SlideShare una empresa de Scribd logo
1 de 67
Universidad Nacional del Altiplano Puno
INTRODUCCIÓN:
MaTRICes y DeTeRMINaNTes
Dimensión de la matriz nm×
2ª columna
3ª fila
Se llama matriz a una disposición rectangular de números reales, a los cuales se les
denomina elementos de la matriz. Cada elemento tiene dos subindices, el primero
indica la fila y el segundo la columna
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que
ocupan la misma posición en cada una de ellas son iguales.













a11 a12 a13 ...... a1n
a21 a22 a23 ...... a2n
a31 a32 a33 ...... a3n
.. .. .. .. ..
am1 am2 am3 ...... amn
= (aij )
Concepto de matriz. Igualdad de matrices
Definición de matriz
Se llama matriz de orden m×n a todo conjunto rectangular de elementos aij
dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la
forma:
Abreviadamente suele expresarse en la forma A =(aij), con i =1, 2, ..., m,
j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la
matriz, el primero denota la fila ( i ) y el segundo la columna ( j ). Por ejemplo
el elemento a25 será el elemento de la fila 2 y columna 5.
El orden es el número de filas y columnas que tiene la matriz, se
representa por m x n.
















mnmmm
n
n
n
aaaa
aaaa
aaaa
aaaa





321
3333231
2232221
1131211
A = (ai,j)=
Matriz: Ejemplo
Juan, Ana y Elena han ido a una tienda y han comprado lo siguiente:
1. Juan compró dos bocadillos, un refresco y un pastel.
2. Ana se llevó un bocadillo, un refresco y un pastel.
3. Elena compró un bocadillo y un refresco.
Estos datos se pueden
agrupar en una matriz






÷
÷
÷

2 1 1
1 1 1
1 1 0
Expresión matricial: ejemplo
Tiene la siguiente matriz de los coeficientes: A =








2 5 –3
1 –4 1
Tiene la siguiente matriz ampliada: A*
=








2 5 –3 1
1 –4 1 –2
Tiene la siguiente expresión matricial:








2 5 –3
1 –4 1







x
y
z
= 







1
– 2



−=+
=−+
2z4y-x
1352 zyx
El sistema









1 2 4
2 3 5
4 5 -1









0 2 -4
-2 0 3
4 -3 0
• Matriz fila: A = (1 3 5 7 9 )
• Matriz columna: A =







2
4
6
jiij aa =
Diagonal
secundaria
Diagonal
princi
pal
• Matriz cuadrada:A=







1 3 5
2 4 6
1 1 1
• Matriz simétrica: es una matriz cuadrada
que verifica que:
• Matriz antisimétrica: es una matriz
cuadrada que verifica que:
Clasificación de matrices: Forma
jiij -aa =
⇒ A = AT
⇒ A = –
AT
Clasificación de matrices: Elementos
• Matriz escalar: es una matriz diagonal
donde todos los elementos de ella son
iguales.
• Matriz triangular superior: es una matriz
donde todos los elementos por debajo de la
diagonal son ceros.
• Matriz triangular inferior: es una matriz
donde todos los elementos por encima de la
diagonal son ceros.
• Matriz nula: es una matriz en la que todos
los elementos son nulos.
• Matriz diagonal: es una matriz cuadrada,
en la que todos los elementos no
pertenecientes a la diagonal principal son
nulos.
• Matriz unidad o identidad: es una matriz
escalar, cuya diagonal principal es 1.
33
000
000
000
O
×










=
23
00
00
00
O
×










=










−=
400
320
631
T










−=
100
030
002
D










=
100
010
001
I3










=
200
020
002
A










−=
453
023
001
T
Operaciones con matrices
Trasposición de matrices
Suma y diferencia de matrices
Producto de una matriz por un número
Producto de matrices
Matrices inversibles
Propiedades simplificativas
Operaciones con matrices I
1.- Trasposición de matrices
Dada una matriz de orden m x n, A = (aij), se llama matriz traspuesta de A, y se
representa por At
, a la matriz que se obtiene cambiando las filas por las columnas
(o viceversa) en la matriz A.
Es decir:
Propiedades de la trasposición de matrices:
1ª.- Dada una matriz A, siempre existe su traspuesta y además es única.
2ª.- La traspuesta de la matriz traspuesta de A es A.  (At
)t
= A.
Matriz traspuesta: ejemplo y propiedades
I. Para la matriz A, (At
)t
= A
II. Para las matrices A y B, (A+ B)t
= At
+ Bt
III. Para la matriz A y el número real k, (k .
A)t
= k .
At
IV. Para las matrices A y B, (A.
B)t
= Bt .
At
V. Si A es una matriz simétrica, At
= A
Propiedades:
La traspuesta de una matriz A cualquiera se obtiene cambiando filas por columnas y se
representa por At
. Si A = (aij), entonces At
= (aji). Si A es mxn, entonces At
es nxm.
Ejemplo:Si A =








1 2 3
4 5 6
entonces A
t
=







1 4
2 5
3 6
Operaciones con matrices II
La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz
S=(sij) de la misma dimensión que los sumandos y con término genérico S = (aij + bij).
La suma de las matrices A y B se denota por A+B.
Ejemplo
2.- Suma y diferencia de matrices
Sin embargo, no se pueden sumar.
La diferencia de matrices A y B se representa por A–B, y se define como la suma
de A con la opuesta de B : A–B = A + (–B)
Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.
Suma de matrices: ejemplo de orden
3
Para sumar dos matrices A y B con las mismas dimensiones se suman los
correspondientes elementos: si A = (aij) y B = (bij) entonces A + B = (aij + bij)
A + B = (aij ) + (bij ) =







a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
+







b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
=
=







a11 + b11 a12 + b12 a13 + b13 a14 + b14
a21 + b21 a22 + b22 a23 + b23 a24 + b24
a31 + b31 a32 + b32 a33 + b33 a34 + b34
= (aij + bij )
Propiedades de la adición de
matrices
• Asociativa: A + (B + C) = (A + B) + C
• Conmutativa: A + B = B + A
• Elemento neutro: A + 0 = 0 + A = A donde 0 es la matriz nula.
• Elemento opuesto: A + (– A) = (– A) + A = 0
La matriz –A (opuesta) se obtiene cambiando de signo los elementos de A.
Sean A, B y C tres matrices del mismo orden.
Para multiplicar un número real por una matriz, se multiplican cada uno de los
elementos de la matriz por dicho número.
Si A = (aij), entonces kA = (kaij)
Operaciones con matrices III
k . A = k . (aij) = k·







a11 a12 a13
a21 a22 a23
a31 a32 a33
=







ka11 ka12 ka13
ka21 ka22 ka23
ka31 ka32 ka33
= (kaij)
3.- Producto de un número por una matriz
Propiedades con la suma y el producto por un número
• Distributiva I: k(A + B) = kA + kB
• Distributiva II: (k + h)A = kA + hA
• Elemento neutro: 1 · A = A
• Asociativa mixta: k(hA) = (kh)A
Sean A y B dos matrices del mismo orden y k y h dos números reales.
El conjunto de las matrices m x n con las operaciones suma y producto
por un escalar antes definidas, tiene estructura de espacio
vectorial
Operaciones con matrices IV
4.- Producto de matrices
Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se
obtienen multiplicando las filas de A por las columnas de B (por lo que
deben coincidir estas). De manera más formal, los elementos de P son de
la forma:
Es evidente que el número de columnas de A debe coincidir con el número
de filas de B. Es más, si A tiene dimensión m x n y B dimensión n x p, la
matriz P será de orden m x p,
no se pueden multiplicar
Ejemplos:
Pij = ∑ aik · bkj con k=1,….n
Matemáticas
2.º Bachillerato
Matrices y determinantes
¿Cuándo es posible el producto de
matrices?
(aij)m,n
.
(bij)n,p =
Posible
filas
columnas
(cij)m,p
El producto de matrices es posible cuando coincide el número de columnas
de una matriz con el número de filas de la otra matriz.
Matemáticas
2.º Bachillerato
Matrices y determinantes
Producto de matrices: Desarrollo
es la matriz C = A · B, tal que el elemento que ocupa la posición ij es:
cij = ai1
.
b1j + ai2
.
b2j + ... + ain
.
bnj
El producto de la matriz
A = (aij) =











a11 a12 a13 ...... a1n
a21 a22 a23 ...... a2n
a31 a32 a33 ...... a3n
.. .. .. .. ..
am1 am2 am3 ...... amn
por la matriz
B = (bij) =
















np3n2n1n
p3333231
p2232221
p1131211
bbbb
bbbb
bbbb
bbbb
......
..........
......
......
......
Ejemplo: producto de matrices
2. ¿Qué dimensiones tiene la matriz producto?
(aij)2,3
.
(bij)3,3 =
producto
posible
(cij)
2, 3
A · B =








2 1 –1
3 –2 0
.







1 2 0
1 0 –3
0 1 –2
=








3 3 –1
1 6 6
Propiedades del producto de matrices (I)
I. Propiedad asociativa. Para las matrices A de dimensión mxn, B de dimensión nxp y C de
dimensión pxr.
A .
(B .
C) = (A .
B) .
C
III. Propiedad distributiva a la izquierda. Para las matrices A de dimensión mxn,
B de dimensión nxr y C de dimensión nxr.
A .
(B + C) = A .
B + A .
C
IV. Propiedad distributiva a la derecha. Para las matrices A de dimensión mxn, B
de dimensión mxn y C de dimensión nxp.
(A + B) .
C = A .
C + B .
C
las matrices identidad de orden m y n, respectivamente, se tiene:
Im · A = A · In = A
II. Elemento unidad. Si A es una matriz mxn, y
Im =
















1......000
..........
0......100
0......010
0......001
e I n =









1 0 0 ...... 0
0 1 0 ...... 0
0 0 1 ...... 0
.. .. .. .. ..
0 0 0 ...... 1
Propiedades del producto de matrices (II)
I. La multiplicación de matrices no cumple la propiedad conmutativa: si una de
las dos matrices no es cuadrada ni siquiera tiene sentido plantear el producto en
un orden distinto al dado.
II. Si A .
B = 0 entonces no siempre ocurre que A = 0 ó B = 0.
III. Si A .
C = B .
C y C ≠ 0, entonces no necesariamente A = B.
IV. (A + B)2
≠ A2
+ 2A .
B + B2
salvo que A y B conmuten.
V. (A – B)2
≠ A2
– 2A .
B + B2
salvo que A y B conmuten.
VI. A2
– B2
≠ (A – B) .
(A + B) salvo que A y B conmuten.
Ejemplo: Aunque








0 2
0 0
.








