SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
FENÓMENO DE POLARIZACIÓN, PROPIEDADES AISLANTE DE LOS CONDUCTORES Y EFECTO CORONA 
PRESENTADO POR: ARAUJO CHICA CAMILO ISAAC 
UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS 
FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS 
CARRERA DE INGENIERÍA ELÉCTRICA 
MATERIA ALTO VOLTAJE 
ESMERALDAS – ESMERALDAS 
02 DE SEPTIEMBRE DEL 2014
FENÓMENO DE LA POLARIZACIÓN Universidad Técnica Luis Vargas Torres 
Araujo Chica Camilo Isaac 
FENÓMENO DE LA POLARIZACIÓN 
La inducción no se limita a los conductores, cuando acercamos una barra cargada a un aislante no hay electrones libres que puedan desplazarse por el material aislante; lo que ocurre es un reordenamiento de las posiciones de las cargas dentro de los propios átomos y moléculas. 
Por inducción un lado del átomo o molécula se hace ligeramente mas positivo o negativo que el lado opuesto por lo que decimos que el átomo está eléctricamente polarizado. Si, por ejemplo, la barra es negativa, entonces el lado positivo del átomo o molécula se orienta hacia la barra y el lado negativo queda orientado en sentido contrario. Se presenta el fenómeno de polarización cuando trozos de papel neutros son atraídos por un objeto cargado o cuando se coloca un globo cargado en una pared. 
Cuando situamos un objeto material en un campo eléctrico se comporta según sea un conductor o un dieléctrico. El conductor redistribuye sus cargas, En un dieléctrico las cargas no pueden moverse libremente y, por tanto, su comportamiento es distinto. 
Los dieléctricos pueden considerarse formados por dos tipos de moléculas: polares y no polares. 
Una molécula es polar cuando el centro del sistema de electrones (carga negativa) no coincide con el de núcleos positivos. Las moléculas sin dejar de ser neutras son verdaderos dipolos, caracterizados por su momento dipolar. Los materiales que forman, llamados polares, están descargados en todos sus puntos, ya que la agitación térmica distribuye los dipolos al azar. Bajo la acción de un campo eléctrico externo, los dipolos moleculares se orientan alineándose con el campo. El grado de alineamiento no será completo debido a la agitación térmica de las moléculas.
FENÓMENO DE LA POLARIZACIÓN Universidad Técnica Luis Vargas Torres 
Araujo Chica Camilo Isaac 
Si la molécula es no polar, es decir, si el centro del sistema de electrones coincide con el de los núcleos positivos, el dieléctrico es, en todos sus puntos, eléctricamente neutro. Bajo la acción de un campo eléctrico externo, los centros de los sistemas citados se separan y se crean dipolos inducidos, alineados con el campo eléctrico externo. 
Macroscópicamente, en un dieléctrico se produce el fenómeno conjugado de alineamiento e inducción, separándose ligeramente el centro de las cargas positivas de todo el dieléctrico con respecto al centro de las cargas negativas. El dieléctrico en su conjunto permanece eléctricamente neutro pero se polariza, es decir, se acumula carga positiva a un lado y negativa en el otro.
AISLANTES ELECTRICOS Universidad Técnica Luis Vargas Torres 
Araujo Chica Camilo Isaac 
AISLANTES ELÉCTRICOS 
El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Estos materiales conductores tienen un gran número de electrones libres (electrones no estrechamente ligados a los núcleos) que pueden transportar la corriente; los buenos aislantes apenas poseen estos electrones. Algunos materiales, como el silicio o el germanio, que tienen un número limitado de electrones libres, se comportan como semiconductores, y son la materia básica de los transistores. 
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico. 
La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de epoxy y los poliuretanos pueden proteger contra los productos químicos y la humedad. 
Los materiales aislantes que cubren a los conductores no sólo proveen aislación eléctrica, pero proporcionan protección ambiental y resistencia mecánica a la fricción (tirado de cables dentro de un conducto o expansión y contracción con variaciones de temperatura) 
Tipos de aislantes 
 T (Thermoplastic) Material termoplástico 
