y 180ºC, de preferencia entre 60ºC y 140ºC. 5 Si el paso c1) comprende la acilación, como se ha mencionado más arriba, el 2-aminoalcohol de fórmula (IV) se transforma en un 2-acil aminoalcohol. El agente acilante puede ser un ácido carboxílico o un derivado activado del mismo, tal como un haluro de acilo, un 10 éster de ácido carboxílico o un anhídrido de ácido carboxílico. Agentes acilantes adecuados son el cloruro de acetilo, cloruro de trifluoracetilo, cloruro de benzoilo o anhídrido acético. Un grupo acilo preferido es el formilo. Un agente formilante adecuado es por lo tanto p. ej., un ácido fórmico mezclado con anhídrido tal como por ejemplo ácido fórmico anhídrido acético, o un éster de ácido fórmico, tal como el formiato de etilo o formiato de metilo o un éster activo de ácido fórmico tal como el formiato de cianometilo. 15 El agente acilante se emplea adecuadamente en una cantidad de 1,0 a 1,3, de preferencia 1,1 a 1,2 equivalentes respecto al 2-aminoalcohol de fórmula (IV). La elección de disolvente no es crítica en tanto no interfiera con los reactantes. Se ha descubierto que p. ej., 20 el acetato de etilo es un disolvente adecuado. La reacción puede sin embargo realizarse sin disolvente, a saber, en presencia del respectivo agente acilante, aplicado en exceso. La temperatura de reacción está habitualmente en el margen de -20ºC a 100ºC. 25 Paso c2) El paso (c2) comprende la transformación del grupo hidroxilo en un grupo lábil, formando con ello un 2-aminoal- cohol O-substituido. 30 Compuestos y métodos para efectuar esta transformación son ya bien conocidos en la técnica y están descritos p. ej., en “Advanced Organic Chemistry” (“Química Orgánica Moderna”), ed. March J., John Wiley & Sons, Nueva York, 1992, 353,357. Se ha descubierto que el grupo hidroxilo se transforma de preferencia en un éster de ácido sulfónico. 35 Agentes habitualmente empleados para la producción de ésteres de ácido sulfónico p. ej., son los haluros o los anhídridos de los siguientes ácido sulfónicos: ácido metansulfónico, ácido p-toluensulfónico, ácido p-nitrobencensul- fónico, ácido p-bromobencensulfónico o ácido trifluormetansulfónico. 40 Un agente sulfonilante preferido es un haluro o el anhídrido del ácido metansulfónico como p. ej., el cloruro de metansulfonilo. El agente sulfonilante se añade principalmente en una cantidad de 1,0 a 2,0 equivalentes con respecto a un equiva- lente del 2-aminoalcohol de fórmula (IV). 45 Habitualmente la reacción en el paso c2) tiene lugar en un disolvente inerte, de preferencia en el mismo disolvente que se ha empleado en el paso previo c1) y a una temperatura de reacción de -20ºC a 100ºC. Paso c3) 50 El paso (c3) comprende la separación del substituyente del grupo amino y la transformación del producto de reacción empleando una amina de fórmula R5 NHR6 en donde R5 y R6 son como se ha indicado más arriba, en el compuesto 1,2-diamino de fórmula (V). 55 En el curso de esta reacción se forma un producto intermedio de aziridina de fórmula 60 65 en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba. 9
  • 10. ES 2 198 244 T3 Esta aziridina puede aislarse, pero por regla general sin aislarla, se transforma posteriormente en el compuesto 1,2- diamino de fórmula (V). La amina de fórmula R5 NHR6 es muy igual a la aplicada en el paso a). También son aplicables las mismas prefe- 5 rencias que para la amina en el paso a). De acuerdo con ello, la amina más preferida de fórmula R5 NHR6 empleada para el paso c3), es la alilamina. El curso de la reacción en el paso c3) y las condiciones de la respectiva reacción dependen principalmente del tipo de protección del grupo amino en el paso c2). 10 Con una base Schiff la transformación se efectúa directamente con la amina de fórmula R5 NHR6 , pero cuando tiene un grupo acetilo, antes de la transformación con la amina de fórmula R5 NHR6 tiene lugar primero un tratamiento de desacilación. 15 En el caso de una base Schiff, la amina de fórmula R5 NHR6 se emplea en una cantidad de por lo menos dos equivalentes, de preferencia de 2,0 a 5,0, con mayor preferencia de 2,5 a 4,0 equivalentes con respecto a un equivalente del 2-aminoalcohol de fórmula (IV). El disolvente empleado en este paso de reacción (c3) es por regla general el mismo del paso previo c2). De acuerdo 20 con ello, pueden emplearse disolventes próticos o apróticos, de preferencia disolventes apróticos, tales por ejemplo tetra-hidrofurano, dioxano, terc.-butil metil éter, diisopropiléter, acetato de isopropilo, acetato de etilo, acetato de metilo, acetonitrilo, benceno, tolueno, piridina, cloruro de metileno, dimetilformamida, N-metilformamida y sulfóxido de dimetilo. Un disolvente preferido es el terc.-butil metil éter. 25 En el caso de una base Schiff, la conversión se efectúa ventajosamente a una temperatura de 60ºC a 170ºC, de preferencia de 90ºC a 130ºC y aplicando una presión desde la presión normal a 10 bars. En el caso de que el grupo amino substituido sea acilo, antes del tratamiento con la amina de fórmula R5 NHR6 tiene que efectuarse una desacilación como se ha mencionado más arriba. 30 La desacilación puede efectuarse fácilmente en condiciones ácidas p. ej., empleando ácido sulfúrico, ácido metan- sulfónico o ácido p-toluensulfónico. Con ello se forma la respectiva sal de sulfonato o sulfato del 2-aminoalcohol O-substituido. 35 La amina de fórmula R5 NHR6 se emplea a continuación adecuadamente en una cantidad de 1,0 a 5,0 equivalentes, de preferencia de 2,0 a 4,0 equivalentes con respecto a un equivalente del 2-aminoalcohol de fórmula (IV). La selección de los disolventes es aproximadamente la misma que para la conversión de la base Schiff, de prefe- 40 rencia acetato de etilo o terc.-butil metil éter. La temperatura de reacción se escoge entre 60ºC y 170ºC, de preferencia entre 90ºC y 130ºC y la presión se selecciona entre la presión normal y 10 bars. 45 Cuando se opera con una base Schiff, el paso c) puede efectuarse eficientemente efectuando la síntesis en una marmita, sin aislar los compuestos intermedios. Paso d) 50 El paso d) comprende la acilación de la función amino libre en la posición 1 para formar un compuesto 1,2-diamino acilado de fórmula (VI). La acilación puede efectuarse en condiciones ácidas fuertes empleando agentes acilantes ya conocidos por los expertos en la técnica. El agente acilante puede ser un ácido carboxílico alifático, o un derivado activado del mismo, 55 tal como un haluro de acilo, un éster de ácido carboxílico o un anhídrido de ácido carboxílico. Un agente acilante adecuado es de preferencia un agente acetilante tal como el cloruro de acetilo, cloruro de trifluoracetilo o anhídrido acético. Acidos fuertes empleados adecuadamente son p. ej., mezclas de ácido metansulfónico y ácido acético o ácido sulfúrico y ácido acético. 60 La acilación sin embargo puede también tener lugar en condiciones no ácidas empleando p. ej., N-acetil imidazol o N-acetil-N-metoxi acetamida. De preferencia, sin embargo la acilación tiene lugar en condiciones ácidas empleando una mezcla de 0,5 a 2,0 equivalentes de anhídrido acético, 0 a 15,0 equivalentes de ácido acético y 0 a 2,0 equivalentes de ácido metansulfónico 65 en acetato de etilo. Puede añadirse un disolvente inerte tal como el terc.-butil metil éter, pero sin embargo es posible también efectuar la reacción sin adición de ningún disolvente. 10