0 –3
0 0 = 







0 0
0 0 ninguno de los factores que
forman el producto es la matriz nula.
Producto: Potencia de una
matriz
Si A es una matriz cuadrada, las potencias de A, de exponente natural, se definen como en
el caso de los números naturales: el exponente indica el número de veces que se
multiplica la matriz por sí misma.
An
= A .
A .
........... .
An veces
Ejemplo:






=
10
11
A






=











=⋅=
10
21
10
11
10
11
AAA2






=











=⋅=
10
31
10
21
10
11
AAA 23






=





⋅





=⋅=⋅⋅⋅=
10
41
10
31
10
11
AAAAAAA 34






=




 −






=⋅==
10
1
10
11
10
11
AAAAA 1-
veces-
nnn
n
n

Propiedades de la matriz inversa
I. Si las matrices A y B son inversibles (A.
B)–1
= B–1 .
A–1
II. Si A es una matriz inversible y k ≠ 0, (k .
A)–1
= (1/k) .
A–1
III. Si A es una matriz inversible, (A–1
)–1
= A
IV. La matriz unidad es inversible y además I–1
= I
V. Si A es una matriz inversible, (A–1
)t
= (At
)–1
Dada una matriz cuadrada A de orden n, no siempre existe otra
matriz B tal que A·B = B·A = In. Si existe dicha matriz B, se dice
que es la matriz inversa de A y se representa por A-1
Una matriz cuadrada que posee inversa se dice que es inversible o regular; en
caso contrario recibe el nombre de singular.
Inversa de una matriz, Matrices inversibles
Operaciones con matrices V
Métodos de cálculo de la matriz inversa
 Directamente
 Por el método de Gauss-Jordan
 Usando determinantes
Observación:
Podemos encontrar matrices que cumplen A·B = I, pero que B·A ≠ I, en tal
caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la
inversa de A "por la derecha".
Hay varios métodos para calcular la matriz inversa de una matriz dada:
Inversa de una matriz (directamente)
Si A es una matriz cuadrada, se dice que B es la inversa de A si A .
B = B .
A = I, siendo
la matriz unidad. La matriz inversa se representa por A–1
.
Y de aquí se deduce que:
Ejemplo: Dada A = 







2 –1
1 1 para obtener A
-1
= 







x y
z t se ha de cumplir








2 –1
1 1
.








x y
z t = 







1 0
0 1








2x– z 2y– t
x + z y + t = 







1 0
0 1
⇔
2x – z = 1
x + z = 0
2y – t = 0
y + t = 1
⇔
x =1/3
y =1/3
z =–1/3
t =2/3
Por tanto A-1
=







1
3
1
3
– 1
3
2
3
Combinación lineal entre filas y columnas
En una matriz A, las filas pueden representarse por F1, F2, ... , Fm y las columnas
por C1, C2, ... , Cn.
Se llama combinación lineal de las filas F1, F2, F3 ... , Fm a una expresión de la
forma:
k1
.
F1 + k2
.
F2 + k3
.
F3 + ... + km
.
Fm siendo k1, k2, ... , km números reales.
Se llama combinación lineal de las columnas C1, C2, C3 ... , Cn a una expresión
de la forma:
k1
.
C1 + k2
.
C2 + k3
.
C3 + ... + kn
.
Cn siendo k1, k2, ... , kn números reales.
A =











a11 a12 a13 ...... a1n
a21 a22 a23 ...... a2n
a31 a32 a33 ...... a3n
.. .. .. .. ..
am1 am2 am3 ...... amn
= (C1, C2, C3, ... , Cn) =











F1
F2
F3
......
Fm
Dependencia lineal entre filas y
columnas
• Una fila (o columna) de una matriz depende linealmente de otras si es combinación
lineal de ellas.
• Si entre las filas (o columnas) de una matriz, alguna depende linealmente de otras, se
dice que son linealmente dependientes; en caso contrario, son linealmente
independientes.
F3 = F1 + 2F2
Ejemplo: En la matriz A =





2 0 –1 1
1 3 1 0
4 6 1 1
la tercera fila es combinación lineal de la primera y la
segunda ya que:
En cambio:En la matriz B =




1 2 4
3 –1 5las dos filas son linealmente independientes porque ninguna
de ellas es igual a una constante por la otra.
Para aplicar el método se necesita una matriz cuadrada de rango máximo.
Sabemos que no siempre una matriz tiene inversa, por lo cual
comprobaremos que la matriz tenga rango máximo al aplicar el método de
Gauss para realizar la triangulación superior. Si al aplicar el método de
Gauss (triangulación inferior) se obtiene una línea de ceros, la matriz no
tiene inversa.
Método de Gauss-Jordan para el cálculo de la matriz
inversa
El método de Gauss-Jordan para calcular la matriz inversa de una dada se
basa en una triangulación superior y luego otra inferior de la matriz a la cual
se le quiere calcular la inversa.
Dada una matriz A de orden n, para calcular su inversa hay que transformar
la matriz (A I In) mediante transformaciones elementales por filas en la
matriz (In I B). La matriz B será la inversa de A.
Las transformaciones elementales son las siguientes:
 Permutar 2 filas ó 2 columnas.
 Multiplicar o dividir una línea por un número no nulo.
 Sumar o restar a una línea otra paralela multiplicada por un número no
nulo. Suprimir las filas o columnas que sean nulas,
En consecuencia al transformar (A I In) en (In I B) realmente lo que
estamos haciendo son las siguientes multiplicaciones:
A-1
·A= In y A-1
· In = A-1
=B
Si hacemos transformaciones elementales en una matriz, esto es equivalente
a multiplicarla por otra matriz dada. Ejemplo:










−− 211
112
011










−
−
220
110
011
F2
– 2F1
 F2
F1
+ F3
 F3










−
−=










−−
⋅










−
220
110
011
211
112
011
101
012
001
Esta transformación es equivalente a la siguiente multiplicación:
Cálculo de la Matriz Inversa por el método
de Gauss – Jordan I
Aplicando el método de Gauss-Jordan a la matriz
• En primer lugar triangulamos inferiormente:
• Una vez que hemos triangulado superiormente lo hacemos inferiormente:
Por último, habrá que convertir la matriz diagonal en la matriz identidad:
De donde, la matriz inversa de A es
Cálculo de la Matriz Inversa por el método
de Gauss – Jordan II: Ejemplo
Aplicando el método de Gauss-Jordan a la matriz se tiene:
Como hay una fila completa de ceros, la matriz A no tiene rango máximo, en
este caso 2, por tanto no tiene inversa pues es una matriz singular
Cálculo de la Matriz Inversa por el método
de Gauss – Jordan III : Ejemplo
Cálculo de la Matriz Inversa por el método
de Gauss – Jordan IV: Ejemplo
2º.- Triangulamos la matriz A de arriba a abajo y realizamos las mismas operaciones en la
matriz de la derecha.
Queremos calcular la inversa de
1º.- Se escribe la matriz A junto a esta la matriz identidad,
Como podemos observar el rango de la matriz es máximo (en este caso 3), por
tanto la matriz A es regular (tiene inversa), podemos calcular su inversa.
Cálculo de la Matriz Inversa por el método
de Gauss – Jordan V: continuación
3º.- Triangulamos la matriz de abajo a arriba, realizando las mismas operaciones en la
matriz de la derecha.
4º.- Por último se divide cada fila por el elemento diagonal correspondiente.
Rango de una matriz
• El rango por filas de una matriz es el número de filas linealmente
independientes.
• El rango por columnas de una matriz es el número de columnas linealmente
independientes.
• Se puede demostrar que el rango por filas coincide con el rango por
columnas en cualquier matriz. A este valor común se le llama rango de la
matriz y se representa rg A.
Operaciones que no modifican el rango de una matriz
• Intercambiar dos filas (o columnas) entre sí.
• Multiplicar una fila (o columna) por un número distinto de cero.
• Sumar a una fila (o columna) una combinación lineal de otras filas (o
columnas).
Dependencia e independencia lineal : filas
Vectores fila de una matriz:
Las filas de una matriz pueden ser consideradas como vectores. Es posible
que sean linealmente Independientes (L.I.) y es posible que unos
dependan linealmente de otros. Por ejemplo:
Sus dos filas son linealmente independientes





=
2431
5232
A
Las dos primeras líneas son L.I., las otras dos dependen
linealmente de las primeras














=
43
50
12
31
B
2123 FFF −⋅= 214 FFF +=
Las dos primeras filas son L.I. la tercera depende linealmente de
las dos primeras









−−
=
158
209
351
C
312 FFF =−
Se llama rango de una matriz al número de filas Linealmente Independientes
Teorema
En una matriz el número de filas L.I. coincide con el número de
columnas L.I.
Dependencia e independencia lineal: columnas
Vectores columna de una matriz:
También las columnas de una matriz pueden ser consideradas como vectores.
Podríamos definir rango de la matriz como el número de columnas
linealmente independientes, pero aparece la duda de si esa definición
puede contradecir en algún caso la anterior.
¿Es posible que en una matriz el número de filas linealmente independientes
sea distinto del número de columnas linealmente independiente?. El
siguiente teorema nos asegura que no.
Por esto podemos dar una nueva definición de Rango:
Rango de una matriz es el número de filas, o columnas,
linealmente independientes.
Ejemplos rango de una matriz escalonada







2 0 –1 1
0 1 1 0
0 0 1 1
La matriz A = tiene rango 3.