 H (Heat resitant) Resistente al calor (heat). 
 W (Weather-resistant) Resistente a la humedad. 
 A (Asbestos) Asbesto. Este material está prohibido en la actualidad 
 M (Mineral oil) Resistente a los aceites. 
 N (Nylon) Cubertura exterior de nylon.
AISLANTES ELECTRICOS Universidad Técnica Luis Vargas Torres 
Araujo Chica Camilo Isaac 
 NM (Non-Metalic) Cubertura exterior de nylon (no metálica). 
 R (Rubber) Goma. 
 S (Silicon rubber) Goma siliconada. 
 FEP (Teflon) FET y TFE representan dos 
TFE (Teflon) formulaciones del Teflon 
 PVC (Polyvinyl Chloride) Cloruro de polivinilo. 
 UF/USE (Underground Feeder/ Cables que permiten ser 
 Underground Service enterrados bajo tierra. Entrance) 
El PVC es sin duda el más usado por su alta resistencia a las temperaturas y voltajes de aislación (600 V/1.500°C, así como a la humedad ambiente. Con lo anterior podemos deducir los grabados de los aislantes en el conductor por ejemplo un THW esto indica que se ha usado un material termoplástico para la cubierta aislante (T), la que es resistente al calor (H) y la humedad ambiente (W). Los conductores de baja tensión que se utilizan en la industria de la construcción, se clasifican de acuerdo con el tipo de aislamiento que rodea al conductor que son: 
1. Conductores con aislamiento termoplástico PVC 2. Conductores con aislamiento termofijo EP, XLP 
CONDUCTORES CON AISLAMIENTO TERMOPLÁSTICO Son aquellos que, al calentarse, su plasticidad permite conformarlos a voluntad, recuperando sus propiedades iníciales al enfriarse, pero manteniendo la forma que se les imprimió. 
CONDUCTORES CON AISLAMIENTO TERMOFIJO A diferencia de los anteriores, los subsecuentes calentamientos no los reblandecen, sino que los degradan.
EFECTO CORONA Universidad técnica Luis Vargas Torres 
Araujo Chica Camilo Isaac 
EFECTO CORONA 
El efecto corona es un fenómeno eléctrico que se produce en los conductores de las líneas de alta tensión y se manifiesta en forma de halo luminoso a su alrededor. Dado que los conductores suelen ser de sección circular, el halo adopta una forma de corona, de ahí el nombre del fenómeno. 
El efecto corona consiste en la ionización del aire que rodea a los conductores de alta tensión y que tiene lugar cuando el gradiente eléctrico supera la rigidez dieléctrica del aire, manifestándose en forma de pequeñas chispas o descargas a escasos centímetros de los cables. Al momento que las moléculas que componen el aire se ionizan, éstas son capaces de conducir la corriente eléctrica y parte de los electrones que circulan por la línea pasan a circular por el aire. Tal circulación producirá un incremento de temperatura en el gas, que se tornará de un color rojizo para niveles bajos de temperatura, o azulado para niveles altos. La intensidad del efecto corona, por lo tanto, se puede cuantificar Según el color del halo, que será rojizo en aquellos casos leves y azulado para los más severos. 
Las líneas eléctricas se diseñan para que el efecto corona sea mínimo, puesto que también suponen una pérdida en su capacidad de transporte de energía. 
En la aparición e intensidad del fenómeno influyen los siguientes condicionantes: 
•Tensión de la línea: cuanto mayor sea la tensión de funcionamiento de la línea, mayor será el gradiente eléctrico en la superficie de los Cables y, por tanto, mayor el efecto corona. En realidad sólo se produce en líneas de tensión superior a 80 kV. 
•La humedad relativa del aire: una mayor humedad, especialmente en caso de lluvia o niebla, incrementa de forma importante el efecto corona. 
•El estado de la superficie del conductor: las rugosidades, irregularidades, defectos, impurezas adheridas, etc., incrementan el efecto corona. 
•Número de subconductores: el efecto corona será menor cuanto más subconductores tenga cada fase de la línea. 
Como consecuencia del efecto corona se produce una emisión de energía acústica y energía electromagnética en el rango de las radiofrecuencias, de forma que los conductores pueden generar ruido e interferencias en la radio y la televisión; otra consecuencia es la producción de ozono y óxidos de nitrógeno

