SlideShare una empresa de Scribd logo
1 de 40
“AÑO DE LA DIVERSIFICACIÓN PRODUCTIVA Y DEL FORTALECIMIENTO DE
LA EDUCACIÓN”
UNIDAD DE GESTIÓN EDUCATIVA LOCAL CHICLAYO
UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO
LAMBAYEQUE
“PROMOCIÓN DEL USO DE MATERIAL DE
LABORATORIO DE CIENCIAS PARA EL LOGRO DE
APRENDIZAJES SIGNIFICATIVOS DE CTA” – 2015
AUTORES:
 Gonzáles Gonzáles María Olga
DOCENTE ORGANIZADORA: Rosa Esther Guzmán Larrea
PROFESOR DEL AREA: Ingeniero Químico : Escribano Siesquen William
LAMBAYEQUE, 20 DE MARZO DEL 2015
ÍNDICE
INTRODUCCIÓN.....................................................................................................................2
PLANTEAMIENTO DEL PROBLEMA.....................................................................................2
FORMULACIÓN DEL PROBLEMA ........................................................................................3
JUSTIFICACIÓN ....................................................................................................................3
METODOLOGÍA .....................................................................................................................3
MARCO TEÓRICO .................................................................................................................3
TRABAJO DE RECONOCIMIENTO DE MATERIALES DE LABORATORIO........................5
OBJETIVOS:...........................................................................................................................5
1.1.GENERAL.......................................................................................................................................... 6
Observar y Reconocer el material que se usa en los laboratorios..........................................................6
Conocer los instrumentos básicos utilizados en un laboratorio al igual que los símbolos de riesgo y de
peligrosidad........................................................................................................................................... 6
1.2. ESPECIFICOS.................................................................................................................................... 6
MATERIAL Y PROCEDIMIENTO:..................................................................................................................9
PROCEDIMIENTO:.................................................................................................................................... 24
INTRODUCCIÓN
Los materiales de laboratorio son aquellas que pueden utilizarse para las prácticas de
descubrimiento de los alumnos.
Para ello el alumno necesita crear su propio material en los lugares donde no se cuenta con
laboratorios y así poder experimentar prácticas que van ha se útiles en su vida cotidiana.
PLANTEAMIENTO DEL PROBLEMA
El material de laboratorio es muy importante para despertar el interés y descubrimiento por la
Ciencia en cada uno de nuestros Estudiantes. Actualmente en la gran mayoría de colegios
de las zonas rurales no contamos ni siquiera con un ambiente para realizar experimentos
con las medidas de seguridad en la cual muchas veces uno elabora sus propios materiales,
pero no siempre son remplazados los materiales.
FORMULACIÓN DEL PROBLEMA
Para la formulación del problema se planteó la siguiente interrogante
¿Cómo obtener materiales de laboratorio para que los alumnos siempre realicen sus
experimentos y lleven la teoría la práctica.
JUSTIFICACIÓN
Lo que se busca orientar a los docentes es solucionar a la carencia de materiales de
laboratorio ver cómo solucionar a fin de que el alumno siempre este motivado por las
investigaciones y experimentaciones
El trabajo propuesto, mediante la aplicación de la teoría y los conceptos básicos, busca
satisfacer las necesidades de la comunidad estudiantil para mejorar la la participación de los
Educandos.
Con la creación de materiales de reciclaje se busca satisfacer la necesidad de la población
estudiantil y convertir en un proyecto.
.
METODOLOGÍA
Ante la “promoción del uso de material de laboratorio de ciencias para el logro de
aprendizajes significativos de CTA” se realizó capacitación a los docentes de CTA en la
Universidad Nacional Pedro Ruíz gallo para conocer y difundir el manejo y uso de los
materiales de laboratorio en nuestras Instituciones Educativas que estuvo a cargo del Ing.
William Escribano Siesquen.
MARCO TEÓRICO
¿Qué es material de laboratorio?
Como se puede apreciar en la definición de material, el término proviene del latín materiales,
el cual hace referencia a aquello que se encuentra vinculado con la materia. Sin embargo, en
su sentido amplio hace alusión a los elementos necesarios para llevar a cabo una
determinada acción; es decir, los diversos componentes, ya sean reales o abstractos, que se
reúnen en un grupo y que se emplean con fines específicos.
En un laboratorio los materiales deben ser de buena calidad pues allí se realizarán
investigaciones que, en muchos casos son de vital importancia para ampliar
los conocimientos en un área específica de la ciencia; por ende, el lugar donde se sitúen
debe ser apropiado, contar con una ventilación e iluminación adecuada y los instrumentos y
materiales que hagan propicio el normal funcionamiento del lugar.
El material de laboratorio puede construirse con componentes muy variados, desde vidrio
hasta madera pasando por goma, metal y plástico. Las características del material
dependerán de su función, ya que la manipulación de ciertos productos implica riesgos.
Entre las herramientas más habituales que se incluyen dentro del material de laboratorio, se
encuentran los matraces (un recipiente con medidas), la pipeta, el tubo de ensayo,
la probeta, el vaso de bohemia, el cristalizador, el embudo, el vaso de precipitados y
el encendedor.
Importancia de Material de Laboratorio
Los instrumentos de laboratorio están efectivamente diseñados para las funciones
específicas que despeñan. Sin estos no se podría realizar la mayoría de los trabajos.
¿ Cómo determinar la masa de una sustancia sin una balanza?. ¿Dónde realizar una
reacción química, una filtración, destilación o una evaporación sin un matraz, embudo,
refrigerante o una cápsula de porcelana. Definitivamente son indispensables estos equipos,
no podemos trabajar sin ellos.
Limpieza del material de laboratorio
La importancia d q el material de laboratorio siempre este limpio es q al hacer una nueva
practica o análisis no quede residuos del anterior, si esto pasa por ejemplo cuando vas a
preparan una solución y no lavas bien los materiales al usarlos de nuevo tu solución va a
quedar contaminada por el reactivo anterior, esto puede llegar a afectar los resultados de tu
nuevo análisis,, además depende de que reactivos sean hay q tener mucho cuidado con las
reacciones q se llevan a cabo, podrían ser peligrosas.
Porque un laboratorio.- El objetivo principal de los laboratorios es brindar a los estudiantes
las herramientas necesarias para que realicen experimentos relacionados con los contenidos
de los programas de estudio cumpliendo así la exigencia de los fututos profesionales.
En los laboratorios se organizan las prácticas de forma calendarizada para que así no se
quede ninguna sección sin atender, por lo cual los estudiantes tienen la oportunidad de
realizar de 6 a 7 prácticas en el ciclo, los cuales son atendidos por docentes experimentados
en las diferentes áreas de las ciencias naturales.
También en el laboratorio de Biología y Química se atienden práctica para los estudiantes de
la carrera de Física recibiendo las secciones de Anatomía y Fisiología, en lo cual está
equipado con: esqueletos artificiales y naturales, y una variedad de maquetas en anatomía
humana.
Como funciona.- Laboratorio especializado que permite el desarrollo de prácticas, donde el
estudiante podrá generar, observar y analizar reacciones químicas y biológicas de los
objetos en estudio, obteniendo así experiencias sensoriales y de aprendizaje directo.
Este cuenta con químicas a través de software, reactivos y elementos químicos y de esta
forma podrán ampliar los conocimientos vistos en clases.
Este laboratorio este equipado con dispositivos de medición que pueden ser conectados a
una computadora y recoger los datos de los experimento e investigaciones de los
estudiantes lo que permite facilitar hacer cálculos, para después analizarlos y realizar las
respectivas conclusiones de sus experimentos.
TRABAJO DE RECONOCIMIENTO DE MATERIALES DE LABORATORIO
OBJETIVOS:
1.1. GENERAL
• Observar y Reconocer el material que se usa en los laboratorios.
• Conocer los instrumentos básicos utilizados en un laboratorio al igual que
los símbolos de riesgo y de peligrosidad.
1.2. ESPECIFICOS
• Demostrar que si se puede trabajar y elaborar nuestro propio material para realizar
experimentos.
• Conocer el nombre de cada instrumento utilizados en el laboratorio para realizar las
prácticas.
• Comprender e identificar la utilidad de los instrumentos y equipo de laboratorio.
• Identificar los símbolos de peligrosidad para ser cuidadosos y no poner en riesgo
la salud y la vida de otros ni la de nosotros mismos.
• Explicar científicamente cada uno de los experimentos desarrollados en la práctica de
laboratorio.
Reconocimiento y uso de los principales materiales del laboratorio. Conceptos
básicos. Fases y transiciones de fases
Termómetro. Usado para: medir temperatura.
Varilla de vidrio. Usada para: agitar.
Matraz. Usado para: contener y calentar líquidos.
Vaso de Bohemia. Usado para: contener, calentar, baños de agua.
Probeta. Usada para: medir volumen.
Cuentagotas o pipeta Pasteur. Usado para: agregar o extraer líquidos por goteo.
Piseta. Usado como: depósito de agua destilada, para luego verterla en donde sea
necesario.
Matraz aforado. Usado para: preparar soluciones.
Mortero. Usado para: pulverizar sólidos y/o mezclarlos.
Embudo de decantación. Usado para: separar líquidos no miscibles.
Pipeta aforada. Usada para: medir volumen.
Refrigerante. Usado para: condensar vapores.
Matraz Erlenmeyer. Usado para: calentar, contener.
Embudo. Usado para: filtrar y trasvasar.
Pipeta graduada: usado para medir volumen.
Vidrio de reloj. Usado para: contener pequeñas cantidades de sólidos.
Cristalizador. Usado para: realizar cristalizaciones.
Cápsula (metal o porcelana). Usada para: calentar durante tiempo prolongado a
temperaturas elevadas.
Mechero Bunsen (de gas). Usado para: calentar.
Crisol. Usado para: calentar durante tiempo prolongado a temperaturas elevadas.
Trípode. Usado para: sostener la rejilla metálica o el triángulo de pipa.
Mechero a alcohol. Usado para: calentar.
Pinza de metal. Usada para: manipular material de vidrio o de porcelana que ha sido
calentado.
Pera de goma. Usada para: cargar la pipeta..
Tapones de goma. Usados para: tapar frascos, tubos, matraces.
Espátulas y cucharas. Usadas para: retirar sólidos de los frascos.
Tubo de goma. Usado para: hacer conexiones.
Balanza. Usada para: medir masa.
.
Triángulo de pipa. Usado para: sostener cápsula o crisol al realizar
calentamiento directo sobre la llama del mechero.
Triangulo de carbón
.
trípode: La finalidad que cumple el trípode de laboratorio es solo una. ya que es
utilizado principalmente como una herramienta de sostén para la rejilla de asbesto, o
lo que se sitúa sobre este.
Con este material es posible la preparación de montajes para calentar, utilizando
como complementos el mechero (dependiendo del tipo). También sirve para sujetar
con mayor comodidad cualquier material que se use en el laboratorio que vaya a
llenarse con productos peligrosos o líquidos de cualquier tipo
MATERIAL Y PROCEDIMIENTO:
Gradilla.- Sirve para colocar tubos de ensayo. Este utensilio facilita el manejo de los tubos
Es una tela de alambre de forma cuadrangular con la parte central recubierta de asbesto,
con el objeto de lograr una mejor distribución del calor. Se utiliza para sostener utensilios que
se van a someter a un calentamiento y con ayuda de este utensilio el calentamiento se hace
uniforme.
Rejilla de asbesto.- Rejilla metálica. Usada para: sostener los recipientes de vidrio y lograr
una distribución uniforme del calor en la base de los mismos
Soporte universal y pinzas. Usados para: sostener y organizar el material al combinar
aro metálico y diferentes pinzas
Embudo de Buchner.- Son embudos de porcelana o vidrio de diferentes diámetros, en su
