REALIZADO POR:
Ricoveri Kamila.
ASIGNATURA:
Elementos de Maquinas.
.
Se define aquí como la intensidad de las fuerzas
componentes internas distribuidas que resisten un
cambio en la forma de u...
Existen Varias clases de esfuerzos.
El esfuerzo se computa sobre la base de las dimensiones del
corte transversal de una p...
El esfuerzo normal (esfuerzo axil o axial) es
el esfuerzo interno o resultante de las tensiones
perpendiculares (normales)...
Es todo cambio en sus dimensiones que sufre un cuerpo bajo efectos
externos.
La deformación se define como el cambio de fo...
Tanto para la deformación unitaria como para el tensor
deformación se puede descomponer el valor de la deformación en:
Def...
Gráfico del esfuerzo como una función de la
deformación. Puede construirse a partir de los datos
obtenidos en cualquier en...
Hooke estableció la ley fundamental que relaciona la fuerza
aplicada y la deformación producida. Para una deformación
unid...
La ley de fuerza para el resorte es la Ley de Hooke.
Conforme el resorte está estirado (o comprimido) cada vez más, la
fue...
La fatiga de materiales se refiere a un fenómeno por el cual
la rotura de los materiales bajo cargas dinámicas cíclicas se...
CURVA S-N
Estas curvas se obtienen a través de una serie de ensayos donde
una probeta del material se somete a tensiones c...
Los resultados se representan en un diagrama de tensión, S,
frente al logaritmo del número N de ciclos hasta la rotura
par...
La rigidez es la capacidad de un elemento estructural para
soportar esfuerzos sin adquirir grandes deformaciones y/o
despl...
Rigidez Axial.
La rigidez axial de un prisma o barra recta, como por ejemplo una viga o
un pilar es una medida de su capac...
Rigidez frente a cortante.
La rigidez frente a cortante es la relación entre los
desplazamientos verticales de un extremo ...
Se denomina flexión al tipo de deformación que presenta un elemento
estructural alargado en una dirección perpendicular a ...
El rasgo más destacado es que un objeto sometido a flexión
presenta una superficie de puntos llamada fibra neutra tal
que ...
Torsión es la solicitación que se presenta cuando se aplica
un momento sobre el eje longitudinal de un elemento
constructi...
El estudio general de la torsión es complicado porque bajo
ese tipo de solicitación la sección transversal de una pieza
en...
Diagrama momentos torsores.
Al aplicar las ecuaciones de la estática, en el
empotramiento se producirá un momento torsor i...
El módulo de torsión o momento de torsión (o inercia torsional)
es una propiedad geométrica de la sección transversal de
u...
Capítulos.Elementos De Maquinas.
Capítulos.Elementos De Maquinas.
Próxima SlideShare
Cargando en…5
×

Capítulos.Elementos De Maquinas.

701 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
701
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
7
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Capítulos.Elementos De Maquinas.

  1. 1. REALIZADO POR: Ricoveri Kamila. ASIGNATURA: Elementos de Maquinas.
  2. 2. .
  3. 3. Se define aquí como la intensidad de las fuerzas componentes internas distribuidas que resisten un cambio en la forma de un cuerpo. Es la intensidad de las fuerzas internas que actúan sobre un plano dado y es la respuesta que ofrece el material a las cargas aplicadas. El esfuerzo se define en términos de fuerza por unidad de área.
  4. 4. Existen Varias clases de esfuerzos. El esfuerzo se computa sobre la base de las dimensiones del corte transversal de una pieza antes de la aplicación de la carga, que usualmente se llaman dimensiones originales.
  5. 5. El esfuerzo normal (esfuerzo axil o axial) es el esfuerzo interno o resultante de las tensiones perpendiculares (normales) a la sección transversal de un prisma mecánico. Este tipo de solicitación formado por tensiones paralelas está directamente asociado a la tensión normal. Carga Axial. Es aquella que actúa a través del eje del cuerpo y puede actuar a: - Tensión. - Compresión. Esta carga produce un esfuerzo normal ( σ ) y una deformación (δ).