  • 11. ES 2 198 244 T3 La temperatura se escoge por regla general en el margen de -20ºC a 100ºC. Paso e) 5 El paso e) comprende la liberación de grupo amino de la posición 2 y, si es necesario, la transformación posterior del compuesto 1,2-diamino de fórmula (I) resultante, en una sal de adición farmacéuticamente aceptable. La liberación del grupo amino, es decir, la retirada del substituyente del grupo amino en la posición 2, tiene lugar siguiendo los mismos métodos y aplicando las mismas condiciones descritas en el paso b). 10 La conversión en el paso e), por consiguiente, es también dependiente de los radicales R5 y R6 . Por lo tanto, 15 si R5 y R6 independientemente entre sí, son alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono, la conversión es una hidrólisis efectuada en presencia de un catalizador metálico, si R5 y R6 independientemente entre sí, son opcionalmente bencilo substituido o heterociclil metilo, la conversión es una hidrogenolisis efectuada con hidrógeno en presencia de un catalizador metálico, o 20 si R5 y R6 independientemente entre sí, son silil metilo trisubstituido, la conversión es una escisión oxidante. Las mismas preferencias del paso b) son válidas para el paso e). 25 Para cualesquiera detalles complementarios, se hace referencia al paso b). Por regla general, el compuesto 1,2-diamino de fórmula (I) puede aislarse p. ej., por evaporación y cristalización, pero de preferencia se mantiene p. ej., en solución etanólica y a continuación se transforma en una sal de adición farmacéuticamente aceptable, siguiendo los métodos descritos en J. C. Rohloff y col., J. Org. Chem., 1988, 63, 4545- 30 4550; patente WO 98/07685). El término “sales de adición ácida farmacéuticamente aceptables” abarca las sales con ácidos inorgánicos y orgá- nicos, tales como el ácido clorhídrico, ácido bromhídrico, ácido nítrico, ácido sulfúrico, ácido fosfórico, ácido cítrico, ácido fórmico, ácido fumárico, ácido maleico, ácido acético, ácido succínico, ácido tartárico, ácido metansulfónico, 35 ácido p-toluensulfónico y similares. La formación de sal se efectúa de acuerdo con métodos ya conocidos de por sí, los cuales son familiares a cual- quier persona experta en la técnica. No solamente entran en consideración sales con ácidos inorgánicos sino también sales con ácidos orgánicos. Hidrocloruros, hidrobromuros, sulfatos, nitratos, citratos, acetatos, maleatos, succinatos, 40 metansulfonatos, p-toluensulfonatos y similares, son ejemplos de dichas sales. La sal de adición ácida farmacéuticamente aceptable preferida es la sal 1:1 con ácido fosfórico, la cual puede formarse de preferencia en solución etanólica a una temperatura de 50ºC a -20ºC. 45 La invención se refiere también a los siguientes nuevos compuestos intermedios: 50 55 en donde R11 y R12 son como se ha mencionado más arriba, o una sal de adición de los mismos. Un representante preferido de los compuestos de fórmula (X) es el éster etílico del ácido (3R,4S,5R)-5-amino- 3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en-carboxílico (R11 = 1-etil-propilo, R12 = etilo) 60 65 11
  • 12. ES 2 198 244 T3 5 10 en donde R5 , R6 , R11 y R12 son como se ha mencionado más arriba, o una sal de adición de los mismos. Representantes preferidos de los compuestos de fórmula (XI) son el éster etílico del ácido (3R,4S,5R)-5-alilamino- 3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico (con R11 = 1-etil-propilo, R12 = etilo, R5 = H y R6 = alilo); y el 15 éster etílico del ácido (3R,4R,5R)-5-formilamino-3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y R6 = formilo) 20 25 Compuestos de fórmula (XII) son el éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-alilamino-3-(1-etilpropo- 30 xi)-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y R6 = alilo, R3 = H, R4 = acetilo) y el éster etílico del ácido (3R,4R,5S)-4-amino-5-alilamino-3-(1-etilpropoxi)-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H, R6 = alilo, R3 = H, R4 = H) 35 40 en donde R5 , R6 , R11 y R12 son como se ha mencionado más arriba y R13 es un grupo sulfonilo, o una sal de adición 45 del mismo. Representantes preferidos de los compuestos de fórmula (XIII) son el éster etílico del ácido (3R,4R,5R)-5-formil- amino-4-metansulfonil-3-(1-etilpropoxi)-ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y R6 = formilo, R13 = metansulfonilo) y el metansulfonato (1:1) del éster etílico del ácido (3R,4R,5R)-5-amino-4- 50 metansulfonil-3-(1-etilpropoxi)ciclohex-1-en carboxílico (con R11 = 1-etilpropilo, R12 = etilo, R5 = H y R6 = H, R13 = metansulfonilo). La invención se ilustra a continuación con los siguientes ejemplos. 55 Ejemplo 1 Preparación del éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxíli- co, a partir del éster etílico del ácido (1S,5R,6R)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico. 60 (a) Preparación del éster etílico del ácido (3R,4S,5R)-5-alilamino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encar- boxílico En un matraz de fondo redondo de 4 bocas de 2,5 litros, equipado con un condensador de reflujo, un termómetro, un agitador mecánico y una entrada de gas inerte, se disolvieron 254,3 g (1,0 moles) del éster etílico del ácido (1S,5R,6S)- 65 5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico en atmósfera de argón con agitación, en 900 ml de terc.-butil metil éter y 100 ml de acetonitrilo, con lo cual la temperatura descendió hasta aproximadamente 10ºC. A la solución transparente de color amarillento se añadieron 51,7 g (0,2 moles) de bromuro de magnesio dietil eterato, 12
  • 13. ES 2 198 244 T3 seguido de 150 ml (2,0 moles) de alilamina con lo que la temperatura aumentó hasta aproximadamente 20ºC. La suspensión de color amarillo se calentó a 55ºC con lo que se logró la disolución completa después de 1,5 horas. La solución transparente de color amarillo se calentó a reflujo durante 15 horas. La solución turbia de color amarillento se enfrió a aproximadamente 30ºC y se agitó vigorosamente con 1000 ml de sulfato de amonio acuoso 1M durante 15 5 minutos con lo que se formó una mezcla transparente de dos fases después de una turbidez inicial. La fase orgánica se separó, se filtró y se evaporó en un evaporador rotativo a 48ºC/340 mbars hasta un volumen de aproximadamente 580 ml. Las partículas sólidas se filtraron y la solución de color pardo se evaporó a 48ºC/340 a 15 mbars durante 2 horas para dar como producto crudo 312,8 g (97%) del éster etílico del ácido (3R,4S,5R)-5-alilamino-3-(1-etil-propoxi)- 4-hidroxi-ciclohex-1-encarboxílico en forma de un aceite de color pardo-amarillento conteniendo aproximadamente 10 7,0% del isómero 4-alilamino-5-hidroxilo. IR (película): 2966, 1715, 1463, 1244, 1095 cm−1 ; EM (EI, 70eV): 311(M+ ), 280, 240, 210, 99 m/z. (b) Preparación del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarboxí- 15 lico En un matraz de fondo redondo de 4 bocas de 2,5 litros, equipado con un condensador de reflujo, un termómetro, un agitador mecánico y una entrada de gas inerte, se disolvieron 312,8 g del éster etílico del ácido (3R,4S,5R)-5-alila- mino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarboxílico obtenido de acuerdo con (a), se disolvieron a temperatura 20 ambiente y con agitación en atmósfera de argón, en 1560 ml de etanol. A la solución transparente de color amarillo oscuro se añadieron 66,2 g de etanolamina (d=1,015, 1,10 moles) y 31,3 g de paladio 10% sobre carbón vegetal. Se calentó la suspensión de color negro a 78ºC en el transcurso de 25 minutos y se calentó a reflujo durante 3 horas. Se enfrió la suspensión por debajo de 40ºC, se filtró a través de un filtro de papel y la torta del filtro se lavó con 100 ml de etanol. Los filtrados de color naranja combinados, se enfriaron de 0 a 5ºC, se trataron con 59,0 ml de ácido sulfúrico 25 (d=1,83, 1,10 moles) manteniendo la temperatura por debajo de 30ºC. La suspensión de color amarillo (pH=2,5) se evaporó en un evaporador rotativo a 48ºC/160 a 50 mbares y los cristales aceitosos residuales de color amarillo (956 g) se disolvieron en 1000 ml de agua desionizada y la solución de color naranja se extrajo con una mezcla de 500 ml de terc.