 −
0000
0110
1102
La matriz A = tiene rango 2.









 −
1000
0100
1102
La matriz A = tiene rango 3.










0000
0200
1120
La matriz A = tiene rango 2.










0000
0000
1000
La matriz A = tiene rango 1.
El rango de una matriz lo podemos calcular por dos métodos
diferentes:
Métodos de cálculo del rango de una matriz
 Por el método de Gauss
 Usando Determinantes
Matemáticas
2.º Bachillerato
Matrices y determinantes
Cálculo del rango de una matriz por el método de Gauss
Transformaciones elementales:
Son las transformaciones que podemos realizarle a una matriz sin que su
rango varíe.
Las transformaciones elementales son las siguientes:
 Permutar 2 filas ó 2 columnas.
 Multiplicar o dividir una línea por un número no nulo.
 Sumar o restar a una línea otra paralela multiplicada por un número no
nulo.
 Suprimir las filas o columnas que sean nulas,
 Suprimir las filas o columnas que sean proporcionales a otras.
Proceso para el cálculo del rango de una matriz:
Método de Gauss
a) Si es necesario, reordenar filas para que a11 ≠ 0 (si esto no fuera posible,
aplicar todo el razonamiento a a12).
b) Anular todos los elementos por debajo de a11: para ello multiplicar la primera
fila por –a21/a11 y sumar a la segunda, multiplicar la primera fila por –a31/a11 y
sumar a la tercera, .... multiplicar la primera fila por –am1/a11 y sumar a la m-
ésima.
c) Repetir los pasos anteriores basados en a22 y, después, en cada aii.
d) El proceso termina cuando no quedan más filas o están formadas por ceros.
A =











a11 a12 a13 ...... a1n
a21 a22 a23 ...... a2n
a31 a32 a33 ...... a3n
.. .. .. .. ..
am1 am2 am3 ...... amn
Cálculo del rango de una matriz
Aplicando los procesos anteriores se puede llegar a una matriz escalonada que
indica el número de filas o columnas independientes y por tanto el rango de
la matriz.







* * * * *
* * * * *
* * * * *
* * * * *
Rango 4







* * * * *
0 * * * *
0 0 * * *
0 0 0 * *
Rango 3







* * * * *
0 * * * *
0 0 * * *
Rango 2








* * * * *
0 * * * *
Rango 1




* * * * *
Ejemplos del cálculo del rango de una matriz por el método de Gauss I
Ejemplos del cálculo del rango de una matriz por el método de Gauss II
A no es inversible
• Restando a la segunda fila la primera por 4:








1 –
1
2
1
2 0
0 0 –2 1
Condición para que una matriz sea inversible
• Ampliamos la matriz A con la matriz identidad:








2 –1 1 0
4 –2 0 1
• Dividiendo la primera fila por 2:








1 –
1
2
1
2
0
4 –2 0 1
• Al operar con las filas de A se ha llegado a una matriz de rango distinto a la dimensión
de la matriz A.
• Por tanto: una matriz cuadrada A de orden n es inversible si y sólo si rg A = n.
• De otra forma: A es inversible si y sólo si sus filas (o sus columnas) son linealmente
independientes.
Vamos a estudiar si A =








2 –1
4 –2
es inversible:
Matemáticas
2.º Bachillerato
Matrices y determinantes
Dada una matriz cuadrada
se llama determinante de A, y se representa por |A| ó det(A), al número:
con
(Sn
es el grupo de las permutaciones del conjunto {1, 2,.. n }, e i (s) es la
signatura de la permutación)
Determinantes
Definición: Se llama determinante de A al número que se obtiene mediante la suma de
los productos de un elemento de cada fila y columna precedidos del signo + o –
según la paridad de la permutación que indican sus filas y columnas.
Determinantes de orden 2 y 3
= a11 a22 a33 + a12 a23 a31 + a13 a21 a32 – a13 a22 a31 – a11 a23 a32 – a12 a21 a33.
a11
a12
a13
a 21 a22 a23
a31 a32 a33
Dada una matriz cuadrada de orden 3 A =





a11 a12 a13
a21 a22 a23
a31 a32 a33
det (A) o |A|, al número real siguiente:Se llama determinante de A,
Dada una matriz cuadrada de segundo orden:
 a a
aA =



11 12
a21 22
se llama determinante de A al número real:
Det( A) = |A| =
aa 11 12
a 21 a 22
= a11 · a22 – a12 · a21
Ejemplo: 3 2
2 1 = 3·1 - 2·2 = 3 – 4 = -1
Regla de Sarrus
La regla de Sarrus permite recordar gráficamente los productos que aparecen en la
expresión del determinante de orden 2 y 3 y sus signos. Los elementos de la diagonal
principal y sus paralelas, con su signo y los de la diagonal secundaria y sus paralelas
cambiadas de signo.
Aplicaciones a la regla de Sarrus
24 – 12 – 10 + 4 – 9 + 80 = 77
det(A) = 3 .
(–2) .
(–4) + 4 .
(–3) .
1 + 5 .
(–1) .
2 – [1 .
(–2) .
2 + (–1) .
(–3) .
3 + 5 .
4 .
(–4)] =
El determinante de la matriz A =












3 5 1
4 –2 –1
2 –3 –4
es
Cálculo de determinantes usando desarrollo por los elementos
de una fila o columna
• Se llama menor Mij de la matriz A al determinante de la matriz que se obtiene al suprimir
en A la fila i-ésima y la columna j-ésima.
• Se llama adjunto Aij del elemento aij de la matriz A al número Aij = (–1)i+j
Mij.
El determinante de una matriz A =







a11 a12 a13
a21 a22 a23
a31 a32 a33
es igual a la suma de los elementos
de una fila o columna multiplicados por sus adjuntos:
det (A) = ai1 . Ai1 + ai2 . Ai2 + ai3 . Ai3 sería el desarrollo por la i-ésima fila
det (A) = a1j . A1j + a2j . A2j + a3j . A3j sería el desarrollo por la j-ésima columna
Ejemplos: desarrollos de un determinante de orden 3
Desarrollo por primera columna de un determinante de orden 3
Desarrollo por tercera fila de un determinante de orden 3
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
= a
11
.(-1)1+1
a
22
a
23
a
32
a
33
+ a
21
.(-1)2+1
a
12
a
13
a
32
a
33
+ a
31
.(-1)3+1
a
12
a
13
a
22
a
23
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
= a
31
.(-1)3+1
a
12
a
13
a
22
a
23
+ a
32
.(-1)3+2
a
11
a
13
a
21
a
23
+ a
33
.(-1)3+3
a
11
a
12
a
21
a
22
Determinante de cualquier orden
–3 5
–1 –1
= 1 · 3 + 6 · 5 + 1 · 1 + 0 · (–1) = 34
El determinante de la matriz A de orden n se puede obtener multiplicando los
elementos de una fila o columna por sus respectivos adjuntos:
det (A) = ai1 . Ai1 + ai2 · Ai2 + ... + ain . Ain sería el desarrollo por la i-ésima fila
det (A) = a1j . A1j + a2j · A2j + .. .+ amj . Amj sería el desarrollo por la j-ésima columna
Por ejemplo:
2 –1 1 2
1 6 1 0
3 –1 –1 3
2 –1 0 1
= 1 · (–1)2+1
–1 1 2
–1 –1 3
–1 0 1
+ 6 · (–1)2+2
2 1 2
3 –1 3
2 0 1
+
+ 1 · (–1)2+3
2 –1 2
3 –1 3
2 –1 1
+ 0 · (–1)2+4
2 –1 1
3 –1 –1
2 –1 0
=
I. El determinante de una matriz con dos filas o columnas proporcionales es cero.
II. El determinante de una matriz con una fila o columnas nulas es cero.
Cálculo inmediato de determinantes (I)
Ejemplos:
• El determinante de una matriz A =







–1 4 –1
3 2 3
2 5 2
es igual a cero porque la tercera y
primera columnas son iguales.
• El determinante de una matriz A =







2 4 –1
1 –2 3
3 –6 9
es igual a cero porque la tercera fila
es igual a la segunda multiplicada por 3.
Ejemplo:
El determinante de una matriz A =







–1 0 –1
3 0 3
2 0 2
es igual a cero porque la segunda columna
es nula.
III. El determinante de una matriz en que una fila o columna depende linealmente de
otras filas o columnas es cero.
IV. El determinante de una matriz triangular es igual al producto de los elementos de
su diagonal principal.
Cálculo inmediato de determinantes (II)
Ejemplo:
El determinante de una matriz A =







2 4 0
1 3 –1
3 1 5
es igual a cero porque la tercera columna es
igual al doble de la primera menos la segunda.
Ejemplo:
El determinante de la matriz A =







–1 0 –1
0 2 3
0 0 2
es igual –4.
V. El determinante de la matriz unidad es 1
Cálculo inmediato de determinantes (III)
Ejemplos:
• El determinante de la matriz I3 =







