SlideShare una empresa de Scribd logo
1 de 38
Descargar para leer sin conexión
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 23
CAPITULO 2: MATRICES Y DETERMINANTES
Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza
matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se
usan no solo en la resolución de sistemas de ecuaciones (lineales), sino además en el
cálculo numérico, en la resolución de sistemas de ecuaciones diferenciales y de
derivadas parciales. Además las matrices también aparecen de forma natural en
geometría, estadística, economía, informática, física, etc.
El álgebra matricial puede ser aplicada a sistema de ecuaciones lineales. Sin
embargo, puesto que muchas relaciones económicas pueden ser aproximadas
mediante ecuaciones lineales y otras pueden ser convertidas a relaciones lineales,
esta limitación puede ser en parte evitada.
2.1 Matriz: definición
Se llama matriz de orden m×n a todo conjunto rectangular de elementos ija dispues
en m líneas horizontales (filas) y n verticales (columnas) de la forma:
tos
Gráfico 2-1
A =
11 12 13 1n
21 22 23 2n
m1 m2 m3 mn
a a a ... a
a a a ... a
. . . ... .
. . . ... .
a a a ... a
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
Abreviadamente suele expresarse en la forma A =[aij], con i =1, 2,..., m; j =1, 2, ..., n.
Los subíndices indican la posición del elemento dentro de la matriz, el primero denota
la fila (i) y el segundo la columna (j). Por ejemplo el elemento a25 será el elemento de
la fila 2 y columna 5.
Filas de la matriz A
Columnas de la matriz A
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 24
Matrices Iguales
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que
ocupan el mismo lugar en ambas son iguales.
Sean las matrices A y B, donde:
A(2x2)=
9 a
3 2
⎡ ⎤
⎢ ⎥−⎣ ⎦
B(2x2)=
9 a
3 2
⎡ ⎤
⎢ ⎥−⎣ ⎦
Entonces A = B
Análogamente
C(2x3) =
3 2 0
4 z 2
−⎡ ⎤
⎢
⎣ ⎦
⎥ D(2x3) =
3 2 0
4 z 2
−⎡ ⎤
⎢ ⎥
⎣ ⎦
Entonces, C = D (Note que
C y D no necesitan tener
una forma cuadrada o
simétrica).
2.2 Algunos tipos de matrices
Vamos a describir algunos tipos de matrices que aparecen con frecuencia debido a su
utilidad, y de los que es conveniente recordar su nombre.
2.2.1 Según la forma
Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto
es de orden m x 1.
Ejemplo: ( )3x1
3
A 4
a
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
Matriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden
1x n. Es decir, A= (a11 a12 ... a1n). Por ejemplo: ( ) [ ]1x3A 1 2 3= −
Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es
decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no n x n
(aunque es lo mismo). Los elementos aij con i = j, o sea aij forman la llamada diagonal
principal de la matriz cuadrada, y los elementos aij con i + j = n +1 la diagonal
secundaria.
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 25
En la matriz ( )3x3
1 3 0
A 2 1 4
3 7 9
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
La diagonal principal está formada por [ 1 1 9 ] y la diagonal secundaria por [ 0 1 3 ]
Matriz traspuesta: Dada una matriz A, su matriz se representa por At, la cual se
obtiene cambiando filas por columnas. La primera fila de A es la primera columna de
At, la segunda fila de A es la segunda columna de At y así sucesivamente. De la
definición se deduce que si A es de orden m x n, entonces At es de orden n x m.
Ejemplo: ( )2x3
3 8 9
A
1 0 4
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
entonces ( )
t
3x2
3 1
A 8 0
9 4
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir, si aj= aj
Ejemplo:
2 1 3
A 1 0 2
3 2 7
⎡ ⎤
⎢ ⎥
= −⎢ ⎥
⎢ ⎥−⎣ ⎦
(Comprobar que A = At )
Matriz antisimétrica: Una matriz cuadrada se dice que es antisimétrica si A = –At, es
decir aij= -aji.
Ejemplo:
0 1 3
A 1 0 2
3 2 0
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦
(comprobar que A = –At)
2.2.2 Según los elementos
Matriz nula es aquella que todos sus elementos son 0 y se representa por 0.
Ejemplo:
0 0
0 0
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
0 0 0
0
0 0 0
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 26
Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no
pertenecientes a la diagonal principal son nulos.
2 0 0
A 0 3 0
0 0 4
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
Matriz escalar: Es una matriz diagonal (y en consecuencia, una matriz cuadrada) con
todos los elementos de la diagonal iguales.
Ejemplo: A =
3 0 0
0 3 0
0 0 3
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
= 3
1 0 0
0 1 0
0 0 1
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
= 3 I
Matriz unidad o identidad: Es una matriz escalar con los elementos de la diagonal
principal iguales a 1. Se denota por el símbolo I o In.
Ejemplo: 2
1 0
I
0 1
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
3
1 0 0
I 0 1 0
0 0 1
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que
están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser
de dos tipos:
Triangular Superior: Si los elementos que están por debajo de la diagonal principal son
todos nulos. Es decir, aj =0, i < j.
Triangular Inferior: Si los elementos que están por encima de la diagonal principal son
todos nulos. Es decir, aj = 0, j < i. Ejemplos:
Triangular Inferior Triangular Superior
( )4x4
3 0 0 0
4 3 0 0
A
0 2 8 0
1 6 y 1
⎡ ⎤
⎢ ⎥−
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦
( )4x4
3 0 3 1
0 3 9 z
A
0 0 8 0
0 0 0 1
⎡ ⎤
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 27
2.3 Operaciones con matrices
2.3.1 Trasposición
Dada una matriz de orden mxn, A = [ aij ], se llama matriz traspuesta de A y se
e se obtiene cambiando las filas por las columnas (o
iceversa) en la matriz A. Es decir:
⎥⎦
Propiedades de la trasposición de matrices
representa por At, a la matriz qu
v
11 1n 11 m1
t
m1
a a a a
A A
a
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥ ⎢ ⎥
⎢⎣
… …
mn 1n mna a a⎥ ⎢⎦ ⎣
1. Dada una matriz A, siempre existe su traspuesta y además es única.
2. (At)t = A.
2.3.2 Suma y diferencia
ra matriz
ma dimensión que los sumandos y con término genérico sij = aij + bij.
or tanto, para poder sumar dos matrices estas deben tener la misma dimensión. La
B se denota por A+B.
La suma de dos matrices A = [ aij ], B = [ bij ] de la misma dimensión, es ot
S = [ sij ] de la mis
P
suma de las matrices A y
Ejemplo: 2 f
A
3 4
−⎡ ⎤
= ⎢ ⎥
⎣ ⎦
4 d
B
3 1
⎡ ⎤
= ⎢ ⎥−⎣ ⎦
Entonces
A+B =
( ) ( )
( ) ( )
2 4 f d
3 3 4 1
− + +⎡ ⎤
⎢ ⎥
− +⎣ ⎦
=
2 f d
0 5
+⎡ ⎤
⎢ ⎥
⎣ ⎦
Propiedades de la suma de matrices
(B + C) = (A + B) + iedad asociativa)
2. A + B = B + A (propiedad conmutativa)
3. A + 0 = A (0 es la matriz nula)
cambiando de signo todos los elementos de A,
+ (–A) = 0.
enta y se define como: A – B.
1. A + C (prop
4. La matriz –A, que se obtiene
recibe el nombre de matriz opuesta de A, ya que A
5. La diferencia de matrices A y B se repres
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 28
2.3.3 Producto de una matriz por un escalar (número)
B = [ bij ] de la
ando aij
El producto de una matriz A = [ aij ] por un número real k es otra matriz
misma dimensión que A y tal que cada elemento bij de B se obtiene multiplic
por k, es decir, bij = kaij.
Ejemplo:
k = 2
2 g 3
A
4 5 1
− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦
entonces
kA = 2 =
2 g 3
4 5 1
− −⎡ ⎤
⎢ ⎥
⎣ ⎦
( ) ( ) ( )
( ) ( ) ( )
2 2 2 g 2 3
2 4 2 5 2 1
− −⎡ ⎤
⎢ ⎥
⎣ ⎦
=
El producto de la matriz A por el número real k se designa por k·A. Al número real k se
mbién e y a este producto, producto de escalares por matrices.
ropiedades del producto de una matriz por un escalar
4 2g 6
8 10 2
− −⎡ ⎤
⎢ ⎥
⎣ ⎦
le llama ta scalar,
P
2. (k + h)A = k A + h A (propiedad distributiva 2ª)
. 1·A = A (elemento unidad)
1. k (A + B) = k A + k B (propiedad distributiva 1ª)
3. k (h A) = (k h) A (propiedad asociativa mixta)
4
Propiedades simplificativas
1. A + C = B + C ⇒ A = B.
2. k A = k B ⇒ A = B si k es distinto de 0.
es distinto de 0.
matriz P cuyos elementos se obtienen
s de B. De manera más formal, los
lementos de P son de la forma:
3. k A = h A ⇒ h = k si A
2.3.4 Producto de matrices
Dadas dos matrices A y B, su producto es otra
multiplicando las filas de A por las columna
e
Pij = ∑ aij . bij
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 29
Se requiere que el número de colum coincidir con el número de filas de
para que esta multiplicación sea posible. Así, si A tiene dimensión mxn y B
En otras palabras, el elemento que se encuentra n la fila i y la columna j de la matriz
C=AB se obtiene multiplicando los elementos de la fila i de A por la columna j de B y
iendo:
nas de A debe
B
dimensión nxp, la matriz P será de orden: mxp. Es decir:
n
ij ik kjP a .b= ∑k 1−
e
sumando los resultados.
Ejercicio 14: Obtener C = AB
S 3 2 1 4
A
2 5 3 2
−⎡ ⎤
= ⎢ ⎥−⎣ ⎦
0 4 1
1 2 1
B
2 0 2
3 2 1
−⎡ ⎤
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
Solución. Primero, se comprueba que se pueda realizar el producto AB. Puesto que el
úmero de columnas de A es igual al número de filas de B, entonces la operación es
C=
n
factible. La matriz resultante tendrá la dimensión 2x3, es decir, 2 filas y 3 columnas.
3 2 1 4
2 5 3 2
−⎡ ⎤
⎢ ⎥−⎣ ⎦
0 4 1−
1 2 1
2 0 2
3 2 1
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
=
11 12 13
21 22 23
c c c
c c c
⎡ ⎤
⎢ ⎥
⎣ ⎦
Luego, el elemento de la fila 1 y columna 1 de AB (es decir, ) proviene de la
umatoria del producto de un elemento de la fila 1 de A por otro elemento de la
El elemento de fila 1 y la columna 2 de AB (o lo cual es igual, C) erá igual a la
umatoria del producto de un elemento de la fila 1 de A con otro elemento de la
columna 2 de B:
11c
s
columna 1 de B, de la multiplicación:
11 11 11 12c a .b a .b= + 21 13 31 14 41a b a b+ +
( )11c 3 0 2 1 1 2 4 3 0 2 2 12 16= − ⋅ + ⋅ + ⋅ + ⋅ = + + + =
la s
s
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 30
12 11 12 12 22 13 32 14 42c a .b a .b a .b a b= + + +
( ) ( ) ( )12c 3 4 2 2 1 0 4 2 12 4 0 8 16= − ⋅ − + ⋅ − + ⋅ + ⋅ = − + + =
El elemento de la lafila 1 y la columna 3 de C proviene de sumatoria del producto de
fila 1 de A con otro elemento de la columna 3 de B:
se obtiene:
un elemento de la
13 11 13 12 23 13 33 14 43c a .b a .b a .b a .b= + + +
( )13c 3 1 2 1 1 2 4 1 3 2 2 4 5= − ⋅ + ⋅ + ⋅ + ⋅ = − + + + =
Así, sucesivamente
16 16 5
C
5 22 11
⎡ ⎤
= ⎢ ⎥−⎣ ⎦
Propiedades del producto de matrices
1. A·(B·C) = (A·B)·C
ral no es conmutativo (AB no necesariamente
es igual a BA).
cuadrada de orden n se tiene A·In = In·A = A.
In. Si existe dicha matriz B, se dice que es la matriz inversa de
2. El producto de matrices en gene
3. Si A es una matriz
4. Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal
que A·B = B·A =
A y se representa por A–1.
5. El producto de matrices es distributivo respecto de la suma de matrices, es
decir: A·(B + C) = A·B + A·C
Consecuencias de las propiedades
1. Si A·B= 0 no implica que A=0 ó B=0.
C.
. En general (A+B)2=A2 + B2 +2AB, ya que A·B ≠ B·A.
e A·B ≠ B·A.
administradores (A),
guiente:
2. Si A·B=A·C no implica que B =
3
4. En general (A+B)·(A–B) = A2–B2, ya qu
Ejemplo: Una compañía tiene 4 fábricas, cada una emplea
supervisores (S) y trabajadores calificados (T) en la forma si
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 31
Tipo de empleado Fábrica 1 Fábrica 2 Fábrica 3 Fábrica 4
Administradores (A) 1 2 1 1
Supervisores (S) 4 6 3 4
Trabajadores (T) 80 96 67 75
Si los anan S/. 35 A) a la semana, los supervisores S (PB) y
los tr (PT). ¿Cuál es la nómina de cada fábrica?
administradores g 0 (P /. 275
abajadores S/. 200
Solución. Lo que se pide es el monto pagado por cada fábrica el cual es igual al
número de cada empleado por su respectivo ingreso salarial. En general, será:
= PAAi + PSSi + PTTi , donde Ii es el monto de la fabrica i. Por ejemplo, el monto de la
s el cálculo
e complicaría. Existe otra forma para calcular directamente los montos de todas las
⎢ ⎥⎣ ⎦
Si se multiplica ambas matrices (en ese orden) debería obtenerse lo solicitado. Sin
embargo, esta multiplicación matricial no esta definida. Note que la primera matriz es
e orden 3x4 mientras la segunda es 3x1 (las cifras de negro debería ser iguales). La
⎥
⎥
⎥
⎦
Ii
fábrica 1 será: I1 = PAA1 + PSS1 + PTT1 = 350*1 + 4*275 + 80*200 = 17450.
Con este sencillo cálculo puede obtenerse fácilmente los 3 montos restantes. Sin
embargo, si hubiera más tipos de empleados o un mayor número de fábrica
s
fábricas. El cuadro anterior equivale a cantidades de especialistas de cada fábrica.
Entonces, si estas cantidades son multiplicadas por su salario respectivo debería
entonces obtenerse la nomina de cada fábrica. Llevando esto a matrices:
1 2 1 1 350
4 6 3 4 275
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
80 96 67 75 200⎢ ⎥⎣ ⎦
d
solución es transponer la primera matriz a fin de obtener una matriz de orden 4x3 y
así, poderla multiplicar por la segunda (3x1), con lo cual es posible multiplicar ambas
matrices y la matriz resultante sería del orden 4x1, la cual brindaría los 4 montos
solicitados.
1 4 80 17450
350
⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥2 6 96 21550
275
1 3 67 14575
200
1 4 75 16450
⎢ ⎥⎢ ⎥ ⎢=⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢⎣ ⎦
⎣ ⎦ ⎣
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 32
Así, los montos de la fábrica 1, 2, 3 y 4 son: S/. 17450, S/. 21550, S/. 14575, y S/.
16450, respectivamente.
2.3.5 Inversibilidad
de singular.
versión de matrices
Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso
contrario recibe el nombre
Propiedades de la in
nica
2. A-1A=A·A-1=I
. (A-1)-1=A
1. La matriz inversa, si existe, es ú
3. (A·B) -1=B-1A-1
4
5. (kA)-1=(1/k·A)-1
6. (At)–1=(A-1)t
Observación
Se puede encontrar matrices que cumplen A·B = I, pero que B·A I, en tal caso,
A es la inversa de B "por la izquierda" o que B es la inversa de A
or la derecha". Hay varios métodos para calcular la matriz inversa de una matriz
ada la matriz buscar una matriz que cumpla A·A-1 = I, es decir:
≠
podemos decir que
"p
dada:
• Directamente:
D
2 1
A
1 1
−⎡ ⎤
= ⎢ ⎥
⎣ ⎦
2 1 a b 1 0
1 1 c d 0 1
−⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢
⎤
⎥
ara ello planteamos el sistema de ecuaciones:
2a – c = 1 …(1)
2b – d = 0 …(2)
b + d = 1 …(4)
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
P
a + c = 0 …(3)
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 33
De la ecuación (3) despejar a en fu ) y luego reemplazar en (1) y así
encontrar el valor de a y c.
nción de c (a = -c
2 ( -c ) – c = 1 → c = −
1
y luego de reemplazar en (1) obtenemos a =
3
1
3
De la e b e en (2) y
así encontrar el valor de b y d.
cuación (4) despejar n función de d ( b = 1 – d) y luego reemplazar
2 ( 1 - d ) – d = 0 → d =
2
3
y luego reemplazando en (2) obtenemos b =
1
3
1 3 3
A −
1 1
1 2
3 3
⎡ ⎤
⎢ ⎥
= ⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦
La matriz que se ha calculado realmente sería la inversa por la "derecha", pero es fácil
comprobar que también cumple A-1·A = I, con lo cual es realmente la inversa de A.
triz, y su cálculo
epende del orden de la matriz cuadrada en análisis.
rden 1 x 1: Es fácil comprobar que aplicando la definición: A = a11 ⇒ det (A) = a11.
rden 2 x 2: se toma el producto de los dos elementos de la diagonal principal y se
• Usando determinantes (lo cual se verá mas adelante)
• Por el método de Gauss-Jordan (el cual no será tratado aquí)
2.4 Determinantes
Un determinante es un número real o escalar asociado a una ma
d
2.4.1 Cálculo de determinantes de órdenes 1, 2 y 3
O
O
substrae del producto de los dos elementos de la diagonal secundaria.
11 12 11 12
11 22 12 21