-butil metiléter y 500 ml de n-hexano. La fase orgánica se extrajo con 260 ml de ácido sulfúrico acuoso 0,5M y las fases acuosas combinadas (pH=2,3) se enfriaron a 10ºC y se trataron, con agitación, con aproximadamente 128 ml 30 de hidróxido de potasio acuoso al 50% hasta alcanzar un pH = 9,5 manteniendo la temperatura en el margen de 5ºC a 20ºC. La fase orgánica se separó y la fase acuosa se extrajo en primer lugar con 1000 ml, a continuación dos veces con 500 ml, en total con 2000 ml de terc.-butil metil éter. Los extractos orgánicos combinados se secaron con 1000 g de sulfato de sodio y se filtraron. La torta de filtración se lavó con aproximadamente 300 ml de terc.-butil metil éter y los filtrados combinados se evaporaron en un evaporador rotativo a 48ºC/360 a 20 mbars y se secaron a 48ºC/15 mbars 35 durante 2 horas, obteniéndose el éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1- encarboxílico crudo (271,4 g) en forma de un aceite de color rojo conteniendo aproximadamente un 4% del isómero 4-amino-5-hidroxilo. IR (película): 2966, 1715, 1463, 1247, 1100 cm−1 ; EM (EI, 70eV): 280(M+ ), 240, 183, 138, 110 m/z. 40 (c1) Preparación del éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-ciclohex-1-encar- boxílico En un matraz de fondo redondo de 4 bocas de 4 litros, equipado con un purgador Dean-Strap, un termómetro, un 45 agitador mecánico y una entrada de gas inerte, se disolvieron 271,4 g del éster etílico del ácido (3R,4S,5R)-5-ami- no-3-(1-etil-propoxi)-4- hidroxi-ciclohex-1-encarboxíli-co obtenido de acuerdo con (b), se disolvieron a temperatura ambiente y con agitación en atmósfera de argón, en 2710 ml de terc.-butil metil éter. La solución de color rojo se trató con 102,1 ml de benzaldehido (d=1,05, 1,01 moles) y se calentó a reflujo durante 2 horas en cuyo tiempo se separaron aproximadamente 9 ml de agua. En el curso de 30 minutos se destilaron 1350 ml de terc.-butil metil éter. La 50 solución de color rojo conteniendo el compuesto intermedio se enfrió a 0ºC-5ºC y se trató con 167,3 ml de trietilamina (d=0,726, 1,18 moles). A continuación se añadieron gota a gota 77,7 ml de cloruro de metansulfonilo (d=1,452, 0,99 moles) manteniendo la temperatura en el margen de 0ºC a 5ºC en el curso de 85 minutos durante cuyo tiempo se for- mó un precipitado de color naranja. Después de agitar durante 45 minutos sin enfriamiento, el análisis HPLC detectó aproximadamente un 15% del compuesto intermedio, el éster etílico del ácido (3R,4R,5S)-5-(benciliden-amino)-4- 55 hidroxi-ciclohex-1-encarboxílico. Después de la adición gota a gota de 7,8 ml de cloruro de metansulfonilo (d=1,452, 0,09 moles) a temperatura ambiente y agitación durante 10 minutos, el análisis HPLC detectó aproximadamente un 8% del compuesto intermedio indicado más arriba. Después de la adición gota a gota a temperatura ambiente de 7,8 ml de cloruro de metansulfonilo (d=1,452, 0,09 moles) y agitación durante 15 minutos, el análisis HPLC detectó menos de un 1% de dicho compuesto intermedio. La suspensión de color naranja se filtró y la torta del filtro de color amarillo- 60 naranja se lavó con 300 ml de terc.-butil metil éter. Los filtrados combinados (1291 g) que contenían el compuesto intermedio éster etílico del ácido (3R,4R,5S)-5-(benciliden-amino)-4-mesiloxi-ciclohex-1-en carboxílico, se trataron con 300,5 ml de alilamina (d=0,76, 4,0 moles) y la solución transparente de color rojo se calentó en un autoclave de 3 litros en atmósfera de argón a 1 bar con agitación a 110ºC-111ºC en el curso de 45 minutos, a continuación se agitó a esta temperatura y a una presión de 3,5 a 4,5 bars durante 15 horas, se enfrió a menos de 45ºC durante 1 hora. La 65 solución de color rojo se evaporó en un evaporador rotativo a 48ºC/600 a 10 mbars y el gel de color rojo del residuo (566 g) se disolvió agitando fuertemente en una mezcla de dos fases de 1000 ml de ácido clorhídrico 2N y 1000 ml de acetato de etilo. La fase orgánica se extrajo con 1000 ml de ácido clorhídrico 2N, las fases acuosas combinadas se lavaron con 500 ml de acetato de etilo, se enfriaron a 10ºC y se trataron agitando con aproximadamente 256 ml de 13
  • 14. ES 2 198 244 T3 hidróxido de potasio acuoso al 50% hasta que se alcanzó un pH = 10,1 manteniendo la temperatura en el margen de 10ºC a 20ºC. La fase orgánica se separó y la fase acuosa se extrajo en primer lugar con 1000 ml, a continuación con 500 ml, en total con 1500 ml de terc.-butil metil éter y los extractos combinados se evaporaron en un evaporador rota- tivo a 48ºC/340 a 10 mbars obteniéndose el éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)- 5 ciclohex-1-encarboxílico crudo (277,9 g) en forma de un aceite de color rojo pardo. IR (película): 2966, 1715, 1463, 1244, 1090 cm−1 ; EM (EI, 70eV): 310(M), 222, 136, 98 m/z. (c2) Preparación de la sal de sodio del ácido (1R,5R,6S)-2-{[3-etoxicarbonil-5-(1-etil-propoxi)-6-hidroxiciclohex- 10 3- enilimino]-metil}-bencenosulfónico A una suspensión en agitación de 27,1 g (100 mmoles) de éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etilpro- poxi)-4-hidroxiciclohexen-1-carboxílico, y 20,8 g (100 mmoles) de sal de sodio del ácido 2-formilbencensulfónico, en 270 ml de etanol, se calentó a reflujo en atmósfera de argón durante 2 horas. La mezcla de reacción turbia, de color 15 pardo, se evaporó en un evaporador rotativo y el residuo se trató dos veces con 135 ml de acetato de etilo y se evaporó en un evaporador rotativo a 50ºC hasta sequedad obteniéndose 45,88 g (99%) de la sal de sodio del ácido (1R,5R,6S)-2- {[3-etoxicarbonil-5-(1-etil-propoxi)-6-hidroxiciclohex-3- enilimino]-metil}-bencenosulfónico, en forma de un sólido amorfo de color amarillo. IR (película): 3417, 2924, 2726, 1714, 1638, 1464, 1378, 1237, 1091, 970 cm−1 ; EM (ISP- EM): 438,3 (M+ -Na) m/z. 20 Preparación del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-metansulfoniloxi-ciclohex-1-en- caroxílico A una suspensión en agitación de 9,23 g (20 mmoles) dela sal de sodio del ácido (1R,5R,6S)-2-{[3-etoxicarbonil- 25 5-(1-etil-propoxi)-6-hidroxi-ciclohex-3- enilimino]-metil}-bencenosulfónico, y 3,50 ml (25 mmoles) de trietilamina en 90 ml de acetato de etilo, se añadieron 1,80 ml (23 mmoles) de cloruro de metansulfonilo de 0 a 5ºC. La suspensión de color pardo amarillento resultante, se agitó a temperatura ambiente durante 2 horas, se trató con 2,70 ml (40 mmoles) de etilendiamina y después de 10 minutos, con 90 ml de agua. Después de agitar el sistema de 2 fases vigorosamente durante 1 hora, la fase orgánica se separó y se extrajo con 100 ml de agua y 3 veces con 100 ml 30 de solución acuosa 1M de NaHCO3 , se secó con Na2 SO4 , se filtró y se evaporó en un evaporador rotativo a 48ºC/4 mbars a sequedad obteniéndose 6,36 g (91%) del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4- metansulfoniloxi-ciclohex-1-ncarboxílico en forma de un aceite de color naranja. Se obtuvo una muestra analítica del mismo mediante columna cromatográfica sobre silica gel empleando