1 0 0
0 1 0
0 0 1
es igual a 1.
• El determinante de la matriz I5 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
es igual a 1.
I. Si se multiplican los elementos de una fila o columna de una matriz por un número el
determinante de la matriz se multiplica por ese número.
II. Si se intercambian entre sí dos filas o dos columnas de una matriz, su determinante
cambia de signo.
Propiedades: operaciones con filas y columnas (I)
Ejemplo:
2 3
4 20 =
2 3
4
.
1 4
.
5
= 4
2 3
1 5
Ejemplo:
1 – 4
2 5 = –
– 4 1
5 2
III. Al sumar a una fila o columna una combinación lineal de las otras filas o columnas,
respectivamente, el valor del determinante no varía.
Propiedades: operaciones con filas y columnas (II)
Ejemplo: Si en A =
2 3 – 1
1 5 2
4 13 4
sumamos a la tercera fila la primera multiplicada por – 1 más
la segunda multiplicada por – 2, obtenemos:
B =
2 3 – 1
1 5 2
4 + 2 (–1) + 1(–2) 13 + 3 (–1) + 5(–2) 4 + (–1) (–1) + 2(–2)
y se cumple que ambos determinantes son iguales: BA =
I. El determinante del producto de dos matrices cuadradas y multiplicables es igual al producto de
los determinantes de cada una de ellas.
II. El producto de los determinantes de dos matrices inversas es 1.
Determinantes de operaciones con matrices (I)
jemplo:
• Sean A =





2 0
1 –1
y B =





4 1
3 2
. Se tiene que |A| =–2 y |B| = 5.
• Como A
.
B =





8 2
1 –1
y | A
.
B | = – 10 se observa que | A
.
B | = |A|
.
|B|
Ejemplo:
• Sea A =





3 0
1 1
; entonces A
–1
=





1/3 0
–1/3 1
• Como | A | = 3 y | A
–1
| = 1/3, se observa que | A |
.
| A
–1
| = 1
III. Al trasponer una matriz su determinante no varía.
VI. Si se multiplica una matriz cuadrada de orden n por un número, el nuevo
determinante es igual al anterior multiplicado por la potencia n-ésima del número.
Operaciones con matrices (II)
Ejemplo:
• Sea A =





2 0 –2
1 1 3
3 0 2
. Entonces At
=





2 1 3
0 1 0
–2 3 2
• Se cumple que | A | = | At
|
Ejemplo:
Se cumple que: 2







2 0 – 2
1 1 3
3 0 2
=







4 0 – 4
2 2 6
6 0 4
= 2
3







2 0 – 2
1 1 3
3 0 2
Operaciones con matrices (III)
Ejemplo:
• Sea A =







2 3 –1
1 5 2
4 13 4
. Entonces se cumple que | A | = 7
• Y se tiene que:







2 3 –1
1 5 2
4 13 4
=







1 + 1 3 –1
3 – 2 5 2
1 + 3 13 4
=







1 3 –1
3 5 2
1 13 4
+







1 3 –1
– 2 5 2
3 13 4
= (-70) + 77
Si A =





a11 a12 + b12 a13
a21 a22 + b22 a23
a31 a32 + b32 a33
se cumple que:
a11 a12 + b12 a13
a21 a22 + b22 a23
a31 a32 + b32 a33
=
a11 a12 a13
a21 a22 a23
a31 a32 a33
+
a11 b12 a13
a21 b22 a23
a31 b32 a33
V.- Si una fila o columna es suma de varios sumandos, se descompone en tantos
determinantes como sumandos haya
El rango no puede ser mayor al número de filas o de columnas.
Rango de una matriz por determinantes I
Se llama “menor” de orden p de una matriz al determinante que resulta de eliminar
ciertas filas y columnas hasta quedar una matriz cuadrada de orden p. Es decir, al
determinante de cualquier submatriz cuadrada de A (submatriz obtenida
suprimiendo alguna fila o columna de la matriz A).
En una matriz cualquiera A m×n  puede haber varios menores de un cierto orden p
dado.
Definición:
El RANGO (o característica) de una matriz es el orden del mayor de los menores
distintos de cero. El rango o característica de una matriz A se representa por rg(A).
Consecuencias
Las filas o columnas de una matriz cuadrada son linealmente dependientes si y sólo si su
determinante es cero.
• Se añaden a la matriz anterior todas las filas y
columnas posibles para formar matrices de
orden 4.
• Se añaden a la matriz anterior todas las filas y
columnas posibles para formar matrices de
orden 4.
• Se añaden a la matriz anterior todas las filas y
columnas posibles para formar matrices de
orden 3.
• Se añaden a la matriz anterior todas las filas y
columnas posibles para formar matrices de
orden 3.
• Si el determinante de alguna matriz cuadrada
de orden tres es distinto de cero rang(A) ≥ 3.
• Si el determinante de alguna matriz cuadrada
de orden tres es distinto de cero rang(A) ≥ 3.
• Si el determinante de alguna matriz cuadrada de
orden dos es distinto de cero rang(A) ≥ 2.
• Si el determinante de alguna matriz cuadrada de
orden dos es distinto de cero rang(A) ≥ 2.
En caso contrario rang(A) = 1En caso contrario rang(A) = 1
En caso contrario rang(A) = 2En caso contrario rang(A) = 2
• Si el determinante de alguna matriz cuadrada de
orden cuatro es distinto de cero rang(A) ≥ 4.
• Si el determinante de alguna matriz cuadrada de
orden cuatro es distinto de cero rang(A) ≥ 4.
En caso contrario rang(A) = 3En caso contrario rang(A) = 3
Y así hasta que no sea posible continuarY así hasta que no sea posible continuar
• El rango de la matriz nula es 0.
• Si la matriz A no es nula rang(A) ≥ 1.
• El rango de la matriz nula es 0.
• Si la matriz A no es nula rang(A) ≥ 1.
Algoritmo para el cálculo del rango de una matriz
• La matriz cuadrada A tiene inversa si y sólo si | A | ≠ 0.
• Dada la matriz cuadrada A, se llama “matriz adjunta” de A y se representa adj (A), a
la matriz que se obtiene al sustituir cada elemento aij por su adjunto Aij.
Obtención de la matiz inversa mediante determinantes (I)
Ejemplo: Dada la matriz (A) =







2 -2 2
2 1 0
3 -2 2
, su adjunta sería:
adj (A)=













1 0
–2 2 –
2 0
3 2
2 1
3 –2
–
–2 2
–2 2
2 2
3 2 –
2 –2
3 –2
–2 2
1 0 –
2 2
2 0
2 –2
2 1
=







2 –4 –7
0 –2 –2
–2 4 6
• Se llama “Adjunto Ai,j” del elemento “ai,j” al determinante del menor Mi,j multiplicado
por (-1)i+j
La matriz A tiene inversa ya que: det(A) = – 2 ≠ 0
Obtención de la matiz inversa mediante determinantes (II)
Ejemplo:Dada la matriz A =







2 –2 2
2 1 0
3 –2 2
, pretendemos encontrar su inversa:
Ya hemos visto que: adj (A) =





2 –4 –7
0 –2 –2
–2 4 6
Entonces: [adj (A)]
t
=







2 0 –2
–4 –2 4
–7 –2 6
Por lo tanto: A
–1
=
1
| A | [adj (A)]
t
=
1
–2 






2 0 –2
–4 –2 4
–7 –2 6
=







–1 0 1
2 1 –2
7/2 1 –3
Esto es fácil probarlo puesto que sabemos que la suma de los productos de los
elementos de una fila por sus adjuntos es el valor del determinante, y que la suma
de los productos de los elementos de una fila por los adjuntos de otra fila diferente
es 0
Calculo de la matriz inversa por el método de los adjuntos I
Calculo de la matriz inversa por el método de los adjuntos II
• El determinante de una matriz se obtiene sumando los productos de los elementos de
una fila o columna por sus adjuntos.
• El método de Gauss consiste en, utilizando las propiedades anteriores, anular todos los
elementos de una fila o columna excepto uno llamado pivote, y que interesa que valga
1 ó –1, para simplificar los cálculos.
• 2ª fila por (–3) + 1ª fila
• 2ª fila por (–2) + 3ª fila
• 2ª fila por (–3) + 4ª fila
desarrollo por 1ª
columna
• 1ª fila por 1 + 3ª fila
desarrollo por 1ª
columna
–18
Cálculo de determinantes por el método de Gaus
Ejemplo:
3 5 – 2 6
1 2 – 1 1
2 4 1 5
3 7 5 3
=
0 – 1 1 3
1 2 –1 1
0 0 3 3
0 1 8 0
= –1
.
– 1 1 3
0 3 3
1 8 0
= –1
.
– 1 1 3
0 3 3
0 9 3
=
= (–1)
.
(–1)
3 3
9 3 =

Más contenido relacionado

La actualidad más candente

Matrices
MatricesMatrices
Matrices
ujgh
 
Matrices 2x2 en Zp; p = # primo
Matrices 2x2 en Zp; p = # primoMatrices 2x2 en Zp; p = # primo
Matrices 2x2 en Zp; p = # primo
Caridad Arroyo
 
Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...
Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...
Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...
Carlita Vaca
 
Producto vectorial
Producto vectorialProducto vectorial
Producto vectorial
alex0002
 
producto cartesiano
producto cartesianoproducto cartesiano
producto cartesiano
Edgar Ochoa
 
Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones lineales
delriocande
 
Matrices
MatricesMatrices
Matrices
cyndy
 
Calculo de-los-valores-y-vectores-propios-
Calculo de-los-valores-y-vectores-propios-Calculo de-los-valores-y-vectores-propios-
Calculo de-los-valores-y-vectores-propios-
Carlita Vaca
 
Axiomas de espacios vectoriales
Axiomas de espacios vectorialesAxiomas de espacios vectoriales
Axiomas de espacios vectoriales
nktclau
 
Bases ortonormales
Bases ortonormalesBases ortonormales
Bases ortonormales
Saracereza
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormal
algebra
 

La actualidad más candente (20)

Matrices
MatricesMatrices
Matrices
 
Matrices 2x2 en Zp; p = # primo
Matrices 2x2 en Zp; p = # primoMatrices 2x2 en Zp; p = # primo
Matrices 2x2 en Zp; p = # primo
 
Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...
Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...
Clasificacion de matrices y operaciones entre matrices(suma, producto de una ...
 