parte interna se coloca un disco con orificios, en él se colocan los medios filtrantes. se utiliza
para realizar filtraciones al
vacío.
Frasco gotero. Usado para: verter líquidos por goteo
Balón de destilación: Es un frasco de vidrio, de cuello largo y cuerpo esférico. Está
diseñado para calentamiento uniforme. Su base redondeada permite agitar fácilmente su
contenido y un calentamiento más uniforme. Está hecho generalmente de vidrio
borosilicatado. También se le llama 'Matraz Florentino'. Hace parte del 'Material de Vidrio' del
laboratorio.
Las pinzas de laboratorio son un tipo de sujeción ajustable, generalmente de metal, que
forma parte del equipamiento de laboratorio, mediante la cual se pueden sustentar
diferentes objetos de vidrio (embudos de laboratorio, buretas...) o realizar montajes más
elaborados (aparato de destilación). Se sujetan mediante una doble nuez a un pie o soporte
de laboratorio o, en caso de montajes más complejos (línea de Schlenk), a una armadura o
rejilla fija. Metal, madera.
Escobillas. Usadas para: limpiar el interior del material de vidrio
Pipeta: La pipeta es un instrumento volumétrico de laboratorio que permite medir alícuotas
de líquido con bastante precisión. Suelen ser de vidrio. Está formado por un tubo
transparente que termina en una de sus puntas de forma cónica, y tiene una graduación (una
serie de marcas grabadas) indicando distintos volúmenes.
tubo de ensayo: El tubo de ensayo o tubo de prueba es parte del material de vidrio de un
laboratorio de química. Consiste en un pequeño tubo de vidrio con una punta abierta (que
puede poseer una tapa) y la otra cerrada y redondeada, que se utiliza en los laboratorios
para contener pequeñas muestras líquidas. Aunque pueden tener otras fases. Como realizar
reacciones en pequeña escala, etc.
Probeta: La probeta o cilindro graduable es un instrumento volumétrico, que permite medir
volúmenes superiores y más rápidamente que las pipetas, aunque con menor precisión.
Sirve para contener líquidos
Embudo: El embudo es un instrumento empleado para canalizar los líquidos en recipientes
con bocas estrechas usado principalmente en cocina y laboratorio, también se puede usar en
autos para llenar tanques de gasolina o meter el aceite en el motor sin derramar una gota. El
embudo tiene una forma de dos conos generalmente, en su parte superior el cono mayor es
el encargado de recibir la entrada de los líquidos y el inferior es el encargado de canalizar a
un recipiente el flujo proveniente de la parte superior, algunas veces la parte inferior es un
cilindro. Los embudos suelen hacerse de plástico, vidrio, y otros materiales..
.
Mortero con pilón: Sirve para triturar o moler algunos componentes de consistencia sólida
(elementos químicos)
papel de filtro: El papel de filtro es un papel que se corta en forma redondeada y se
introduce en un embudo, con el fin de ser filtro para las impurezas insolubles y permitir el
paso a la solución a través de sus poros.
El "papel filtro" se usa principalmente en laboratorios analíticos para filtrar soluciones
homogéneas. Normalmente está constituido por derivados de celulosa y permite el manejo
de soluciones con pH entre 0 y 12 y temperaturas de hasta 120°C.
Pinza de madera. Usada para: sostener el tubo de ensayo para calentarlo directamente a la
llama.
El matraz de Erlenmeyer, simplemente Erlenmeyer o matraz, también conocido como
matraz de síntesis extrema de químicos, es uno de los frascos de vidrio más ampliamente
utilizados en laboratorios de Química y Física.
Función Se utiliza para el armado de aparatos de destilación o para hacer reaccionar
sustancias que necesitan un largo calentamiento. También sirve para contener líquidos que
deben ser conservados durante mucho tiempo.
Fue creado en el año 1861 por el químico Richard August Carl Emil Erlenmeyer (1825-
[[1909).
Matraz de kitasato o de filtrado. Tiene la misma forma que el matraz erlemeyer, pero en su
cuello se ha diseñado un orificio y se le ha incluido un tramo de tubo de vidrio, llamado
vástago, para permitir su conexión a diferentes dispositivos.
Pipetas graduadas.- La Pipeta volumétrica está hecha para entregar un volumen bien
determinado, el que está dado por una o dos marcas en la pipeta. Si la marca es una sola, el
líquido se debe dejar escurrir sin soplar, que baje por capilaridad solamente esperando 15
segundos luego que cayó la última gota.
Manejo de la pipeta
• El líquido se aspira mediante un ligero vacío usando bulbo de succión o propipeta,
nunca la boca.
• Asegurarse que no haya burbujas ni espuma en el líquido.
• Limpiar la punta de la pipeta antes de trasladar líquido
• Llenar la pipeta sobre la marca de graduación y trasladar el volumen deseado. El
borde del menisco debe quedar sobre la marca de graduación.
MECHERO DE BUNSEN Un mechero o quemador Bunsen es un instrumento
utilizado en laboratorios científicos que se usa siempre que se requiere contar con
una fuente de calor, ya sea para producir, acelerar una reacción química,
calentar, efectuar un cambio físico y esterilizar muestras o reactivos químicos.
Mechero de alcohol
1. se utiliza mucho en los laboratorios de química debido a que proporciona una
llama caliente, constante y sin humo.
2. Se utiliza en laboratorio para hacer combustión.
3. Se utiliza cuando no se necesita un gran poder calorífico.
Refrigerante de serpentin.- Es un refrigerante que también recibe el nombre
de: Refrigerante de Allin. Es un tubo de vidrio que presenta en cada extremo dos
vástagos dispuestos en forma alterna. En la parte interna presenta otro tubo que
se continúa al exterior, terminando en un pico gotero. Su nombre se debe al tubo
interno que presenta. Se utiliza como condensador en destilaciones.
Matraz de reacción
Es un recipiente que permite contener sustancias.
Matraz de destilación
Un vaso de precipitados o vaso de precipitado es un recipiente cilíndrico de
vidrio fino que se utiliza muy comúnmente en el laboratorio, sobre todo, para
preparar o calentar sustancias y traspasar líquidos.
Fiola Es un recipiente de vidrio que se utiliza sobre todo para contener y medir
líquidos.
Se emplean en operaciones de análisis químico cuantitativo, para
preparar soluciones de concentraciones definidas.
Frasco de reactivo Permite guardar sustancias para almacenarlas los hay ámbar
y transparentes los de color ámbar se utilizan para guardar sustancias que son
alteradas por la acción de la luz del sol, los de color transparente se utilizan para
guardar sustancias que no son afectadas por la luz solar.
Balón de base plana Está diseñado para calentamiento uniforme, y se produce
con distintos grosores de
vidrio para diferentes usos.
Centrífugas Son muy útiles para precipitar células y moléculas. Vienen en
distintos tamaños y con distintas capacidades en el manejo de muestras. Este
aparato somete la muestra a fuerzas de aceleración que obligan a las moléculas a
concentrarse en el fondo del envase utilizado, separándolas del medio en que se
encuentran. Incluso, bajo ciertos métodos se puede generar un gradiente de
concentraciones dentro del mismo tubo, separando distintas moléculas a distintos
niveles o fases dentro del tubo. Con ayuda de jeringas, se puede perforar la pared
del tubo y extraer del mismo sólo aquella fase donde se encuentren las moléculas
de interés.
Entre las centrífugas que usaremos durante el semestre están la centrífuga
refrigerada, que nos va a permitir separar células de los medios de cultivo. El rotor
de esta centrifuga puede sostener tubos de 50 ml, pero puede ser intercambiado
por rotores que sostienen botellas de cultivo.
El micro centrífugo es una versión más pequeña de la descrita anteriormente. Es
compacta, se coloca sobre la mesa y procesa muestras de hasta 2 ml. Es muy útil
para precipitar ADN y otras sustancias que se trabajan en volúmenes pequeños.
MATERIAL PERSONAL COTIDIANO OBLIGATORIO.
PROCEDIMIENTO:
RESULTADOS:
Termómetro: se utiliza para medir la temperatura.
Tubo de ensayo: son cilindros de vidrio cerrados por uno de sus extremos que se emplea
para calentar, disolver o hacer reaccionar pequeñas cantidades de sustancias. Las hay de
vidrio ordinario y de "PIREX ". Estas últimas son las que se deben utilizar cuando se necesita
calentar.
Vaso de precipitado: se usa como recipiente y también para obtener el precipitado de una
sustancia.
PROCEDIMIENTO EXPERIMENTAL
• Se reconocieron los instrumentos que habían en el laboratorio
• Con el apoyo de la guía de laboratorio se identificaron algunos materiales.
• Se habló sobre ellos
• Se colocó el uso de cada uno de los materiales
DISCUSIÓN DE RESULTADOS
• Se pudo reconocer y saber cómo se llaman y como se utilizan los materiales de
laboratorio.
• También se supo la forma adecuada de utilizar los materiales
• Se aprendió de cómo se limpian los materiales
• Se aprendió las normas del laboratorio
Las fases de la materia reflejan los estados de energía.
Toda la materia en el universo tiene propiedades que son dictadas por una serie
de factores. Entre estos se encuentran las propiedades químicas fundamental que
proviene de la estructura atómica y molecular de la materia. Además, las
propiedades adicionales proceden del estado actual de la materia o fase. Esto es
un reflejo del estado de energía de la materia en un punto dado en el tiempo.
• ¿Cuáles son las fases de la materia?
La fase sólida, líquida y gaseosa de la materia
Sólido
Cuando la materia está en estado sólido está en su forma de energía más baja.
Esta baja energía resulta en una estructura en la que las diferentes moléculas de
una materia dada establecen lazos firmes entre sí, dando como resultado una
estructura que es muy rígida en su volumen y forma. El estado de baja energía
significa que hay un cierto movimiento de los átomos individuales, pero no lo
suficiente como para perturbar las propiedades rígidas de la estructura en
general.
Líquido
tiene un estado de energía más alto que la materia en la fase sólida. El resultado
es que mientras que la estructura del material mantiene un volumen constante, el
estado de energía más alto significa que los enlaces entre las diferentes
moléculas son menos estables. Por consiguiente, mientras que el volumen del
líquido se mantiene constante, su estructura física es maleable y tomará la forma
de cualquier recipiente que lo contiene. El grado en el que un líquido se resiste a
cambiar su forma es una propiedad llamada viscosidad.
Gas
Cuando los líquidos absorben una cantidad suficiente de energía, después de
alcanzar una temperatura conocida como punto de ebullición, la vibración de los
átomos aumenta a tal punto que los enlaces entre las moléculas individuales se
aflojan aún más. Esta fase de la materia se llama gas. Debido a los enlaces
todavía flojos entre las moléculas de un gas, tanto el volumen y la estructura del
gas se expanden o contraen para acomodar el contenedor de caja a la que
actualmente alberga.
Plasma
El estado más común de la materia en el universo se llama plasma. El plasma
comparte muchas de las propiedades del estado de energía del gas, pero es
ionizado. Es decir, todos los electrones del componente del plasma han soltado
sus átomos para asociarse libremente con todos los otros átomos constituyentes.
Esto hace que un plasma conductor altamente eficiente de las cargas eléctricas.
En el planeta Tierra, el plasma se encuentra en un rayo, en el fuego y las auroras.
En el espacio exterior, el plasma constituye los núcleos de las estrellas y se
encuentra en las supernovas y quásares.
ENLACES
QUIMICOS Y FISICOS
APRENDIZAJE ESPERADO
-conoce los tipos de enlaces quimicos y fisicos su influencia en las propiedades y
estructuras de las sustancias
- reconoce las diferencias entre las sustancias con enlace iónico y covalente en relación a
la conductividad eléctrica y solubilidad.
- reconoce los electrolitos fuerzas débiles y no electrolitos.
INDICADOR
Diferencia a los tipos de enlaces mediante experimentos aplicativos, demostrando orden y
limpieza.
Propiedades de los enlaces químicos
Los conceptos involucrados en sus enlaces químicos, que pueden ser clasificados en
iónicos, covalentes o metálicos.
Enlace Iónico
Los enlaces iónicos ocurren generalmente entre un elemento muy electronegativo, como
un no metal con otro elemento poco electronegativo como un metal.
Los no metales, debido a su elevada electronegatividad, al enlazarse iónicamente con los
metales, adquieren carga eléctrica negativa.