t-BuOMe conteniendo 1% de amoníaco al 25% como eluyente. IR(película): 2966, 2936, 2878, 1711, 1653, 1463, 1351, 1246, 1172, 1068, 961 cm−1 ; EM (EI, 70 eV): 35 350 (M+ ), 262, 224, 182, 166, 136 m/z. Preparación del éster etílico del ácido (1R,5R,6S)5-(1-etil-propoxi)-7-aza-biciclo[4.1.0]hept-3-en-3-carboxílico Una solución de color amarillento de 0,87 g (2,5 mmoles) del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil- 40 propoxi)-4-metansulfoniloxi-ciclohex-1- encarboxílico, y 0,17 ml (2,5 mmoles) de etilendiamina en 4,4 ml de etanol se calentó a reflujo durante 1 hora. La suspensión resultante se evaporó en un evaporador rotativo hasta sequedad y el residuo se suspendió en 5 ml de acetato de etilo, se extrajo con 2 ml de solución 1M de NaHCO3 , se secó con Na2 SO4 , se filtró y se evaporó en un evaporador rotativo a presión reducida hasta sequedad obteniéndose 0,52 g (82%) del éster etílico del ácido (1R,5R,6S)5-(1-etil-propoxi)-7-aza-bici-clo[4.1.0]hept-3-en-3-carboxílico en forma de un aceite de 45 color amarillo. IR(película): 3312, 2966, 2936, 2877, 1715, 1660, 1464, 1254, 1083, 1057, 799, cm−1 ; EM (EI, 70 eV): 253 (M+ ), 224, 208, 182, 166, 110 m/z. d) Preparación del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5- alilamino-3-(1-etil-propoxi)-ciclohex-1-en- carboxílico 50 En un matraz de fondo redondo de 4 bocas de 4 litros, equipado con un termómetro, un agitador mecánico, un condensador de Claisen y una entrada de gas inerte, se disolvieron 278,0 g del éster etílico del ácido (3R,4R,5S)-5- alilamino-4-amino- 3-(1-etil-propoxi)-ciclohex-1-encar-boxílico obtenido de acuerdo con (c), se disolvieron a tempe- ratura ambiente con agitación en atmósfera de argón en 2800 ml de terc.-butil metil éter. De la solución de color rojo 55 se destilaron 1400 ml de terc.-butil metil éter. De nuevo se añadieron 1400 ml de terc.-butil metil éter y se separaron por destilación. La solución de color rojo se enfrió a 0-5ºC y se trató con 512 ml de ácido acético (9,0 moles) con lo cual la temperatura alcanzó aproximadamente 23ºC. Después de enfriar a 0ºC-5ºC, se añadieron gota a gota 58,1 ml de ácido metansulfónico (d=1,482, 0,90 moles) en el curso de 27 minutos seguido de 84,7 ml de anhídrido acético (d=1,08, 0,90 moles) añadidos gota a gota en el curso de 40 minutos manteniendo la temperatura en el margen de 60 0ºC a 5ºC. La mezcla de reacción de color pardo se agitó sin enfriamiento durante 14 horas y a continuación se trató agitando vigorosamente con 1400 ml de agua (desionizada) durante 30 minutos y la fase orgánica de color pardo se extrajo con 450 ml de ácido metansulfónico acuoso 1M. Las fases acuosas combinadas (pH = 1,6) se trataron agitando, con aproximadamente 694 ml de hidróxido de potasio acuoso al 50% hasta alcanzar un pH = 10,0, manteniendo la temperatura en el margen de 10 a 25ºC. La mezcla turbia de color pardo se extrajo primeramente con 1000 ml y a 65 continuación con 400 ml, en total con 1400 ml de terc.-butil metil éter, los extractos orgánicos combinados se agitaron con 32 g de carbón vegetal y se filtraron. La torta del filtrado se lavó con aproximadamente 200 ml de terc.-butil metil éter y los filtrados combinados se evaporaron en un evaporador rotativo a 47ºC/380 a 10 mbars obteniéndose 285,4 g de unos cristales amorfos de color pardo-rojo, los cuales se disolvieron con agitación en una mezcla de 570 ml de 14
  • 15. ES 2 198 244 T3 terc.-butil metil éter y 285 ml de n-hexano a 50ºC. La solución de color pardo se enfrió en 45 minutos con agitación de -20ºC a -25ºC y se agitó durante 5 horas con lo cual precipitaron unos cristales de color pardo. La suspensión se filtró por un embudo filtro de vidrio pre-enfriado (-20ºC) y la torta del filtro se lavó con una mezcla pre-enfriada (-20ºC) de 285 ml de terc.-butil metil éter y 143 ml de n-hexano y se secó en un evaporador rotativo a 48ºC < 10 mbars obtenién- 5 dose 200,33 g (83%) del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-alilami-no-3-(1-etil-propoxi)-ciclohex-1- encarboxílico; p.f. 100,2ºC - 104,2ºC. (e) Preparación del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5- amino-3-(1-etil-propoxi)-ciclohex-1-en- carboxílico 10 En un matraz de fondo redondo de 4 bocas de 1 litro, equipado con un termómetro, un agitador mecánico, un condensador de reflujo y una entrada de gas inerte, se disolvieron 176,2 g del éster etílico del ácido (3R,4R,5S)- 4-acetilamino-5- alilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxílico obtenido de acuerdo con (d), y 30,0 ml de etanolamina (d = 1,015, 0,54 moles) se disolvieron a temperatura ambiente en 880 ml de etanol y se trataron con 17,6 15 g de paladio 10% sobre carbón vegetal. La suspensión de color negro se calentó a reflujo durante 3 horas, se enfrió a temperatura ambiente y se filtró. La torta del filtrado se lavó con 100 ml de etanol y los filtrados combinados se evaporaron en un evaporador rotativo a 50ºC/< 20 mbars. El residuo aceitoso de color pardo (207,3 g) se trató con 600 ml de ácido clorhídrico 2N y la solución de color pardo se destiló en un evaporador rotativo a 50ºC/75 mbars durante 5 minutos. La solución se enfrió a temperatura ambiente, se lavó con 600 ml de terc.-butil metil éter y se trató con 20 agitación y enfriamiento con aproximadamente 110 ml de amoníaco acuoso al 25% manteniendo la temperatura por debajo de la temperatura ambiente hasta que se alcanzó un pH = 9-10 y se formó una emulsión de color pardo. La emulsión se extrajo tres veces con 600 ml, en total con 1800 ml de acetato de etilo. Los extractos combinados se secaron con aproximadamente 200 g de sulfato de sodio y se filtraron. La torta del filtrado se lavó con aproximadamente 200 ml de acetato de etilo y los filtrados combinados se evaporaron en un evaporador rotativo a 50ºC/ < 20 mbars obteniéndose 25 158,6 g de un aceite de color pardo el cual se disolvió en 650 ml de etanol. La solución de color pardo se añadió en el curso de 1 minuto con agitación a una solución caliente (50ºC) de 57,60 g de ácido orto fosfórico al 85% (d=1,71, 0,50 moles) en 2500 ml de etanol. La solución resultante se enfrió en el curso de 1 hora a 22ºC. A 40ºC se añadieron cristales de siembra de éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-amino-3-(1-etil-propoxi)-ciclohex-1-encarboxílico (aproximadamente 10 mg) con lo que dio comienzo la cristalización. La suspensión de color beige se enfrió en el 30 curso de 2 horas de -20ºC a -25ºC y se agitó a esta temperatura durante 5 horas. La suspensión se filtró a través de un embudo filtro de vidrio pre-enfriado (-20ºC) durante 2 horas. La torta de filtrado se lavó primeramente con 200 ml de etanol pre-enfriado a -25ºC, a continuación dos veces con 850 ml, en total con 1700 ml de acetona, a continuación dos veces con 1000 ml, en total con 2000 ml de n-hexano, a continuación se secó a 50ºC/20 mbars durante 3 horas obteniéndose 124,9 g (70%) del éster etílico del ácido (3R,4R,5S)-4-acetilamino-5-amino-3-(1-etil-propoxi)-ciclo- 35 hex-1-encarboxílico, en forma de cristales de color blanco; p.f. 205-207ºC, con descomposición. Ejemplo 2 Preparación del éster etílico del ácido (3R,4R,5S)-5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxíli- 40 co a partir del éster etílico del ácido (1S,5R,6S)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3-en-3-carboxílico Se efectuaron los pasos (a), (b), (d) y (e) como se han descrito más arriba en el ejemplo 1. El paso (c), preparación del éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-ciclohex-1- 