Producto vectorial
Producto vectorialProducto vectorial
Producto vectorial
 
Vectores
VectoresVectores
Vectores
 
Espacio vectorial
Espacio vectorialEspacio vectorial
Espacio vectorial
 
producto cartesiano
producto cartesianoproducto cartesiano
producto cartesiano
 
Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones lineales
 
Matrices
MatricesMatrices
Matrices
 
Ecuacion De La Recta
Ecuacion De La RectaEcuacion De La Recta
Ecuacion De La Recta
 
Calculo de-los-valores-y-vectores-propios-
Calculo de-los-valores-y-vectores-propios-Calculo de-los-valores-y-vectores-propios-
Calculo de-los-valores-y-vectores-propios-
 
Axiomas de espacios vectoriales
Axiomas de espacios vectorialesAxiomas de espacios vectoriales
Axiomas de espacios vectoriales
 
Bases ortonormales
Bases ortonormalesBases ortonormales
Bases ortonormales
 
Espacios vectoriales
Espacios vectoriales Espacios vectoriales
Espacios vectoriales
 
Campos vectoriales
Campos vectorialesCampos vectoriales
Campos vectoriales
 
Metodo gauss y gauss jordan
Metodo gauss y gauss jordanMetodo gauss y gauss jordan
Metodo gauss y gauss jordan
 
Vectores en r2 y r3
Vectores en  r2  y  r3Vectores en  r2  y  r3
Vectores en r2 y r3
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormal
 
Leyes del algebra proposicional
Leyes del algebra proposicionalLeyes del algebra proposicional
Leyes del algebra proposicional
 
Teoria conjuntos
Teoria conjuntosTeoria conjuntos
Teoria conjuntos
 

Similar a Cap 01 1 matrices

Capitulo 2-matrices-y-determinantes-evaluaciones
Capitulo 2-matrices-y-determinantes-evaluacionesCapitulo 2-matrices-y-determinantes-evaluaciones
Capitulo 2-matrices-y-determinantes-evaluaciones
lui carin
 

Similar a Cap 01 1 matrices (20)

PRESENTACIÓN MATRICES.pptx
PRESENTACIÓN MATRICES.pptxPRESENTACIÓN MATRICES.pptx
PRESENTACIÓN MATRICES.pptx
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Sesión 7. matrices
Sesión 7. matricesSesión 7. matrices
Sesión 7. matrices
 
Matrices
MatricesMatrices
Matrices
 
Mate II
Mate IIMate II
Mate II
 
Fundamentos matrices y determinantes
Fundamentos matrices y determinantes     Fundamentos matrices y determinantes
Fundamentos matrices y determinantes
 
Matrices
MatricesMatrices
Matrices
 
Matrices
MatricesMatrices
Matrices
 
Matrices
MatricesMatrices
Matrices
 
Matrices
MatricesMatrices
Matrices
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Introduccion al Calculo Matricial Ccesa007.pdf
Introduccion al Calculo Matricial Ccesa007.pdfIntroduccion al Calculo Matricial Ccesa007.pdf
Introduccion al Calculo Matricial Ccesa007.pdf
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Capitulo 2-matrices-y-determinantes-evaluaciones
Capitulo 2-matrices-y-determinantes-evaluacionesCapitulo 2-matrices-y-determinantes-evaluaciones
Capitulo 2-matrices-y-determinantes-evaluaciones
 
Mod matrices y determinantes
Mod matrices y determinantesMod matrices y determinantes
Mod matrices y determinantes
 
Matrices
MatricesMatrices
Matrices
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices pdf
Matrices pdfMatrices pdf
Matrices pdf
 