Más contenido relacionado

La actualidad más candente

ley de faraday y ley de ampere
ley de faraday y ley de ampereley de faraday y ley de ampere
ley de faraday y ley de amperefreivis123
 
electricidad y magnetismo ejercicios resueltos Capitulo 5
electricidad y magnetismo  ejercicios resueltos  Capitulo 5electricidad y magnetismo  ejercicios resueltos  Capitulo 5
electricidad y magnetismo ejercicios resueltos Capitulo 5J Alexander A Cabrera
 
Informe 2 equipotenciales
Informe 2 equipotencialesInforme 2 equipotenciales
Informe 2 equipotencialesandres mera
 
CIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUACIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUATorimat Cordova
 
Campos eléctricos Y Líneas equipotenciales con Análisis
Campos eléctricos Y Líneas equipotenciales con AnálisisCampos eléctricos Y Líneas equipotenciales con Análisis
Campos eléctricos Y Líneas equipotenciales con AnálisisKaren Serrano
 
Potencial electrico clase 7
Potencial electrico clase 7Potencial electrico clase 7
Potencial electrico clase 7Tensor
 
350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales
350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales
350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materialesjhon gomez
 
Resistencia y ensayo de los materiales jose cabello
Resistencia y ensayo de los materiales jose cabelloResistencia y ensayo de los materiales jose cabello
Resistencia y ensayo de los materiales jose cabelloJose Manuel Cabello Burgos
 
Capitulo 4 solucionario estatica beer 9 edicion
Capitulo 4 solucionario estatica beer 9 edicionCapitulo 4 solucionario estatica beer 9 edicion
Capitulo 4 solucionario estatica beer 9 edicionRikardo Bernal
 
CAPITULO 5. CONDENSADORES Y DIELECTRICOS
CAPITULO 5. CONDENSADORES Y DIELECTRICOSCAPITULO 5. CONDENSADORES Y DIELECTRICOS
CAPITULO 5. CONDENSADORES Y DIELECTRICOSUAJMS
 
MEDICIÓN DE RESISTENCIA: LEY DE OHM
 MEDICIÓN DE RESISTENCIA: LEY DE OHM MEDICIÓN DE RESISTENCIA: LEY DE OHM
MEDICIÓN DE RESISTENCIA: LEY DE OHMalfredojaimesrojas
 
Física ii (electricidad) clase 03
Física ii (electricidad)   clase 03Física ii (electricidad)   clase 03
Física ii (electricidad) clase 03qrerock
 
Fisica ii corriente, circuitos de corriente directa s
Fisica ii corriente, circuitos de corriente directa s Fisica ii corriente, circuitos de corriente directa s
Fisica ii corriente, circuitos de corriente directa s Joel Panchana
 

La actualidad más candente (20)

ley de faraday y ley de ampere
ley de faraday y ley de ampereley de faraday y ley de ampere
ley de faraday y ley de ampere
 
electricidad y magnetismo ejercicios resueltos Capitulo 5
electricidad y magnetismo  ejercicios resueltos  Capitulo 5electricidad y magnetismo  ejercicios resueltos  Capitulo 5
electricidad y magnetismo ejercicios resueltos Capitulo 5
 
Informe 2 equipotenciales
Informe 2 equipotencialesInforme 2 equipotenciales
Informe 2 equipotenciales
 
Torsión
TorsiónTorsión
Torsión
 
CIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUACIRCUITOS DE CORRIENTE CONTINUA
CIRCUITOS DE CORRIENTE CONTINUA
 
Campos eléctricos Y Líneas equipotenciales con Análisis
Campos eléctricos Y Líneas equipotenciales con AnálisisCampos eléctricos Y Líneas equipotenciales con Análisis
Campos eléctricos Y Líneas equipotenciales con Análisis
 
Ejercicios circulo-de-mohr-huaman
Ejercicios circulo-de-mohr-huamanEjercicios circulo-de-mohr-huaman
Ejercicios circulo-de-mohr-huaman
 
Potencial electrico clase 7
Potencial electrico clase 7Potencial electrico clase 7
Potencial electrico clase 7
 
350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales
350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales
350477477 solucionario-de-exmane-de-recuperacion-de-mecanica-de-materiales
 
Sem1 amb fisica ii
Sem1 amb fisica iiSem1 amb fisica ii
Sem1 amb fisica ii
 
2 campos electrostaticos
2 campos electrostaticos2 campos electrostaticos
2 campos electrostaticos
 
Resistencia y ensayo de los materiales jose cabello
Resistencia y ensayo de los materiales jose cabelloResistencia y ensayo de los materiales jose cabello
Resistencia y ensayo de los materiales jose cabello
 
Capitulo 4 solucionario estatica beer 9 edicion
Capitulo 4 solucionario estatica beer 9 edicionCapitulo 4 solucionario estatica beer 9 edicion
Capitulo 4 solucionario estatica beer 9 edicion
 
CAPITULO 5. CONDENSADORES Y DIELECTRICOS
CAPITULO 5. CONDENSADORES Y DIELECTRICOSCAPITULO 5. CONDENSADORES Y DIELECTRICOS
CAPITULO 5. CONDENSADORES Y DIELECTRICOS
 