  6. 6. Es todo cambio en sus dimensiones que sufre un cuerpo bajo efectos externos. La deformación se define como el cambio de forma de un cuerpo, el cual se debe al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En conjunción con el esfuerzo directo, la deformación se supone como un cambio lineal y se mide en unidades de longitud. En los ensayos de torsión se acostumbra medir la deformación cómo un ángulo de torsión entre dos secciones especificadas.
  7. 7. Tanto para la deformación unitaria como para el tensor deformación se puede descomponer el valor de la deformación en: Deformación plástica, irreversible o permanente. Modo de deformación en que el material no regresa a su forma original después de retirar la carga aplicada. Esto sucede porque, en la deformación plástica, el material experimenta cambios termodinámicos irreversibles al adquirir mayor energía potencial elástica. La deformación plástica es lo contrario a la deformación reversible. Deformación elástica, reversible o no permanente, el cuerpo recupera su forma original al retirar la fuerza que le provoca la deformación. En este tipo de deformación, el sólido, al variar su estado tensional y aumentar su energía interna en forma de energía potencial elástica, solo pasa por cambios termodinámicos reversibles.
  8. 8. Gráfico del esfuerzo como una función de la deformación. Puede construirse a partir de los datos obtenidos en cualquier ensayo mecánico en el que se aplica carga a un material, y las mediciones continuas de esfuerzo y de formación se realizan simultáneamente. Se construye para ensayos de compresión, tensión y torsión.
  9. 9. Hooke estableció la ley fundamental que relaciona la fuerza aplicada y la deformación producida. Para una deformación unidimensional, la Ley de Hooke se puede expresar matemáticamente así: F = - kX • K es la constante de proporcionalidad o de elasticidad. • es la deformación, esto es, lo que se ha comprimido o estirado a partir del estado que no tiene deformación. Se conoce también como el alargamiento de su posición de equilibrio. • es la fuerza resistente del sólido. • El signo ( - ) en la ecuación se debe a la fuerza restauradora que tiene sentido contrario al desplazamiento. La fuerza se opone o se resiste a la deformación. • Las unidades son: Newton/metro (New/m) – Libras/pies (Lb/p).
  10. 10. La ley de fuerza para el resorte es la Ley de Hooke. Conforme el resorte está estirado (o comprimido) cada vez más, la fuerza de restauración del resorte se hace más grande y es necesario aplicar una fuerza mayor. Se encuentra que la fuerza aplicada F es directamente proporcional al desplazamiento o al cambio de longitud del resorte. Esta ley comprende numerosas disciplinas, siendo utilizada en ingeniería y construcción, así como en la ciencia de los materiales. Ante el temor de que alguien se apoderara de su descubrimiento.
  11. 11. La fatiga de materiales se refiere a un fenómeno por el cual la rotura de los materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con cargas estáticas. Aunque es un fenómeno que, sin definición formal, era reconocido desde la antigüedad, este comportamiento no fue de interés real hasta la Revolución Industrial, cuando, a mediados del siglo XIX comenzaron a producir las fuerzas necesarias para provocar la rotura con cargas dinámicas son muy inferiores a las necesarias en el caso estático; y a desarrollar métodos de cálculo para el diseño de piezas confiables.
  12. 12. CURVA S-N Estas curvas se obtienen a través de una serie de ensayos donde una probeta del material se somete a tensiones cíclicas con una amplitud máxima relativamente grande (aproximadamente 2/3 de la resistencia estática a tracción). Se cuentan los ciclos hasta rotura. Este procedimiento se repite en otras probetas a amplitudes máximas decrecientes.
  13. 13. Los resultados se representan en un diagrama de tensión, S, frente al logaritmo del número N de ciclos hasta la rotura para cada una de las probetas. Los valores de Se toman normalmente como amplitudes de la tensión. Se pueden obtener dos tipos de curvas S-N. A mayor tensión, menor número de ciclos hasta rotura. En algunas aleaciones férreas y en aleaciones de titanio, la curva S-N se hace horizontal para valores grandes de N, es decir, existe una tensión límite, denominada límite de fatiga, por debajo del cual la rotura por fatiga no ocurrirá.
  14. 14. La rigidez es la capacidad de un elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones y/o desplazamientos. Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de un elemento resistente bajo diversas configuraciones de carga. Normalmente las rigideces se calculan como la razón entre una fuerza aplicada y el desplazamiento obtenido por la aplicación de esa fuerza.