45 encarboxílico a partir del éster etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarbo- xílico, se efectuó como se describe a continuación. Un autoclave con un reactor de metal de 500 ml equipado con un termómetro, un agitador mecánico y una entrada para suministro de gas inerte, se cargó en atmósfera de argón con 40,70 g del éster etílico del ácido (3R,4S,5R)-5- 50 amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-encarboxílico (0,12 moles) obtenido de acuerdo con (b) y 200,0 ml de formiato de etilo y la solución se calentó con agitación a 100ºC de 4 a 5 bars en el curso de 35 minutos, se mantuvo a esta temperatura durante 6 horas, a continuación se enfrió a temperatura ambiente. La solución de color rojo se trató y evaporó dos veces con 150 ml, en total con 300 ml de tolueno y se evaporó a 45ºC/300-15 mbars obteniéndose como compuesto intermedio crudo, 46,24 g del éster etílico del ácido (3R,4R,5S)-5-formilamino-4-hidroxi-3-(1-etil- 55 propoxi)-ciclo-hex-1-encarboxílico, en forma de un aceite de color rojo. IR (película): 2967, 1715, 1385, 1247, 1100 cm−1 ; EM (haz de electrones): 300 (M+ H+ ), 270 (M+ COH), 253, 212, 138 m/z. 60 En un matraz de fondo redondo de 4 bocas de 1 litro, equipado con un condensador de reflujo, un termómetro, un agitador mecánico y una entrada para suministro de gas inerte, se disolvieron 46,24 g del compuesto intermedio crudo de más arriba (0,15 moles), en 460 ml de acetato de etilo y 23,7 ml de trietilamina (d=0,726, 0,17 moles). La solución de color naranja se enfrió de 0ºC a 5ºC y se trató gota a gota en el curso de 30 minutos con 13,2 ml de cloruro de metansulfonilo (d=1,452, 0,17 moles) durante cuyo tiempo se formó un precipitado de color blanco. Después de 65 agitar durante 60 minutos sin enfriamiento la suspensión alcanzó la temperatura ambiente. Después de 45 minutos a temperatura ambiente la suspensión de color blanco se filtró y la torta del filtrado se lavó con 45 ml de acetato de etilo. Los filtrados combinados se lavaron con 116 ml de solución acuosa 1M de bicarbonato de sodio, se secaron con 130 g de sulfato de sodio, se filtraron y evaporaron en un evaporador rotativo a 45ºC/ 180 a > 10 mbars obteniéndose como 15
  • 16. ES 2 198 244 T3 compuesto intermedio crudo, 58,39 g del éster etílico del ácido (3R,4R,5R)-5-formilamino-4-metansulfoniloxi-3-(1- etil-propoxi)-ciclohex-1- encarboxílico, en forma de un aceite de color rojo naranja. IR(película): 2967, 1715, 1358, 1177, 968 cm−1 ; EM (EI, 70 eV): 377 (M), 290, 244, 148, 96 m/z. 5 En un matraz de fondo redondo de 4 bocas de 1 litro, equipado con un condensador de reflujo, un termómetro, un agitador mecánico y una entrada para suministro de gas inerte, se disolvieron 58,39 g del producto intermedio crudo anterior en 290 ml de etanol. La solución de color naranja se trató con 10,7 ml de ácido metansulfónico (d=1,482, 0,17 moles) y se calentó a reflujo durante 160 minutos. La reacción de color rojo pardo se evaporó en un evaporador 10 rotativo a 45ºC/190 a 30 mbars y el residuo en forma de un aceite de color rojo-pardo se trató con 260 ml de agua desionizada y se lavó con 260 ml de terc.-butil metil éter. La fase orgánica se extrajo con 52 ml de agua desionizada y las fases acuosas combinadas (pH = 1,3) se enfriaron de 0ºC a 5ºC y se trataron con 13,7 ml de hidróxido de potasio acuoso al 50%, manteniendo la temperatura por debajo de 10ºC hasta alcanzar un pH = 9,4, con lo cual se formó una emulsión de color beige. A un pH de 6,6, se añadieron 260 ml de acetato de etilo. La fase acuosa se extrajo con 70 15 ml de acetato de etilo y los extractos orgánicos combinados se secaron con 160 g de sulfato de sodio, se filtraron y se evaporaron en un evaporador rotativo a 45ºC/190 a 20 mbars obteniéndose como compuesto intermedio crudo 45,66 g del éster etílico del ácido (3R,4R,5R)-5-amino-4-metansulfoniloxi-3-(1-etil- propoxi)-ciclohex-1-en-carboxílico, en forma de un aceite de color rojo. 20 IR(película): 1720, 1362, 1250, 1170, 1070; EM (haz de electrones): 350,3 (M+ H+ ), 290,3, 262,1, 202,2, 184,3 m/z. Un autoclave con un reactor de vidrio de 500 ml equipado con un termómetro, un agitador mecánico y una entrada para suministro de gas inerte, se cargó en atmósfera de argón con una solución de 45,66 g (0,13 moles) del compuesto 25 intermedio crudo de más arriba y 29,5 ml de alilamina (d=0,76, 0,39 mol) y 250 ml de acetato de etilo. La mezcla se calentó en atmósfera de argón a 1 bar con agitación de 111ºC a 112ºC en el curso de 45 minutos, se mantuvo a esta temperatura a aproximadamente 3,5 bars durante 6 horas, a continuación se enfrió a temperatura ambiente en el curso de 50 minutos. La suspensión de color naranja se agitó vigorosamente durante 20 minutos con 230 ml de solución acuosa 1M de bicarbonato de sodio. La fase orgánica de color pardo rojo se secó con 100 g de sulfato de 30 sodio y se filtró. La torta del filtro se lavó con aproximadamente 50 ml de acetato de etilo y los filtrados combinados se evaporaron en un evaporador rotativo a 45ºC/160 a 10 mbars obteniéndose como compuesto intermedio crudo, 41,80 g del éster etílico del ácido (3R,4R,5S)-5-alilamino-4-amino-3-(1-etil-propoxi)-ciclohex-1-en carboxílico en forma de un aceite de color rojo. 35 IR (película): 3441, 1707, 1462, 1262, 1063 cm−1 ; EM (haz de electrones): 311,2 (M+ ,H+ ), 297,2, 266,3, 245,8, 223,2 m/z. Ejemplo 3 40 Preparación de la trans-2-(alilamino)-ciclohexan amina a partir del óxido de ciclohexeno (a) Preparación del trans-2-alilaminociclohexanol En un matraz de fondo redondo de 2 bocas de 250 ml equipado con un condensador de reflujo, un termómetro, 45 un agitador magnético y una entrada para suministro de gas inerte, se disolvieron 10,1 ml de óxido de ciclohexeno (100 mmoles) en atmósfera de argón a temperatura ambiente en 90 ml de terc.-butil metil éter y 10 ml de acetonitrilo. Bajo agitación, se añadieron 5,16 g de bromuro de magnesio dietil eterato (20 mmoles) y 15 ml de alilamina (200 mmoles). La solución amarillenta se calentó a reflujo en atmósfera de argón durante 4,5 horas. Después de enfriar a temperatura ambiente la mezcla de reacción se agitó vigorosamente con 50 ml de cloruro de amonio acuoso 5M 50 durante 15 minutos. La fase acuosa se separó y se extrajo dos veces con 100 ml, en total con 200 ml de terc.-butil metil éter. Las fases orgánicas combinadas se secaron con 100 g de sulfato de sodio y el disolvente se evaporó en un evaporador rotativo (45ºC/340-10 mbars) obteniéndose 13,7 g de un aceite de color amarillo-pardo. Este último por análisis GC mostró un contenido aproximadamente del 90% de trans-2-alilamino-ciclohexanol racémico. 55 IR (película): 2928, 1450, 1071, 1030, 916 cm−1 ; EM (EI, 70eV): 155 (M+ ), 112, 96, 83, 68 m/z. (b) Preparación del trans-2-amino-ciclohexanol En un matraz de fondo redondo de 2 bocas de 250 ml equipado con un condensador de reflujo, agitador magnético 60 y una entrada para suministro de gas inerte, se disolvieron 13,6 g de trans-2-alilaminociclohexanol racémico (0,87 mmoles), obtenido de acuerdo con (a), a temperatura ambiente en 140 ml de etanol y se añadieron a la solución 2,88 g de Pd/C 10% (66,1 mmoles). Después de calentar a reflujo durante 2 horas y enfriar a temperatura ambiente, la suspensión de color negro, se filtró a través de un filtro de fibra de vidrio y la torta del filtro se lavó con 60 ml de etanol. La solución de color amarillo se mezcló con 2,55 ml de ácido sulfúrico (d=1,83, 47,7 mmoles), con lo cual 65 se formó inmediatamente un precipitado de color amarillo. El disolvente se eliminó en un evaporador rotativo. Los cristales de color amarillo-beige se recristalizaron en 75 ml de etanol (0,5 horas de reflujo, enfriamiento a 0ºC). Los cristales de color blanco obtenidos se lavaron con 60 ml de etanol y se secaron en un evaporador rotativo hasta alcanzar un peso constante. Se obtuvieron 11,17 g de sal sulfato en forma de cristales de color blanco. 16