Átomos con exceso de electrones, o sea, con carga eléctrica negativa son llamados
aniones. Ya, los metales, en el enlace iónico, adquieren carga eléctrica positiva debido a
la perdida de uno o más electrones.
Átomos que cedieron electrones, o sea, adquirieron carga eléctrica positiva, son llamados
cationes.
Las principales propiedades de los compuestos iónicos son:
Altos puntos de fusión y ebullición
Conducen corriente eléctrica cuando son disueltos en agua o fundidos
Presentan aspecto cristalino
Un ejemplo de compuesto iónico, está, ciertamente en nuestras cocinas. Se trata del
cloruro de sodio, popularmente conocido como sal de mesa. Esta sal esta compuesta por
dos elementos, un metal, el Sodio y un no metal, el Cloro.
Ambos elementos por medio del enlace iónico, adquieren una estabilidad energética, la
cual es explicada por la regla del octeto. La regla dice que los átomos con excepción del
hidrógeno, adquieren estabilidad al poseer ocho electrones en su última capa.
Enlace Covalente
Si en los enlaces iónicos existía la donación de electrones, en los enlaces covalentes
ocurre el compartimiento de electrones entre los átomos que establecen el enlace. Esto
ocurre entre átomos que poseen poca diferencia de electronegatividad. En este tipo de
enlaces, hay dos tipos de situaciones.
La primera es cuando los átomos que constituyen el enlace son iguales. En este caso,
decimos que el enlace es covalente apolar, o sea, sin polos, pues ambos átomos atraen
igualmente los electrones del enlace, no existiendo polaridad.
La segunda es, cuando los átomos que constituyen el enlace son diferentes. En este
caso, decimos que ella es covalente polar, o sea, ocurre la formación de polos, pues los
átomos debido a la electronegatividad diferente entre ellos, atraen de forma diferente los
electrones constituyentes del enlace.
Las propiedades físicas de los compuestos moleculares se deben no solo al enlace
covalente entre los átomos, como también al tipo de interacción entre sus moléculas.
Las principales propiedades de los compuestos covalentes son:
Pueden existir, en condiciones ambientes, en los estados gaseoso, líquido y sólido.
Cuando se presentan en estado sólido, poseen puntos de fusión y ebullición más bajos,
comparados con los de las sustancias iónicas o metálicas.
Algunas son solubles en agua, otras son solubles en solventes orgánicas y otros aún, son
solubles en ambas.
Normalmente, no son conductoras de electricidad, ni siquiera puros, ni aún disueltos en
agua. La excepción a esta regla ocurre en el caso de los ácidos, que cuando están en
solución, conducen la corriente eléctrica.
Un ejemplo de compuesto covalente apolar es el oxígeno, presente en el aire que
respiramos, disuelto en el agua de los ríos y mares en los cuales los peces respirar y en el
proceso de combustión de la parafina de una vela.
Un ejemplo de compuesto covalente polar es el monóxido de dihidrógeno, conocido
popularmente como agua. Considerada un solvente universal, el agua corresponde al
70% en masa de nuestro cuerpo. Ella debería ser un gas, pero debido a la fuerte
interacción entre sus moléculas, conocida por “enlace de hidrógeno”, en temperatura y
presión ambientes, su estado físico es líquido.
Enlace Metálico
Los metales de un modo general son poco electronegativos, no ejerciendo por tanto, una
atracción muy fuerte sobre los electrones de la última capa. Debido a esta característica,
el enlace metálico se constituye por la configuración de retículos cristalinos,
perfectamente definidos, formados por cationes de carga eléctrica positiva que son
neutralizados por electrones, los cuales, en este caso, estarán presos a los átomos más
libres, lo que explica gran parte de las propiedades de los metales.
Principales propiedades de los compuestos metálicos:
Buenos conductores de calor y electricidad
La mayoría se presenta en estado sólido
La mayoría posee puntos de fusión y ebullición elevados
Son maleables o dúctiles
Poseen brillo característico
Un ejemplo de compuesto metálico, puede ser el oro, que es un metal noble, muy
valorizado en el mercado. El es generalmente comercializado en la forma de mezcla con
otros compuestos, mezcla que, en los metales tiene el nombre de aleación
MATERIALES EQUIPOS Y REACTIVOS
A) MATERIALES:
- 02 Equipos de multitester o equipo conductor de luz o electricidad
- O5 vasos de precipitación de 50 ml
- 10 pipetas graduadas DE 10ML
- 20 tubos de ensayo y 4 picetas
- 4 gradillas
- 1 balanza
- 4 pinzas y 4 espátulas
- 4 bombillas de succión
B) REACTIVOS
- Solución de ácido acético CH2COOH (vinagre)
- agua destilada
- Azúcar de mesa sacarosa
- NaCl
- solución HCl cc
- alcohol etílico C2H5OH
- acetona CH3COOH3
- aceite de cocina
III. PROCEDIMIENTO Y EXPERIMENTACION
EXPERIENCIA N 91 SOLUBILIDAD
1.- en un tubo de ensayo mesclar cada una de las siguientes sustancias
a) 1g de NaCl y 2ml de agua
b) 1g de azúcar y 2 mg de agua
c) 0,5 ml de aceite y 2 ml de alcohol etílico
d) 2 ml de aceite de cocina y 1 ml de acetona
e) 1 g de azúcar en 1ml de acetona
f) 1 ml de acetona y 2 ml de alcohol etílico
2. anote las observaciones del experimento
N° de tubo Reactivo 1 Reactivo 2 Observación
1 NaCl agua Se formó solución
parcial saturada
2 C12H22O11 agua Se formó disolución
3 Aceite Alcohol No hay disolución
aceite apolar agua
polar
4 aceite Acetona No son solubles
acetona polar
5 azúcar acetona No hubo disolución
azúcar polar,
acetona
ligeramente polar
6 acetona alcohol Se formó una
solución alcohol
polar acetona
ligeramente polar
EXPERIENCIA N° 02 EN ELECTRICA
1. En un vaso de precipitación de 50ml colocar 10 ml de las siguientes
sustancias.
a) Solución de NaCl AL 20 % m/v
b) Solución de alcohol etílica al 10 % v/v
c) Solución de acetona al 10 % v/v
d) Solución de acida acética al 5% v/v
e) Solución de azúcar al 10 % m/v
f) Solución de HCl cc
2. Introduzca en cada una de las soluciones las electrodos del multitester o en el
equipo conductor de luz y electricidad, teniendo en cuenta que al realizar cada
experiencia las electrodos deben lavarse previamente con agua destilada
3. Anote las observaciones de cada experimento
Vaso de precipitación Solución/tipo de
solución
Conductividad eléctrica
1 Cloruro de sodio
solución
Si conduce corriente
2 Alcohol etílico No conduce corriente
3 acetona No conduce corriente
4 Ácido acético No conduce corriente ,
se diluye se ioniza
5 azúcar No conduce corriente
6 Ácido clorhídrico Conduce corriente
porque se ioniza
IV. .Interpretación y discusión de resultados
V. Conclusiones Un enlace iónico es una fuerza de atracción enérgica que mantienen
unidos los iones. Dicho enlace se puede formar entre dos átomos por la transferencia
de electrones de la capa de valencia del otro. Los cationes monoatómicos de los
elementos tienen cargas iguales al número de grupos.
Un enlace covalente es una energía fuerza de atracción que mantiene unidos a dos
átomos por la comparación de sus electrones enlazantes son atraídos
simultáneamente hacia ambos núcleos atómicos y pasan una parte del tiempo cerca
de un átomo y otra parte del tiempo cerca del otro. Sin un par de electrones no es
compartido igualmente, el enlace es polar. Esta polaridad es el resultado de la
diferencia que hay en las electronegatividades de los átomos para atraer hacia ellos
los electrones enlazantes.
La regla del octeto predice que los átomos forman suficientes enlaces covalentes
para rodearse de ocho electrones cada uno. Existen excepciones para la regla del
octeto, en particular para los compuestos covalentes de berilio, para los elementos
del grupo 3A y para los elementos del tercer periodo y subsecuentes de la tabla
periódica
VI. CUESTIONARIO
A. ¿Cuándo una sustancia es soluble en otra?
Petróleo hidrocarburo enlace covalente más el aceite se solubiliza- densidad
Densidad del alcohol 0,8----densidad del agua 0,1 hay solubilidad
B. ¿De qué manera influyen los enlaces químicos y físicos en la solubilidad de
las sustancias? La presión influye en gran medida en la solubilidad de gases
en líquidos, pero apenas influye en la solubilidad de sólidos en líquidos, por lo
cual no la tendremos en cuenta en las disoluciones de sólidos iónicos en
líquidos.
En cuanto a la temperatura, un aumento de ella aumenta la solubilidad de un
sólido en un líquido en la mayoría de los casos, aunque lo hace en diferente
magnitud, según el compuesto de que se trate y de lo endotérmico que sea el
proceso de disolución:
C. ¿Porque algunas sustancias conducen la corriente eléctrica y otras no?- una
sustancia para conducir la corriente eléctrica debe tener una disociación.
D. ¿que son soluciones electrolitos y cuál es el papel que sufren en los procesos
bilógicos?
Los electrolitos son unas substancias, que al disolverse en el agua de las
células del cuerpo se rompen en pequeñas partículas que transportan cargas
eléctricas. El papel que juegan es el de mantener el equilibrio de los fluidos en
las células para que éstas funcionen correctamente. Los electrolitos
principales son el sodio, el potasio y el cloro, y en una medida menor el calcio,
el magnesio y el bicarbonato
La regulación de los procesos biológicos ocurre cuando algún proceso es
modulado en su frecuencia, velocidad o alcance. Los procesos biológicos
están regulados por muchos medios; entre los ejemplos figuran el control de
la expresión génica, la modificación proteica o la interacción con una molécula
de proteína o sustrato.
Los procesos biológicos están regulados a menudo por la genética. En
algunos casos, la mutación puede llevar a interrupciones a un proceso
biológico. Los virus tienen un conjunto de procesos biológicos por los que se
reproducen.
Entre los procesos biológicos figuran:
Adherencia celular, la unión de una célula, a otra célula o bien a un sustrato
subyacente como la matriz extracelular, a través de moléculas de adherencia
celular.
Comunicación celular o unión entre una célula y otra célula, entre una célula y
una matriz extracelular, o entre un célula y cualquier otro aspecto de su
entorno.
Morfogénesis, crecimiento celular y diferenciación celular
Proceso fisiológico celular, los procesos pertinentes a la función integrada de
una célula.
Reconocimiento celular, el proceso por el cual una célula en un organismo
multicelular interpreta sus alrededores.
Proceso fisiológico, aquellos procesos específicamente pertinentes al
funcionalmente de las unidades vivas integradas: células, tejidos, órganos y
organismos.
Pigmentación
Reproducción
Digestión
Respuesta a estímulos, un cambio de estado o actividad de una célula u
organismo (en términos de movimiento, secreción, producción de enzimas,
expresión génica, etc.) como resultado de un estímulo.
Interacción entre organismos. Los procesos por los cuales un organismo tiene
un efecto observable en otro organismo de su misma o diferente especie.
También: fermentación, fertilización, germinación, tropismo, hibridación,
metamorfosis, fotosíntesis, transpiración.
E. Realiza un esquema de los tipos de enlaces e indica quienes conducen o no
conducen la electricidad.
CONCLUSIÓN
Durante la realización de la práctica se pudo observar la importancia que tiene conocer
los equipos y materiales de laboratorio, su uso y manejo, ya que de esto dependerá la
buena ejecución de la práctica y la obtención de resultados más confiables y al mismo
tiempo conocer las propiedades de las sustancias a utilizar en el laboratorio, así como
también las medidas de primeros auxilios que deberán ser prestados en caso de
accidentes.
Bueno, como hemos visto al hacer jugo o endulzar al té se producen una serie de
reacciones químicas que nunca hubiéramos imaginado. Los enlaces, las soluciones, la
fractura de enlaces y la formación de otros, ¿quien lo hubiera imaginado? Pero ahora que
sabemos todo esto, cuando nos sentemos a tomarnos un té ya no se nos olvidara pensar
en esto.
Bueno hasta aquí llega nuestro informe, y con estos ejemplos de lo aprendido concluimos
este informe:
BIBLIOGRAFÍA
Centro Nacional de Investigaciones Científicas. Universidad de Texas (2001): Ciencias
Químicas. EE. UU.
Fuertes, F. (2006): Estudio de los efectos fitosanitarios del agua ozonizada. Madrid.
España
Chang, Raymond. (1998). Química. México: McGraw-Hill. Sexta Edición.
Ebbing, Darrell D. (1996). Química General. México. McGraw-Hill. Quinta edición
Whitten, K. W., Davis R.E. y Peck, M. L. (1998). Química General. España: McGraw-Hill.
Quin
ANEXOS