  15. 15. Rigidez Axial. La rigidez axial de un prisma o barra recta, como por ejemplo una viga o un pilar es una medida de su capacidad para resistir intentos de alargamiento o acortamiento por la aplicación de cargas según su eje. En este caso la rigidez depende sólo del área de la sección transversal (A), el módulo de Young del material de la barra (E) y la longitud. Rigidez flexiona. La rigidez flexional de una barra recta es la relación entre el momento flector aplicado en uno de sus extremos y el ángulo girado por ese extremo al deformarse cuando la barra está empotrada en el otro extremo. Para barras rectas de sección uniforme existen dos coeficientes de rigidez según el momento flector esté dirigido según una u otra dirección principal de inercia. Rigidez torsional. La rigidez torsional en una barra recta de sección uniforme es la relación entre el momento torsor aplicado en uno de sus extremos y el ángulo girado por este extremo, al mantener fijo el extremo opuesto de la barra.
  16. 16. Rigidez frente a cortante. La rigidez frente a cortante es la relación entre los desplazamientos verticales de un extremo de un viga y el esfuerzo cortante aplicado en los extremos para provocar dicho desplazamiento. En barras rectas de sección uniforme existen dos coeficientes de rigidez según cada una de las direcciones principales: Rigidez mixta flexión-cortante. En general debido a las características peculiares de la flexión cuando el momento flector no es constante sobre una taza prismática aparecen también esfuerzos cortantes, eso hace al aplicar esfuerzos de flexión aparezcan desplazamientos verticales y viceversa, cuando se fuerzas desplazamientos verticales aparecen esfuerzos de flexión. Para representar adecuadamente los desplazamientos lineales inducidos por la flexión, y los giros angulares inducidos por el cortante.
  17. 17. Se denomina flexión al tipo de deformación que presenta un elemento estructural alargado en una dirección perpendicular a su eje longitudinal. El término "alargado" se aplica cuando una dimensión es dominante frente a las otras. Un caso típico son las vigas, las que están diseñadas para trabajar, principalmente, por flexión. Igualmente, el concepto de flexión se extiende a elementos estructurales superficiales como placas o láminas.
  18. 18. El rasgo más destacado es que un objeto sometido a flexión presenta una superficie de puntos llamada fibra neutra tal que la distancia a lo largo de cualquier curva contenida en ella no varía con respecto al valor antes de la deformación. El esfuerzo que provoca la flexión se denomina momento flector.
  19. 19. Torsión es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas. La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por la dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él.
  20. 20. El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección transversal de una pieza en general se caracteriza por dos fenómenos:  1-Aparecen tensiones tangenciales paralelas a la sección transversal.  2-Cuando las tensiones anteriores no están distribuidas adecuadamente, cosa que sucede siempre a menos que la sección tenga simetría circular, aparecen alabeos seccionales que hacen que las secciones transversales deformadas no sean planas.
  21. 21. Diagrama momentos torsores. Al aplicar las ecuaciones de la estática, en el empotramiento se producirá un momento torsor igual y de sentido contrario a T. Si cortamos el eje por 1-1 y nos quedamos con la parte de abajo, para que este trozo de eje este en equilibrio, en la sección 1-1 debe existir un momento torsor igual y de sentido contrario. Por tanto en cualquier sección de este eje existe un momento torsor T.
  22. 22. El módulo de torsión o momento de torsión (o inercia torsional) es una propiedad geométrica de la sección transversal de una viga o prisma mecánico que relaciona la magnitud del momento torsor con las tensiones tangenciales sobre la sección transversal. Dicho módulo se designa por J y aparece en las ecuaciones que relacionan las tensiones tangenciales asociadas, el momento torsor (Mx) y la función del alabeo unitario (ω). Se denomina momento torsor a la componente paralela al eje longitudinal del momento de fuerza resultante de una distribución de tensiones sobre una sección transversal del prisma mecánico. El momento torsor puede aparecer cuando se someten estos elementos a la acción de un momento de fuerza o torque paralelo al eje del prisma o cuando otro prisma mecánico perpendicular que está flexionado interseca al prisma mecánico original.

×