Cap 01 1 matrices

  • 1. Universidad Nacional del Altiplano Puno INTRODUCCIÓN: MaTRICes y DeTeRMINaNTes
  • 2.
  • 3. Dimensión de la matriz nm× 2ª columna 3ª fila Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz. Cada elemento tiene dos subindices, el primero indica la fila y el segundo la columna Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan la misma posición en cada una de ellas son iguales.              a11 a12 a13 ...... a1n a21 a22 a23 ...... a2n a31 a32 a33 ...... a3n .. .. .. .. .. am1 am2 am3 ...... amn = (aij ) Concepto de matriz. Igualdad de matrices
  • 4. Definición de matriz Se llama matriz de orden m×n a todo conjunto rectangular de elementos aij dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma: Abreviadamente suele expresarse en la forma A =(aij), con i =1, 2, ..., m, j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila ( i ) y el segundo la columna ( j ). Por ejemplo el elemento a25 será el elemento de la fila 2 y columna 5. El orden es el número de filas y columnas que tiene la matriz, se representa por m x n.                 mnmmm n n n aaaa aaaa aaaa aaaa      321 3333231 2232221 1131211 A = (ai,j)=
  • 5. Matriz: Ejemplo Juan, Ana y Elena han ido a una tienda y han comprado lo siguiente: 1. Juan compró dos bocadillos, un refresco y un pastel. 2. Ana se llevó un bocadillo, un refresco y un pastel. 3. Elena compró un bocadillo y un refresco. Estos datos se pueden agrupar en una matriz       ÷ ÷ ÷  2 1 1 1 1 1 1 1 0
  • 6. Expresión matricial: ejemplo Tiene la siguiente matriz de los coeficientes: A =         2 5 –3 1 –4 1 Tiene la siguiente matriz ampliada: A* =         2 5 –3 1 1 –4 1 –2 Tiene la siguiente expresión matricial:         2 5 –3 1 –4 1        x y z =         1 – 2    −=+ =−+ 2z4y-x 1352 zyx El sistema
  • 7.          1 2 4 2 3 5 4 5 -1          0 2 -4 -2 0 3 4 -3 0 • Matriz fila: A = (1 3 5 7 9 ) • Matriz columna: A =        2 4 6 jiij aa = Diagonal secundaria Diagonal princi pal • Matriz cuadrada:A=        1 3 5 2 4 6 1 1 1 • Matriz simétrica: es una matriz cuadrada que verifica que: • Matriz antisimétrica: es una matriz cuadrada que verifica que: Clasificación de matrices: Forma jiij -aa = ⇒ A = AT ⇒ A = – AT
  • 8. Clasificación de matrices: Elementos • Matriz escalar: es una matriz diagonal donde todos los elementos de ella son iguales. • Matriz triangular superior: es una matriz donde todos los elementos por debajo de la diagonal son ceros. • Matriz triangular inferior: es una matriz donde todos los elementos por encima de la diagonal son ceros. • Matriz nula: es una matriz en la que todos los elementos son nulos. • Matriz diagonal: es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos. • Matriz unidad o identidad: es una matriz escalar, cuya diagonal principal es 1. 33 000 000 000 O ×           = 23 00 00 00 O ×           =           −= 400 320 631 T           −= 100 030 002 D           = 100 010 001 I3           = 200 020 002 A           −= 453 023 001 T
  • 9. Operaciones con matrices Trasposición de matrices Suma y diferencia de matrices Producto de una matriz por un número Producto de matrices Matrices inversibles Propiedades simplificativas
  • 10. Operaciones con matrices I 1.- Trasposición de matrices Dada una matriz de orden m x n, A = (aij), se llama matriz traspuesta de A, y se representa por At , a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Es decir: Propiedades de la trasposición de matrices: 1ª.- Dada una matriz A, siempre existe su traspuesta y además es única. 2ª.- La traspuesta de la matriz traspuesta de A es A.  (At )t = A.
  • 11. Matriz traspuesta: ejemplo y propiedades I. Para la matriz A, (At )t = A II. Para las matrices A y B, (A+ B)t = At + Bt III. Para la matriz A y el número real k, (k . A)t = k . At IV. Para las matrices A y B, (A. B)t = Bt . At V. Si A es una matriz simétrica, At = A Propiedades: La traspuesta de una matriz A cualquiera se obtiene cambiando filas por columnas y se representa por At . Si A = (aij), entonces At = (aji). Si A es mxn, entonces At es nxm. Ejemplo:Si A =         1 2 3 4 5 6 entonces A t =        1 4 2 5 3 6
  • 12. Operaciones con matrices II La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma dimensión que los sumandos y con término genérico S = (aij + bij). La suma de las matrices A y B se denota por A+B. Ejemplo 2.- Suma y diferencia de matrices Sin embargo, no se pueden sumar. La diferencia de matrices A y B se representa por A–B, y se define como la suma de A con la opuesta de B : A–B = A + (–B) Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.
  • 13. Suma de matrices: ejemplo de orden 3 Para sumar dos matrices A y B con las mismas dimensiones se suman los correspondientes elementos: si A = (aij) y B = (bij) entonces A + B = (aij + bij) A + B = (aij ) + (bij ) =        a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 +        b11 b12 b13 b14 b21 b22 b23 b24 b31 b32 b33 b34 = =        a11 + b11 a12 + b12 a13 + b13 a14 + b14 a21 + b21 a22 + b22 a23 + b23 a24 + b24 a31 + b31 a32 + b32 a33 + b33 a34 + b34 = (aij + bij )
  • 14. Propiedades de la adición de matrices • Asociativa: A + (B + C) = (A + B) + C • Conmutativa: A + B = B + A • Elemento neutro: A + 0 = 0 + A = A donde 0 es la matriz nula. • Elemento opuesto: A + (– A) = (– A) + A = 0 La matriz –A (opuesta) se obtiene cambiando de signo los elementos de A. Sean A, B y C tres matrices del mismo orden.
  • 15. Para multiplicar un número real por una matriz, se multiplican cada uno de los elementos de la matriz por dicho número. Si A = (aij), entonces kA = (kaij) Operaciones con matrices III k . A = k . (aij) = k·        a11 a12 a13 a21 a22 a23 a31 a32 a33 =        ka11 ka12 ka13 ka21 ka22 ka23 ka31 ka32 ka33 = (kaij) 3.- Producto de un número por una matriz
  • 16. Propiedades con la suma y el producto por un número • Distributiva I: k(A + B) = kA + kB • Distributiva II: (k + h)A = kA + hA • Elemento neutro: 1 · A = A • Asociativa mixta: k(hA) = (kh)A Sean A y B dos matrices del mismo orden y k y h dos números reales. El conjunto de las matrices m x n con las operaciones suma y producto por un escalar antes definidas, tiene estructura de espacio vectorial
  • 17. Operaciones con matrices IV 4.- Producto de matrices Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplicando las filas de A por las columnas de B (por lo que deben coincidir estas). De manera más formal, los elementos de P son de la forma: Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es más, si A tiene dimensión m x n y B dimensión n x p, la matriz P será de orden m x p, no se pueden multiplicar Ejemplos: Pij = ∑ aik · bkj con k=1,….n
  • 18. Matemáticas 2.º Bachillerato Matrices y determinantes ¿Cuándo es posible el producto de matrices? (aij)m,n . (bij)n,p = Posible filas columnas (cij)m,p El producto de matrices es posible cuando coincide el número de columnas de una matriz con el número de filas de la otra matriz.
  • 19. Matemáticas 2.º Bachillerato Matrices y determinantes Producto de matrices: Desarrollo es la matriz C = A · B, tal que el elemento que ocupa la posición ij es: cij = ai1 . b1j + ai2 . b2j + ... + ain . bnj El producto de la matriz A = (aij) =            a11 a12 a13 ...... a1n a21 a22 a23 ...... a2n a31 a32 a33 ...... a3n .. .. .. .. .. am1 am2 am3 ...... amn por la matriz B = (bij) =                 np3n2n1n p3333231 p2232221 p1131211 bbbb bbbb bbbb bbbb ...... .......... ...... ...... ......
  • 20. Ejemplo: producto de matrices 2. ¿Qué dimensiones tiene la matriz producto? (aij)2,3 . (bij)3,3 = producto posible (cij) 2, 3 A · B =         2 1 –1 3 –2 0 .        1 2 0 1 0 –3 0 1 –2 =         3 3 –1 1 6 6
  • 21. Propiedades del producto de matrices (I) I. Propiedad asociativa. Para las matrices A de dimensión mxn, B de dimensión nxp y C de dimensión pxr. A . (B . C) = (A . B) . C III. Propiedad distributiva a la izquierda. Para las matrices A de dimensión mxn, B de dimensión nxr y C de dimensión nxr. A . (B + C) = A . B + A . C IV. Propiedad distributiva a la derecha. Para las matrices A de dimensión mxn, B de dimensión mxn y C de dimensión nxp. (A + B) . C = A . C + B . C las matrices identidad de orden m y n, respectivamente, se tiene: Im · A = A · In = A II. Elemento unidad. Si A es una matriz mxn, y Im =                 1......000 .......... 0......100 0......010 0......001 e I n =          1 0 0 ...... 0 0 1 0 ...... 0 0 0 1 ...... 0 .. .. .. .. .. 0 0 0 ...... 1
  • 22. Propiedades del producto de matrices (II) I. La multiplicación de matrices no cumple la propiedad conmutativa: si una de las dos matrices no es cuadrada ni siquiera tiene sentido plantear el producto en un orden distinto al dado. II. Si A . B = 0 entonces no siempre ocurre que A = 0 ó B = 0. III. Si A . C = B . C y C ≠ 0, entonces no necesariamente A = B. IV. (A + B)2 ≠ A2 + 2A . B + B2 salvo que A y B conmuten. V. (A – B)2 ≠ A2 – 2A . B + B2 salvo que A y B conmuten. VI. A2 – B2 ≠ (A – B) . (A + B) salvo que A y B conmuten. Ejemplo: Aunque         0 2 0 0 .         0 –3 0 0 =         0 0 0 0 ninguno de los factores que forman el producto es la matriz nula.
  • 23. Producto: Potencia de una matriz Si A es una matriz cuadrada, las potencias de A, de exponente natural, se definen como en el caso de los números naturales: el exponente indica el número de veces que se multiplica la matriz por sí misma. An = A . A . ........... . An veces Ejemplo:       = 10 11 A       =            =⋅= 10 21 10 11 10 11 AAA2       =            =⋅= 10 31 10 21 10 11 AAA 23       =      ⋅      =⋅=⋅⋅⋅= 10 41 10 31 10 11 AAAAAAA 34       =      −       =⋅== 10 1 10 11 10 11 AAAAA 1- veces- nnn n n 
  • 24. Propiedades de la matriz inversa I. Si las matrices A y B son inversibles (A. B)–1 = B–1 . A–1 II. Si A es una matriz inversible y k ≠ 0, (k . A)–1 = (1/k) . A–1 III. Si A es una matriz inversible, (A–1 )–1 = A IV. La matriz unidad es inversible y además I–1 = I V. Si A es una matriz inversible, (A–1 )t = (At )–1 Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = In. Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A-1 Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre de singular. Inversa de una matriz, Matrices inversibles Operaciones con matrices V
  • 25. Métodos de cálculo de la matriz inversa  Directamente  Por el método de Gauss-Jordan  Usando determinantes Observación: Podemos encontrar matrices que cumplen A·B = I, pero que B·A ≠ I, en tal caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la inversa de A "por la derecha". Hay varios métodos para calcular la matriz inversa de una matriz dada:
  • 26. Inversa de una matriz (directamente) Si A es una matriz cuadrada, se dice que B es la inversa de A si A . B = B . A = I, siendo la matriz unidad. La matriz inversa se representa por A–1 . Y de aquí se deduce que: Ejemplo: Dada A =         2 –1 1 1 para obtener A -1 =         x y z t se ha de cumplir         2 –1 1 1 .         x y z t =         1 0 0 1         2x– z 2y– t x + z y + t =         1 0 0 1 ⇔ 2x – z = 1 x + z = 0 2y – t = 0 y + t = 1 ⇔ x =1/3 y =1/3 z =–1/3 t =2/3 Por tanto A-1 =        1 3 1 3 – 1 3 2 3
  • 27. Combinación lineal entre filas y columnas En una matriz A, las filas pueden representarse por F1, F2, ... , Fm y las columnas por C1, C2, ... , Cn. Se llama combinación lineal de las filas F1, F2, F3 ... , Fm a una expresión de la forma: k1 . F1 + k2 . F2 + k3 . F3 + ... + km . Fm siendo k1, k2, ... , km números reales. Se llama combinación lineal de las columnas C1, C2, C3 ... , Cn a una expresión de la forma: k1 . C1 + k2 . C2 + k3 . C3 + ... + kn . Cn siendo k1, k2, ... , kn números reales. A =            a11 a12 a13 ...... a1n a21 a22 a23 ...... a2n a31 a32 a33 ...... a3n .. .. .. .. .. am1 am2 am3 ...... amn = (C1, C2, C3, ... , Cn) =            F1 F2 F3 ...... Fm
  • 28. Dependencia lineal entre filas y columnas • Una fila (o columna) de una matriz depende linealmente de otras si es combinación lineal de ellas. • Si entre las filas (o columnas) de una matriz, alguna depende linealmente de otras, se dice que son linealmente dependientes; en caso contrario, son linealmente independientes. F3 = F1 + 2F2 Ejemplo: En la matriz A =      2 0 –1 1 1 3 1 0 4 6 1 1 la tercera fila es combinación lineal de la primera y la segunda ya que: En cambio:En la matriz B =     1 2 4 3 –1 5las dos filas son linealmente independientes porque ninguna de ellas es igual a una constante por la otra.
  • 29. Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangulación superior. Si al aplicar el método de Gauss (triangulación inferior) se obtiene una línea de ceros, la matriz no tiene inversa. Método de Gauss-Jordan para el cálculo de la matriz inversa El método de Gauss-Jordan para calcular la matriz inversa de una dada se basa en una triangulación superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa. Dada una matriz A de orden n, para calcular su inversa hay que transformar la matriz (A I In) mediante transformaciones elementales por filas en la matriz (In I B). La matriz B será la inversa de A. Las transformaciones elementales son las siguientes:  Permutar 2 filas ó 2 columnas.  Multiplicar o dividir una línea por un número no nulo.  Sumar o restar a una línea otra paralela multiplicada por un número no nulo. Suprimir las filas o columnas que sean nulas,
  • 30. En consecuencia al transformar (A I In) en (In I B) realmente lo que estamos haciendo son las siguientes multiplicaciones: A-1 ·A= In y A-1 · In = A-1 =B Si hacemos transformaciones elementales en una matriz, esto es equivalente a multiplicarla por otra matriz dada. Ejemplo:           −− 211 112 011           − − 220 110 011 F2 – 2F1  F2 F1 + F3  F3           − −=           −− ⋅           − 220 110 011 211 112 011 101 012 001 Esta transformación es equivalente a la siguiente multiplicación: Cálculo de la Matriz Inversa por el método de Gauss – Jordan I
  • 31. Aplicando el método de Gauss-Jordan a la matriz • En primer lugar triangulamos inferiormente: • Una vez que hemos triangulado superiormente lo hacemos inferiormente: Por último, habrá que convertir la matriz diagonal en la matriz identidad: De donde, la matriz inversa de A es Cálculo de la Matriz Inversa por el método de Gauss – Jordan II: Ejemplo
  • 32. Aplicando el método de Gauss-Jordan a la matriz se tiene: Como hay una fila completa de ceros, la matriz A no tiene rango máximo, en este caso 2, por tanto no tiene inversa pues es una matriz singular Cálculo de la Matriz Inversa por el método de Gauss – Jordan III : Ejemplo
  • 33. Cálculo de la Matriz Inversa por el método de Gauss – Jordan IV: Ejemplo 2º.- Triangulamos la matriz A de arriba a abajo y realizamos las mismas operaciones en la matriz de la derecha. Queremos calcular la inversa de 1º.- Se escribe la matriz A junto a esta la matriz identidad, Como podemos observar el rango de la matriz es máximo (en este caso 3), por tanto la matriz A es regular (tiene inversa), podemos calcular su inversa.
  • 34. Cálculo de la Matriz Inversa por el método de Gauss – Jordan V: continuación 3º.- Triangulamos la matriz de abajo a arriba, realizando las mismas operaciones en la matriz de la derecha. 4º.- Por último se divide cada fila por el elemento diagonal correspondiente.
  • 35. Rango de una matriz • El rango por filas de una matriz es el número de filas linealmente independientes. • El rango por columnas de una matriz es el número de columnas linealmente independientes. • Se puede demostrar que el rango por filas coincide con el rango por columnas en cualquier matriz. A este valor común se le llama rango de la matriz y se representa rg A. Operaciones que no modifican el rango de una matriz • Intercambiar dos filas (o columnas) entre sí. • Multiplicar una fila (o columna) por un número distinto de cero. • Sumar a una fila (o columna) una combinación lineal de otras filas (o columnas).
  • 36. Dependencia e independencia lineal : filas Vectores fila de una matriz: Las filas de una matriz pueden ser consideradas como vectores. Es posible que sean linealmente Independientes (L.I.) y es posible que unos dependan linealmente de otros. Por ejemplo: Sus dos filas son linealmente independientes      = 2431 5232 A Las dos primeras líneas son L.I., las otras dos dependen linealmente de las primeras               = 43 50 12 31 B 2123 FFF −⋅= 214 FFF += Las dos primeras filas son L.I. la tercera depende linealmente de las dos primeras          −− = 158 209 351 C 312 FFF =− Se llama rango de una matriz al número de filas Linealmente Independientes
  • 37. Teorema En una matriz el número de filas L.I. coincide con el número de columnas L.I. Dependencia e independencia lineal: columnas Vectores columna de una matriz: También las columnas de una matriz pueden ser consideradas como vectores. Podríamos definir rango de la matriz como el número de columnas linealmente independientes, pero aparece la duda de si esa definición puede contradecir en algún caso la anterior. ¿Es posible que en una matriz el número de filas linealmente independientes sea distinto del número de columnas linealmente independiente?. El siguiente teorema nos asegura que no. Por esto podemos dar una nueva definición de Rango: Rango de una matriz es el número de filas, o columnas, linealmente independientes.
  • 38. Ejemplos rango de una matriz escalonada        2 0 –1 1 0 1 1 0 0 0 1 1 La matriz A = tiene rango 3.           − 0000 0110 1102 La matriz A = tiene rango 2.           − 1000 0100 1102 La matriz A = tiene rango 3.           0000 0200 1120 La matriz A = tiene rango 2.           0000 0000 1000 La matriz A = tiene rango 1.
  • 39. El rango de una matriz lo podemos calcular por dos métodos diferentes: Métodos de cálculo del rango de una matriz  Por el método de Gauss  Usando Determinantes
  • 40. Matemáticas 2.º Bachillerato Matrices y determinantes Cálculo del rango de una matriz por el método de Gauss Transformaciones elementales: Son las transformaciones que podemos realizarle a una matriz sin que su rango varíe. Las transformaciones elementales son las siguientes:  Permutar 2 filas ó 2 columnas.  Multiplicar o dividir una línea por un número no nulo.  Sumar o restar a una línea otra paralela multiplicada por un número no nulo.  Suprimir las filas o columnas que sean nulas,  Suprimir las filas o columnas que sean proporcionales a otras.
  • 41. Proceso para el cálculo del rango de una matriz: Método de Gauss a) Si es necesario, reordenar filas para que a11 ≠ 0 (si esto no fuera posible, aplicar todo el razonamiento a a12). b) Anular todos los elementos por debajo de a11: para ello multiplicar la primera fila por –a21/a11 y sumar a la segunda, multiplicar la primera fila por –a31/a11 y sumar a la tercera, .... multiplicar la primera fila por –am1/a11 y sumar a la m- ésima. c) Repetir los pasos anteriores basados en a22 y, después, en cada aii. d) El proceso termina cuando no quedan más filas o están formadas por ceros. A =            a11 a12 a13 ...... a1n a21 a22 a23 ...... a2n a31 a32 a33 ...... a3n .. .. .. .. .. am1 am2 am3 ...... amn
  • 42. Cálculo del rango de una matriz Aplicando los procesos anteriores se puede llegar a una matriz escalonada que indica el número de filas o columnas independientes y por tanto el rango de la matriz.        * * * * * * * * * * * * * * * * * * * * Rango 4        * * * * * 0 * * * * 0 0 * * * 0 0 0 * * Rango 3        * * * * * 0 * * * * 0 0 * * * Rango 2         * * * * * 0 * * * * Rango 1     * * * * *
  • 43. Ejemplos del cálculo del rango de una matriz por el método de Gauss I
  • 44. Ejemplos del cálculo del rango de una matriz por el método de Gauss II
  • 45. A no es inversible • Restando a la segunda fila la primera por 4:         1 – 1 2 1 2 0 0 0 –2 1 Condición para que una matriz sea inversible • Ampliamos la matriz A con la matriz identidad:         2 –1 1 0 4 –2 0 1 • Dividiendo la primera fila por 2:         1 – 1 2 1 2 0 4 –2 0 1 • Al operar con las filas de A se ha llegado a una matriz de rango distinto a la dimensión de la matriz A. • Por tanto: una matriz cuadrada A de orden n es inversible si y sólo si rg A = n. • De otra forma: A es inversible si y sólo si sus filas (o sus columnas) son linealmente independientes. Vamos a estudiar si A =         2 –1 4 –2 es inversible:
  • 46. Matemáticas 2.º Bachillerato Matrices y determinantes Dada una matriz cuadrada se llama determinante de A, y se representa por |A| ó det(A), al número: con (Sn es el grupo de las permutaciones del conjunto {1, 2,.. n }, e i (s) es la signatura de la permutación) Determinantes Definición: Se llama determinante de A al número que se obtiene mediante la suma de los productos de un elemento de cada fila y columna precedidos del signo + o – según la paridad de la permutación que indican sus filas y columnas.
  • 47. Determinantes de orden 2 y 3 = a11 a22 a33 + a12 a23 a31 + a13 a21 a32 – a13 a22 a31 – a11 a23 a32 – a12 a21 a33. a11 a12 a13 a 21 a22 a23 a31 a32 a33 Dada una matriz cuadrada de orden 3 A =      a11 a12 a13 a21 a22 a23 a31 a32 a33 det (A) o |A|, al número real siguiente:Se llama determinante de A, Dada una matriz cuadrada de segundo orden:  a a aA =    11 12 a21 22 se llama determinante de A al número real: Det( A) = |A| = aa 11 12 a 21 a 22 = a11 · a22 – a12 · a21 Ejemplo: 3 2 2 1 = 3·1 - 2·2 = 3 – 4 = -1