Más contenido relacionado

La actualidad más candente

Guia laboratorio de_quimica_i__p_my_et_(2014)
Guia laboratorio de_quimica_i__p_my_et_(2014)Guia laboratorio de_quimica_i__p_my_et_(2014)
Guia laboratorio de_quimica_i__p_my_et_(2014)Nicole Vásquez Olave
 
RECONOCIMIENTO MATERIAL DE LABORATORIO
RECONOCIMIENTO MATERIAL DE LABORATORIORECONOCIMIENTO MATERIAL DE LABORATORIO
RECONOCIMIENTO MATERIAL DE LABORATORIOproyectosdecorazon
 
Informematerialdelaboratorio 150321235657-conversion-gate01
Informematerialdelaboratorio 150321235657-conversion-gate01Informematerialdelaboratorio 150321235657-conversion-gate01
Informematerialdelaboratorio 150321235657-conversion-gate01isabel guerrero
 
Manualquimicaanalitica
ManualquimicaanaliticaManualquimicaanalitica
ManualquimicaanaliticaYovany Vargas
 
VISITA A LABORATORIO DE INVESTIGACIÓN
VISITA A LABORATORIO DE INVESTIGACIÓNVISITA A LABORATORIO DE INVESTIGACIÓN
VISITA A LABORATORIO DE INVESTIGACIÓNneyra' XiOp
 
Manual paracticas de bioquimica
Manual paracticas de bioquimicaManual paracticas de bioquimica
Manual paracticas de bioquimicaAnnaly Alcala
 
Manual de prácticas de laboratorio
Manual de prácticas de laboratorioManual de prácticas de laboratorio
Manual de prácticas de laboratoriourkiki
 
Practica 1 de ciencias iii
Practica 1 de ciencias iiiPractica 1 de ciencias iii
Practica 1 de ciencias iiiDaniel Lopez
 
Informe de laboratorio nâ°01
Informe de laboratorio nâ°01Informe de laboratorio nâ°01
Informe de laboratorio nâ°01joseprimofe
 
Informe 1 reconocimiento de laboratorio
Informe 1 reconocimiento de laboratorioInforme 1 reconocimiento de laboratorio
Informe 1 reconocimiento de laboratorioGloria Cerna Alvites
 
PP VISITA AL LABORATORIO DE LA UAMI
PP VISITA AL LABORATORIO DE LA UAMIPP VISITA AL LABORATORIO DE LA UAMI
PP VISITA AL LABORATORIO DE LA UAMIPREPA2600C
 
Organica 1 practica 1 conocimiento de la seguridad
Organica 1 practica  1 conocimiento de la seguridadOrganica 1 practica  1 conocimiento de la seguridad
Organica 1 practica 1 conocimiento de la seguridadPeterr David
 