MEDICIÓN DE RESISTENCIA: LEY DE OHM
 MEDICIÓN DE RESISTENCIA: LEY DE OHM MEDICIÓN DE RESISTENCIA: LEY DE OHM
MEDICIÓN DE RESISTENCIA: LEY DE OHM
 
Uii estatica
Uii estaticaUii estatica
Uii estatica
 
Solucionario estática beer 9 ed
Solucionario estática beer   9 edSolucionario estática beer   9 ed
Solucionario estática beer 9 ed
 
Ejercicio de Dinámica (Trabajo y Energía)
Ejercicio de Dinámica (Trabajo y Energía)Ejercicio de Dinámica (Trabajo y Energía)
Ejercicio de Dinámica (Trabajo y Energía)
 
Física ii (electricidad) clase 03
Física ii (electricidad)   clase 03Física ii (electricidad)   clase 03
Física ii (electricidad) clase 03
 
Fisica ii corriente, circuitos de corriente directa s
Fisica ii corriente, circuitos de corriente directa s Fisica ii corriente, circuitos de corriente directa s
Fisica ii corriente, circuitos de corriente directa s
 

Similar a Fenomeno de polarizacion, propiedades de los aislantes y efecto corona

Propiedades eléctricas polimeros
Propiedades eléctricas polimerosPropiedades eléctricas polimeros
Propiedades eléctricas polimerosjctotre
 
Materiales electricos..pdf
Materiales electricos..pdfMateriales electricos..pdf
Materiales electricos..pdfArmandoNoriega7
 
conductores, semiconductores y aislantes
 conductores, semiconductores y aislantes conductores, semiconductores y aislantes
conductores, semiconductores y aislantesLuisf Muñoz
 
Aislates y semiconductores
Aislates y semiconductoresAislates y semiconductores
Aislates y semiconductoresbryan jinez
 
Apuntes t.t electricidad i
Apuntes t.t electricidad iApuntes t.t electricidad i
Apuntes t.t electricidad idesiderata2010
 
PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.
PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.
PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.feragama
 
Sesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta Tensión
Sesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta TensiónSesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta Tensión
Sesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta Tensiónfernando nuño
 
Principios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitalesPrincipios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitalesCarlosAlejandro56
 
Propiedades dielectricas y su control
Propiedades dielectricas y su controlPropiedades dielectricas y su control
Propiedades dielectricas y su controlNuestro Sera Leyenda
 
Principios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitalesPrincipios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitalesCarlosAlejandro56
 

Similar a Fenomeno de polarizacion, propiedades de los aislantes y efecto corona (20)

Propiedades eléctricas polimeros
Propiedades eléctricas polimerosPropiedades eléctricas polimeros
Propiedades eléctricas polimeros
 
Materiales electricos..pdf
Materiales electricos..pdfMateriales electricos..pdf
Materiales electricos..pdf
 
conductores, semiconductores y aislantes
 conductores, semiconductores y aislantes conductores, semiconductores y aislantes
conductores, semiconductores y aislantes
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Aislates y semiconductores
Aislates y semiconductoresAislates y semiconductores
Aislates y semiconductores
 
Apuntes t.t electricidad i
Apuntes t.t electricidad iApuntes t.t electricidad i
Apuntes t.t electricidad i
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.
PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.
PROPIEDADES ELECTRICAS EN MATERIALES DE INGENIERIA.
 
Sesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta Tensión
Sesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta TensiónSesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta Tensión
Sesión 1 - Curso de FORMACIÓN en Cables de Energía para Media y Alta Tensión
 
Principios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitalesPrincipios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitales
 
Matheo cobos
Matheo cobosMatheo cobos
Matheo cobos
 
Laura daniela 2
Laura daniela 2Laura daniela 2
Laura daniela 2
 
Conductores iónicos
Conductores iónicosConductores iónicos
Conductores iónicos
 
Propiedades electricas
Propiedades electricasPropiedades electricas
Propiedades electricas
 
Propiedades dielectricas y su control
Propiedades dielectricas y su controlPropiedades dielectricas y su control
Propiedades dielectricas y su control
 
Principios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitalesPrincipios electricos y aplicaciones digitales
Principios electricos y aplicaciones digitales
 
bobina y condensador
bobina y condensadorbobina y condensador
bobina y condensador
 