  • 17. ES 2 198 244 T3 Este material se suspendió en 110 ml de metanol y se mezcló con 13,6 ml de solución 5N de hidróxido de sodio en metanol. La suspensión de color blanco se agitó durante 30 minutos a 55ºC. El disolvente se eliminó y los cristales de color blanco se suspendieron en 110 ml de acetato de etilo. Después de añadir aproximadamente 4 g de sulfato de sodio y 2 ml de agua, la suspensión se filtró y los cristales se secaron en un evaporador rotativo. De esta forma se 5 obtuvieron aproximadamente 7,28 g de cristales de color blanco beige de trans-2-amino-ciclohexanol racémico, p.f. 65ºC-66ºC. (c) Preparación del trans-2-(bencilidenamino)-ciclohexanol 10 En un matraz de fondo redondo de 250 ml equipado con un condensador de reflujo y un purgador Dean-Stark, se disolvieron 6,91 g de trans-2-aminociclohexanol racémico (60 mmoles) obtenido de acuerdo con (b), en atmósfera de argón en 70 ml de diisopropiléter, y se añadieron 6,1 ml de benzaldehido (60 mmoles) a la solución la cual se calentó a reflujo en atmósfera de argón a 110ºC durante 50 minutos hasta que se separó aproximadamente 1 ml de agua. El disolvente se eliminó en un evaporador rotativo (45ºC/250-10 mbars) para obtener 12,11 g de cristales de color blanco- 15 beige de trans-2-bencilidenamino)-ciclohexanol racémico, p.f. 86ºC. (d) Preparación del éster del ácido trans-2-(bencilidenamino)-ciclohexil metansulfónico. En un matraz de fondo redondo de 250 ml equipado con un condensador de reflujo, 11,79 g de trans-2-(benciliden- 20 amino)-ciclohexanol racémico (58 mmoles) obtenidos de acuerdo con (d), se disolvieron a temperatura ambiente en atmósfera de argón en 120 ml de acetato de etilo y se añadieron 8,9 ml de trietilamina (63,8 mmoles). Después de enfriar en un baño de hielo, se añadieron 4,6 ml de cloruro de metan-sulfonilo (58 mmoles) a la solución durante 6 minutos. La solución de color blanco obtenida se agitó durante 2,5 horas, a continuación se mezcló con 120 ml de bicarbonato de sodio 1M y se agitó durante 10 minutos. Las dos capas se separaron y la fase acuosa se extrajo 25 dos veces con 120 ml de acetato de etilo. Las fases orgánicas combinadas se secaron con 100 g de sulfato de sodio y después de filtrar se eliminó el disolvente en un evaporador rotativo (45ºC/240-10 mbar). Los cristales de color amarillo naranja del residuo se suspendieron en 60 ml de n-hexano, y la suspensión de color naranja se agitó vigorosamente durante 15 minutos, se filtró y se lavó con 20 ml de n-hexano. Los cristales se secaron en un evaporador rotativo, se añadieron a las aguas madres y se mezclaron con 30 ml de terc.-butil metil éter. La suspensión de color naranja se 30 agitó vigorosamente durante 15 minutos, los cristales se separaron por filtración y se secaron en un evaporador rotativo a 45ºC/10 mbars para obtener 13,39 g de cristales de color casi blanco del éster del ácido trans-2-(bencilidenamino)- ciclohexil metansulfónico, p.f. 94ºC. (e) Preparación de la trans-2-(alilamino)-ciclohexilamina 35 En un reactor a presión de 75 ml equipado con un agitador magnético, 4,16 g del éster del ácido trans-2-(benciliden- amino)-ciclohexil metansulfónico racémico (14,7 mmoles) obtenido de acuerdo con (d), se disolvieron en 20 ml de acetonitrilo y la solución de color blanco amarillo se mezcló con 4,50 ml de alilamina (59,2 mmoles). El sistema cerrado se calentó durante 20 horas a 115ºC, a continuación se enfrió a 0ºC y la solución viscosa se concentró. 20 ml 40 de tolueno y 22 ml de HCl 4N (88,2 mmoles) se añadieron y la mezcla de dos fases se agitó vigorosamente durante 2 horas, y las dos fases fueron separadas. La fase acuosa se extrajo con 20 ml de tolueno. A la fase acuosa, se añadieron 7,9 ml de solución acuosa al 50% de hidróxido de potasio (102,9 mmoles) agitando vigorosamente y la mezcla se extrajo con 20 ml de tolueno. La fase orgánica de color pardo se secó con 10 g de sulfato de sodio, se filtró y se lavó con 10 ml de tolueno. El disolvente se eliminó en un evaporador rotativo (45ºC/60-10 mbars). El producto se 45 obtuvo por purificación mediante destilación al alto vacío en un evaporador Diekmann a 34ºC-36ºC/0,25-0,3 mbars obteniéndose 0,95 g de trans-2-(alilamino)-ciclohexilamina racémico en forma de un líquido viscoso de color blanco. IR (película): 3340, 2940, 1450, 920, 758 cm−1 ; EM(EI, 70eV): 155 (M), 125, 96, 70, 56 m/z. 50 Ejemplo 4 Preparación del (S)-2-(N,N-dialilamino)-2-feniletanol y (R)-2-(N,N-dialilamino)-1-feniletanol) En un matraz de 2 bocas de 100 ml equipado con un condensador de reflujo, un termómetro, un agitador mag- 55 nético y una entrada para suministro de gas inerte, se añadieron 20 ml de tetrahidrofurano a 2,3 ml (R)-feniloxirano (20 mmoles) y se disolvieron en el mismo, 1,03 g de bromuro de magnesio etil eterato (4 mmoles). La solución de color amarillento se mezcló con 4,9 ml de dialilamina y se calentó a reflujo durante 2 horas. La solución de color naranja-pardo se enfrió a temperatura ambiente, se agitó durante 15 minutos con 20 ml de solución 5M de cloruro de amonio y se separó la fase acuosa. La fase orgánica se secó con 8,5 g de sulfato de sodio, se filtró y se lavó con 10 ml 60 de tetrahidrofurano. El disolvente se concentró y el aceite de color naranja-pardo se secó durante 1 hora obteniéndose 4,2 g (97%) de (S)-2-(N,N-dialilamino)-2-feniletanol y (R)-2-(N,N-dialilamino)-1-feniletanol). IR (película): 2820, 1640, 1452, 1062, 700 cm−1 ; EM(haz de electrones): 218,3 (M+H+ ), 200,2, 172,2, 158,2, 130,2 m/z. 65 17
  • 18. ES 2 198 244 T3 Ejemplo 5 Preparación del trans-2-((S)-metilbencilamino)-ciclohexanol 5 En un matraz de fondo redondo de 100 ml equipado con un condensador de reflujo, un termómetro, un agitador magnético y una boca de entrada para suministro de gas inerte, se disolvieron 4,6 ml de óxido de ciclohexeno (45 mmoles) en atmósfera de argón en 30 ml de tetrahidrofurano. La solución incolora se mezcló con agitación con 1,17 g de bromuro de magnesio dietil eterato (4,5 mmoles) y 3,6 ml de (S)-α-metilbencilamina (30 mmoles, 1 equiv.). La solución de color débilmente amarillento se calentó a reflujo en atmósfera de argón durante 5,5 horas, a continuación 10 se enfrió a temperatura ambiente, se mezcló con 30 ml de solución 5M de cloruro de amonio y 15 ml de HCl 4M (60 mmoles, 2 equiv.) y se agitó fuertemente. Se añadieron 9 ml de una solución al 25% de hidróxido de amonio acuoso (120 mmoles), y las dos fases se separaron después de agitar. La fase orgánica se secó con 20 g de sulfato de sodio, se filtró, se lavó con 20 ml de tetrahidrofurano y se concentró en un evaporador rotativo (45ºC/357-10 mbars) obteniéndose 7,47 g de un aceite de color amarillo. Se demostró que este último contenía una mezcla de dos 15 diastereoisómeros A y B de trans-2-(S)-metilbencilamino)-ciclohexanol separados mediante columna cromatográfica (silica/terc.