21 22 21 22
a a a a
A det(A) a a a a
a a a a
⎡ ⎤
= ⇒ = = −⎢ ⎥
⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 34
Orden 3 x 3: Regla de Sarros: solo para matrices de orden 3x3 se suele ar la Regla
de Sarrus, que consiste en un esquema gráfico para los productos positivos y otro
para los negativos:
us
Sea la matriz
11 12 13a a a
A a21 22 23
31 32 33
a a
a a a
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
, la multiplicación de diagonales es:
o lo que es igual:
Ejercicio 15: Usando Sarros, obtener el determinante de la matriz
( )
a a a a a a
det A
⎛ ⎞ ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
11 12 13 11 12 13
21 22 23 21 22 23
31 32 33 31 32 33
11 12 13 11 12 13
21 22 23 21 22 23
a a a a a a
a a a a a a
a a a a a a
a a a a a a
⎜ ⎟
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
11 22 33 12 23 31 13 21 32 13 22 31 12 21 11 23 32et(A) (a a a a a a a a a ) (a a a a a a a a a )= + + − + +33d
3 1 4
z 6 2
−
B 2 2 0
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦
Solución. Primero, se atriz/determinante, en la cual las dos primeras filas
se repiten en la parte inf matriz,
grafica la m
erior de tal
Caso 1 (por filas) 3 1 4−
2 2 0
6 2
det(B)
3 1 4
2 2 0
z
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦=
−
−
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 35
Luego, se procede a obtener los productos positivos (diagonales del medio hacia
abajo). En este caso, por tratarse de una matriz 3x3, serán 3 productos:
((-3).2.2) + (2.6.4) + ((-z) .1.0) = 60.
Luego, los tres productos negativos:
Así, el determinante será
Sarrus por columnas.
Caso 2 (por columnas) →
-[((-z).(-2).4) + ((-3).6.0) + (2.1.2)] = -4 – 8z
∣ A ∣ = 60 - 4 - 8z = 56 – 8z
Otra forma es utilizando el método de
3 1−⎡ 4 3 1
det(B) 2 2 0 2 2
z 6 2 z 6
−⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦
2.4.2 Cálculo de un determinante de orden nxn: desarrollo por menores
Sea u comona matriz de orden 3 x 3
11 12 13
ij 21 22 23
31 32 33
a a a
A a a a a
a a a
⎡ ⎤
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦
Contiene otras submatrices tales como:
(matriz obtenida al eliminar la primera fila y la primera columna)
iminar la segunda fila y la primera columna)
⎤
⎥
22 23
11
32 33
a a
A
a a
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
12 13a a⎡ ⎤
21
32 33
A
a a
= ⎢ ⎥
⎣ ⎦
(matriz obtenida al el
12 13
31
22 23
a a
A
a a
⎡
= ⎢
⎣ ⎦
(matriz obtenida al eliminar la tercera fila y la primera columna)
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 36
Ahora bien, se define el determinante de la matriz A mediante la formula:
22 23 12 13 12 13
11 21 31
a a a a a a
(A) a a a= − +
32 33 32 33 22 23
det
a a a a a a
det (A) = a11det(A11) – a21det(A21) + a31det(A31) (2.1)
En realidad, la expresión (2.1) tiene múltiples generalizaciones por lo que es necesario
rmalizarlas. Finalmente, para el caso de una matriz (cuadrada) de orden n x n el
:
o lo que es igual
fo
determinante será
n
i j+
ij ij
j 1
det(A) ( 1) (a ) M
=
= −∑
baja el orden del determinante que se pretende calcular en una
nidad. Para evitar el cálculo de muchos determinantes conviene elegir la fila o
columna con mayor número de ceros.
Ejercicio16: Obtener el determinante de la matriz B.
z 6 2
(2.3)
Nota: Esta regla re
u
3 1 4
B 2 2 0
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
oluciónS . Calcular la matriz A por medio de menores.
2 0 1 1 4
det(A) 3 2 z
6 2 6 2 2 0
4−
= − − −
−
det (A) = 12 – 4 +48 -8z = 56 -8z
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 37
Ejercicio 17: Sea la matriz A, obtener su determinante.
2 4 3
A 3 5 2
1 3 2
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦
oluciónS . En teoría el determinante resultará de usar alguna fila o columna al azar, en
este caso se usa la 3era fila (-1, 3, 2). Luego se forman los determinantes de las
submatrices correspondientes:
( ) ( ) ( )3 1 3 2 3 34 3 3 2 4
A 1 1 3 1 2 1
5 2 3 2 3 5
+ + +2− −
= − − + − + −
− −
( ) ( ) ( )A 8 15 3 4 9 2 10 12= − − − + + − −
A 76= −
- Matriz de cofactores
Una matriz de cofactores es una matriz donde cada elemento es un determinante, en
la cual cada elemento es reemplazado por su cofactor ∣Cij∣. Una matriz adjunta es
ta de una matriz de cofactores. Para el caso de una matriz:
ija
la transpues
11 12 13
21 22 23
31 32 33C C C
C C C
C C C C
⎡ ⎤
⎢ ⎥
= ⎢ ⎥
⎢ ⎥⎣ ⎦
y su adjunta será, 11 21 31C C C
t
12 22 32
13 23 33
adj(A) C C C C
C C C
⎡ ⎤
⎢ ⎥
= = ⎢ ⎥
⎢ ⎥⎣ ⎦
Cofactor de un componente
l cofactor de un componente aij denotado por Cij esta definido por:
∣Cij∣ = (-1)i+j ∣Mij∣ (2.2)
n otras palabras, el cofactor del componente Cij es el menor con signo prefijado
so de una matriz 3 x 3
E
E ijM
(-1)i+j. Por ejemplo, para el ca
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 38
21 22
13 13
31a 32
a a
C M
a
= =
ces el menor del elemento Cij se
enota por y se define como el determinante de la submatriz (n-1)(n-1) de A la cual
se forma suprimiendo todos los elementos de la fila y todos los elementos de la
columna j. Para la matriz del ejercicio 16, los menores que se pueden formar son:
Ejercicio 18: i
Menor de un componente
Si A es una matriz cuadrada de orden n x n, enton
d ijM
i
Sea la matr z A, hallar su matriz de cofactores:
2 3 1
A 4 1 2
5 3 4
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
Solución. Formar la matriz de menores para la matriz C (por ejemplo el menor C11 se
efine como la determinante de la submatriz A que se forma suprimiendo todos los
elementos de la fila 1 y de la columna 1) y resolver cada menor:
d
1 2 4 2 4 1
3 4 5 4 5 3
2 6 7
3 1 2 1 2 3
C 9 3 9
3 4 5 4 5 3
5 0 10
3 1 2 1 2 3
1 2 4 2 4 1
⎡ ⎤
+ − +⎢ ⎥
⎢ ⎥ − −⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= − + − = −⎢ ⎥⎢ ⎥
⎢ ⎥−⎣ ⎦⎢ ⎥
⎢ ⎥+ − +
⎢⎣ ⎥⎦
La matriz adjunta adj(A) será la transpuesta de C:
2 0 2 0 2 2
2 0 2 0 2 2
− −
− −
6 2 z 2 z 6
1 4 3 4 3 1
C
6 2 z 2 z 6
1 4 3 4 3 1
− −
− −
=
−
− −
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 39
t
2 9 5
adj(A) C 6 3 0
7 9 10
− −⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥−⎣ ⎦
Esta matriz será vista con mayor detalle en el punto 2.4.4
.4.3 Propiedades básicas de los determinantes
ropiedad 1. Si se permuta dos líneas paralelas de una matriz cuadrada, su
determinante cambia de signo con respecto al inicial:
2
P
a b
c d
= ad - bc, pero con intercambiando las dos filas:
c d
= cb – ad = - ( ad –bc )
a b
una matriz cuadrada tiene una línea con todos los elementos nulos, su determinante
ropiedad 2. La multiplicación de una fila (columna) por un escalar cambia el valor
del determinante k veces
Si
vale cero.
P
.
( )
ka kb a b
kad kbc k ad bc k
c d c d
= − = − =
ropiedad 3. La suma (resta) de un múltiplo de una fila a otra fila dejará el valor del
. Si en el determinante anterior, se suma k veces la fila superior a su
egunda fila, se obtiene el determinante original.
P
determinante inalterado. Esto también es valido en el caso de columnas.
Por ejemplo
s
( ) ( )
a b a b
a d kb b c ka ad bc
c ka d kb c d
= + − + = − =
+ +
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 40
Propiedad 4. El intercambio de filas y columnas no afecta el valor del determinante. En
otras palabras, el determinante de una matriz A tiene el mismo valor que el de su
transpuesta: ∣A∣ = ∣At∣.Por ejemplo.
4 3 4 5
9
5 6 3 6
= =
a b a c
ad bc
c d b d
= = −
2.4.4 Aplicaciones
de los elementos de una fila por sus
djuntos es el valor del determinante, y que la suma de los productos de los elementos
de una fila por los adjuntos d otra fila diferente es 0 (esto sería el desarro de un
determinante que tiene dos filas iguales por los adjuntos de una de ellas).
Cálculo de la matriz inversa
Dada una matriz cuadrada A, su inversa será igual a la expresión 2.4, la cual es fácil
probarla ya que la suma de los productos
a
e llo
1 1
A adj(A)
det(A)
−
= (2.4)
Solución de sistemas de ecuaciones lineales (s.e.l)
Un sistema de ecuaciones lineales (s.e.l.) es un conjunto de m ecuaciones con n
incógnitas de la forma:
11 1 12 2 1n n 1a x a x ... a x b+ + + = ⎫
21 1 22 2 2n n 2
m1 1 m2 2 mn n m
a x a x ... a x b
a x a x ... a x b
⎪+ + + = ⎪
⎬
⎪
⎪+ + + = ⎭
Donde aj son los coeficientes, xi las incógnitas y bi son los términos independientes. El
⎞ ⎛ ⎞
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎠ ⎝ ⎠
anterior sistema se puede expresar en forma matricial, usando el producto de matrices
de la forma:
11 12 1n 1 1
21 22 2n 2 2
m1 m2 mn n m
a a a x b
a a a x b
a a a x b
⎛ ⎞⎛
⎜ ⎟⎜
⎜ ⎟⎜ =
⎜ ⎟⎜
⎜ ⎟⎜
⎝ ⎠⎝
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 41
A X = b
De modo simplificado suele escribirse mxn nx1 mx1A X b= , donde la matriz A se
enomina matriz de coeficientes. También se usará la matriz ampliada, que se
representa por A', que es la matriz de coeficientes a la cual le hemos añadido la
columna del término independiente:
.l. que cumple estas condiciones se le llama un
istema de Cramer). El valor de cada incógnita xi se obtiene de un cociente cuyo
denominador es el determinante de la matriz de coeficientes, y cuyo numerador es el
determinante que se obtiene al cambiar la columna i del determinante anterior por la
columna de los términos independientes:
d
11 12 1n 1
21 22 2n 2'
m1 m2 mn mn
a a a b
a a a b
A
a a a a
⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠
…
2..4.1 Aplicando la Regla de Cramer
Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y
es compatible determinado (a un s.e
s
i
i
A
x
A
= (2.5)
+ 2x3 = 17
Solución
Ejercicio 19: Obtener el valor de las incógnitas del siguiente sistema de ecuaciones
lineales:
2x1 + 4x2 - 3x3 = 12
3x1 - 5x2 + 2x3 = 13
-x1 + 3x2
. El primer paso es ordenar el sistema de ecuaciones: cada columna
corresponder a una sola variable y todas las constantes deben pasar al lado derecho
de igualdad. Una vez ordenado el sistema, se procede a calcular el determinante de
debe
la
la matriz principal o matriz de coeficientes (A):
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 42
−
= −
−
2 4 3
A 3 5 2 = 2( -10 – 6 ) – 4 ( 6 + 2 ) – 3 ( 9 - 5 ) = -76
olumna de constantes. Para las tres
riables, los determinantes de tales matrices son:
1 3 2
Paso seguido, se obtienen las matrices especiales formadas del reemplazo de la
columna de coeficientes xi con el vector c
va
−
= −1
12 4 3
A 13 5 2
17 3 2
= 12( -10 – 6 ) – 4 ( 26 - 34 ) – 3 ( 39 + 85 ) = -532
−
=
−
2
2 12 3
A 3 13 2
1 17 2
= 2( 26 – 34 ) – 12 ( 6 + 2 ) – 3 ( 51 + 13 ) = -304
= −
−
3
2 4 12
A 3 5 13
1 3 17
= -248 -256 -48 = -456
Una vez obtenidos los determinantes, se procede fácilmente a obtener el valor de las
s:incógnita
1
1
A 372
x 7
A 76
−
= = =
−
2
2
A 304
x 4
−
A 76
= = =
−
3
3
A 456
x 6
A 76
−
= = =
−
..4.2 Inversibilidad mediante la matriz de cofactores2
Si AX b= , entonces X será equivalente a:
A-1.(A.X)=A-1(b)
X = A-1(b)
(2.6)
Pero, conforme a (2.4), A-1 =
1
det(A)
[adj(A)]. Entonces X también será igual a:
X=
1
det(A)
[adj(A)]b (2.7)
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 43
Por ello es necesario calcular no solo el determinante de A, sino la transpuesta de su
matriz le si el
sistema tiene igual número de ecuaciones que de incógnitas (n=m). En el ejercicio
anterior será:
matriz de cofactores (llamada adjunta). Esta forma de solución es aplicab
5 2 3 2 3 5
3 2 1 2 1 3
1 6 8 4
4 3 2 3 2 4
C 1 7 1 1 0
3 2 1 2 1 3
7 1 3 2 2
4 3 2 3 2 4
5 2 3 2 3 5
− −⎡ ⎤
+ − +⎢ ⎥
− −⎢ ⎥ − −⎡ ⎤⎢ ⎥− − ⎢ ⎥⎢ ⎥= − + − = − −⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦⎢ ⎥
− −⎢ ⎥+ − +
⎢ ⎥− −⎣ ⎦
hora la matriz adjunta es,
adj (A) = Ct
A
=
⎡ ⎤− − −
⎢ ⎥
− −⎢ ⎥
⎢ ⎥− −⎣ ⎦
16 17 7
8 1 13
4 10 22
s conforme a (2.4),
-1
Ordenando los resultado
A =
⎡ ⎤− − −
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− −⎣ ⎦
16 17 7
1
8 1 13
4 10 22
,
76
Finalmente, poniendo los resultados según (2.6)
1
2
3
192 221 119
16 17 7 7676 76 7
3
6 12 7 x
96 13 2218 11X 13 4 x76 76 76 76
17 6 x104 22 48 130 37476 76 76
76
+ +⎡ ⎤
⎢ ⎥⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥
− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦− − + +⎣ ⎦ ⎢ ⎥
⎦
Entonces, los valores del vector X serán: 7 ,4 y 6.
Se debe tener en cuenta antes de realizar cualquier cálculo que la determinante de A
deba ser diferente de cero para así garantizar una solución al problema, en so que
la determinante de una matriz resultará ser cero podría deberse a que alguna de las
ecuaciones del sistema podrían ser múltiplos de uno de ellos por lo que no podríamos
lución ya que hay solo n-1 ecuaciones para n incógnitas.
⎣
ca
hallar la so
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 44
2.4.5 El Jacobiano
Es un determinante especial que sirve para testear la dependencia funcional, tanto
lineal como no lineal. Un determinante jacobiano esta compuesto por todas las
primeras derivadas parciales. Por ejemplo, dadas las siguientes funciones,
y1 = f1 ( x1, x2… xn)
y2 = f2 ( x1, x2… xn)
yn = f3 ( x1, x2… xn)
El (determinante) Jacobiano será igual a:
1 1
1 2 n
2 2
1
2
1 2 n
1 2
n n n
1 2 n
y
x
y
yn
x x x
x , x
y y y
x x x
∂
∂
∂
∂ ∂ ∂
∂ ∂
∂ ∂ ∂
∂ ∂ ∂
Note que los elementos de cada fila son las primeras derivadas parciales de una
función yi con respecto a cada una de las variables independientes (x1, x2, x3),
mientras que los elementos de cada columna son las primeras de s parciales de
cada una de las funciones y1, y2, y3 respecto a una de las variables independientes,
. Si
1 2y , y ,
J
∂ ∂ ∂
= =
3, x∂
y y∂ ∂
x x
y y
∂ ∂
∂ ∂
rivada
jx J 0= , las ecuaciones son funcionalmente dependientes. Caso contrario (a),
son independientes.
Ejemplo : Usar el Jacobiano para testear la dependencia funcional de:
y1 = 5x1 + 3x2
y2 = 25x1
2 + 30 x1x2 + 9x2
2
Solución. Primero, se toma las derivadas parciales de primer orden:
1y
5
∂
=
1x∂
1y
3
∂
=
2x∂
2
1 2
y
50x 30x
1x
∂
= +
∂
2y
1 2
2
30x 18x
x
∂
= +
∂
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 45
Luego se plantea el Jacobiano,
1 2 1 250x 30x 30x 18x+ +
∣J∣ = 5 ( 30x1 + 18 x2)- 3 (50x1 + 30x2) = 0
5 3
J =
Así, puesto que J 0= , existe dependencia funcional entre ambas ecuaciones. Esto
s fácil de corroborar ya que: (5x1 + 3x2)2 = 25x1
2 + 30 x1x2 + 9x2
2.
2.5 Problemas Resueltos
Ejercicio 20: Sean
⎥
⎦
e
las matrices:
x 2 1 1
0 4 1 2a
−⎡ ⎤
⎢ ⎥
⎢ ⎥=
1 1 1 0
1 0
A
1 x 3x 0
2
⎢ ⎥− −
0 1 1
⎢
−⎣
1 0
B
2 1 1 1
1 0 1 0
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
−
−
−
=
y. Si C = ( 2AB)t, obtenga la suma S = c21 + c32 + c33
Solución. Multiplicar la matriz A y B y luego por el escalar 2.
c21 = 2x – 2, c32 = 4a +10, c33 = 4x - 2 Entonces S = 6x + 4a + 6
2
2x 10 2x 2 2x 4 2
4a 4 2 4a 10 2
2AB
14x 2 6x 2 4x 2 6x
2 2 4
− − +⎡ ⎤
⎢ ⎥− − + −
⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥
−⎣ ⎦
Entonces,
2
t
2x 10 4a 4 14x 2 2
2x 2 2 6x 2 2
(2AB)
2x 4 4a 10 4x 2 4
2 2 6x
− − − − −⎡ ⎤
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥+ + −
⎢ ⎥
− − −⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 46
Ejercicio 21: Se tienen las siguientes matrices:
2a 3b
A 2 b
5 8
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
−⎡ ⎤
2 4 2 6
B
1 b 5 1
− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦
3
4
C
6a
2
⎡ ⎤
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦
Obtenga:
) D = ABC y
¿como cambia D en relación a la pregunta a?
a
b) si a = 0,
Solución.
o multiplicamos las matrices A(3x2) y B(2x4) por que cumplen con las
imensiones, resultando la matriz AB(2x4) y luego multiplicarlo con la matiz C(4x1).
a) Primer
d
2
2
4a 3b 4a 15b 12a 3b8a 3b
AB 4 b 4 5b b 12b 8
18 8b 20 50 38
⎢ ⎥= − − −−⎢ ⎥
⎢ ⎥− + −⎣ ⎦
− − − − +⎡ ⎤+
b) Simplemente, se reemplaza el valor 0 de a en la matriz resultante D,