Curso basico electrónica
Curso basico electrónicaCurso basico electrónica
Curso basico electrónica
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Último

aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptCRISTOFERSERGIOCANAL
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaAlexanderimanolLencr
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxbingoscarlet
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingKevinCabrera96
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
Condensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismoCondensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismosaultorressep
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptxguillermosantana15
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxJuanPablo452634
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAJOSLUISCALLATAENRIQU
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILProblemSolved
 
nom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfnom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfDiegoMadrigal21
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASfranzEmersonMAMANIOC
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptMarianoSanchez70
 

Último (20)

aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiología
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptx
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards Deming
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdfVALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
 
Condensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismoCondensadores de la rama de electricidad y magnetismo
Condensadores de la rama de electricidad y magnetismo
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
 
nom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfnom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdf
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
 

Fenomeno de polarizacion, propiedades de los aislantes y efecto corona

  • 1. FENÓMENO DE POLARIZACIÓN, PROPIEDADES AISLANTE DE LOS CONDUCTORES Y EFECTO CORONA PRESENTADO POR: ARAUJO CHICA CAMILO ISAAC UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS CARRERA DE INGENIERÍA ELÉCTRICA MATERIA ALTO VOLTAJE ESMERALDAS – ESMERALDAS 02 DE SEPTIEMBRE DEL 2014
  • 2. FENÓMENO DE LA POLARIZACIÓN Universidad Técnica Luis Vargas Torres Araujo Chica Camilo Isaac FENÓMENO DE LA POLARIZACIÓN La inducción no se limita a los conductores, cuando acercamos una barra cargada a un aislante no hay electrones libres que puedan desplazarse por el material aislante; lo que ocurre es un reordenamiento de las posiciones de las cargas dentro de los propios átomos y moléculas. Por inducción un lado del átomo o molécula se hace ligeramente mas positivo o negativo que el lado opuesto por lo que decimos que el átomo está eléctricamente polarizado. Si, por ejemplo, la barra es negativa, entonces el lado positivo del átomo o molécula se orienta hacia la barra y el lado negativo queda orientado en sentido contrario. Se presenta el fenómeno de polarización cuando trozos de papel neutros son atraídos por un objeto cargado o cuando se coloca un globo cargado en una pared. Cuando situamos un objeto material en un campo eléctrico se comporta según sea un conductor o un dieléctrico. El conductor redistribuye sus cargas, En un dieléctrico las cargas no pueden moverse libremente y, por tanto, su comportamiento es distinto. Los dieléctricos pueden considerarse formados por dos tipos de moléculas: polares y no polares. Una molécula es polar cuando el centro del sistema de electrones (carga negativa) no coincide con el de núcleos positivos. Las moléculas sin dejar de ser neutras son verdaderos dipolos, caracterizados por su momento dipolar. Los materiales que forman, llamados polares, están descargados en todos sus puntos, ya que la agitación térmica distribuye los dipolos al azar. Bajo la acción de un campo eléctrico externo, los dipolos moleculares se orientan alineándose con el campo. El grado de alineamiento no será completo debido a la agitación térmica de las moléculas.
  • 3. FENÓMENO DE LA POLARIZACIÓN Universidad Técnica Luis Vargas Torres Araujo Chica Camilo Isaac Si la molécula es no polar, es decir, si el centro del sistema de electrones coincide con el de los núcleos positivos, el dieléctrico es, en todos sus puntos, eléctricamente neutro. Bajo la acción de un campo eléctrico externo, los centros de los sistemas citados se separan y se crean dipolos inducidos, alineados con el campo eléctrico externo. Macroscópicamente, en un dieléctrico se produce el fenómeno conjugado de alineamiento e inducción, separándose ligeramente el centro de las cargas positivas de todo el dieléctrico con respecto al centro de las cargas negativas. El dieléctrico en su conjunto permanece eléctricamente neutro pero se polariza, es decir, se acumula carga positiva a un lado y negativa en el otro.