Manual practicas quimica
Manual practicas quimicaManual practicas quimica
Manual practicas quimicaivan_antrax
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias iDaniel Lopez
 
Practica 1 de ciencias ii
Practica 1 de ciencias iiPractica 1 de ciencias ii
Practica 1 de ciencias iiDaniel Lopez
 
Materiales, insumos y normas de laboratorio
Materiales, insumos y normas de laboratorioMateriales, insumos y normas de laboratorio
Materiales, insumos y normas de laboratorioKaren Maldonado
 

La actualidad más candente (20)

Manual bioquimica i
Manual bioquimica iManual bioquimica i
Manual bioquimica i
 
Guia laboratorio de_quimica_i__p_my_et_(2014)
Guia laboratorio de_quimica_i__p_my_et_(2014)Guia laboratorio de_quimica_i__p_my_et_(2014)
Guia laboratorio de_quimica_i__p_my_et_(2014)
 
RECONOCIMIENTO MATERIAL DE LABORATORIO
RECONOCIMIENTO MATERIAL DE LABORATORIORECONOCIMIENTO MATERIAL DE LABORATORIO
RECONOCIMIENTO MATERIAL DE LABORATORIO
 
Informematerialdelaboratorio 150321235657-conversion-gate01
Informematerialdelaboratorio 150321235657-conversion-gate01Informematerialdelaboratorio 150321235657-conversion-gate01
Informematerialdelaboratorio 150321235657-conversion-gate01
 
Manualquimicaanalitica
ManualquimicaanaliticaManualquimicaanalitica
Manualquimicaanalitica
 
VISITA A LABORATORIO DE INVESTIGACIÓN
VISITA A LABORATORIO DE INVESTIGACIÓNVISITA A LABORATORIO DE INVESTIGACIÓN
VISITA A LABORATORIO DE INVESTIGACIÓN
 
Manual paracticas de bioquimica
Manual paracticas de bioquimicaManual paracticas de bioquimica
Manual paracticas de bioquimica
 
Manual de prácticas de laboratorio
Manual de prácticas de laboratorioManual de prácticas de laboratorio
Manual de prácticas de laboratorio
 
Practica 1 de ciencias iii
Practica 1 de ciencias iiiPractica 1 de ciencias iii
Practica 1 de ciencias iii
 
Informe de laboratorio nâ°01
Informe de laboratorio nâ°01Informe de laboratorio nâ°01
Informe de laboratorio nâ°01
 
Informe 1 reconocimiento de laboratorio
Informe 1 reconocimiento de laboratorioInforme 1 reconocimiento de laboratorio
Informe 1 reconocimiento de laboratorio
 
Manual de quimica ene jun 2013
Manual de quimica ene jun 2013Manual de quimica ene jun 2013
Manual de quimica ene jun 2013
 
PP VISITA AL LABORATORIO DE LA UAMI
PP VISITA AL LABORATORIO DE LA UAMIPP VISITA AL LABORATORIO DE LA UAMI
PP VISITA AL LABORATORIO DE LA UAMI
 
MANUAL DE LABORATORIO DE QUÍMICA BÁSICA
MANUAL DE LABORATORIO DE QUÍMICA BÁSICAMANUAL DE LABORATORIO DE QUÍMICA BÁSICA
MANUAL DE LABORATORIO DE QUÍMICA BÁSICA
 
Organica 1 practica 1 conocimiento de la seguridad
Organica 1 practica  1 conocimiento de la seguridadOrganica 1 practica  1 conocimiento de la seguridad
Organica 1 practica 1 conocimiento de la seguridad
 
Manual practicas quimica
Manual practicas quimicaManual practicas quimica
Manual practicas quimica
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias i
 
Practica 1 de ciencias ii
Practica 1 de ciencias iiPractica 1 de ciencias ii
Practica 1 de ciencias ii
 
Materiales, insumos y normas de laboratorio
Materiales, insumos y normas de laboratorioMateriales, insumos y normas de laboratorio
Materiales, insumos y normas de laboratorio
 
Manual Inorga
Manual InorgaManual Inorga
Manual Inorga
 

Similar a Trabajo de campo btt olga

Manual de practicas_por_competencias
Manual de practicas_por_competenciasManual de practicas_por_competencias
Manual de practicas_por_competenciasHuri Velasco Loredo
 
Practicas de laboratorio
Practicas de laboratorioPracticas de laboratorio
Practicas de laboratorioquimicacar
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias iDaniel Lopez
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias iDaniel Lopez
 
Manual de prácticas de Biologìa I
Manual de prácticas de Biologìa IManual de prácticas de Biologìa I
Manual de prácticas de Biologìa IJEDANNIE Apellidos
 
Yamunaque cruz jose luis equipos y materiales de laboratorio clinico
Yamunaque cruz jose luis  equipos y materiales de laboratorio clinicoYamunaque cruz jose luis  equipos y materiales de laboratorio clinico
Yamunaque cruz jose luis equipos y materiales de laboratorio clinicoluiggii
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias iDaniel Lopez
 
Temas selectos de bio
Temas selectos de bioTemas selectos de bio
Temas selectos de bioclaudecmom
 
materiales de microbiologia.docx
materiales de microbiologia.docxmateriales de microbiologia.docx
materiales de microbiologia.docxNelsiaMilyCcasaMgvj
 
Visita al laboratorio de investigacion de electroquimica UAMI
Visita al laboratorio de investigacion de electroquimica UAMIVisita al laboratorio de investigacion de electroquimica UAMI
Visita al laboratorio de investigacion de electroquimica UAMIPREPA2600C
 
Organica 1 practica 2 conocimiento del material de laboratorio
Organica 1 practica 2 conocimiento del material de laboratorioOrganica 1 practica 2 conocimiento del material de laboratorio
Organica 1 practica 2 conocimiento del material de laboratorioPeterr David
 

Similar a Trabajo de campo btt olga (20)

Manual quimica-3
Manual quimica-3Manual quimica-3
Manual quimica-3
 
Sesion materiales de laboratorio
Sesion materiales de laboratorioSesion materiales de laboratorio
Sesion materiales de laboratorio
 
Práctica 1 introducción 2016
Práctica 1 introducción 2016Práctica 1 introducción 2016
Práctica 1 introducción 2016
 
Manual de practicas_por_competencias
Manual de practicas_por_competenciasManual de practicas_por_competencias
Manual de practicas_por_competencias
 
Material de laboratorio teoría
Material de laboratorio teoríaMaterial de laboratorio teoría
Material de laboratorio teoría
 
Practicas de laboratorio
Practicas de laboratorioPracticas de laboratorio
Practicas de laboratorio
 
Prctlabbiologia2014 140924192621-phpapp01
Prctlabbiologia2014 140924192621-phpapp01Prctlabbiologia2014 140924192621-phpapp01
Prctlabbiologia2014 140924192621-phpapp01
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias i
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias i
 
Manual de prácticas de Biologìa I
Manual de prácticas de Biologìa IManual de prácticas de Biologìa I
Manual de prácticas de Biologìa I
 
Yamunaque cruz jose luis equipos y materiales de laboratorio clinico
Yamunaque cruz jose luis  equipos y materiales de laboratorio clinicoYamunaque cruz jose luis  equipos y materiales de laboratorio clinico
Yamunaque cruz jose luis equipos y materiales de laboratorio clinico
 
Practica 1 de ciencias i
Practica 1 de ciencias iPractica 1 de ciencias i
Practica 1 de ciencias i
 
PRACTICAS DE LABORATORIO DE BIOLOGÍA
PRACTICAS DE LABORATORIO DE BIOLOGÍAPRACTICAS DE LABORATORIO DE BIOLOGÍA
PRACTICAS DE LABORATORIO DE BIOLOGÍA
 
Temas selectos de bio
Temas selectos de bioTemas selectos de bio
Temas selectos de bio
 
materiales de microbiologia.docx
materiales de microbiologia.docxmateriales de microbiologia.docx
materiales de microbiologia.docx
 
Practicas de Biologia.pdf
Practicas de Biologia.pdfPracticas de Biologia.pdf
Practicas de Biologia.pdf
 
Visita al laboratorio de investigacion de electroquimica UAMI
Visita al laboratorio de investigacion de electroquimica UAMIVisita al laboratorio de investigacion de electroquimica UAMI
Visita al laboratorio de investigacion de electroquimica UAMI
 
Uami 5 (1)
Uami 5 (1)Uami 5 (1)
Uami 5 (1)
 
Monografia
MonografiaMonografia
Monografia
 
Organica 1 practica 2 conocimiento del material de laboratorio
Organica 1 practica 2 conocimiento del material de laboratorioOrganica 1 practica 2 conocimiento del material de laboratorio
Organica 1 practica 2 conocimiento del material de laboratorio
 

Último

Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
Cuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdfCuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdfBrandonsanchezdoming
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 

Último (20)

Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Cuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdfCuadernillo de las sílabas trabadas.pdf
Cuadernillo de las sílabas trabadas.pdf
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 