2
24a 2a(45b 34) 3b(4b 5)
ABxC D 6a(4 5b) 4b 5b 68
300a 2(16b 105)
− − + − +⎡ ⎤
⎢ ⎥
= = − − − +⎢ ⎥
⎢ ⎥− − +⎣ ⎦
2
2
3b(4b 5)− +
D 4b 5b 68
2(16b 105)
⎡ ⎤
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥− +⎣ ⎦
Ejercicio 22: Dada la matriz H y H-1 = D, obtenga “ ” sabiendo que d22=1a
3a 1 a− −
H 1 4 1
2 3 1
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 47
Solución. Hallar la inversa de la matriz H
1 1
H D−
1 3a 1 4a 1
8a 1 8a 1 8a 1
5a 4a
8a 1 8a 1 8a 1
5 2 9a 1 12a
8a 1 8a 1 8a 1
+ +⎡ ⎤
− − −⎢ ⎥+ + +
⎢ ⎥
⎢ ⎥= = −
⎢ ⎥++ +
⎢ ⎥− −
⎢ ⎥
+ + +⎣ ⎦
Por condición:
22
5a
d 1
8a 1
= =
+
entonces, 1
a
3
= −
Ejercicio 23: Una tienda vende 1000 hamburguers, 600 chessburguers, y 1200 milks
en una semana. El precio de la hamb centavos (c), una chessburguer 60
c, y el milk 50 c. El cost de vender una hamburguer es 38c, una chessburguer es 42c
un milk es 32c. Encuentre el ingreso, costo y beneficio semanal de la firma.
urguer es 45
o
y
Definiendo y ordenando:
1000⎡ ⎤ 0.45
Q 600⎢ ⎥= ⎢ ⎥
1200⎢ ⎥⎣ ⎦
P 0.60
0.50
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
0.38⎡ ⎤
C 0.42
0.32
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
El ingreso total será: PQ, pero esta operación no esta definida. Entonces se aplica la
transpuesta de P. Solo así es posible la multiplica ión:c
I = PtQ = [ 0.45 0.60 0.50] =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
1000
00
600
12
=1410
Similarmente, el costo total será:
= CtQ = [ 0.38 0.42 0.32]=
⎥
⎦
=1016
Entonces, B=1410 -1016 = 394
C
⎡ ⎤
⎢ ⎥
⎢ ⎥
1000
600
⎢
⎣1200
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 48
Ejercicio 24: En una página deteriorada de un libro se encuentra que la matriz
1 x 0
A 0 0 y
0 0 z
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
y del producto A2At solo se puede leer la última columna
6
2
1
−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
Obtenga x + y + z.
Solución. Por condición, la matriz del producto
2 2
2 t 2 2
2 3
x 1 xy xyz
A A 0 y z yz
z z
+
0 y
⎡ ⎤
⎢ ⎥
= ⎢ ⎥
⎢ ⎥⎣ ⎦
Debe ser igual a una matriz cuyos datos visibles son
6
2
1
−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
Esta última columna se puede igualar con la última columna de la primera matriz. De
eso, se obtiene fácilmente que z = -1, x = 3, y = 2. Entonces, x + y + z = 4
jercicio 25: Hallar a, b, c y d si se cumple que:
⎤
⎥
⎦
E
1 0 2 0⎡ ⎤
⎢ ⎥a b c d 0 0 1 1 1 0 6 6
1 9 8 4
0 0 1 0
⎡ ⎤ ⎡⎢ ⎥ =⎢ ⎥ ⎢
⎣
⎣ ⎦
1 4 9 2 0 1 0 0⎢ ⎥⎣ ⎦
⎢ ⎥
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 49
Solución. El resultado de la multiplicación de las matrices del lado izquierdo es:
a c 2a b d b 1 0 6 6
1 9 8 4 1 9 8 4
+ +⎡ ⎤ ⎡
=⎢ ⎥ ⎢
⎣ ⎦ ⎣
⎤
⎥
⎦
e donde, por igualdad de matrices: a = 1, b = 6, c = 0 y d = -2
jercicio 26: Sea la matriz A y su determinante en función de y. Hallar:
d
E
4 0 5 4
5 3 4 2y
A
4 y 1 1
− −⎡ ⎤
⎢ ⎥− − −
⎢ ⎥=
⎢ ⎥
2 2 2 0⎢ ⎥− −
− −⎣ ⎦
) La det(At)
b) Que valor(es) tomará y para que el sistema At sea singular (es decir, para que NO
tenga solución única)
Solución
2
(9y 2y 43)− −det(A) 4= −
a
.
) Por propiedad, det(A) = det(At)
l sistema sea singular es necesario que det(A) = det(At) = 0.
det(A) = -4(9y2 - 2y – 43 )
-4(9y2 - 2y – 43 ) = 0
ica
a
b) Para que e
Resolvemos esta ecuación cuadrát
2
( 2) ( 2) 4x9x( 43)
y
2x9
− − ± − − −
=
y1 = 2.3 y2= -2.07
23z +11w = 0
31z +21y +4w = -23
23y + 42w -21x -2z = -3
eterminar los valores únicos de x, y, z, w usando el método de Cramer.
Ejercicio 27: Conforme al modelo
-4x – 5y +
69z – 12x +33w – 15y = 0
D
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 50
Solución. Claramente la 3era ec veces la primera ecuación, es
decir, una combinación lineal de , el sistema no tendrá solución
única y se puede verificar por atriz formada por las cuatro
ecuaciones resulta ser cero.
uación del sistema, es 3
la primera. Por ello
que la determinante de la m
Ejercicio 28: Si, B=A-1 y la matriz A es la siguiente:
3 1 1
A 2 2 2
1 (x y) 1
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦
a) Obtenga la matriz B
b) Si b23=1/9 y además x = 3, obtenga el valor de y.
Solución.
a) El primer paso es hallar la determinante de la matriz A eligiendo la fila 3 ya que sus
menores serán números reales:
1 1 3 1 3 1
det(A) 1 (x y) ( 1) 8(x y 1)
2 2 2 2 2 2
= − − − + − = − − +
− −
Después hallar la matriz de cofactores
2 2 2 2 2 2
x y 1 1 1 1 x y
2(x y 1) 4 2(x y 1)
1 1 3 1 3 1
C x y 1
x y 1 1 1 1 x y
0 8 8
1 1 3 1 3 1
2 (3x 3y 1)
− −⎡ ⎤
+ − +⎢ ⎥
− − − − − −⎢ ⎥ − − + − − + +
2 2 2 2 2 2
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= − + − = − + − − +⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥−⎣ ⎦⎢ ⎥
⎢ ⎥
⎥⎦
Luego hallar la matriz adjunta que es la transpuesta de la matriz de cofactores:
triz A.
+ − +
⎢ − −⎣
t
2(x y 1) x y 1 0
adj(A) C 4 2 8
2(x y 1) (3x 3y 1) 8
− − + − +⎡ ⎤
⎢ ⎥= = − −⎢ ⎥
⎢ ⎥− + + − − +⎣ ⎦
Por ultimo multiplicar la matriz adjunta por la inversa de la determinante de la ma
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 51
A-1=
1
det(A)
adj(A)
1 4 2 8
B A
8(x y 1) 8(x y 1) 8(x y 1)
− − −⎢ ⎥
= = ⎢ ⎥− − + − − + − − +
⎢ ⎥
2(x y 1) x y 1
0
8(x y 1) 8(x y 1)
2(x ) (3x 8
8(x ) 8( 8(x y 1)
⎡ ⎤− − + − +
⎢ ⎥− − + − − +⎢ ⎥
− + −⎢ ⎥
⎢ ⎥− − − − − +⎣ ⎦
y 1 3y 1)
y 1 x y 1)
+ − +
+ − +
1 1
0
4 8
1 1 1
B
2(x y 1) 4(x y 1) x y 1
x y 1 3 x 3y 1 1
4(x y 1) 8(x y 1) x y 1
⎡ ⎤
−⎢ ⎥
⎢ ⎥
⎢ ⎥
= ⎢ ⎥− + − + − +⎢ ⎥
⎢ ⎥− − − +
−⎢ ⎥− + − + − +⎣ ⎦
b) Al igualar b23=1/9, se obtiene una ecuación con dos incógnitas (x e y), pero
adicionalmente se tiene el valor que toma la variable x=3 por lo cual la variable
y es -5.
23
1 1
b x
x y 1 9
= = ⇒ −
− +
y 8= , pero si x = 3 ⇒ y = -5
da la matriz A y B, obtenga el valor x, si AB-3B=D y además d32 = 13Ejercicio 29: Da
3 y 1
A 1 2 2
x 1 1
−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦ y
y x 2
1
1 1 1
−
B 3 0
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦
Solución: Primero procedemos a multiplicar la matriz A por B donde el primer elemento
e la matriz AB se obtiene de la suma del producto de cada elemento de la primera fila
de la matriz A por los elementos de la primera columna de la matriz B, obteniéndose
3y+3y+1=6y+1 y así para los demás elementos de la matriz AB.
d
2
AB 8 y 2 x 2
xy 4 x 1 2x 2
6y 1 3x 1 y 7⎡ ⎤+ + − −
⎢ ⎥
= − − −⎢ ⎥
⎢ ⎥
+ + − −⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 52
Luego procedemos a multiplicar la matriz B por un escalar que en este caso es 3 y
por ultimo restamos la matriz 3B a la matriz AB, obteniéndose D.
3y 3x 6
3B 9 0 3
3 3 3
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦
2
3y 1 1 y 1
AB 3B y 1 2 x 1 D
xy 7 x 4 2x 5
⎡ ⎤+ − −
⎢ ⎥
− = − − − =⎢ ⎥
⎢ ⎥
+ + − −⎣ ⎦
De donde d32 = 13 = x2 + 4 ⇒ x = ± 3
Ejercicio 30: Sea
1 1 1
A 2 x 1
−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
1 3 1⎢ ⎥−⎣ ⎦
x 1 1
B 3 2 x
2 1 1
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦
b) Si det (AB)=0 calcule el valor de x
c) Muestre que AB=BA, se cumple o no.
Solución
a) Obtenga AB
.
) La matriz AB se obtiene de la suma del producto de cada elemento de la primera
atriz A por los elementos de la primera columna de la matriz B,
í para los demás elementos de la matriz AB.
a
fila de la m
obteniéndose x+ 3 + 2 = x + 5 y as
2
x 5 2 x 2
AB x 2 2x 3 x 1
+ +
7 x 6 3x 2
⎡ ⎤
⎢ ⎥
= + + −⎢ ⎥
⎢ ⎥− −⎣ ⎦
b) La det(AB)=12x2-24, entonces, 2
12x 24 0 x 2− = ⇒ ±
c) Bastará mostrar que un elemento de BA no es igual a AB, por ejemplo:
AB11 ≠ BA11 . BA11 = x(1) – 1(x) – 1(1) = x - 1, pero AB11 = x + 5: por ello BA ≠ AB
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 53
Ejercicio 31: Si C = AB y c33=m, obtenga el valor de z, si la menor solución de m es
igual a 0, siendo:
3 4 q 4−⎡ ⎤
⎢ ⎥
⎣
2 a e 3
A
−
⎢ ⎥=
3 z m 2⎢ ⎥
⎢ ⎥
2 1 5m 0
1 m 1 1⎦ 1 0 4 2
4 3 1 a
3 2 1 1
B
−⎡ ⎤
⎢ ⎥− − −
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦
Solución. Al hallar el producto de la matriz AB se extraer el elemento c33 de la matriz
(en función de m y z).
C33 = 3 (1) – 1(z) + m(5m) + 2(4) = 3 – z +5m2 + 8
Por condición:
AB
c33 = m ⇒ 5m2 – m + ( 11 – z ) = 0 1 1 20(11 z)
m
10
± − −
=
de donde la menor solución será:
1 1 20(11 z)
0 z 1
10
− − −
1= ⇒ =
Ej
calcule
ercicio 32: Si
t 2 4
D
−⎡ ⎤
=
t 2⎢ ⎥
⎣ ⎦
( )
t1
D−
Solución. Por propiedad: ( ) ( )
1 tt 1
D D
− −
= , de donde t 1 1/ 2 11
(D )
t / 4 1/ 2(t 1)
− −⎡ ⎤
= ⎢ ⎥−+ ⎣ ⎦
Ejercicio 33: Sea el sistema de ecuaciones:
ax + by = c
a2 x + dy + ez = f
hz + gx = i
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 54
¿Qué requisito(s) debe cumplir “a” –si es posible- para que dicho sistema tenga
olución única?
olución
s
S . Ordenando el sistema en términos matriciales:
2
a d e y f
a b 0 x c⎡ ⎤
g 0 h z i
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
o AX b=
Para que el sistema tenga solución única, bastará que el determinante del sistema sea
iferente de cero. Obteniendo . Haciendo “a” como
ariable se tendrá que:
d 2
det(A) a bh adh beg≠ − + +
v
( ) ( )( )2
hd hd 4 bh beg± +
a ≠
Ejercicio 34: Sea el sistema de ecuaciones:
-2x + 3y +w = t
w – 3y + x = -3
-2y – x +bz +4w = 9
onde t es una constante, identifique formalmente la condición que debe reunir
2bh
bx + 2w +4z = 5t
D “ b ”
Solución
para que el sistema tenga solución única.
. Sea el sistema de ecuaciones matricialmente:
⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
2 3 0 1 x−⎡ ⎤ ⎡ ⎤ ⎡ t
5t
1 3 0 1 z 3⎢ ⎥ ⎢ ⎥
b 0 4 2 y⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
1 2 b 4 w 9
− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
astará con que el determinante sea diferente de cero. Para ello, se elige la 3era
s menores (sección 2.4.2).
− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
B
columna como pivote y se procede a usar la técnica de lo
( ) ( ) ( ) ( )1 3 2 3 3 3 4 3
b 3 1 2 3 1 2 3 1 2 3 1
det(A) 0 1 1 0 2 4 1 1 3 1 0 1 b 0 2 b 1 b 0 2
1 2 4 1 2 4 1 2 4 1 3 1
+ + + +
− − −
= − + − − + − + −
− − − − − − −
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 55
( ) ( )2 3 4 3
2 3 1 2 3 1
det(A) 4 1 1 3 1 b 1 b 0 2
1 2 4 1 3 1
+ +
− −
= − − + −
− − −
[ ]det(A) 4(0) b 6b 6= − − − − .... .
35: Resolver el siguiente sistema de ecuaciones por Cramer y corroborar el
resultado mediante el proceso X = A-1b, siendo X el vector solución.
3x – 4y = -16
4x – y – z = 5
x -3y – 2z = -2
olución
det(A) 6b(b 1)= +
Entonces, 6b ( b + 1 ) ≠ 0 ⇒ b ≠ 0 ⋀ b ≠ -1
Ejercicio
– 6z
S . Ordenando matricialmente:
⎤3 4 6 x 16− − −⎡ ⎤ ⎡ ⎤ ⎡
4 1 1 y 5
1 3 2 z 2
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
El determinante general será: 35.
Aplicando Cramer:
16 4 6
5 1 1
2 3 2 70
x 2
35 35
− − −
− −
− − −
= = =
3 16 6
4 5 1
1 2 2 70
y = 2
35 35
− −
−
− − −
= = −
3 4 16
4 1 5
1 3 2 175
z 5
35 35
− −
−
− −
= = =
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 56
Aplicando X = A-1b: La matriz de cofactores será:
1 1 4 1 4 1
3 2 1 2 1 3
4 6 3 6 3 4
C
3 2 1 2 1 3
4 6 3 6 3 4
1 1 4 1 4 1
− − − −⎡ ⎤
+ − +⎢ ⎥
− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥= − + −
− − − −⎢ ⎥
⎢ ⎥
− − − −⎢ ⎥+ − +
⎢ ⎥− − − −⎣ ⎦
, lo que es igual
1 7 11
C 10 0 5
2 21 13
− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦
A)t
1 10 2
C 7 0 21 Adj(
11 5 13
− −⎡ ⎤
⎢ ⎥= − =⎢ ⎥
⎢ ⎥−⎣ ⎦
pero recordando que: X =
1
adj(A)b, entonce
det(A)
s:
1 10 2 16
1
X 7 0 21 5
35
11 5 13 2
− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
lo cual operando apropiadamente:
2
X 2
5
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
Ejercicio 36: Obtenga la det(A) si
1 1 1 1
2 0 5 0
A
3 9 2 3
4 6 5 6
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
Solución. El determinante puede resolverse por diversas formas. La forma más
sencilla es usar la segunda fila ya que tiene dos ceros y con ello los subdeterminantes
uciendo los cálculos. Así:respectivos también serán cero, red
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 57
1 1 1 1 1 1
det(A) 2 9 2 3 5 3 9 3 2( 6) 5(12) 48
6 5 6 4 6 6
= − − = − − − = −
Los determinantes de 3x3 pueden resolverse por Sarrus o por cofactores.
Ejercicio 37: Dado el siguiente modelo, donde T=impuestos y t=tasa impositiva sobre
la renta, obtenga el ingreso de equilibrio, Ye usando determinantes (Cramer).
< t < 1)
Solución
Y = C + I0 + G0
C = a + b ( Y – T ) (a > 0, 0 < b < 1)
T= d + tY (d > 0, 0
. Es un sistema de 3 ecuaciones, pero se pueden reducir a 2 variables
endógenas, entonces solo se requiere 2 ecuaciones. Si se dejan 3 ecuaciones, con
variables endógenas, Y, C y T, el resultado es el mismo. Incorporando la tercera
cuación en la segunda se tiene:
btY – bY + C = a – bd
n notación matricial:
− ⎤
e
Y – C = I0 + G0
E
0 01 1 C (I G )
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
(bt b) 1 Y (a−⎡ ⎤ ⎡ ⎤ ⎡ bd)
0 0 0 0(I G ) 1 (bd a) (I G )
Y
b bt 1 b(1 t) 1
(a bd) 1−
+ − − − +
= =
− − − −
Ejercicio 38: Determine “a” (resolver para “a”) de tal forma que el sistema no tenga
olución única, siendo:s
2 1 4 2
1 a 0 3
A
a 1 2 1
4 2 1 4
− − −⎡ ⎤
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
−⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 58
Solución. Eligiendo la columna 3 como pivote:
+
⎤
⎥
⎥
⎥⎦
et(A) = -4 [-2(2a2+ a + 3 ) ] + (-2)[-16] + [2a2 - 5a + 5]
Se requiere que det(A)=0 entonces:
Usando:
[ ]1 3 5 3 3 4 3
1 a 3 2 1 2 2 1 2
det(A) 4( 1) a 1 1 0( 1) ... ( 2)( 1) 1 a 3 ( 1)( 1) 1 a 3
4 2 4 4 2 4 a 1 1
+ +
− − − − − −⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= − − − + − + − − − − + − − − −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣
d
det (A) = 18 a2 + 3 a + 61
2
b b 4ac
2a
− ± − se tiene que: 3 4383
a
36
− ±
=
i
mer, resolver el siguiente sistema:
2x1 + 4x2 - 3x3 =12
3x1 - 5x2 + 2x3 =13
-x1 + 3x2 + 2x3 =17
olución
Ejercicio 39: Usando inversión de matrices y Cra
S . El primer paso es averiguar si el determinante es diferente de cero. De ser
cálculos.así, existirá solución única y se puede proceder con los
2 4 3
det(A) 3 5 2 76 0
1 3 2
−⎡ ⎤
⎢ ⎥= − = −⎢ ⎥
⎢ ⎥−⎣ ⎦
≠
ntonces, usando la inversa
X =
E
1
det(A)
adj(A)b = A-1b
X= A-1b
i:S
1
17 7
4
4 4
1 1 1
A 2
19 4 4
5 11
1
2 2
−
⎡
⎢
⎢
⎢= −
⎢
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦
3
⎤
⎥
⎥
⎥
⎥ entonces
17 7
4
4 4 12 133 7
1
X 2
19
1 13 1
13 76 4
4 4 19
17 114 6
5 11
1
2 2
⎤
⎥
⎡
⎢
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎥⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥− = =⎢= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES 59
Usando Cramer:
1
12 4 3
13 5 2
17 3 2 532
x 7
det(A) 76
−
−
−
= =
−
=
2
2 12 3
3 13 2
1 17 2 304
x 4
det(A) 76
−
− −
= = =
−
3
2 4 12
3 5 13
1− 3 17 456
x 6
det(A) 76
−
−
= = =
−
jercicio 40: En el siguiente sistema, encontrar:
a) La condición para que el sistema tenga solución.
b) Determine x2.
2x1 + ax2 - 3x3 =12
3x1 - ax2 2x3 = a
-x1 + 3x2 + 2x3 =17
Solución
E
+
.
a) Para que el sistema tenga solución única debe cumplirse que la det(A) 0≠
2 a 3
det(A) 3 a 2 9a 39
1 3 2
−
= − = − −
−
Si det (A) ≠ 0 ⇒ -9a -39 ≠ 0 ⇒ a ≠ -39/9. Esta es la condición.
) Para encontrar x2, bastara aplicar CRAMER:b
det(x )
x
det(A)
= 2
2
MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc
CAPITULO 2: MATRICES Y DETERMINANTES
2
2 12 3
det(x ) 3 a 2 a 317
1 17 2
−
= =
−
−
entonces
2
a 317
x
9a 39
−
=
− −
2.6 Problemas Propuestos
1. Hallar la solución del siguiente sistema:
7x1 - x2 - x3 = 0
6x1 + 3x2 - 2x3 = 7
1P1 + c2P2 = -c0
ƴ1P1 +
3. Dado el siguiente modelo, donde y t=tasa impositiva sobre la renta,
e.
C = a + b ( Y – T ) (a > 0, 0 < b < 1)
T= d + tY t < 1)
10x1 + 2x2 + x3 = 8
2. Obtenga los precios de equilibrio de:
c
ƴ2P2 = -ƴ0
T=impuestos
obtenga el ingreso de equilibrio, Y
Y = C + I0 + G0
(d > 0, 0 <
60