  • 48. Regla de Sarrus La regla de Sarrus permite recordar gráficamente los productos que aparecen en la expresión del determinante de orden 2 y 3 y sus signos. Los elementos de la diagonal principal y sus paralelas, con su signo y los de la diagonal secundaria y sus paralelas cambiadas de signo.
  • 49. Aplicaciones a la regla de Sarrus 24 – 12 – 10 + 4 – 9 + 80 = 77 det(A) = 3 . (–2) . (–4) + 4 . (–3) . 1 + 5 . (–1) . 2 – [1 . (–2) . 2 + (–1) . (–3) . 3 + 5 . 4 . (–4)] = El determinante de la matriz A =             3 5 1 4 –2 –1 2 –3 –4 es
  • 50. Cálculo de determinantes usando desarrollo por los elementos de una fila o columna • Se llama menor Mij de la matriz A al determinante de la matriz que se obtiene al suprimir en A la fila i-ésima y la columna j-ésima. • Se llama adjunto Aij del elemento aij de la matriz A al número Aij = (–1)i+j Mij. El determinante de una matriz A =        a11 a12 a13 a21 a22 a23 a31 a32 a33 es igual a la suma de los elementos de una fila o columna multiplicados por sus adjuntos: det (A) = ai1 . Ai1 + ai2 . Ai2 + ai3 . Ai3 sería el desarrollo por la i-ésima fila det (A) = a1j . A1j + a2j . A2j + a3j . A3j sería el desarrollo por la j-ésima columna
  • 51. Ejemplos: desarrollos de un determinante de orden 3 Desarrollo por primera columna de un determinante de orden 3 Desarrollo por tercera fila de un determinante de orden 3 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 .(-1)1+1 a 22 a 23 a 32 a 33 + a 21 .(-1)2+1 a 12 a 13 a 32 a 33 + a 31 .(-1)3+1 a 12 a 13 a 22 a 23 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 31 .(-1)3+1 a 12 a 13 a 22 a 23 + a 32 .(-1)3+2 a 11 a 13 a 21 a 23 + a 33 .(-1)3+3 a 11 a 12 a 21 a 22
  • 52. Determinante de cualquier orden –3 5 –1 –1 = 1 · 3 + 6 · 5 + 1 · 1 + 0 · (–1) = 34 El determinante de la matriz A de orden n se puede obtener multiplicando los elementos de una fila o columna por sus respectivos adjuntos: det (A) = ai1 . Ai1 + ai2 · Ai2 + ... + ain . Ain sería el desarrollo por la i-ésima fila det (A) = a1j . A1j + a2j · A2j + .. .+ amj . Amj sería el desarrollo por la j-ésima columna Por ejemplo: 2 –1 1 2 1 6 1 0 3 –1 –1 3 2 –1 0 1 = 1 · (–1)2+1 –1 1 2 –1 –1 3 –1 0 1 + 6 · (–1)2+2 2 1 2 3 –1 3 2 0 1 + + 1 · (–1)2+3 2 –1 2 3 –1 3 2 –1 1 + 0 · (–1)2+4 2 –1 1 3 –1 –1 2 –1 0 =
  • 53. I. El determinante de una matriz con dos filas o columnas proporcionales es cero. II. El determinante de una matriz con una fila o columnas nulas es cero. Cálculo inmediato de determinantes (I) Ejemplos: • El determinante de una matriz A =        –1 4 –1 3 2 3 2 5 2 es igual a cero porque la tercera y primera columnas son iguales. • El determinante de una matriz A =        2 4 –1 1 –2 3 3 –6 9 es igual a cero porque la tercera fila es igual a la segunda multiplicada por 3. Ejemplo: El determinante de una matriz A =        –1 0 –1 3 0 3 2 0 2 es igual a cero porque la segunda columna es nula.
  • 54. III. El determinante de una matriz en que una fila o columna depende linealmente de otras filas o columnas es cero. IV. El determinante de una matriz triangular es igual al producto de los elementos de su diagonal principal. Cálculo inmediato de determinantes (II) Ejemplo: El determinante de una matriz A =        2 4 0 1 3 –1 3 1 5 es igual a cero porque la tercera columna es igual al doble de la primera menos la segunda. Ejemplo: El determinante de la matriz A =        –1 0 –1 0 2 3 0 0 2 es igual –4.
  • 55. V. El determinante de la matriz unidad es 1 Cálculo inmediato de determinantes (III) Ejemplos: • El determinante de la matriz I3 =        1 0 0 0 1 0 0 0 1 es igual a 1. • El determinante de la matriz I5 =          1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 es igual a 1.
  • 56. I. Si se multiplican los elementos de una fila o columna de una matriz por un número el determinante de la matriz se multiplica por ese número. II. Si se intercambian entre sí dos filas o dos columnas de una matriz, su determinante cambia de signo. Propiedades: operaciones con filas y columnas (I) Ejemplo: 2 3 4 20 = 2 3 4 . 1 4 . 5 = 4 2 3 1 5 Ejemplo: 1 – 4 2 5 = – – 4 1 5 2
  • 57. III. Al sumar a una fila o columna una combinación lineal de las otras filas o columnas, respectivamente, el valor del determinante no varía. Propiedades: operaciones con filas y columnas (II) Ejemplo: Si en A = 2 3 – 1 1 5 2 4 13 4 sumamos a la tercera fila la primera multiplicada por – 1 más la segunda multiplicada por – 2, obtenemos: B = 2 3 – 1 1 5 2 4 + 2 (–1) + 1(–2) 13 + 3 (–1) + 5(–2) 4 + (–1) (–1) + 2(–2) y se cumple que ambos determinantes son iguales: BA =
  • 58. I. El determinante del producto de dos matrices cuadradas y multiplicables es igual al producto de los determinantes de cada una de ellas. II. El producto de los determinantes de dos matrices inversas es 1. Determinantes de operaciones con matrices (I) jemplo: • Sean A =      2 0 1 –1 y B =      4 1 3 2 . Se tiene que |A| =–2 y |B| = 5. • Como A . B =      8 2 1 –1 y | A . B | = – 10 se observa que | A . B | = |A| . |B| Ejemplo: • Sea A =      3 0 1 1 ; entonces A –1 =      1/3 0 –1/3 1 • Como | A | = 3 y | A –1 | = 1/3, se observa que | A | . | A –1 | = 1
  • 59. III. Al trasponer una matriz su determinante no varía. VI. Si se multiplica una matriz cuadrada de orden n por un número, el nuevo determinante es igual al anterior multiplicado por la potencia n-ésima del número. Operaciones con matrices (II) Ejemplo: • Sea A =      2 0 –2 1 1 3 3 0 2 . Entonces At =      2 1 3 0 1 0 –2 3 2 • Se cumple que | A | = | At | Ejemplo: Se cumple que: 2        2 0 – 2 1 1 3 3 0 2 =        4 0 – 4 2 2 6 6 0 4 = 2 3        2 0 – 2 1 1 3 3 0 2
  • 60. Operaciones con matrices (III) Ejemplo: • Sea A =        2 3 –1 1 5 2 4 13 4 . Entonces se cumple que | A | = 7 • Y se tiene que:        2 3 –1 1 5 2 4 13 4 =        1 + 1 3 –1 3 – 2 5 2 1 + 3 13 4 =        1 3 –1 3 5 2 1 13 4 +        1 3 –1 – 2 5 2 3 13 4 = (-70) + 77 Si A =      a11 a12 + b12 a13 a21 a22 + b22 a23 a31 a32 + b32 a33 se cumple que: a11 a12 + b12 a13 a21 a22 + b22 a23 a31 a32 + b32 a33 = a11 a12 a13 a21 a22 a23 a31 a32 a33 + a11 b12 a13 a21 b22 a23 a31 b32 a33 V.- Si una fila o columna es suma de varios sumandos, se descompone en tantos determinantes como sumandos haya
  • 61. El rango no puede ser mayor al número de filas o de columnas. Rango de una matriz por determinantes I Se llama “menor” de orden p de una matriz al determinante que resulta de eliminar ciertas filas y columnas hasta quedar una matriz cuadrada de orden p. Es decir, al determinante de cualquier submatriz cuadrada de A (submatriz obtenida suprimiendo alguna fila o columna de la matriz A). En una matriz cualquiera A m×n  puede haber varios menores de un cierto orden p dado. Definición: El RANGO (o característica) de una matriz es el orden del mayor de los menores distintos de cero. El rango o característica de una matriz A se representa por rg(A). Consecuencias Las filas o columnas de una matriz cuadrada son linealmente dependientes si y sólo si su determinante es cero.
  • 62. • Se añaden a la matriz anterior todas las filas y columnas posibles para formar matrices de orden 4. • Se añaden a la matriz anterior todas las filas y columnas posibles para formar matrices de orden 4. • Se añaden a la matriz anterior todas las filas y columnas posibles para formar matrices de orden 3. • Se añaden a la matriz anterior todas las filas y columnas posibles para formar matrices de orden 3. • Si el determinante de alguna matriz cuadrada de orden tres es distinto de cero rang(A) ≥ 3. • Si el determinante de alguna matriz cuadrada de orden tres es distinto de cero rang(A) ≥ 3. • Si el determinante de alguna matriz cuadrada de orden dos es distinto de cero rang(A) ≥ 2. • Si el determinante de alguna matriz cuadrada de orden dos es distinto de cero rang(A) ≥ 2. En caso contrario rang(A) = 1En caso contrario rang(A) = 1 En caso contrario rang(A) = 2En caso contrario rang(A) = 2 • Si el determinante de alguna matriz cuadrada de orden cuatro es distinto de cero rang(A) ≥ 4. • Si el determinante de alguna matriz cuadrada de orden cuatro es distinto de cero rang(A) ≥ 4. En caso contrario rang(A) = 3En caso contrario rang(A) = 3 Y así hasta que no sea posible continuarY así hasta que no sea posible continuar • El rango de la matriz nula es 0. • Si la matriz A no es nula rang(A) ≥ 1. • El rango de la matriz nula es 0. • Si la matriz A no es nula rang(A) ≥ 1. Algoritmo para el cálculo del rango de una matriz
  • 63. • La matriz cuadrada A tiene inversa si y sólo si | A | ≠ 0. • Dada la matriz cuadrada A, se llama “matriz adjunta” de A y se representa adj (A), a la matriz que se obtiene al sustituir cada elemento aij por su adjunto Aij. Obtención de la matiz inversa mediante determinantes (I) Ejemplo: Dada la matriz (A) =        2 -2 2 2 1 0 3 -2 2 , su adjunta sería: adj (A)=              1 0 –2 2 – 2 0 3 2 2 1 3 –2 – –2 2 –2 2 2 2 3 2 – 2 –2 3 –2 –2 2 1 0 – 2 2 2 0 2 –2 2 1 =        2 –4 –7 0 –2 –2 –2 4 6 • Se llama “Adjunto Ai,j” del elemento “ai,j” al determinante del menor Mi,j multiplicado por (-1)i+j
  • 64. La matriz A tiene inversa ya que: det(A) = – 2 ≠ 0 Obtención de la matiz inversa mediante determinantes (II) Ejemplo:Dada la matriz A =        2 –2 2 2 1 0 3 –2 2 , pretendemos encontrar su inversa: Ya hemos visto que: adj (A) =      2 –4 –7 0 –2 –2 –2 4 6 Entonces: [adj (A)] t =        2 0 –2 –4 –2 4 –7 –2 6 Por lo tanto: A –1 = 1 | A | [adj (A)] t = 1 –2        2 0 –2 –4 –2 4 –7 –2 6 =        –1 0 1 2 1 –2 7/2 1 –3 Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0
  • 65. Calculo de la matriz inversa por el método de los adjuntos I
  • 66. Calculo de la matriz inversa por el método de los adjuntos II
  • 67. • El determinante de una matriz se obtiene sumando los productos de los elementos de una fila o columna por sus adjuntos. • El método de Gauss consiste en, utilizando las propiedades anteriores, anular todos los elementos de una fila o columna excepto uno llamado pivote, y que interesa que valga 1 ó –1, para simplificar los cálculos. • 2ª fila por (–3) + 1ª fila • 2ª fila por (–2) + 3ª fila • 2ª fila por (–3) + 4ª fila desarrollo por 1ª columna • 1ª fila por 1 + 3ª fila desarrollo por 1ª columna –18 Cálculo de determinantes por el método de Gaus Ejemplo: 3 5 – 2 6 1 2 – 1 1 2 4 1 5 3 7 5 3 = 0 – 1 1 3 1 2 –1 1 0 0 3 3 0 1 8 0 = –1 . – 1 1 3 0 3 3 1 8 0 = –1 . – 1 1 3 0 3 3 0 9 3 = = (–1) . (–1) 3 3 9 3 =