  • 4. AISLANTES ELECTRICOS Universidad Técnica Luis Vargas Torres Araujo Chica Camilo Isaac AISLANTES ELÉCTRICOS El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Estos materiales conductores tienen un gran número de electrones libres (electrones no estrechamente ligados a los núcleos) que pueden transportar la corriente; los buenos aislantes apenas poseen estos electrones. Algunos materiales, como el silicio o el germanio, que tienen un número limitado de electrones libres, se comportan como semiconductores, y son la materia básica de los transistores. En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico. La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de epoxy y los poliuretanos pueden proteger contra los productos químicos y la humedad. Los materiales aislantes que cubren a los conductores no sólo proveen aislación eléctrica, pero proporcionan protección ambiental y resistencia mecánica a la fricción (tirado de cables dentro de un conducto o expansión y contracción con variaciones de temperatura) Tipos de aislantes  T (Thermoplastic) Material termoplástico  H (Heat resitant) Resistente al calor (heat).  W (Weather-resistant) Resistente a la humedad.  A (Asbestos) Asbesto. Este material está prohibido en la actualidad  M (Mineral oil) Resistente a los aceites.  N (Nylon) Cubertura exterior de nylon.
  • 5. AISLANTES ELECTRICOS Universidad Técnica Luis Vargas Torres Araujo Chica Camilo Isaac  NM (Non-Metalic) Cubertura exterior de nylon (no metálica).  R (Rubber) Goma.  S (Silicon rubber) Goma siliconada.  FEP (Teflon) FET y TFE representan dos TFE (Teflon) formulaciones del Teflon  PVC (Polyvinyl Chloride) Cloruro de polivinilo.  UF/USE (Underground Feeder/ Cables que permiten ser  Underground Service enterrados bajo tierra. Entrance) El PVC es sin duda el más usado por su alta resistencia a las temperaturas y voltajes de aislación (600 V/1.500°C, así como a la humedad ambiente. Con lo anterior podemos deducir los grabados de los aislantes en el conductor por ejemplo un THW esto indica que se ha usado un material termoplástico para la cubierta aislante (T), la que es resistente al calor (H) y la humedad ambiente (W). Los conductores de baja tensión que se utilizan en la industria de la construcción, se clasifican de acuerdo con el tipo de aislamiento que rodea al conductor que son: 1. Conductores con aislamiento termoplástico PVC 2. Conductores con aislamiento termofijo EP, XLP CONDUCTORES CON AISLAMIENTO TERMOPLÁSTICO Son aquellos que, al calentarse, su plasticidad permite conformarlos a voluntad, recuperando sus propiedades iníciales al enfriarse, pero manteniendo la forma que se les imprimió. CONDUCTORES CON AISLAMIENTO TERMOFIJO A diferencia de los anteriores, los subsecuentes calentamientos no los reblandecen, sino que los degradan.
  • 6. EFECTO CORONA Universidad técnica Luis Vargas Torres Araujo Chica Camilo Isaac EFECTO CORONA El efecto corona es un fenómeno eléctrico que se produce en los conductores de las líneas de alta tensión y se manifiesta en forma de halo luminoso a su alrededor. Dado que los conductores suelen ser de sección circular, el halo adopta una forma de corona, de ahí el nombre del fenómeno. El efecto corona consiste en la ionización del aire que rodea a los conductores de alta tensión y que tiene lugar cuando el gradiente eléctrico supera la rigidez dieléctrica del aire, manifestándose en forma de pequeñas chispas o descargas a escasos centímetros de los cables. Al momento que las moléculas que componen el aire se ionizan, éstas son capaces de conducir la corriente eléctrica y parte de los electrones que circulan por la línea pasan a circular por el aire. Tal circulación producirá un incremento de temperatura en el gas, que se tornará de un color rojizo para niveles bajos de temperatura, o azulado para niveles altos. La intensidad del efecto corona, por lo tanto, se puede cuantificar Según el color del halo, que será rojizo en aquellos casos leves y azulado para los más severos. Las líneas eléctricas se diseñan para que el efecto corona sea mínimo, puesto que también suponen una pérdida en su capacidad de transporte de energía. En la aparición e intensidad del fenómeno influyen los siguientes condicionantes: •Tensión de la línea: cuanto mayor sea la tensión de funcionamiento de la línea, mayor será el gradiente eléctrico en la superficie de los Cables y, por tanto, mayor el efecto corona. En realidad sólo se produce en líneas de tensión superior a 80 kV. •La humedad relativa del aire: una mayor humedad, especialmente en caso de lluvia o niebla, incrementa de forma importante el efecto corona. •El estado de la superficie del conductor: las rugosidades, irregularidades, defectos, impurezas adheridas, etc., incrementan el efecto corona. •Número de subconductores: el efecto corona será menor cuanto más subconductores tenga cada fase de la línea. Como consecuencia del efecto corona se produce una emisión de energía acústica y energía electromagnética en el rango de las radiofrecuencias, de forma que los conductores pueden generar ruido e interferencias en la radio y la televisión; otra consecuencia es la producción de ozono y óxidos de nitrógeno