Más contenido relacionado

La actualidad más candente

TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSCESAR V
 
Ejercicios Resueltos de Geometría Analítica - Don Danny
Ejercicios Resueltos de Geometría Analítica - Don DannyEjercicios Resueltos de Geometría Analítica - Don Danny
Ejercicios Resueltos de Geometría Analítica - Don DannyDaniel Vliegen
 
Algebra lineal 2. Espacios vectoriales
Algebra lineal 2. Espacios vectorialesAlgebra lineal 2. Espacios vectoriales
Algebra lineal 2. Espacios vectorialesEdward Ropero
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binariasgmromano
 
Ud 2 determinantes
Ud 2 determinantesUd 2 determinantes
Ud 2 determinantesalfonnavarro
 
Demostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límitesDemostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límitesJames Smith
 
Solucionario determinantes
Solucionario determinantesSolucionario determinantes
Solucionario determinantesalfonnavarro
 
Circunferencia trigonometrica 5_e
Circunferencia trigonometrica 5_eCircunferencia trigonometrica 5_e
Circunferencia trigonometrica 5_eCarlos Llontop
 
Libro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitariaLibro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitariaRuben Espiritu Gonzales
 
Ejercicios detallados del obj 6 mat ii 178 179-
Ejercicios detallados del obj 6 mat ii  178 179-Ejercicios detallados del obj 6 mat ii  178 179-
Ejercicios detallados del obj 6 mat ii 178 179-Jonathan Mejías
 
Aplicaciones de leyes de newton
Aplicaciones de leyes de newtonAplicaciones de leyes de newton
Aplicaciones de leyes de newtonMery Melendez
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesDaniel Mg
 
Alg lineal unidad 3
Alg lineal unidad 3Alg lineal unidad 3
Alg lineal unidad 3migwer
 

La actualidad más candente (20)

Matrices+y+determinantes 1
Matrices+y+determinantes 1Matrices+y+determinantes 1
Matrices+y+determinantes 1
 
Espacios vectoriales.g.2017
Espacios vectoriales.g.2017Espacios vectoriales.g.2017
Espacios vectoriales.g.2017
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Ejercicios Resueltos de Geometría Analítica - Don Danny
Ejercicios Resueltos de Geometría Analítica - Don DannyEjercicios Resueltos de Geometría Analítica - Don Danny
Ejercicios Resueltos de Geometría Analítica - Don Danny
 
Algebra lineal 2. Espacios vectoriales
Algebra lineal 2. Espacios vectorialesAlgebra lineal 2. Espacios vectoriales
Algebra lineal 2. Espacios vectoriales
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Ejemplo de teorema de lagrange
Ejemplo de teorema de lagrangeEjemplo de teorema de lagrange
Ejemplo de teorema de lagrange
 
Ud 2 determinantes
Ud 2 determinantesUd 2 determinantes
Ud 2 determinantes
 
Demostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límitesDemostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límites
 
Solucionario determinantes
Solucionario determinantesSolucionario determinantes
Solucionario determinantes
 
Cap 2 conjuntos
Cap 2 conjuntosCap 2 conjuntos
Cap 2 conjuntos
 
Circunferencia trigonometrica 5_e
Circunferencia trigonometrica 5_eCircunferencia trigonometrica 5_e
Circunferencia trigonometrica 5_e
 
Matematica basica 02
Matematica basica 02Matematica basica 02
Matematica basica 02
 
Libro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitariaLibro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitaria
 
Ejercicios detallados del obj 6 mat ii 178 179-
Ejercicios detallados del obj 6 mat ii  178 179-Ejercicios detallados del obj 6 mat ii  178 179-
Ejercicios detallados del obj 6 mat ii 178 179-
 
Aplicaciones de leyes de newton
Aplicaciones de leyes de newtonAplicaciones de leyes de newton
Aplicaciones de leyes de newton
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferenciales
 
Alg lineal unidad 3
Alg lineal unidad 3Alg lineal unidad 3
Alg lineal unidad 3
 
Relaciones Binarias
Relaciones BinariasRelaciones Binarias
Relaciones Binarias
 

Destacado

Matemática para Ingeniería - Determinantes
Matemática para Ingeniería - DeterminantesMatemática para Ingeniería - Determinantes
Matemática para Ingeniería - Determinantes100000281929144
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matricessilesilfer
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantesjaimes11
 
90004 evaluación nacional 2012 2 logica
90004  evaluación nacional 2012   2 logica90004  evaluación nacional 2012   2 logica
90004 evaluación nacional 2012 2 logicaGerhard Sierra
 
Ejercicios cap 005
Ejercicios cap 005Ejercicios cap 005
Ejercicios cap 005Bleakness
 
Solucionario tema 2 (matrices)
Solucionario tema 2 (matrices)Solucionario tema 2 (matrices)
Solucionario tema 2 (matrices)miguelandreu1
 
Elaboracion de Planes en Agronegocios
Elaboracion de Planes en AgronegociosElaboracion de Planes en Agronegocios
Elaboracion de Planes en AgronegociosSnip Jose Herrera
 
Fundamentos de algebra matricial ccesa007
Fundamentos de algebra matricial ccesa007Fundamentos de algebra matricial ccesa007
Fundamentos de algebra matricial ccesa007Demetrio Ccesa Rayme
 
LeccióN 3. Velocidad Y Rapidez Media
LeccióN 3. Velocidad Y Rapidez MediaLeccióN 3. Velocidad Y Rapidez Media
LeccióN 3. Velocidad Y Rapidez MediaKDNA71
 
Cinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y PropuestosCinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y PropuestosESPOL
 
Ejercicios resueltos operaciones con matrices
Ejercicios resueltos operaciones con matricesEjercicios resueltos operaciones con matrices
Ejercicios resueltos operaciones con matricesalgebra
 

Destacado (20)

Matemática para Ingeniería - Determinantes
Matemática para Ingeniería - DeterminantesMatemática para Ingeniería - Determinantes
Matemática para Ingeniería - Determinantes
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matrices
 
Matriz inversa
Matriz inversaMatriz inversa
Matriz inversa
 
Unidad 2 matrices
Unidad 2 matricesUnidad 2 matrices
Unidad 2 matrices
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices
MatricesMatrices
Matrices
 
90004 evaluación nacional 2012 2 logica
90004  evaluación nacional 2012   2 logica90004  evaluación nacional 2012   2 logica
90004 evaluación nacional 2012 2 logica
 
002mankiw2
002mankiw2002mankiw2
002mankiw2
 
2 matrices
2 matrices2 matrices
2 matrices
 
Cap 2 pensar como economista
Cap 2 pensar como economistaCap 2 pensar como economista
Cap 2 pensar como economista
 
Ejercicios cap 005
Ejercicios cap 005Ejercicios cap 005
Ejercicios cap 005
 
¿Matemáticas 2.0?
¿Matemáticas 2.0?¿Matemáticas 2.0?
¿Matemáticas 2.0?
 