Trabajo de campo btt olga

  • 1. “AÑO DE LA DIVERSIFICACIÓN PRODUCTIVA Y DEL FORTALECIMIENTO DE LA EDUCACIÓN” UNIDAD DE GESTIÓN EDUCATIVA LOCAL CHICLAYO UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO LAMBAYEQUE “PROMOCIÓN DEL USO DE MATERIAL DE LABORATORIO DE CIENCIAS PARA EL LOGRO DE APRENDIZAJES SIGNIFICATIVOS DE CTA” – 2015 AUTORES:  Gonzáles Gonzáles María Olga DOCENTE ORGANIZADORA: Rosa Esther Guzmán Larrea PROFESOR DEL AREA: Ingeniero Químico : Escribano Siesquen William LAMBAYEQUE, 20 DE MARZO DEL 2015
  • 2. ÍNDICE INTRODUCCIÓN.....................................................................................................................2 PLANTEAMIENTO DEL PROBLEMA.....................................................................................2 FORMULACIÓN DEL PROBLEMA ........................................................................................3 JUSTIFICACIÓN ....................................................................................................................3 METODOLOGÍA .....................................................................................................................3 MARCO TEÓRICO .................................................................................................................3 TRABAJO DE RECONOCIMIENTO DE MATERIALES DE LABORATORIO........................5 OBJETIVOS:...........................................................................................................................5 1.1.GENERAL.......................................................................................................................................... 6 Observar y Reconocer el material que se usa en los laboratorios..........................................................6 Conocer los instrumentos básicos utilizados en un laboratorio al igual que los símbolos de riesgo y de peligrosidad........................................................................................................................................... 6 1.2. ESPECIFICOS.................................................................................................................................... 6 MATERIAL Y PROCEDIMIENTO:..................................................................................................................9 PROCEDIMIENTO:.................................................................................................................................... 24 INTRODUCCIÓN Los materiales de laboratorio son aquellas que pueden utilizarse para las prácticas de descubrimiento de los alumnos. Para ello el alumno necesita crear su propio material en los lugares donde no se cuenta con laboratorios y así poder experimentar prácticas que van ha se útiles en su vida cotidiana. PLANTEAMIENTO DEL PROBLEMA
  • 3. El material de laboratorio es muy importante para despertar el interés y descubrimiento por la Ciencia en cada uno de nuestros Estudiantes. Actualmente en la gran mayoría de colegios de las zonas rurales no contamos ni siquiera con un ambiente para realizar experimentos con las medidas de seguridad en la cual muchas veces uno elabora sus propios materiales, pero no siempre son remplazados los materiales. FORMULACIÓN DEL PROBLEMA Para la formulación del problema se planteó la siguiente interrogante ¿Cómo obtener materiales de laboratorio para que los alumnos siempre realicen sus experimentos y lleven la teoría la práctica. JUSTIFICACIÓN Lo que se busca orientar a los docentes es solucionar a la carencia de materiales de laboratorio ver cómo solucionar a fin de que el alumno siempre este motivado por las investigaciones y experimentaciones El trabajo propuesto, mediante la aplicación de la teoría y los conceptos básicos, busca satisfacer las necesidades de la comunidad estudiantil para mejorar la la participación de los Educandos. Con la creación de materiales de reciclaje se busca satisfacer la necesidad de la población estudiantil y convertir en un proyecto. . METODOLOGÍA Ante la “promoción del uso de material de laboratorio de ciencias para el logro de aprendizajes significativos de CTA” se realizó capacitación a los docentes de CTA en la Universidad Nacional Pedro Ruíz gallo para conocer y difundir el manejo y uso de los materiales de laboratorio en nuestras Instituciones Educativas que estuvo a cargo del Ing. William Escribano Siesquen. MARCO TEÓRICO
  • 4. ¿Qué es material de laboratorio? Como se puede apreciar en la definición de material, el término proviene del latín materiales, el cual hace referencia a aquello que se encuentra vinculado con la materia. Sin embargo, en su sentido amplio hace alusión a los elementos necesarios para llevar a cabo una determinada acción; es decir, los diversos componentes, ya sean reales o abstractos, que se reúnen en un grupo y que se emplean con fines específicos. En un laboratorio los materiales deben ser de buena calidad pues allí se realizarán investigaciones que, en muchos casos son de vital importancia para ampliar los conocimientos en un área específica de la ciencia; por ende, el lugar donde se sitúen debe ser apropiado, contar con una ventilación e iluminación adecuada y los instrumentos y materiales que hagan propicio el normal funcionamiento del lugar. El material de laboratorio puede construirse con componentes muy variados, desde vidrio hasta madera pasando por goma, metal y plástico. Las características del material dependerán de su función, ya que la manipulación de ciertos productos implica riesgos. Entre las herramientas más habituales que se incluyen dentro del material de laboratorio, se encuentran los matraces (un recipiente con medidas), la pipeta, el tubo de ensayo, la probeta, el vaso de bohemia, el cristalizador, el embudo, el vaso de precipitados y el encendedor. Importancia de Material de Laboratorio Los instrumentos de laboratorio están efectivamente diseñados para las funciones específicas que despeñan. Sin estos no se podría realizar la mayoría de los trabajos. ¿ Cómo determinar la masa de una sustancia sin una balanza?. ¿Dónde realizar una reacción química, una filtración, destilación o una evaporación sin un matraz, embudo, refrigerante o una cápsula de porcelana. Definitivamente son indispensables estos equipos, no podemos trabajar sin ellos. Limpieza del material de laboratorio
  • 5. La importancia d q el material de laboratorio siempre este limpio es q al hacer una nueva practica o análisis no quede residuos del anterior, si esto pasa por ejemplo cuando vas a preparan una solución y no lavas bien los materiales al usarlos de nuevo tu solución va a quedar contaminada por el reactivo anterior, esto puede llegar a afectar los resultados de tu nuevo análisis,, además depende de que reactivos sean hay q tener mucho cuidado con las reacciones q se llevan a cabo, podrían ser peligrosas. Porque un laboratorio.- El objetivo principal de los laboratorios es brindar a los estudiantes las herramientas necesarias para que realicen experimentos relacionados con los contenidos de los programas de estudio cumpliendo así la exigencia de los fututos profesionales. En los laboratorios se organizan las prácticas de forma calendarizada para que así no se quede ninguna sección sin atender, por lo cual los estudiantes tienen la oportunidad de realizar de 6 a 7 prácticas en el ciclo, los cuales son atendidos por docentes experimentados en las diferentes áreas de las ciencias naturales. También en el laboratorio de Biología y Química se atienden práctica para los estudiantes de la carrera de Física recibiendo las secciones de Anatomía y Fisiología, en lo cual está equipado con: esqueletos artificiales y naturales, y una variedad de maquetas en anatomía humana. Como funciona.- Laboratorio especializado que permite el desarrollo de prácticas, donde el estudiante podrá generar, observar y analizar reacciones químicas y biológicas de los objetos en estudio, obteniendo así experiencias sensoriales y de aprendizaje directo. Este cuenta con químicas a través de software, reactivos y elementos químicos y de esta forma podrán ampliar los conocimientos vistos en clases. Este laboratorio este equipado con dispositivos de medición que pueden ser conectados a una computadora y recoger los datos de los experimento e investigaciones de los estudiantes lo que permite facilitar hacer cálculos, para después analizarlos y realizar las respectivas conclusiones de sus experimentos. TRABAJO DE RECONOCIMIENTO DE MATERIALES DE LABORATORIO OBJETIVOS:
  • 6. 1.1. GENERAL • Observar y Reconocer el material que se usa en los laboratorios. • Conocer los instrumentos básicos utilizados en un laboratorio al igual que los símbolos de riesgo y de peligrosidad. 1.2. ESPECIFICOS • Demostrar que si se puede trabajar y elaborar nuestro propio material para realizar experimentos. • Conocer el nombre de cada instrumento utilizados en el laboratorio para realizar las prácticas. • Comprender e identificar la utilidad de los instrumentos y equipo de laboratorio. • Identificar los símbolos de peligrosidad para ser cuidadosos y no poner en riesgo la salud y la vida de otros ni la de nosotros mismos. • Explicar científicamente cada uno de los experimentos desarrollados en la práctica de laboratorio. Reconocimiento y uso de los principales materiales del laboratorio. Conceptos básicos. Fases y transiciones de fases Termómetro. Usado para: medir temperatura. Varilla de vidrio. Usada para: agitar. Matraz. Usado para: contener y calentar líquidos. Vaso de Bohemia. Usado para: contener, calentar, baños de agua. Probeta. Usada para: medir volumen.
  • 7. Cuentagotas o pipeta Pasteur. Usado para: agregar o extraer líquidos por goteo. Piseta. Usado como: depósito de agua destilada, para luego verterla en donde sea necesario. Matraz aforado. Usado para: preparar soluciones. Mortero. Usado para: pulverizar sólidos y/o mezclarlos. Embudo de decantación. Usado para: separar líquidos no miscibles. Pipeta aforada. Usada para: medir volumen. Refrigerante. Usado para: condensar vapores. Matraz Erlenmeyer. Usado para: calentar, contener. Embudo. Usado para: filtrar y trasvasar. Pipeta graduada: usado para medir volumen. Vidrio de reloj. Usado para: contener pequeñas cantidades de sólidos. Cristalizador. Usado para: realizar cristalizaciones. Cápsula (metal o porcelana). Usada para: calentar durante tiempo prolongado a temperaturas elevadas. Mechero Bunsen (de gas). Usado para: calentar. Crisol. Usado para: calentar durante tiempo prolongado a temperaturas elevadas. Trípode. Usado para: sostener la rejilla metálica o el triángulo de pipa. Mechero a alcohol. Usado para: calentar. Pinza de metal. Usada para: manipular material de vidrio o de porcelana que ha sido calentado. Pera de goma. Usada para: cargar la pipeta.. Tapones de goma. Usados para: tapar frascos, tubos, matraces. Espátulas y cucharas. Usadas para: retirar sólidos de los frascos. Tubo de goma. Usado para: hacer conexiones.