-butil metil éter +1% de amoníaco). Datos del diastereoisómero A: IR (película): 2928, 2857, 1449, 1062, 761, 701 cm−1 ; EM (haz de electrones): 220,4 (M+ , H+ ), 174,2, 148,9, 116,2, 105,1 m/z. 20 Datos del diastereoisómero B: IR (película): 2930, 2858, 1450, 1067, 762, 701 cm−1 ; EM (haz de electrones): 220,3 (M+ H+ ), 176,9, 159,2, 139,8, 116,2, 105,1 m/z. Ejemplo 6 25 Preparación del éster etílico del ácido (3R,4S,5R)-5-bencilamino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en-carboxí- lico A una solución de 5,08 g (20 mmoles) del éster etílico del ácido (1S,5R,6S)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0] 30 hept-3-en-3-carboxílico, en 20 ml de tetrahidrofurano, se añadieron 1,03 g (4 mmoles) de bromuro de magnesio dietil eterato, a temperatura ambiente. La suspensión resultante se trató con 4,40 ml (40 mmoles) de bencilamina y se calentó a reflujo en atmósfera de argón con agitación durante 12 horas. La mezcla de reacción se evaporó en un evaporador rotativo, el residuo se trató con 20 ml de acetato de etilo y se extrajo 6 veces con 20 ml de solución acuosa 5N de cloruro de amonio. La fase orgánica se secó con 5 g de sulfato de sodio, se filtró y se evaporó obteniéndose 6,88 g del 35 éster etílico del ácido (3R,4S,5R)-5-bencilamino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en-carboxílico, en forma de un aceite de color pardo. IR (película): 2966, 2935, 2877, 1715, 1654, 1495, 1465, 1250, 1090, 976 cm−1 ; EM (EI, 70 eV): 361 (M+ ), 343, 330, 290, 274, 260, 242, 218, 200, 182, 166, 149, 138, 120, 106, 91 m/z. Ejemplo 7 40 Preparación del 2-alilamino-1-feniletanol y 2-alilami-no-2-feniletanol A una solución de 0,57 ml (5 mmoles) de 2-fenil-oxirano en 5 ml de tetrahidrofurano se añadieron 0,26 g (1 mmol) de bromuro de magnesio dietil eterato, a temperatura ambiente. La mezcla se trató en atmósfera de argón con agitación 45 con 0,56 ml (7,5 mmoles) de alilamina con lo cual se formó una suspensión de color blanco la cual se disolvió después de calentar a 100ºC en un recipiente cerrado. La solución de color amarillo se calentó a 100ºC durante 2 horas, se enfrió a temperatura ambiente y se agitó vigorosamente con 5 ml de solución acuosa 5N de cloruro de amonio durante 10 minutos. La fase orgánica se separó, se secó con 3 g de sulfato de sodio, se filtró y se evaporó en un evaporador rotativo. El residuo aceitoso que contenía los productos se separó mediante cromatografía sobre una columna de silica 50 gel empleando terc.-butil metil éter que contenía 1% de amoníaco acuoso concentrado como eluyente para obtener 0,3 g de 2-alilamino-1-fenil- etanol (compuesto A) y 0,2 g de 2-alilamino-2-fenil-etanol (compuesto B) en forma de aceites amarillentos. Datos del compuesto A: IR (película): 1460, 1115, 1061, 919, 758, 701 cm−1 ; EM (EI, 70 eV): 177 (M+ ), 163, 146, 55 132, 117, 105, 97, 91, 83, 79, 77, 55, 43, 41 m/z. Datos del compuesto B: IR (película): 1500, 1460, 1049, 1027, 970, 759, 701 cm−1 ; EM (70 eV): 146 (M+ - CH2 OH), 129, 117, 106, 104, 91, 77, 41 m/z. 60 Ejemplo 8 Preparación del 3-(1-feniletil-amino)-butan-2-ol A una solución de 0,445 ml (5 mmoles) de cis-2,3-dimetil-oxirano en 5 ml de tetrahidrofurano se añadieron a 65 temperatura ambiente 0,26 g (1 mmol) de bromuro de magnesio dietil eterato. La mezcla se trató en atmósfera de argón con agitación con 0,67 ml (5,5 mmoles) de (S)-(-)-1-fenil-etilamina. La suspensión de color amarillo se calentó a 90ºC en un recipiente cerrado durante 110 horas, con lo cual después de 21 y 64 horas se añadieron 0,25 ml y 0,122 ml respectivamente de cis-2,3-dimetil-oxirano. La mezcla de reacción se enfrió a temperatura ambiente y se agitó 18
  • 19. ES 2 198 244 T3 vigorosamente con 5 ml de solución acuosa 5N de cloruro de amonio durante 10 minutos. La fase orgánica se separó, se secó con 2 g de sulfato de sodio, se filtró y se evaporó en un evaporador rotativo para obtener 0,58 g de 3-(1-fenil- etilamino)-butan-2-ol como mezcla de diastereo-isómeros en forma de un aceite de color pardo. El residuo aceitoso se separó mediante cromatografía sobre una columna de silica gel empleando acetato de etilo como eluyente para obtener 5 los dos diastereoisómeros A y B en forma de aceites de color amarillento. Datos del diastereoisómero A: IR (película): 1451, 1180, 1053, 919, 759, 698 cm−1 ; EM (haz de electrones) 194,3 (M+ +H), 216,3 (M+ +Na) m/z. 10 Datos del diastereoisómero B: IR (película): 1458, 1075, 761, 700 cm−1 ; EM (haz de electrones) 194,3 (M+ +H) m/z. 15 20 25 30 35 40 45 50 55 60 65 19
  • 20. ES 2 198 244 T3 REIVINDICACIONES 1. Procedimiento para la preparación de compuestos de 1,2-diamino de fórmula 5 10 15 y sales de adición farmacéuticamente aceptables de los mismos, en donde, R1 , R1 , R2 y R2 , independientemente entre sí, son H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquil-alquilo de 1 a 6 átomos de carbono, cicloalquilalquenilo de 2 a 6 átomos de carbono, cicloalquilalquinilo de 2 a 6 átomos 20 de carbono, heterociclilo, heterociclilalquilo de 1 a 6 átomos de carbono, heterociclilalquenilo de 2 a 6 átomos de carbono, heterociclilalquinilo de 2 a 6 átomos de carbono, arilo o arilalquilo de 1 a 6 átomos de carbono, arilalquenilo de 2 a 6 átomos de carbono, arilalquinilo de 2 a 6 átomos de carbono, o R1 y R2 , R1 y R2 , R1 y R2 o R1 y R2 , tomados juntos con los dos átomos de carbono a los cuales están unidos, 25 son un sistema anular carbocíclico o heterocíclico, o R1 y R1 o R2 y R2 tomados juntos con el átomo de carbono al cual están unidos, son un sistema anular carbocíclico o heterocíclico, 30 con la condición de que al menos uno de R1 , R1 , R2 y R2 no sea H, R3 y R4 , independientemente entre sí son H o significan un alcanoilo, con la condición de que R3 y R4 no sean los dos, H, 35 el cual procedimiento se caracteriza porque comprende los pasos de: a) tratamiento del 1,2-epóxido de fórmula 40 45 en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba, 50 con una amina de fórmula R5 NHR6 en donde R5 y R6 independientemente entre sí, son H o un substituyente de un grupo amino, con la condición de que R5 y R6 no sean los dos, H, con lo cual se forma un 2-aminoalcohol de fórmula 55 60 65 en donde R1 , R1 , R2 , R2 , R5 y R6 son como se ha indicado más arriba. 20
  • 21. ES 2 198 244 T3 b) conversión del 2-aminoalcohol de fórmula (III) en un 2-aminoalcohol de fórmula 5 10 en donde R1 , R1 , R2 y R2 son como se ha indicado más arriba, 15 c) transformación de este 2-aminoalcohol de fórmula (IV) en un compuesto 1,2-diamino de fórmula 20 25 en donde R1 , R1 , R2 , R2 , R5 y R6 son como se ha indicado más arriba, d) acilación de la función amino libre en la posición 1 para formar un compuesto 1,2-diamino acilado de fórmula 30 35 40 en donde R1 , R1 , R2 , R2 , R3 , R4 , R5 y R6 son como se ha indicado más arriba, y finalmente e) liberación del grupo amino en la posición 2, y si es necesario, 45 posterior transformación del compuesto 1,2-diamino resultante de fórmula (I), en una sal de adición farmacéutica- mente aceptable. 2. Procedimiento de la reivindicación 1, caracterizado porque comprende un procedimiento para la preparación de derivados del ácido 4,5-diamino-shikímico, de fórmula 50 55 60 y sales de adición farmacéuticamente aceptables del mismo, en donde R11 es un grupo alquilo opcionalmente substituido, R12 es un grupo alquilo y R3 y R4 independientemente entre sí 65 son H o significan alcanoilo, con la condición de que los dos R3 y R4 no son H, 21