Solucionario tema 2 (matrices)
Solucionario tema 2 (matrices)Solucionario tema 2 (matrices)
Solucionario tema 2 (matrices)
 
Elaboracion de Planes en Agronegocios
Elaboracion de Planes en AgronegociosElaboracion de Planes en Agronegocios
Elaboracion de Planes en Agronegocios
 
Notas de clase Algebra Lineal
Notas de clase  Algebra LinealNotas de clase  Algebra Lineal
Notas de clase Algebra Lineal
 
Grupo no.131
Grupo no.131Grupo no.131
Grupo no.131
 
Fundamentos de algebra matricial ccesa007
Fundamentos de algebra matricial ccesa007Fundamentos de algebra matricial ccesa007
Fundamentos de algebra matricial ccesa007
 
LeccióN 3. Velocidad Y Rapidez Media
LeccióN 3. Velocidad Y Rapidez MediaLeccióN 3. Velocidad Y Rapidez Media
LeccióN 3. Velocidad Y Rapidez Media
 
Cinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y PropuestosCinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y Propuestos
 
Ejercicios resueltos operaciones con matrices
Ejercicios resueltos operaciones con matricesEjercicios resueltos operaciones con matrices
Ejercicios resueltos operaciones con matrices
 

Similar a Matrices y determinantes (20)

Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Mate II
Mate IIMate II
Mate II
 
Cap 01 1 matrices
Cap 01 1 matricesCap 01 1 matrices
Cap 01 1 matrices
 
PRESENTACIÓN MATRICES.pptx
PRESENTACIÓN MATRICES.pptxPRESENTACIÓN MATRICES.pptx
PRESENTACIÓN MATRICES.pptx
 
GUIA 1 MATRICES CESAR VALLEJO
GUIA 1 MATRICES CESAR VALLEJOGUIA 1 MATRICES CESAR VALLEJO
GUIA 1 MATRICES CESAR VALLEJO
 
Matrices
MatricesMatrices
Matrices
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Mod matrices y determinantes
Mod matrices y determinantesMod matrices y determinantes
Mod matrices y determinantes
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Sesión 7. matrices
Sesión 7. matricesSesión 7. matrices
Sesión 7. matrices
 
Matrices pdf
Matrices pdfMatrices pdf
Matrices pdf
 
Matrices
MatricesMatrices
Matrices
 
Fundamentos matrices y determinantes
Fundamentos matrices y determinantes     Fundamentos matrices y determinantes
Fundamentos matrices y determinantes
 
Matrices
MatricesMatrices
Matrices
 
INFORME "MATRICES"
INFORME "MATRICES"INFORME "MATRICES"
INFORME "MATRICES"
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Separata de matrices
Separata de matricesSeparata de matrices
Separata de matrices
 
Matrices y Determinantes MD1 Ccesa007.pdf
Matrices y Determinantes MD1 Ccesa007.pdfMatrices y Determinantes MD1 Ccesa007.pdf
Matrices y Determinantes MD1 Ccesa007.pdf
 
Temas de matrices y determinantes m1 ccesa007
Temas  de matrices y  determinantes  m1 ccesa007Temas  de matrices y  determinantes  m1 ccesa007
Temas de matrices y determinantes m1 ccesa007
 
matrices
matricesmatrices
matrices
 

Más de Karen Castañeda Pimentel

Más de Karen Castañeda Pimentel (11)

investigaciones didacticas de universitarios
investigaciones didacticas de universitariosinvestigaciones didacticas de universitarios
investigaciones didacticas de universitarios
 
pensamiento matematico de estudiantes universitarios de calculo y tecnologias...
pensamiento matematico de estudiantes universitarios de calculo y tecnologias...pensamiento matematico de estudiantes universitarios de calculo y tecnologias...
pensamiento matematico de estudiantes universitarios de calculo y tecnologias...
 
Circunferencia analitica
Circunferencia analiticaCircunferencia analitica
Circunferencia analitica
 
introduccion libro
introduccion libro introduccion libro
introduccion libro
 
Mate basicaaaaaaaa libro
Mate basicaaaaaaaa libroMate basicaaaaaaaa libro
Mate basicaaaaaaaa libro
 
4 matematica
4 matematica4 matematica
4 matematica
 
4 matematica
4 matematica4 matematica
4 matematica
 
BOLETÍN: DE LA ASOCIACIÓN MATEMÁTICA VENEZOLANA
BOLETÍN: DE LA ASOCIACIÓN MATEMÁTICA VENEZOLANABOLETÍN: DE LA ASOCIACIÓN MATEMÁTICA VENEZOLANA
BOLETÍN: DE LA ASOCIACIÓN MATEMÁTICA VENEZOLANA
 
ingeniería didáctica en educación matemática
ingeniería didáctica en educación matemáticaingeniería didáctica en educación matemática
ingeniería didáctica en educación matemática
 
Paper 10 aplicacion
Paper 10 aplicacionPaper 10 aplicacion
Paper 10 aplicacion
 
Aplicacion 3 enseñanza de las ciencias y la matematica localizacion revista i...
Aplicacion 3 enseñanza de las ciencias y la matematica localizacion revista i...Aplicacion 3 enseñanza de las ciencias y la matematica localizacion revista i...
Aplicacion 3 enseñanza de las ciencias y la matematica localizacion revista i...
 

Último

EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
Tarea 5-Selección de herramientas digitales-Carol Eraso.pdf
Tarea 5-Selección de herramientas digitales-Carol Eraso.pdfTarea 5-Selección de herramientas digitales-Carol Eraso.pdf
Tarea 5-Selección de herramientas digitales-Carol Eraso.pdfCarol Andrea Eraso Guerrero
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Cuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdfCuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdfBrandonsanchezdoming
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 

Último (20)

EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
Tarea 5-Selección de herramientas digitales-Carol Eraso.pdf
Tarea 5-Selección de herramientas digitales-Carol Eraso.pdfTarea 5-Selección de herramientas digitales-Carol Eraso.pdf
Tarea 5-Selección de herramientas digitales-Carol Eraso.pdf
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Cuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdfCuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdf
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 