  • 8. Balanza. Usada para: medir masa. . Triángulo de pipa. Usado para: sostener cápsula o crisol al realizar calentamiento directo sobre la llama del mechero. Triangulo de carbón .
  • 9. trípode: La finalidad que cumple el trípode de laboratorio es solo una. ya que es utilizado principalmente como una herramienta de sostén para la rejilla de asbesto, o lo que se sitúa sobre este. Con este material es posible la preparación de montajes para calentar, utilizando como complementos el mechero (dependiendo del tipo). También sirve para sujetar con mayor comodidad cualquier material que se use en el laboratorio que vaya a llenarse con productos peligrosos o líquidos de cualquier tipo MATERIAL Y PROCEDIMIENTO: Gradilla.- Sirve para colocar tubos de ensayo. Este utensilio facilita el manejo de los tubos Es una tela de alambre de forma cuadrangular con la parte central recubierta de asbesto, con el objeto de lograr una mejor distribución del calor. Se utiliza para sostener utensilios que se van a someter a un calentamiento y con ayuda de este utensilio el calentamiento se hace uniforme.
  • 10. Rejilla de asbesto.- Rejilla metálica. Usada para: sostener los recipientes de vidrio y lograr una distribución uniforme del calor en la base de los mismos Soporte universal y pinzas. Usados para: sostener y organizar el material al combinar aro metálico y diferentes pinzas Embudo de Buchner.- Son embudos de porcelana o vidrio de diferentes diámetros, en su parte interna se coloca un disco con orificios, en él se colocan los medios filtrantes. se utiliza para realizar filtraciones al vacío.
  • 11. Frasco gotero. Usado para: verter líquidos por goteo Balón de destilación: Es un frasco de vidrio, de cuello largo y cuerpo esférico. Está diseñado para calentamiento uniforme. Su base redondeada permite agitar fácilmente su contenido y un calentamiento más uniforme. Está hecho generalmente de vidrio borosilicatado. También se le llama 'Matraz Florentino'. Hace parte del 'Material de Vidrio' del laboratorio.
  • 12. Las pinzas de laboratorio son un tipo de sujeción ajustable, generalmente de metal, que forma parte del equipamiento de laboratorio, mediante la cual se pueden sustentar diferentes objetos de vidrio (embudos de laboratorio, buretas...) o realizar montajes más elaborados (aparato de destilación). Se sujetan mediante una doble nuez a un pie o soporte de laboratorio o, en caso de montajes más complejos (línea de Schlenk), a una armadura o rejilla fija. Metal, madera. Escobillas. Usadas para: limpiar el interior del material de vidrio
  • 13.
  • 14. Pipeta: La pipeta es un instrumento volumétrico de laboratorio que permite medir alícuotas de líquido con bastante precisión. Suelen ser de vidrio. Está formado por un tubo transparente que termina en una de sus puntas de forma cónica, y tiene una graduación (una serie de marcas grabadas) indicando distintos volúmenes. tubo de ensayo: El tubo de ensayo o tubo de prueba es parte del material de vidrio de un laboratorio de química. Consiste en un pequeño tubo de vidrio con una punta abierta (que puede poseer una tapa) y la otra cerrada y redondeada, que se utiliza en los laboratorios para contener pequeñas muestras líquidas. Aunque pueden tener otras fases. Como realizar reacciones en pequeña escala, etc.
  • 15. Probeta: La probeta o cilindro graduable es un instrumento volumétrico, que permite medir volúmenes superiores y más rápidamente que las pipetas, aunque con menor precisión. Sirve para contener líquidos Embudo: El embudo es un instrumento empleado para canalizar los líquidos en recipientes con bocas estrechas usado principalmente en cocina y laboratorio, también se puede usar en autos para llenar tanques de gasolina o meter el aceite en el motor sin derramar una gota. El embudo tiene una forma de dos conos generalmente, en su parte superior el cono mayor es el encargado de recibir la entrada de los líquidos y el inferior es el encargado de canalizar a un recipiente el flujo proveniente de la parte superior, algunas veces la parte inferior es un cilindro. Los embudos suelen hacerse de plástico, vidrio, y otros materiales.. .
  • 16. Mortero con pilón: Sirve para triturar o moler algunos componentes de consistencia sólida (elementos químicos) papel de filtro: El papel de filtro es un papel que se corta en forma redondeada y se introduce en un embudo, con el fin de ser filtro para las impurezas insolubles y permitir el paso a la solución a través de sus poros. El "papel filtro" se usa principalmente en laboratorios analíticos para filtrar soluciones homogéneas. Normalmente está constituido por derivados de celulosa y permite el manejo de soluciones con pH entre 0 y 12 y temperaturas de hasta 120°C.
  • 17. Pinza de madera. Usada para: sostener el tubo de ensayo para calentarlo directamente a la llama. El matraz de Erlenmeyer, simplemente Erlenmeyer o matraz, también conocido como matraz de síntesis extrema de químicos, es uno de los frascos de vidrio más ampliamente utilizados en laboratorios de Química y Física.
  • 18. Función Se utiliza para el armado de aparatos de destilación o para hacer reaccionar sustancias que necesitan un largo calentamiento. También sirve para contener líquidos que deben ser conservados durante mucho tiempo. Fue creado en el año 1861 por el químico Richard August Carl Emil Erlenmeyer (1825- [[1909). Matraz de kitasato o de filtrado. Tiene la misma forma que el matraz erlemeyer, pero en su cuello se ha diseñado un orificio y se le ha incluido un tramo de tubo de vidrio, llamado vástago, para permitir su conexión a diferentes dispositivos.
  • 19. Pipetas graduadas.- La Pipeta volumétrica está hecha para entregar un volumen bien determinado, el que está dado por una o dos marcas en la pipeta. Si la marca es una sola, el líquido se debe dejar escurrir sin soplar, que baje por capilaridad solamente esperando 15 segundos luego que cayó la última gota. Manejo de la pipeta • El líquido se aspira mediante un ligero vacío usando bulbo de succión o propipeta, nunca la boca. • Asegurarse que no haya burbujas ni espuma en el líquido. • Limpiar la punta de la pipeta antes de trasladar líquido • Llenar la pipeta sobre la marca de graduación y trasladar el volumen deseado. El borde del menisco debe quedar sobre la marca de graduación.
  • 20. MECHERO DE BUNSEN Un mechero o quemador Bunsen es un instrumento utilizado en laboratorios científicos que se usa siempre que se requiere contar con una fuente de calor, ya sea para producir, acelerar una reacción química, calentar, efectuar un cambio físico y esterilizar muestras o reactivos químicos. Mechero de alcohol 1. se utiliza mucho en los laboratorios de química debido a que proporciona una llama caliente, constante y sin humo. 2. Se utiliza en laboratorio para hacer combustión. 3. Se utiliza cuando no se necesita un gran poder calorífico. Refrigerante de serpentin.- Es un refrigerante que también recibe el nombre de: Refrigerante de Allin. Es un tubo de vidrio que presenta en cada extremo dos vástagos dispuestos en forma alterna. En la parte interna presenta otro tubo que se continúa al exterior, terminando en un pico gotero. Su nombre se debe al tubo interno que presenta. Se utiliza como condensador en destilaciones.
  • 21. Matraz de reacción Es un recipiente que permite contener sustancias. Matraz de destilación Un vaso de precipitados o vaso de precipitado es un recipiente cilíndrico de vidrio fino que se utiliza muy comúnmente en el laboratorio, sobre todo, para preparar o calentar sustancias y traspasar líquidos.
  • 22. Fiola Es un recipiente de vidrio que se utiliza sobre todo para contener y medir líquidos. Se emplean en operaciones de análisis químico cuantitativo, para preparar soluciones de concentraciones definidas. Frasco de reactivo Permite guardar sustancias para almacenarlas los hay ámbar y transparentes los de color ámbar se utilizan para guardar sustancias que son alteradas por la acción de la luz del sol, los de color transparente se utilizan para guardar sustancias que no son afectadas por la luz solar. Balón de base plana Está diseñado para calentamiento uniforme, y se produce con distintos grosores de vidrio para diferentes usos.
  • 23. Centrífugas Son muy útiles para precipitar células y moléculas. Vienen en distintos tamaños y con distintas capacidades en el manejo de muestras. Este aparato somete la muestra a fuerzas de aceleración que obligan a las moléculas a concentrarse en el fondo del envase utilizado, separándolas del medio en que se encuentran. Incluso, bajo ciertos métodos se puede generar un gradiente de concentraciones dentro del mismo tubo, separando distintas moléculas a distintos niveles o fases dentro del tubo. Con ayuda de jeringas, se puede perforar la pared del tubo y extraer del mismo sólo aquella fase donde se encuentren las moléculas de interés. Entre las centrífugas que usaremos durante el semestre están la centrífuga refrigerada, que nos va a permitir separar células de los medios de cultivo. El rotor de esta centrifuga puede sostener tubos de 50 ml, pero puede ser intercambiado por rotores que sostienen botellas de cultivo. El micro centrífugo es una versión más pequeña de la descrita anteriormente. Es compacta, se coloca sobre la mesa y procesa muestras de hasta 2 ml. Es muy útil para precipitar ADN y otras sustancias que se trabajan en volúmenes pequeños. MATERIAL PERSONAL COTIDIANO OBLIGATORIO.
  • 24. PROCEDIMIENTO: RESULTADOS: Termómetro: se utiliza para medir la temperatura. Tubo de ensayo: son cilindros de vidrio cerrados por uno de sus extremos que se emplea para calentar, disolver o hacer reaccionar pequeñas cantidades de sustancias. Las hay de vidrio ordinario y de "PIREX ". Estas últimas son las que se deben utilizar cuando se necesita calentar. Vaso de precipitado: se usa como recipiente y también para obtener el precipitado de una sustancia. PROCEDIMIENTO EXPERIMENTAL • Se reconocieron los instrumentos que habían en el laboratorio • Con el apoyo de la guía de laboratorio se identificaron algunos materiales. • Se habló sobre ellos • Se colocó el uso de cada uno de los materiales DISCUSIÓN DE RESULTADOS • Se pudo reconocer y saber cómo se llaman y como se utilizan los materiales de laboratorio. • También se supo la forma adecuada de utilizar los materiales • Se aprendió de cómo se limpian los materiales • Se aprendió las normas del laboratorio