  • 22. ES 2 198 244 T3 a partir de un óxido de ciclohexeno de fórmula 5 10 en donde R11 y R12 son como se ha indicado más arriba. 3. Procedimiento de la reivindicación 1 ó 2, caracterizado porque el compuesto 1,2-diamino de fórmula (I) o los derivados del ácido 4,5-diamino-shikímico de fórmula (VII) es el éster etílico del ácido (3R,4R,5S)-5-amino- 15 4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxílico o el fosfato (1:1) del éster etílico del ácido (3R,4R,5S)- 5-amino-4-acetilamino-3-(1-etil-propoxi)-ciclohex-1-en-carboxílico, ó el 1,2-epóxido de fórmula (II) o el óxido de ciclohexeno de fórmula (VIII) es el éster etílico del ácido (1S,5R,6R)-5-(1-etil-propoxi)-7-oxa-biciclo[4.1.0]hept-3- en-3-carboxílico. 20 4. Procedimiento de la reivindicación 1 a 3, caracterizado porque R5 y R6 en la amina de fórmula R5 NHR6 aplicada al paso a) independientemente entre sí son alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono, opcionalmente bencilo substituido o silil metilo trisubstituido o heterociclil metilo. 5. Procedimiento de la reivindicación 4, caracterizado porque la amina de fórmula R5 NHR6 es alilamina, dialil- 25 amina, bencilamina, dibencilamina o trimetilsilil amina. 6. Procedimiento de la reivindicación 4 ó 5, caracterizado porque la amina de fórmula R5 NHR6 es alilamina. 7. Procedimiento de la reivindicación 1 a 6, caracterizado porque la reacción en el paso a) se efectúa en presencia 30 de un catalizador. 8. Procedimiento de la reivindicación 7, caracterizado porque el catalizador es un catalizador metálico o un haluro de magnesio. 35 9. Procedimiento de la reivindicación 7 u 8, caracterizado porque el catalizador es el bromuro de magnesio dietil eterato. 10. Procedimiento de la reivindicación 1 a 9, caracterizado porque la conversión en el paso b), 40 si R5 y R6 independientemente entre sí son alquenilo de 2 a 6 átomos de carbono, de cadena lineal o ramificada, es una isomerización/hidrólisis efectuada en presencia de un catalizador metálico, si R5 y R6 independientemente entre sí son bencilo o heterociclil metilo opcionalmente substituidos, es una hidro- genolisis efectuada con hidrógeno en presencia de un catalizador metálico o 45 si R5 y R6 independientemente entre sí es silil metilo trisubstituido, es una escisión oxidante. 11. Procedimiento de la reivindicación 10, caracterizado porque la reacción en el paso b) es una isomeriza- ción/hidrólisis efectuada en presencia de un catalizador metálico. 50 12. Procedimiento de la reivindicación 11, caracterizado porque se emplea un catalizador de Pd/C. 13. Procedimiento de la reivindicación 11 y 12, caracterizado porque se añade posteriormente una amina primaria. 55 14. Procedimiento de la reivindicación 13, caracterizado porque la amina primaria es la etanolamina. 15. Procedimiento de la reivindicación 1 a 14, caracterizado porque el paso c) comprende los pasos (c1) introducción de un grupo amino substituyente en el 2-aminoalcohol de fórmula (IV) obtenido en el paso 60 (b), (c2) transformación del grupo hidroxilo en un grupo lábil, y (c3) separación del substituyente del grupo amino y transformación del producto de reacción empleando una 65 amina de fórmula R5 NHR6 , en donde R5 y R6 son como se ha indicado más arriba, en un compuesto 1,2- diamino de fórmula (V). 22
  • 23. ES 2 198 244 T3 16. Procedimiento de la reivindicación 15, caracterizado porque el grupo amino substituido en el paso c1) es una base Schiff formada por la reacción del 2-aminoalcohol de fórmula (IV) con un compuesto que contiene el grupo carbonilo o un grupo acilo formado por la reacción del 2-aminoalcohol de fórmula (IV) con un agente acilante. 5 17. Procedimiento de la reivindicación 16, caracterizado porque la base Schiff se forma con benzaldehido. 18. Procedimiento de la reivindicación 15, caracterizado porque el paso c2) comprende la transformación del grupo hidroxilo en un éster de ácido sulfónico. 10 19. Procedimiento de la reivindicación 18, caracterizado porque el paso c2) comprende la transformación del grupo hidroxilo en un éster de ácido metansulfónico. 20. Procedimiento de la reivindicación 15, caracterizado porque la amina de fórmula R5 NHR6 empleada en el paso c3) es alilamina, dialilamina, bencilamina, dibencilamina o trimetilsililamina. 15 21. Procedimiento de la reivindicación 20, caracterizado porque la amina de fórmula R5 NHR6 es la alilamina. 22. Procedimiento de la reivindicación 1 a 21, caracterizado porque el paso d) comprende la acetilación de la función amino libre de la posición 1. 20 23. Procedimiento de la reivindicación 1 a 22, caracterizado porque la conversión en el paso e), si R5 y R6 independientemente entre sí, son alquenilo de cadena lineal o ramificada de 2 a 6 átomos de carbono, es una isomerización/hidrólisis efectuada en presencia de un catalizador metálico, 25 si R5 y R6 independientemente entre sí, son opcionalmente bencilo o heterociclil metilo, es una hidrogenolisis efectuada con hidrógeno en presencia de un catalizador metálico, o si R5 y R6 independientemente entre sí, son silil metilo tri-substituido, es una escisión oxidante. 30 24. Procedimiento de la reivindicación 23, caracterizado porque la reacción en el paso e) es una isomeriza- ción/hidrólisis efectuada en presencia de un catalizador metálico. 25. Procedimiento de la reivindicación 24, caracterizado porque el catalizador metálico es un catalizador de Pd/C. 35 26. Procedimiento de la reivindicación 24 y 25, caracterizado porque se añade posteriormente una amina primaria. 27. Procedimiento de la reivindicación 26, caracterizado porque la amina primaria es la etanolamina. 40 28. Compuestos de fórmula 45 50 en donde R11 es un grupo alquilo opcionalmente substituido y R12 es un grupo alquilo y sus sales de adición. 29. Ester etílico del ácido (3R,4S,5R)-5-amino-3-(1-etil-propoxi)-4-hidroxi-ciclohex-1-en carboxílico. 55 30. Compuestos de fórmula 60 65 en donde R11 es un grupo alquilo opcionalmente substituido y R12 es un grupo alquilo, 23
  • 24. ES 2 198 244 T3 R5 y R6 , independientemente entre sí, son H, alquilo, cicloalquilo, alquenilo o arilo, con la condición de que R5 y R6 no sean H los dos, y sus sales de adición. 31. Ester etílico del ácido (3R,4S,5R)-5-alilamino-3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico. 5 32. Ester etílico del ácido (3R,4R,5R)-5-formilamino-3-(1-etilpropoxi)-4-hidroxi-ciclohex-1-en carboxílico. 33. Ester etílico del ácido (3R,4R,5S)-4-acetilamino-5-alilamino-3-(1-etil propoxi)-ciclohex-1-en carboxílico. 10 34. Ester etílico del ácido (3R,4R,5S)-4-amino-5-alilamino-3-(1-etilpropoxi)-ciclohex-1-en carboxílico. 35. Compuestos de fórmula 15 20 en donde 25 R5 y R6 , independientemente entre sí, son H, o un substituyente de un grupo amino, con la condición de que R5 y 6 R no sean H los dos, y R11 es un grupo alquilo opcionalmente substituido, 30 R12 es un grupo alquilo, y R13 es un grupo sulfonilo, y sus sales de adición. 36. Ester etílico del ácido (3R,4R,5R)-5-formilamino-4-metansulfonil-3-(1-etilpropoxi)-ciclohex-1-en carboxílico. 35 37. Metansulfonato (1:1) del éster etílico del ácido (3R,4R,5R)-5-amino-4-metansulfonil-3-(1-etilpropoxi)-ciclo- hex-1-en carboxílico. 40 45 50 55 60 NOTA INFORMATIVA: Conforme a la reserva del art. 167.2 del Convenio de Patentes Europeas (CPE) y a la Disposición Transitoria del RD 2424/1986, de 10 de octubre, relativo a la aplicación del Convenio de Patente Europea, las patentes europeas que designen a España y solicitadas 65 antes del 7-10-1992, no producirán ningún efecto en España en la medida en que confieran protección a productos químicos y farmacéuticos como tales. Esta información no prejuzga que la patente esté o no incluida en la mencionada reserva. 24