Matrices y determinantes

  • 1. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 23 CAPITULO 2: MATRICES Y DETERMINANTES Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se usan no solo en la resolución de sistemas de ecuaciones (lineales), sino además en el cálculo numérico, en la resolución de sistemas de ecuaciones diferenciales y de derivadas parciales. Además las matrices también aparecen de forma natural en geometría, estadística, economía, informática, física, etc. El álgebra matricial puede ser aplicada a sistema de ecuaciones lineales. Sin embargo, puesto que muchas relaciones económicas pueden ser aproximadas mediante ecuaciones lineales y otras pueden ser convertidas a relaciones lineales, esta limitación puede ser en parte evitada. 2.1 Matriz: definición Se llama matriz de orden m×n a todo conjunto rectangular de elementos ija dispues en m líneas horizontales (filas) y n verticales (columnas) de la forma: tos Gráfico 2-1 A = 11 12 13 1n 21 22 23 2n m1 m2 m3 mn a a a ... a a a a ... a . . . ... . . . . ... . a a a ... a ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ Abreviadamente suele expresarse en la forma A =[aij], con i =1, 2,..., m; j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila (i) y el segundo la columna (j). Por ejemplo el elemento a25 será el elemento de la fila 2 y columna 5. Filas de la matriz A Columnas de la matriz A
  • 2. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 24 Matrices Iguales Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales. Sean las matrices A y B, donde: A(2x2)= 9 a 3 2 ⎡ ⎤ ⎢ ⎥−⎣ ⎦ B(2x2)= 9 a 3 2 ⎡ ⎤ ⎢ ⎥−⎣ ⎦ Entonces A = B Análogamente C(2x3) = 3 2 0 4 z 2 −⎡ ⎤ ⎢ ⎣ ⎦ ⎥ D(2x3) = 3 2 0 4 z 2 −⎡ ⎤ ⎢ ⎥ ⎣ ⎦ Entonces, C = D (Note que C y D no necesitan tener una forma cuadrada o simétrica). 2.2 Algunos tipos de matrices Vamos a describir algunos tipos de matrices que aparecen con frecuencia debido a su utilidad, y de los que es conveniente recordar su nombre. 2.2.1 Según la forma Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden m x 1. Ejemplo: ( )3x1 3 A 4 a ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ Matriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden 1x n. Es decir, A= (a11 a12 ... a1n). Por ejemplo: ( ) [ ]1x3A 1 2 3= − Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no n x n (aunque es lo mismo). Los elementos aij con i = j, o sea aij forman la llamada diagonal principal de la matriz cuadrada, y los elementos aij con i + j = n +1 la diagonal secundaria.
  • 3. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 25 En la matriz ( )3x3 1 3 0 A 2 1 4 3 7 9 ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎣ ⎦ La diagonal principal está formada por [ 1 1 9 ] y la diagonal secundaria por [ 0 1 3 ] Matriz traspuesta: Dada una matriz A, su matriz se representa por At, la cual se obtiene cambiando filas por columnas. La primera fila de A es la primera columna de At, la segunda fila de A es la segunda columna de At y así sucesivamente. De la definición se deduce que si A es de orden m x n, entonces At es de orden n x m. Ejemplo: ( )2x3 3 8 9 A 1 0 4 ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ entonces ( ) t 3x2 3 1 A 8 0 9 4 ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir, si aj= aj Ejemplo: 2 1 3 A 1 0 2 3 2 7 ⎡ ⎤ ⎢ ⎥ = −⎢ ⎥ ⎢ ⎥−⎣ ⎦ (Comprobar que A = At ) Matriz antisimétrica: Una matriz cuadrada se dice que es antisimétrica si A = –At, es decir aij= -aji. Ejemplo: 0 1 3 A 1 0 2 3 2 0 ⎡ ⎤ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥−⎣ ⎦ (comprobar que A = –At) 2.2.2 Según los elementos Matriz nula es aquella que todos sus elementos son 0 y se representa por 0. Ejemplo: 0 0 0 0 ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ 0 0 0 0 0 0 0 ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦
  • 4. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 26 Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos. 2 0 0 A 0 3 0 0 0 4 ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎣ ⎦ Matriz escalar: Es una matriz diagonal (y en consecuencia, una matriz cuadrada) con todos los elementos de la diagonal iguales. Ejemplo: A = 3 0 0 0 3 0 0 0 3 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ = 3 1 0 0 0 1 0 0 0 1 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ = 3 I Matriz unidad o identidad: Es una matriz escalar con los elementos de la diagonal principal iguales a 1. Se denota por el símbolo I o In. Ejemplo: 2 1 0 I 0 1 ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ 3 1 0 0 I 0 1 0 0 0 1 ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos: Triangular Superior: Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir, aj =0, i < j. Triangular Inferior: Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir, aj = 0, j < i. Ejemplos: Triangular Inferior Triangular Superior ( )4x4 3 0 0 0 4 3 0 0 A 0 2 8 0 1 6 y 1 ⎡ ⎤ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥− ⎢ ⎥ ⎣ ⎦ ( )4x4 3 0 3 1 0 3 9 z A 0 0 8 0 0 0 0 1 ⎡ ⎤ ⎢ ⎥− − ⎢ ⎥= ⎢ ⎥− ⎢ ⎥ ⎣ ⎦
  • 5. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 27 2.3 Operaciones con matrices 2.3.1 Trasposición Dada una matriz de orden mxn, A = [ aij ], se llama matriz traspuesta de A y se e se obtiene cambiando las filas por las columnas (o iceversa) en la matriz A. Es decir: ⎥⎦ Propiedades de la trasposición de matrices representa por At, a la matriz qu v 11 1n 11 m1 t m1 a a a a A A a ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥ ⎢ ⎥ ⎢⎣ … … mn 1n mna a a⎥ ⎢⎦ ⎣ 1. Dada una matriz A, siempre existe su traspuesta y además es única. 2. (At)t = A. 2.3.2 Suma y diferencia ra matriz ma dimensión que los sumandos y con término genérico sij = aij + bij. or tanto, para poder sumar dos matrices estas deben tener la misma dimensión. La B se denota por A+B. La suma de dos matrices A = [ aij ], B = [ bij ] de la misma dimensión, es ot S = [ sij ] de la mis P suma de las matrices A y Ejemplo: 2 f A 3 4 −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ 4 d B 3 1 ⎡ ⎤ = ⎢ ⎥−⎣ ⎦ Entonces A+B = ( ) ( ) ( ) ( ) 2 4 f d 3 3 4 1 − + +⎡ ⎤ ⎢ ⎥ − +⎣ ⎦ = 2 f d 0 5 +⎡ ⎤ ⎢ ⎥ ⎣ ⎦ Propiedades de la suma de matrices (B + C) = (A + B) + iedad asociativa) 2. A + B = B + A (propiedad conmutativa) 3. A + 0 = A (0 es la matriz nula) cambiando de signo todos los elementos de A, + (–A) = 0. enta y se define como: A – B. 1. A + C (prop 4. La matriz –A, que se obtiene recibe el nombre de matriz opuesta de A, ya que A 5. La diferencia de matrices A y B se repres
  • 6. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 28 2.3.3 Producto de una matriz por un escalar (número) B = [ bij ] de la ando aij El producto de una matriz A = [ aij ] por un número real k es otra matriz misma dimensión que A y tal que cada elemento bij de B se obtiene multiplic por k, es decir, bij = kaij. Ejemplo: k = 2 2 g 3 A 4 5 1 − −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ entonces kA = 2 = 2 g 3 4 5 1 − −⎡ ⎤ ⎢ ⎥ ⎣ ⎦ ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 g 2 3 2 4 2 5 2 1 − −⎡ ⎤ ⎢ ⎥ ⎣ ⎦ = El producto de la matriz A por el número real k se designa por k·A. Al número real k se mbién e y a este producto, producto de escalares por matrices. ropiedades del producto de una matriz por un escalar 4 2g 6 8 10 2 − −⎡ ⎤ ⎢ ⎥ ⎣ ⎦ le llama ta scalar, P 2. (k + h)A = k A + h A (propiedad distributiva 2ª) . 1·A = A (elemento unidad) 1. k (A + B) = k A + k B (propiedad distributiva 1ª) 3. k (h A) = (k h) A (propiedad asociativa mixta) 4 Propiedades simplificativas 1. A + C = B + C ⇒ A = B. 2. k A = k B ⇒ A = B si k es distinto de 0. es distinto de 0. matriz P cuyos elementos se obtienen s de B. De manera más formal, los lementos de P son de la forma: 3. k A = h A ⇒ h = k si A 2.3.4 Producto de matrices Dadas dos matrices A y B, su producto es otra multiplicando las filas de A por las columna e Pij = ∑ aij . bij
  • 7. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 29 Se requiere que el número de colum coincidir con el número de filas de para que esta multiplicación sea posible. Así, si A tiene dimensión mxn y B En otras palabras, el elemento que se encuentra n la fila i y la columna j de la matriz C=AB se obtiene multiplicando los elementos de la fila i de A por la columna j de B y iendo: nas de A debe B dimensión nxp, la matriz P será de orden: mxp. Es decir: n ij ik kjP a .b= ∑k 1− e sumando los resultados. Ejercicio 14: Obtener C = AB S 3 2 1 4 A 2 5 3 2 −⎡ ⎤ = ⎢ ⎥−⎣ ⎦ 0 4 1 1 2 1 B 2 0 2 3 2 1 −⎡ ⎤ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Solución. Primero, se comprueba que se pueda realizar el producto AB. Puesto que el úmero de columnas de A es igual al número de filas de B, entonces la operación es C= n factible. La matriz resultante tendrá la dimensión 2x3, es decir, 2 filas y 3 columnas. 3 2 1 4 2 5 3 2 −⎡ ⎤ ⎢ ⎥−⎣ ⎦ 0 4 1− 1 2 1 2 0 2 3 2 1 ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ = 11 12 13 21 22 23 c c c c c c ⎡ ⎤ ⎢ ⎥ ⎣ ⎦ Luego, el elemento de la fila 1 y columna 1 de AB (es decir, ) proviene de la umatoria del producto de un elemento de la fila 1 de A por otro elemento de la El elemento de fila 1 y la columna 2 de AB (o lo cual es igual, C) erá igual a la umatoria del producto de un elemento de la fila 1 de A con otro elemento de la columna 2 de B: 11c s columna 1 de B, de la multiplicación: 11 11 11 12c a .b a .b= + 21 13 31 14 41a b a b+ + ( )11c 3 0 2 1 1 2 4 3 0 2 2 12 16= − ⋅ + ⋅ + ⋅ + ⋅ = + + + = la s s
  • 8. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 30 12 11 12 12 22 13 32 14 42c a .b a .b a .b a b= + + + ( ) ( ) ( )12c 3 4 2 2 1 0 4 2 12 4 0 8 16= − ⋅ − + ⋅ − + ⋅ + ⋅ = − + + = El elemento de la lafila 1 y la columna 3 de C proviene de sumatoria del producto de fila 1 de A con otro elemento de la columna 3 de B: se obtiene: un elemento de la 13 11 13 12 23 13 33 14 43c a .b a .b a .b a .b= + + + ( )13c 3 1 2 1 1 2 4 1 3 2 2 4 5= − ⋅ + ⋅ + ⋅ + ⋅ = − + + + = Así, sucesivamente 16 16 5 C 5 22 11 ⎡ ⎤ = ⎢ ⎥−⎣ ⎦ Propiedades del producto de matrices 1. A·(B·C) = (A·B)·C ral no es conmutativo (AB no necesariamente es igual a BA). cuadrada de orden n se tiene A·In = In·A = A. In. Si existe dicha matriz B, se dice que es la matriz inversa de 2. El producto de matrices en gene 3. Si A es una matriz 4. Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = A y se representa por A–1. 5. El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C Consecuencias de las propiedades 1. Si A·B= 0 no implica que A=0 ó B=0. C. . En general (A+B)2=A2 + B2 +2AB, ya que A·B ≠ B·A. e A·B ≠ B·A. administradores (A), guiente: 2. Si A·B=A·C no implica que B = 3 4. En general (A+B)·(A–B) = A2–B2, ya qu Ejemplo: Una compañía tiene 4 fábricas, cada una emplea supervisores (S) y trabajadores calificados (T) en la forma si
  • 9. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 31 Tipo de empleado Fábrica 1 Fábrica 2 Fábrica 3 Fábrica 4 Administradores (A) 1 2 1 1 Supervisores (S) 4 6 3 4 Trabajadores (T) 80 96 67 75 Si los anan S/. 35 A) a la semana, los supervisores S (PB) y los tr (PT). ¿Cuál es la nómina de cada fábrica? administradores g 0 (P /. 275 abajadores S/. 200 Solución. Lo que se pide es el monto pagado por cada fábrica el cual es igual al número de cada empleado por su respectivo ingreso salarial. En general, será: = PAAi + PSSi + PTTi , donde Ii es el monto de la fabrica i. Por ejemplo, el monto de la s el cálculo e complicaría. Existe otra forma para calcular directamente los montos de todas las ⎢ ⎥⎣ ⎦ Si se multiplica ambas matrices (en ese orden) debería obtenerse lo solicitado. Sin embargo, esta multiplicación matricial no esta definida. Note que la primera matriz es e orden 3x4 mientras la segunda es 3x1 (las cifras de negro debería ser iguales). La ⎥ ⎥ ⎥ ⎦ Ii fábrica 1 será: I1 = PAA1 + PSS1 + PTT1 = 350*1 + 4*275 + 80*200 = 17450. Con este sencillo cálculo puede obtenerse fácilmente los 3 montos restantes. Sin embargo, si hubiera más tipos de empleados o un mayor número de fábrica s fábricas. El cuadro anterior equivale a cantidades de especialistas de cada fábrica. Entonces, si estas cantidades son multiplicadas por su salario respectivo debería entonces obtenerse la nomina de cada fábrica. Llevando esto a matrices: 1 2 1 1 350 4 6 3 4 275 ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 80 96 67 75 200⎢ ⎥⎣ ⎦ d solución es transponer la primera matriz a fin de obtener una matriz de orden 4x3 y así, poderla multiplicar por la segunda (3x1), con lo cual es posible multiplicar ambas matrices y la matriz resultante sería del orden 4x1, la cual brindaría los 4 montos solicitados. 1 4 80 17450 350 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥2 6 96 21550 275 1 3 67 14575 200 1 4 75 16450 ⎢ ⎥⎢ ⎥ ⎢=⎢ ⎥⎢ ⎥ ⎢ ⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣
  • 10. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 32 Así, los montos de la fábrica 1, 2, 3 y 4 son: S/. 17450, S/. 21550, S/. 14575, y S/. 16450, respectivamente. 2.3.5 Inversibilidad de singular. versión de matrices Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre Propiedades de la in nica 2. A-1A=A·A-1=I . (A-1)-1=A 1. La matriz inversa, si existe, es ú 3. (A·B) -1=B-1A-1 4 5. (kA)-1=(1/k·A)-1 6. (At)–1=(A-1)t Observación Se puede encontrar matrices que cumplen A·B = I, pero que B·A I, en tal caso, A es la inversa de B "por la izquierda" o que B es la inversa de A or la derecha". Hay varios métodos para calcular la matriz inversa de una matriz ada la matriz buscar una matriz que cumpla A·A-1 = I, es decir: ≠ podemos decir que "p dada: • Directamente: D 2 1 A 1 1 −⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ 2 1 a b 1 0 1 1 c d 0 1 −⎡ ⎤ ⎡ ⎤ ⎡ =⎢ ⎥ ⎢ ⎥ ⎢ ⎤ ⎥ ara ello planteamos el sistema de ecuaciones: 2a – c = 1 …(1) 2b – d = 0 …(2) b + d = 1 …(4) ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ P a + c = 0 …(3)
  • 11. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 33 De la ecuación (3) despejar a en fu ) y luego reemplazar en (1) y así encontrar el valor de a y c. nción de c (a = -c 2 ( -c ) – c = 1 → c = − 1 y luego de reemplazar en (1) obtenemos a = 3 1 3 De la e b e en (2) y así encontrar el valor de b y d. cuación (4) despejar n función de d ( b = 1 – d) y luego reemplazar 2 ( 1 - d ) – d = 0 → d = 2 3 y luego reemplazando en (2) obtenemos b = 1 3 1 3 3 A − 1 1 1 2 3 3 ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ La matriz que se ha calculado realmente sería la inversa por la "derecha", pero es fácil comprobar que también cumple A-1·A = I, con lo cual es realmente la inversa de A. triz, y su cálculo epende del orden de la matriz cuadrada en análisis. rden 1 x 1: Es fácil comprobar que aplicando la definición: A = a11 ⇒ det (A) = a11. rden 2 x 2: se toma el producto de los dos elementos de la diagonal principal y se • Usando determinantes (lo cual se verá mas adelante) • Por el método de Gauss-Jordan (el cual no será tratado aquí) 2.4 Determinantes Un determinante es un número real o escalar asociado a una ma d 2.4.1 Cálculo de determinantes de órdenes 1, 2 y 3 O O substrae del producto de los dos elementos de la diagonal secundaria. 11 12 11 12 11 22 12 21 21 22 21 22 a a a a A det(A) a a a a a a a a ⎡ ⎤ = ⇒ = = −⎢ ⎥ ⎣ ⎦
  • 12. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 34 Orden 3 x 3: Regla de Sarros: solo para matrices de orden 3x3 se suele ar la Regla de Sarrus, que consiste en un esquema gráfico para los productos positivos y otro para los negativos: us Sea la matriz 11 12 13a a a A a21 22 23 31 32 33 a a a a a ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ , la multiplicación de diagonales es: o lo que es igual: Ejercicio 15: Usando Sarros, obtener el determinante de la matriz ( ) a a a a a a det A ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ 11 12 13 11 12 13 21 22 23 21 22 23 31 32 33 31 32 33 11 12 13 11 12 13 21 22 23 21 22 23 a a a a a a a a a a a a a a a a a a a a a a a a ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ 11 22 33 12 23 31 13 21 32 13 22 31 12 21 11 23 32et(A) (a a a a a a a a a ) (a a a a a a a a a )= + + − + +33d 3 1 4 z 6 2 − B 2 2 0 ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥−⎣ ⎦ Solución. Primero, se atriz/determinante, en la cual las dos primeras filas se repiten en la parte inf matriz, grafica la m erior de tal Caso 1 (por filas) 3 1 4− 2 2 0 6 2 det(B) 3 1 4 2 2 0 z ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−⎣ ⎦= − −
  • 13. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 35 Luego, se procede a obtener los productos positivos (diagonales del medio hacia abajo). En este caso, por tratarse de una matriz 3x3, serán 3 productos: ((-3).2.2) + (2.6.4) + ((-z) .1.0) = 60. Luego, los tres productos negativos: Así, el determinante será Sarrus por columnas. Caso 2 (por columnas) → -[((-z).(-2).4) + ((-3).6.0) + (2.1.2)] = -4 – 8z ∣ A ∣ = 60 - 4 - 8z = 56 – 8z Otra forma es utilizando el método de 3 1−⎡ 4 3 1 det(B) 2 2 0 2 2 z 6 2 z 6 −⎤ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ 2.4.2 Cálculo de un determinante de orden nxn: desarrollo por menores Sea u comona matriz de orden 3 x 3 11 12 13 ij 21 22 23 31 32 33 a a a A a a a a a a a ⎡ ⎤ ⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ Contiene otras submatrices tales como: (matriz obtenida al eliminar la primera fila y la primera columna) iminar la segunda fila y la primera columna) ⎤ ⎥ 22 23 11 32 33 a a A a a ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ 12 13a a⎡ ⎤ 21 32 33 A a a = ⎢ ⎥ ⎣ ⎦ (matriz obtenida al el 12 13 31 22 23 a a A a a ⎡ = ⎢ ⎣ ⎦ (matriz obtenida al eliminar la tercera fila y la primera columna)
  • 14. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 36 Ahora bien, se define el determinante de la matriz A mediante la formula: 22 23 12 13 12 13 11 21 31 a a a a a a (A) a a a= − + 32 33 32 33 22 23 det a a a a a a det (A) = a11det(A11) – a21det(A21) + a31det(A31) (2.1) En realidad, la expresión (2.1) tiene múltiples generalizaciones por lo que es necesario rmalizarlas. Finalmente, para el caso de una matriz (cuadrada) de orden n x n el : o lo que es igual fo determinante será n i j+ ij ij j 1 det(A) ( 1) (a ) M = = −∑ baja el orden del determinante que se pretende calcular en una nidad. Para evitar el cálculo de muchos determinantes conviene elegir la fila o columna con mayor número de ceros. Ejercicio16: Obtener el determinante de la matriz B. z 6 2 (2.3) Nota: Esta regla re u 3 1 4 B 2 2 0 −⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ oluciónS . Calcular la matriz A por medio de menores. 2 0 1 1 4 det(A) 3 2 z 6 2 6 2 2 0 4− = − − − − det (A) = 12 – 4 +48 -8z = 56 -8z
  • 15. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 37 Ejercicio 17: Sea la matriz A, obtener su determinante. 2 4 3 A 3 5 2 1 3 2 −⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥−⎣ ⎦ oluciónS . En teoría el determinante resultará de usar alguna fila o columna al azar, en este caso se usa la 3era fila (-1, 3, 2). Luego se forman los determinantes de las submatrices correspondientes: ( ) ( ) ( )3 1 3 2 3 34 3 3 2 4 A 1 1 3 1 2 1 5 2 3 2 3 5 + + +2− − = − − + − + − − − ( ) ( ) ( )A 8 15 3 4 9 2 10 12= − − − + + − − A 76= − - Matriz de cofactores Una matriz de cofactores es una matriz donde cada elemento es un determinante, en la cual cada elemento es reemplazado por su cofactor ∣Cij∣. Una matriz adjunta es ta de una matriz de cofactores. Para el caso de una matriz: ija la transpues 11 12 13 21 22 23 31 32 33C C C C C C C C C C ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ y su adjunta será, 11 21 31C C C t 12 22 32 13 23 33 adj(A) C C C C C C C ⎡ ⎤ ⎢ ⎥ = = ⎢ ⎥ ⎢ ⎥⎣ ⎦ Cofactor de un componente l cofactor de un componente aij denotado por Cij esta definido por: ∣Cij∣ = (-1)i+j ∣Mij∣ (2.2) n otras palabras, el cofactor del componente Cij es el menor con signo prefijado so de una matriz 3 x 3 E E ijM (-1)i+j. Por ejemplo, para el ca
  • 16. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 38 21 22 13 13 31a 32 a a C M a = = ces el menor del elemento Cij se enota por y se define como el determinante de la submatriz (n-1)(n-1) de A la cual se forma suprimiendo todos los elementos de la fila y todos los elementos de la columna j. Para la matriz del ejercicio 16, los menores que se pueden formar son: Ejercicio 18: i Menor de un componente Si A es una matriz cuadrada de orden n x n, enton d ijM i Sea la matr z A, hallar su matriz de cofactores: 2 3 1 A 4 1 2 5 3 4 ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ Solución. Formar la matriz de menores para la matriz C (por ejemplo el menor C11 se efine como la determinante de la submatriz A que se forma suprimiendo todos los elementos de la fila 1 y de la columna 1) y resolver cada menor: d 1 2 4 2 4 1 3 4 5 4 5 3 2 6 7 3 1 2 1 2 3 C 9 3 9 3 4 5 4 5 3 5 0 10 3 1 2 1 2 3 1 2 4 2 4 1 ⎡ ⎤ + − +⎢ ⎥ ⎢ ⎥ − −⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= − + − = −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥+ − + ⎢⎣ ⎥⎦ La matriz adjunta adj(A) será la transpuesta de C: 2 0 2 0 2 2 2 0 2 0 2 2 − − − − 6 2 z 2 z 6 1 4 3 4 3 1 C 6 2 z 2 z 6 1 4 3 4 3 1 − − − − = − − −
  • 17. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 39 t 2 9 5 adj(A) C 6 3 0 7 9 10 − −⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥−⎣ ⎦ Esta matriz será vista con mayor detalle en el punto 2.4.4 .4.3 Propiedades básicas de los determinantes ropiedad 1. Si se permuta dos líneas paralelas de una matriz cuadrada, su determinante cambia de signo con respecto al inicial: 2 P a b c d = ad - bc, pero con intercambiando las dos filas: c d = cb – ad = - ( ad –bc ) a b una matriz cuadrada tiene una línea con todos los elementos nulos, su determinante ropiedad 2. La multiplicación de una fila (columna) por un escalar cambia el valor del determinante k veces Si vale cero. P . ( ) ka kb a b kad kbc k ad bc k c d c d = − = − = ropiedad 3. La suma (resta) de un múltiplo de una fila a otra fila dejará el valor del . Si en el determinante anterior, se suma k veces la fila superior a su egunda fila, se obtiene el determinante original. P determinante inalterado. Esto también es valido en el caso de columnas. Por ejemplo s ( ) ( ) a b a b a d kb b c ka ad bc c ka d kb c d = + − + = − = + +
  • 18. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 40 Propiedad 4. El intercambio de filas y columnas no afecta el valor del determinante. En otras palabras, el determinante de una matriz A tiene el mismo valor que el de su transpuesta: ∣A∣ = ∣At∣.Por ejemplo. 4 3 4 5 9 5 6 3 6 = = a b a c ad bc c d b d = = − 2.4.4 Aplicaciones de los elementos de una fila por sus djuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos d otra fila diferente es 0 (esto sería el desarro de un determinante que tiene dos filas iguales por los adjuntos de una de ellas). Cálculo de la matriz inversa Dada una matriz cuadrada A, su inversa será igual a la expresión 2.4, la cual es fácil probarla ya que la suma de los productos a e llo 1 1 A adj(A) det(A) − = (2.4) Solución de sistemas de ecuaciones lineales (s.e.l) Un sistema de ecuaciones lineales (s.e.l.) es un conjunto de m ecuaciones con n incógnitas de la forma: 11 1 12 2 1n n 1a x a x ... a x b+ + + = ⎫ 21 1 22 2 2n n 2 m1 1 m2 2 mn n m a x a x ... a x b a x a x ... a x b ⎪+ + + = ⎪ ⎬ ⎪ ⎪+ + + = ⎭ Donde aj son los coeficientes, xi las incógnitas y bi son los términos independientes. El ⎞ ⎛ ⎞ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎠ ⎝ ⎠ anterior sistema se puede expresar en forma matricial, usando el producto de matrices de la forma: 11 12 1n 1 1 21 22 2n 2 2 m1 m2 mn n m a a a x b a a a x b a a a x b ⎛ ⎞⎛ ⎜ ⎟⎜ ⎜ ⎟⎜ = ⎜ ⎟⎜ ⎜ ⎟⎜ ⎝ ⎠⎝
  • 19. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 41 A X = b De modo simplificado suele escribirse mxn nx1 mx1A X b= , donde la matriz A se enomina matriz de coeficientes. También se usará la matriz ampliada, que se representa por A', que es la matriz de coeficientes a la cual le hemos añadido la columna del término independiente: .l. que cumple estas condiciones se le llama un istema de Cramer). El valor de cada incógnita xi se obtiene de un cociente cuyo denominador es el determinante de la matriz de coeficientes, y cuyo numerador es el determinante que se obtiene al cambiar la columna i del determinante anterior por la columna de los términos independientes: d 11 12 1n 1 21 22 2n 2' m1 m2 mn mn a a a b a a a b A a a a a ⎛ ⎞ ⎜ ⎟ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ … 2..4.1 Aplicando la Regla de Cramer Es aplicable si el sistema tiene igual número de ecuaciones que de incógnitas (n=m) y es compatible determinado (a un s.e s i i A x A = (2.5) + 2x3 = 17 Solución Ejercicio 19: Obtener el valor de las incógnitas del siguiente sistema de ecuaciones lineales: 2x1 + 4x2 - 3x3 = 12 3x1 - 5x2 + 2x3 = 13 -x1 + 3x2 . El primer paso es ordenar el sistema de ecuaciones: cada columna corresponder a una sola variable y todas las constantes deben pasar al lado derecho de igualdad. Una vez ordenado el sistema, se procede a calcular el determinante de debe la la matriz principal o matriz de coeficientes (A):
  • 20. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 42 − = − − 2 4 3 A 3 5 2 = 2( -10 – 6 ) – 4 ( 6 + 2 ) – 3 ( 9 - 5 ) = -76 olumna de constantes. Para las tres riables, los determinantes de tales matrices son: 1 3 2 Paso seguido, se obtienen las matrices especiales formadas del reemplazo de la columna de coeficientes xi con el vector c va − = −1 12 4 3 A 13 5 2 17 3 2 = 12( -10 – 6 ) – 4 ( 26 - 34 ) – 3 ( 39 + 85 ) = -532 − = − 2 2 12 3 A 3 13 2 1 17 2 = 2( 26 – 34 ) – 12 ( 6 + 2 ) – 3 ( 51 + 13 ) = -304 = − − 3 2 4 12 A 3 5 13 1 3 17 = -248 -256 -48 = -456 Una vez obtenidos los determinantes, se procede fácilmente a obtener el valor de las s:incógnita 1 1 A 372 x 7 A 76 − = = = − 2 2 A 304 x 4 − A 76 = = = − 3 3 A 456 x 6 A 76 − = = = − ..4.2 Inversibilidad mediante la matriz de cofactores2 Si AX b= , entonces X será equivalente a: A-1.(A.X)=A-1(b) X = A-1(b) (2.6) Pero, conforme a (2.4), A-1 = 1 det(A) [adj(A)]. Entonces X también será igual a: X= 1 det(A) [adj(A)]b (2.7)
  • 21. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 43 Por ello es necesario calcular no solo el determinante de A, sino la transpuesta de su matriz le si el sistema tiene igual número de ecuaciones que de incógnitas (n=m). En el ejercicio anterior será: matriz de cofactores (llamada adjunta). Esta forma de solución es aplicab 5 2 3 2 3 5 3 2 1 2 1 3 1 6 8 4 4 3 2 3 2 4 C 1 7 1 1 0 3 2 1 2 1 3 7 1 3 2 2 4 3 2 3 2 4 5 2 3 2 3 5 − −⎡ ⎤ + − +⎢ ⎥ − −⎢ ⎥ − −⎡ ⎤⎢ ⎥− − ⎢ ⎥⎢ ⎥= − + − = − −⎢ ⎥− −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎢ ⎥ − −⎢ ⎥+ − + ⎢ ⎥− −⎣ ⎦ hora la matriz adjunta es, adj (A) = Ct A = ⎡ ⎤− − − ⎢ ⎥ − −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ 16 17 7 8 1 13 4 10 22 s conforme a (2.4), -1 Ordenando los resultado A = ⎡ ⎤− − − ⎢ ⎥ − − −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ 16 17 7 1 8 1 13 4 10 22 , 76 Finalmente, poniendo los resultados según (2.6) 1 2 3 192 221 119 16 17 7 7676 76 7 3 6 12 7 x 96 13 2218 11X 13 4 x76 76 76 76 17 6 x104 22 48 130 37476 76 76 76 + +⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦− − + +⎣ ⎦ ⎢ ⎥ ⎦ Entonces, los valores del vector X serán: 7 ,4 y 6. Se debe tener en cuenta antes de realizar cualquier cálculo que la determinante de A deba ser diferente de cero para así garantizar una solución al problema, en so que la determinante de una matriz resultará ser cero podría deberse a que alguna de las ecuaciones del sistema podrían ser múltiplos de uno de ellos por lo que no podríamos lución ya que hay solo n-1 ecuaciones para n incógnitas. ⎣ ca hallar la so
  • 22. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 44 2.4.5 El Jacobiano Es un determinante especial que sirve para testear la dependencia funcional, tanto lineal como no lineal. Un determinante jacobiano esta compuesto por todas las primeras derivadas parciales. Por ejemplo, dadas las siguientes funciones, y1 = f1 ( x1, x2… xn) y2 = f2 ( x1, x2… xn) yn = f3 ( x1, x2… xn) El (determinante) Jacobiano será igual a: 1 1 1 2 n 2 2 1 2 1 2 n 1 2 n n n 1 2 n y x y yn x x x x , x y y y x x x ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ Note que los elementos de cada fila son las primeras derivadas parciales de una función yi con respecto a cada una de las variables independientes (x1, x2, x3), mientras que los elementos de cada columna son las primeras de s parciales de cada una de las funciones y1, y2, y3 respecto a una de las variables independientes, . Si 1 2y , y , J ∂ ∂ ∂ = = 3, x∂ y y∂ ∂ x x y y ∂ ∂ ∂ ∂ rivada jx J 0= , las ecuaciones son funcionalmente dependientes. Caso contrario (a), son independientes. Ejemplo : Usar el Jacobiano para testear la dependencia funcional de: y1 = 5x1 + 3x2 y2 = 25x1 2 + 30 x1x2 + 9x2 2 Solución. Primero, se toma las derivadas parciales de primer orden: 1y 5 ∂ = 1x∂ 1y 3 ∂ = 2x∂ 2 1 2 y 50x 30x 1x ∂ = + ∂ 2y 1 2 2 30x 18x x ∂ = + ∂
  • 23. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 45 Luego se plantea el Jacobiano, 1 2 1 250x 30x 30x 18x+ + ∣J∣ = 5 ( 30x1 + 18 x2)- 3 (50x1 + 30x2) = 0 5 3 J = Así, puesto que J 0= , existe dependencia funcional entre ambas ecuaciones. Esto s fácil de corroborar ya que: (5x1 + 3x2)2 = 25x1 2 + 30 x1x2 + 9x2 2. 2.5 Problemas Resueltos Ejercicio 20: Sean ⎥ ⎦ e las matrices: x 2 1 1 0 4 1 2a −⎡ ⎤ ⎢ ⎥ ⎢ ⎥= 1 1 1 0 1 0 A 1 x 3x 0 2 ⎢ ⎥− − 0 1 1 ⎢ −⎣ 1 0 B 2 1 1 1 1 0 1 0 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ − − − = y. Si C = ( 2AB)t, obtenga la suma S = c21 + c32 + c33 Solución. Multiplicar la matriz A y B y luego por el escalar 2. c21 = 2x – 2, c32 = 4a +10, c33 = 4x - 2 Entonces S = 6x + 4a + 6 2 2x 10 2x 2 2x 4 2 4a 4 2 4a 10 2 2AB 14x 2 6x 2 4x 2 6x 2 2 4 − − +⎡ ⎤ ⎢ ⎥− − + − ⎢ ⎥= ⎢ ⎥− − − − ⎢ ⎥ −⎣ ⎦ Entonces, 2 t 2x 10 4a 4 14x 2 2 2x 2 2 6x 2 2 (2AB) 2x 4 4a 10 4x 2 4 2 2 6x − − − − −⎡ ⎤ ⎢ ⎥− − ⎢ ⎥= ⎢ ⎥+ + − ⎢ ⎥ − − −⎣ ⎦
  • 24. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 46 Ejercicio 21: Se tienen las siguientes matrices: 2a 3b A 2 b 5 8 ⎢ ⎥= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ −⎡ ⎤ 2 4 2 6 B 1 b 5 1 − −⎡ ⎤ = ⎢ ⎥− −⎣ ⎦ 3 4 C 6a 2 ⎡ ⎤ ⎢ ⎥− ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ −⎣ ⎦ Obtenga: ) D = ABC y ¿como cambia D en relación a la pregunta a? a b) si a = 0, Solución. o multiplicamos las matrices A(3x2) y B(2x4) por que cumplen con las imensiones, resultando la matriz AB(2x4) y luego multiplicarlo con la matiz C(4x1). a) Primer d 2 2 4a 3b 4a 15b 12a 3b8a 3b AB 4 b 4 5b b 12b 8 18 8b 20 50 38 ⎢ ⎥= − − −−⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ − − − − +⎡ ⎤+ b) Simplemente, se reemplaza el valor 0 de a en la matriz resultante D, 2 24a 2a(45b 34) 3b(4b 5) ABxC D 6a(4 5b) 4b 5b 68 300a 2(16b 105) − − + − +⎡ ⎤ ⎢ ⎥ = = − − − +⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ 2 2 3b(4b 5)− + D 4b 5b 68 2(16b 105) ⎡ ⎤ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥− +⎣ ⎦ Ejercicio 22: Dada la matriz H y H-1 = D, obtenga “ ” sabiendo que d22=1a 3a 1 a− − H 1 4 1 2 3 1 ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦
  • 25. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 47 Solución. Hallar la inversa de la matriz H 1 1 H D− 1 3a 1 4a 1 8a 1 8a 1 8a 1 5a 4a 8a 1 8a 1 8a 1 5 2 9a 1 12a 8a 1 8a 1 8a 1 + +⎡ ⎤ − − −⎢ ⎥+ + + ⎢ ⎥ ⎢ ⎥= = − ⎢ ⎥++ + ⎢ ⎥− − ⎢ ⎥ + + +⎣ ⎦ Por condición: 22 5a d 1 8a 1 = = + entonces, 1 a 3 = − Ejercicio 23: Una tienda vende 1000 hamburguers, 600 chessburguers, y 1200 milks en una semana. El precio de la hamb centavos (c), una chessburguer 60 c, y el milk 50 c. El cost de vender una hamburguer es 38c, una chessburguer es 42c un milk es 32c. Encuentre el ingreso, costo y beneficio semanal de la firma. urguer es 45 o y Definiendo y ordenando: 1000⎡ ⎤ 0.45 Q 600⎢ ⎥= ⎢ ⎥ 1200⎢ ⎥⎣ ⎦ P 0.60 0.50 ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ 0.38⎡ ⎤ C 0.42 0.32 ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ El ingreso total será: PQ, pero esta operación no esta definida. Entonces se aplica la transpuesta de P. Solo así es posible la multiplica ión:c I = PtQ = [ 0.45 0.60 0.50] = ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ 1000 00 600 12 =1410 Similarmente, el costo total será: = CtQ = [ 0.38 0.42 0.32]= ⎥ ⎦ =1016 Entonces, B=1410 -1016 = 394 C ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 1000 600 ⎢ ⎣1200
  • 26. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 48 Ejercicio 24: En una página deteriorada de un libro se encuentra que la matriz 1 x 0 A 0 0 y 0 0 z ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ y del producto A2At solo se puede leer la última columna 6 2 1 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ Obtenga x + y + z. Solución. Por condición, la matriz del producto 2 2 2 t 2 2 2 3 x 1 xy xyz A A 0 y z yz z z + 0 y ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ Debe ser igual a una matriz cuyos datos visibles son 6 2 1 −⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ Esta última columna se puede igualar con la última columna de la primera matriz. De eso, se obtiene fácilmente que z = -1, x = 3, y = 2. Entonces, x + y + z = 4 jercicio 25: Hallar a, b, c y d si se cumple que: ⎤ ⎥ ⎦ E 1 0 2 0⎡ ⎤ ⎢ ⎥a b c d 0 0 1 1 1 0 6 6 1 9 8 4 0 0 1 0 ⎡ ⎤ ⎡⎢ ⎥ =⎢ ⎥ ⎢ ⎣ ⎣ ⎦ 1 4 9 2 0 1 0 0⎢ ⎥⎣ ⎦ ⎢ ⎥
  • 27. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 49 Solución. El resultado de la multiplicación de las matrices del lado izquierdo es: a c 2a b d b 1 0 6 6 1 9 8 4 1 9 8 4 + +⎡ ⎤ ⎡ =⎢ ⎥ ⎢ ⎣ ⎦ ⎣ ⎤ ⎥ ⎦ e donde, por igualdad de matrices: a = 1, b = 6, c = 0 y d = -2 jercicio 26: Sea la matriz A y su determinante en función de y. Hallar: d E 4 0 5 4 5 3 4 2y A 4 y 1 1 − −⎡ ⎤ ⎢ ⎥− − − ⎢ ⎥= ⎢ ⎥ 2 2 2 0⎢ ⎥− − − −⎣ ⎦ ) La det(At) b) Que valor(es) tomará y para que el sistema At sea singular (es decir, para que NO tenga solución única) Solución 2 (9y 2y 43)− −det(A) 4= − a . ) Por propiedad, det(A) = det(At) l sistema sea singular es necesario que det(A) = det(At) = 0. det(A) = -4(9y2 - 2y – 43 ) -4(9y2 - 2y – 43 ) = 0 ica a b) Para que e Resolvemos esta ecuación cuadrát 2 ( 2) ( 2) 4x9x( 43) y 2x9 − − ± − − − = y1 = 2.3 y2= -2.07 23z +11w = 0 31z +21y +4w = -23 23y + 42w -21x -2z = -3 eterminar los valores únicos de x, y, z, w usando el método de Cramer. Ejercicio 27: Conforme al modelo -4x – 5y + 69z – 12x +33w – 15y = 0 D
  • 28. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 50 Solución. Claramente la 3era ec veces la primera ecuación, es decir, una combinación lineal de , el sistema no tendrá solución única y se puede verificar por atriz formada por las cuatro ecuaciones resulta ser cero. uación del sistema, es 3 la primera. Por ello que la determinante de la m Ejercicio 28: Si, B=A-1 y la matriz A es la siguiente: 3 1 1 A 2 2 2 1 (x y) 1 ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ a) Obtenga la matriz B b) Si b23=1/9 y además x = 3, obtenga el valor de y. Solución. a) El primer paso es hallar la determinante de la matriz A eligiendo la fila 3 ya que sus menores serán números reales: 1 1 3 1 3 1 det(A) 1 (x y) ( 1) 8(x y 1) 2 2 2 2 2 2 = − − − + − = − − + − − Después hallar la matriz de cofactores 2 2 2 2 2 2 x y 1 1 1 1 x y 2(x y 1) 4 2(x y 1) 1 1 3 1 3 1 C x y 1 x y 1 1 1 1 x y 0 8 8 1 1 3 1 3 1 2 (3x 3y 1) − −⎡ ⎤ + − +⎢ ⎥ − − − − − −⎢ ⎥ − − + − − + + 2 2 2 2 2 2 ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= − + − = − + − − +⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎥⎦ Luego hallar la matriz adjunta que es la transpuesta de la matriz de cofactores: triz A. + − + ⎢ − −⎣ t 2(x y 1) x y 1 0 adj(A) C 4 2 8 2(x y 1) (3x 3y 1) 8 − − + − +⎡ ⎤ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥− + + − − +⎣ ⎦ Por ultimo multiplicar la matriz adjunta por la inversa de la determinante de la ma
  • 29. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 51 A-1= 1 det(A) adj(A) 1 4 2 8 B A 8(x y 1) 8(x y 1) 8(x y 1) − − −⎢ ⎥ = = ⎢ ⎥− − + − − + − − + ⎢ ⎥ 2(x y 1) x y 1 0 8(x y 1) 8(x y 1) 2(x ) (3x 8 8(x ) 8( 8(x y 1) ⎡ ⎤− − + − + ⎢ ⎥− − + − − +⎢ ⎥ − + −⎢ ⎥ ⎢ ⎥− − − − − +⎣ ⎦ y 1 3y 1) y 1 x y 1) + − + + − + 1 1 0 4 8 1 1 1 B 2(x y 1) 4(x y 1) x y 1 x y 1 3 x 3y 1 1 4(x y 1) 8(x y 1) x y 1 ⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥− + − + − +⎢ ⎥ ⎢ ⎥− − − + −⎢ ⎥− + − + − +⎣ ⎦ b) Al igualar b23=1/9, se obtiene una ecuación con dos incógnitas (x e y), pero adicionalmente se tiene el valor que toma la variable x=3 por lo cual la variable y es -5. 23 1 1 b x x y 1 9 = = ⇒ − − + y 8= , pero si x = 3 ⇒ y = -5 da la matriz A y B, obtenga el valor x, si AB-3B=D y además d32 = 13Ejercicio 29: Da 3 y 1 A 1 2 2 x 1 1 −⎡ ⎤ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥−⎣ ⎦ y y x 2 1 1 1 1 − B 3 0 ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ Solución: Primero procedemos a multiplicar la matriz A por B donde el primer elemento e la matriz AB se obtiene de la suma del producto de cada elemento de la primera fila de la matriz A por los elementos de la primera columna de la matriz B, obteniéndose 3y+3y+1=6y+1 y así para los demás elementos de la matriz AB. d 2 AB 8 y 2 x 2 xy 4 x 1 2x 2 6y 1 3x 1 y 7⎡ ⎤+ + − − ⎢ ⎥ = − − −⎢ ⎥ ⎢ ⎥ + + − −⎣ ⎦
  • 30. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 52 Luego procedemos a multiplicar la matriz B por un escalar que en este caso es 3 y por ultimo restamos la matriz 3B a la matriz AB, obteniéndose D. 3y 3x 6 3B 9 0 3 3 3 3 −⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ 2 3y 1 1 y 1 AB 3B y 1 2 x 1 D xy 7 x 4 2x 5 ⎡ ⎤+ − − ⎢ ⎥ − = − − − =⎢ ⎥ ⎢ ⎥ + + − −⎣ ⎦ De donde d32 = 13 = x2 + 4 ⇒ x = ± 3 Ejercicio 30: Sea 1 1 1 A 2 x 1 −⎡ ⎤ ⎢ ⎥= − −⎢ ⎥ 1 3 1⎢ ⎥−⎣ ⎦ x 1 1 B 3 2 x 2 1 1 −⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ b) Si det (AB)=0 calcule el valor de x c) Muestre que AB=BA, se cumple o no. Solución a) Obtenga AB . ) La matriz AB se obtiene de la suma del producto de cada elemento de la primera atriz A por los elementos de la primera columna de la matriz B, í para los demás elementos de la matriz AB. a fila de la m obteniéndose x+ 3 + 2 = x + 5 y as 2 x 5 2 x 2 AB x 2 2x 3 x 1 + + 7 x 6 3x 2 ⎡ ⎤ ⎢ ⎥ = + + −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ b) La det(AB)=12x2-24, entonces, 2 12x 24 0 x 2− = ⇒ ± c) Bastará mostrar que un elemento de BA no es igual a AB, por ejemplo: AB11 ≠ BA11 . BA11 = x(1) – 1(x) – 1(1) = x - 1, pero AB11 = x + 5: por ello BA ≠ AB
  • 31. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 53 Ejercicio 31: Si C = AB y c33=m, obtenga el valor de z, si la menor solución de m es igual a 0, siendo: 3 4 q 4−⎡ ⎤ ⎢ ⎥ ⎣ 2 a e 3 A − ⎢ ⎥= 3 z m 2⎢ ⎥ ⎢ ⎥ 2 1 5m 0 1 m 1 1⎦ 1 0 4 2 4 3 1 a 3 2 1 1 B −⎡ ⎤ ⎢ ⎥− − − ⎢ ⎥= ⎢ ⎥− − ⎢ ⎥ − −⎣ ⎦ Solución. Al hallar el producto de la matriz AB se extraer el elemento c33 de la matriz (en función de m y z). C33 = 3 (1) – 1(z) + m(5m) + 2(4) = 3 – z +5m2 + 8 Por condición: AB c33 = m ⇒ 5m2 – m + ( 11 – z ) = 0 1 1 20(11 z) m 10 ± − − = de donde la menor solución será: 1 1 20(11 z) 0 z 1 10 − − − 1= ⇒ = Ej calcule ercicio 32: Si t 2 4 D −⎡ ⎤ = t 2⎢ ⎥ ⎣ ⎦ ( ) t1 D− Solución. Por propiedad: ( ) ( ) 1 tt 1 D D − − = , de donde t 1 1/ 2 11 (D ) t / 4 1/ 2(t 1) − −⎡ ⎤ = ⎢ ⎥−+ ⎣ ⎦ Ejercicio 33: Sea el sistema de ecuaciones: ax + by = c a2 x + dy + ez = f hz + gx = i
  • 32. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 54 ¿Qué requisito(s) debe cumplir “a” –si es posible- para que dicho sistema tenga olución única? olución s S . Ordenando el sistema en términos matriciales: 2 a d e y f a b 0 x c⎡ ⎤ g 0 h z i ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ o AX b= Para que el sistema tenga solución única, bastará que el determinante del sistema sea iferente de cero. Obteniendo . Haciendo “a” como ariable se tendrá que: d 2 det(A) a bh adh beg≠ − + + v ( ) ( )( )2 hd hd 4 bh beg± + a ≠ Ejercicio 34: Sea el sistema de ecuaciones: -2x + 3y +w = t w – 3y + x = -3 -2y – x +bz +4w = 9 onde t es una constante, identifique formalmente la condición que debe reunir 2bh bx + 2w +4z = 5t D “ b ” Solución para que el sistema tenga solución única. . Sea el sistema de ecuaciones matricialmente: ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 2 3 0 1 x−⎡ ⎤ ⎡ ⎤ ⎡ t 5t 1 3 0 1 z 3⎢ ⎥ ⎢ ⎥ b 0 4 2 y⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = 1 2 b 4 w 9 − − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ astará con que el determinante sea diferente de cero. Para ello, se elige la 3era s menores (sección 2.4.2). − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ B columna como pivote y se procede a usar la técnica de lo ( ) ( ) ( ) ( )1 3 2 3 3 3 4 3 b 3 1 2 3 1 2 3 1 2 3 1 det(A) 0 1 1 0 2 4 1 1 3 1 0 1 b 0 2 b 1 b 0 2 1 2 4 1 2 4 1 2 4 1 3 1 + + + + − − − = − + − − + − + − − − − − − − −
  • 33. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 55 ( ) ( )2 3 4 3 2 3 1 2 3 1 det(A) 4 1 1 3 1 b 1 b 0 2 1 2 4 1 3 1 + + − − = − − + − − − − [ ]det(A) 4(0) b 6b 6= − − − − .... . 35: Resolver el siguiente sistema de ecuaciones por Cramer y corroborar el resultado mediante el proceso X = A-1b, siendo X el vector solución. 3x – 4y = -16 4x – y – z = 5 x -3y – 2z = -2 olución det(A) 6b(b 1)= + Entonces, 6b ( b + 1 ) ≠ 0 ⇒ b ≠ 0 ⋀ b ≠ -1 Ejercicio – 6z S . Ordenando matricialmente: ⎤3 4 6 x 16− − −⎡ ⎤ ⎡ ⎤ ⎡ 4 1 1 y 5 1 3 2 z 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ El determinante general será: 35. Aplicando Cramer: 16 4 6 5 1 1 2 3 2 70 x 2 35 35 − − − − − − − − = = = 3 16 6 4 5 1 1 2 2 70 y = 2 35 35 − − − − − − = = − 3 4 16 4 1 5 1 3 2 175 z 5 35 35 − − − − − = = =
  • 34. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 56 Aplicando X = A-1b: La matriz de cofactores será: 1 1 4 1 4 1 3 2 1 2 1 3 4 6 3 6 3 4 C 3 2 1 2 1 3 4 6 3 6 3 4 1 1 4 1 4 1 − − − −⎡ ⎤ + − +⎢ ⎥ − − − −⎢ ⎥ ⎢ ⎥− − − − ⎢ ⎥= − + − − − − −⎢ ⎥ ⎢ ⎥ − − − −⎢ ⎥+ − + ⎢ ⎥− − − −⎣ ⎦ , lo que es igual 1 7 11 C 10 0 5 2 21 13 − −⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ A)t 1 10 2 C 7 0 21 Adj( 11 5 13 − −⎡ ⎤ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥−⎣ ⎦ pero recordando que: X = 1 adj(A)b, entonce det(A) s: 1 10 2 16 1 X 7 0 21 5 35 11 5 13 2 − − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ lo cual operando apropiadamente: 2 X 2 5 ⎡ ⎤ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎣ ⎦ Ejercicio 36: Obtenga la det(A) si 1 1 1 1 2 0 5 0 A 3 9 2 3 4 6 5 6 ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Solución. El determinante puede resolverse por diversas formas. La forma más sencilla es usar la segunda fila ya que tiene dos ceros y con ello los subdeterminantes uciendo los cálculos. Así:respectivos también serán cero, red
  • 35. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 57 1 1 1 1 1 1 det(A) 2 9 2 3 5 3 9 3 2( 6) 5(12) 48 6 5 6 4 6 6 = − − = − − − = − Los determinantes de 3x3 pueden resolverse por Sarrus o por cofactores. Ejercicio 37: Dado el siguiente modelo, donde T=impuestos y t=tasa impositiva sobre la renta, obtenga el ingreso de equilibrio, Ye usando determinantes (Cramer). < t < 1) Solución Y = C + I0 + G0 C = a + b ( Y – T ) (a > 0, 0 < b < 1) T= d + tY (d > 0, 0 . Es un sistema de 3 ecuaciones, pero se pueden reducir a 2 variables endógenas, entonces solo se requiere 2 ecuaciones. Si se dejan 3 ecuaciones, con variables endógenas, Y, C y T, el resultado es el mismo. Incorporando la tercera cuación en la segunda se tiene: btY – bY + C = a – bd n notación matricial: − ⎤ e Y – C = I0 + G0 E 0 01 1 C (I G ) =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (bt b) 1 Y (a−⎡ ⎤ ⎡ ⎤ ⎡ bd) 0 0 0 0(I G ) 1 (bd a) (I G ) Y b bt 1 b(1 t) 1 (a bd) 1− + − − − + = = − − − − Ejercicio 38: Determine “a” (resolver para “a”) de tal forma que el sistema no tenga olución única, siendo:s 2 1 4 2 1 a 0 3 A a 1 2 1 4 2 1 4 − − −⎡ ⎤ ⎢ ⎥− − ⎢ ⎥= ⎢ ⎥− − ⎢ ⎥ −⎣ ⎦
  • 36. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 58 Solución. Eligiendo la columna 3 como pivote: + ⎤ ⎥ ⎥ ⎥⎦ et(A) = -4 [-2(2a2+ a + 3 ) ] + (-2)[-16] + [2a2 - 5a + 5] Se requiere que det(A)=0 entonces: Usando: [ ]1 3 5 3 3 4 3 1 a 3 2 1 2 2 1 2 det(A) 4( 1) a 1 1 0( 1) ... ( 2)( 1) 1 a 3 ( 1)( 1) 1 a 3 4 2 4 4 2 4 a 1 1 + + − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎢ ⎥ ⎢ ⎥ ⎢= − − − + − + − − − − + − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣ d det (A) = 18 a2 + 3 a + 61 2 b b 4ac 2a − ± − se tiene que: 3 4383 a 36 − ± = i mer, resolver el siguiente sistema: 2x1 + 4x2 - 3x3 =12 3x1 - 5x2 + 2x3 =13 -x1 + 3x2 + 2x3 =17 olución Ejercicio 39: Usando inversión de matrices y Cra S . El primer paso es averiguar si el determinante es diferente de cero. De ser cálculos.así, existirá solución única y se puede proceder con los 2 4 3 det(A) 3 5 2 76 0 1 3 2 −⎡ ⎤ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ≠ ntonces, usando la inversa X = E 1 det(A) adj(A)b = A-1b X= A-1b i:S 1 17 7 4 4 4 1 1 1 A 2 19 4 4 5 11 1 2 2 − ⎡ ⎢ ⎢ ⎢= − ⎢ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ 3 ⎤ ⎥ ⎥ ⎥ ⎥ entonces 17 7 4 4 4 12 133 7 1 X 2 19 1 13 1 13 76 4 4 4 19 17 114 6 5 11 1 2 2 ⎤ ⎥ ⎡ ⎢ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎥⎢ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥− = =⎢= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥⎢ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥− ⎢ ⎥⎣ ⎦
  • 37. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 59 Usando Cramer: 1 12 4 3 13 5 2 17 3 2 532 x 7 det(A) 76 − − − = = − = 2 2 12 3 3 13 2 1 17 2 304 x 4 det(A) 76 − − − = = = − 3 2 4 12 3 5 13 1− 3 17 456 x 6 det(A) 76 − − = = = − jercicio 40: En el siguiente sistema, encontrar: a) La condición para que el sistema tenga solución. b) Determine x2. 2x1 + ax2 - 3x3 =12 3x1 - ax2 2x3 = a -x1 + 3x2 + 2x3 =17 Solución E + . a) Para que el sistema tenga solución única debe cumplirse que la det(A) 0≠ 2 a 3 det(A) 3 a 2 9a 39 1 3 2 − = − = − − − Si det (A) ≠ 0 ⇒ -9a -39 ≠ 0 ⇒ a ≠ -39/9. Esta es la condición. ) Para encontrar x2, bastara aplicar CRAMER:b det(x ) x det(A) = 2 2
  • 38. MATEMÁTICAS PARA ECONOMISTAS Carlos Orihuela Romero, MSc CAPITULO 2: MATRICES Y DETERMINANTES 2 2 12 3 det(x ) 3 a 2 a 317 1 17 2 − = = − − entonces 2 a 317 x 9a 39 − = − − 2.6 Problemas Propuestos 1. Hallar la solución del siguiente sistema: 7x1 - x2 - x3 = 0 6x1 + 3x2 - 2x3 = 7 1P1 + c2P2 = -c0 ƴ1P1 + 3. Dado el siguiente modelo, donde y t=tasa impositiva sobre la renta, e. C = a + b ( Y – T ) (a > 0, 0 < b < 1) T= d + tY t < 1) 10x1 + 2x2 + x3 = 8 2. Obtenga los precios de equilibrio de: c ƴ2P2 = -ƴ0 T=impuestos obtenga el ingreso de equilibrio, Y Y = C + I0 + G0 (d > 0, 0 < 60