  • 25. Las fases de la materia reflejan los estados de energía. Toda la materia en el universo tiene propiedades que son dictadas por una serie de factores. Entre estos se encuentran las propiedades químicas fundamental que proviene de la estructura atómica y molecular de la materia. Además, las propiedades adicionales proceden del estado actual de la materia o fase. Esto es un reflejo del estado de energía de la materia en un punto dado en el tiempo. • ¿Cuáles son las fases de la materia? La fase sólida, líquida y gaseosa de la materia
  • 26. Sólido Cuando la materia está en estado sólido está en su forma de energía más baja. Esta baja energía resulta en una estructura en la que las diferentes moléculas de una materia dada establecen lazos firmes entre sí, dando como resultado una estructura que es muy rígida en su volumen y forma. El estado de baja energía significa que hay un cierto movimiento de los átomos individuales, pero no lo suficiente como para perturbar las propiedades rígidas de la estructura en general. Líquido tiene un estado de energía más alto que la materia en la fase sólida. El resultado es que mientras que la estructura del material mantiene un volumen constante, el estado de energía más alto significa que los enlaces entre las diferentes moléculas son menos estables. Por consiguiente, mientras que el volumen del líquido se mantiene constante, su estructura física es maleable y tomará la forma de cualquier recipiente que lo contiene. El grado en el que un líquido se resiste a cambiar su forma es una propiedad llamada viscosidad. Gas Cuando los líquidos absorben una cantidad suficiente de energía, después de alcanzar una temperatura conocida como punto de ebullición, la vibración de los átomos aumenta a tal punto que los enlaces entre las moléculas individuales se aflojan aún más. Esta fase de la materia se llama gas. Debido a los enlaces todavía flojos entre las moléculas de un gas, tanto el volumen y la estructura del gas se expanden o contraen para acomodar el contenedor de caja a la que actualmente alberga. Plasma El estado más común de la materia en el universo se llama plasma. El plasma comparte muchas de las propiedades del estado de energía del gas, pero es ionizado. Es decir, todos los electrones del componente del plasma han soltado sus átomos para asociarse libremente con todos los otros átomos constituyentes. Esto hace que un plasma conductor altamente eficiente de las cargas eléctricas. En el planeta Tierra, el plasma se encuentra en un rayo, en el fuego y las auroras. En el espacio exterior, el plasma constituye los núcleos de las estrellas y se encuentra en las supernovas y quásares.
  • 27. ENLACES QUIMICOS Y FISICOS APRENDIZAJE ESPERADO -conoce los tipos de enlaces quimicos y fisicos su influencia en las propiedades y estructuras de las sustancias - reconoce las diferencias entre las sustancias con enlace iónico y covalente en relación a la conductividad eléctrica y solubilidad. - reconoce los electrolitos fuerzas débiles y no electrolitos. INDICADOR Diferencia a los tipos de enlaces mediante experimentos aplicativos, demostrando orden y limpieza. Propiedades de los enlaces químicos Los conceptos involucrados en sus enlaces químicos, que pueden ser clasificados en iónicos, covalentes o metálicos. Enlace Iónico Los enlaces iónicos ocurren generalmente entre un elemento muy electronegativo, como un no metal con otro elemento poco electronegativo como un metal.
  • 28. Los no metales, debido a su elevada electronegatividad, al enlazarse iónicamente con los metales, adquieren carga eléctrica negativa. Átomos con exceso de electrones, o sea, con carga eléctrica negativa son llamados aniones. Ya, los metales, en el enlace iónico, adquieren carga eléctrica positiva debido a la perdida de uno o más electrones. Átomos que cedieron electrones, o sea, adquirieron carga eléctrica positiva, son llamados cationes. Las principales propiedades de los compuestos iónicos son: Altos puntos de fusión y ebullición Conducen corriente eléctrica cuando son disueltos en agua o fundidos Presentan aspecto cristalino Un ejemplo de compuesto iónico, está, ciertamente en nuestras cocinas. Se trata del cloruro de sodio, popularmente conocido como sal de mesa. Esta sal esta compuesta por dos elementos, un metal, el Sodio y un no metal, el Cloro. Ambos elementos por medio del enlace iónico, adquieren una estabilidad energética, la cual es explicada por la regla del octeto. La regla dice que los átomos con excepción del hidrógeno, adquieren estabilidad al poseer ocho electrones en su última capa. Enlace Covalente Si en los enlaces iónicos existía la donación de electrones, en los enlaces covalentes ocurre el compartimiento de electrones entre los átomos que establecen el enlace. Esto ocurre entre átomos que poseen poca diferencia de electronegatividad. En este tipo de enlaces, hay dos tipos de situaciones. La primera es cuando los átomos que constituyen el enlace son iguales. En este caso, decimos que el enlace es covalente apolar, o sea, sin polos, pues ambos átomos atraen igualmente los electrones del enlace, no existiendo polaridad. La segunda es, cuando los átomos que constituyen el enlace son diferentes. En este caso, decimos que ella es covalente polar, o sea, ocurre la formación de polos, pues los átomos debido a la electronegatividad diferente entre ellos, atraen de forma diferente los electrones constituyentes del enlace. Las propiedades físicas de los compuestos moleculares se deben no solo al enlace covalente entre los átomos, como también al tipo de interacción entre sus moléculas. Las principales propiedades de los compuestos covalentes son: Pueden existir, en condiciones ambientes, en los estados gaseoso, líquido y sólido. Cuando se presentan en estado sólido, poseen puntos de fusión y ebullición más bajos, comparados con los de las sustancias iónicas o metálicas.
  • 29. Algunas son solubles en agua, otras son solubles en solventes orgánicas y otros aún, son solubles en ambas. Normalmente, no son conductoras de electricidad, ni siquiera puros, ni aún disueltos en agua. La excepción a esta regla ocurre en el caso de los ácidos, que cuando están en solución, conducen la corriente eléctrica. Un ejemplo de compuesto covalente apolar es el oxígeno, presente en el aire que respiramos, disuelto en el agua de los ríos y mares en los cuales los peces respirar y en el proceso de combustión de la parafina de una vela. Un ejemplo de compuesto covalente polar es el monóxido de dihidrógeno, conocido popularmente como agua. Considerada un solvente universal, el agua corresponde al 70% en masa de nuestro cuerpo. Ella debería ser un gas, pero debido a la fuerte interacción entre sus moléculas, conocida por “enlace de hidrógeno”, en temperatura y presión ambientes, su estado físico es líquido. Enlace Metálico Los metales de un modo general son poco electronegativos, no ejerciendo por tanto, una atracción muy fuerte sobre los electrones de la última capa. Debido a esta característica, el enlace metálico se constituye por la configuración de retículos cristalinos, perfectamente definidos, formados por cationes de carga eléctrica positiva que son neutralizados por electrones, los cuales, en este caso, estarán presos a los átomos más libres, lo que explica gran parte de las propiedades de los metales. Principales propiedades de los compuestos metálicos: Buenos conductores de calor y electricidad La mayoría se presenta en estado sólido La mayoría posee puntos de fusión y ebullición elevados Son maleables o dúctiles Poseen brillo característico Un ejemplo de compuesto metálico, puede ser el oro, que es un metal noble, muy valorizado en el mercado. El es generalmente comercializado en la forma de mezcla con otros compuestos, mezcla que, en los metales tiene el nombre de aleación MATERIALES EQUIPOS Y REACTIVOS A) MATERIALES: - 02 Equipos de multitester o equipo conductor de luz o electricidad
  • 30. - O5 vasos de precipitación de 50 ml - 10 pipetas graduadas DE 10ML - 20 tubos de ensayo y 4 picetas - 4 gradillas - 1 balanza - 4 pinzas y 4 espátulas - 4 bombillas de succión B) REACTIVOS - Solución de ácido acético CH2COOH (vinagre) - agua destilada - Azúcar de mesa sacarosa - NaCl - solución HCl cc - alcohol etílico C2H5OH - acetona CH3COOH3 - aceite de cocina III. PROCEDIMIENTO Y EXPERIMENTACION
  • 31.
  • 32. EXPERIENCIA N 91 SOLUBILIDAD 1.- en un tubo de ensayo mesclar cada una de las siguientes sustancias a) 1g de NaCl y 2ml de agua b) 1g de azúcar y 2 mg de agua c) 0,5 ml de aceite y 2 ml de alcohol etílico d) 2 ml de aceite de cocina y 1 ml de acetona e) 1 g de azúcar en 1ml de acetona f) 1 ml de acetona y 2 ml de alcohol etílico 2. anote las observaciones del experimento N° de tubo Reactivo 1 Reactivo 2 Observación 1 NaCl agua Se formó solución parcial saturada 2 C12H22O11 agua Se formó disolución 3 Aceite Alcohol No hay disolución aceite apolar agua polar 4 aceite Acetona No son solubles acetona polar 5 azúcar acetona No hubo disolución azúcar polar, acetona ligeramente polar 6 acetona alcohol Se formó una solución alcohol polar acetona ligeramente polar EXPERIENCIA N° 02 EN ELECTRICA
  • 33. 1. En un vaso de precipitación de 50ml colocar 10 ml de las siguientes sustancias. a) Solución de NaCl AL 20 % m/v b) Solución de alcohol etílica al 10 % v/v c) Solución de acetona al 10 % v/v d) Solución de acida acética al 5% v/v e) Solución de azúcar al 10 % m/v f) Solución de HCl cc 2. Introduzca en cada una de las soluciones las electrodos del multitester o en el equipo conductor de luz y electricidad, teniendo en cuenta que al realizar cada experiencia las electrodos deben lavarse previamente con agua destilada 3. Anote las observaciones de cada experimento Vaso de precipitación Solución/tipo de solución Conductividad eléctrica 1 Cloruro de sodio solución Si conduce corriente 2 Alcohol etílico No conduce corriente 3 acetona No conduce corriente 4 Ácido acético No conduce corriente , se diluye se ioniza 5 azúcar No conduce corriente 6 Ácido clorhídrico Conduce corriente porque se ioniza IV. .Interpretación y discusión de resultados V. Conclusiones Un enlace iónico es una fuerza de atracción enérgica que mantienen unidos los iones. Dicho enlace se puede formar entre dos átomos por la transferencia de electrones de la capa de valencia del otro. Los cationes monoatómicos de los elementos tienen cargas iguales al número de grupos. Un enlace covalente es una energía fuerza de atracción que mantiene unidos a dos átomos por la comparación de sus electrones enlazantes son atraídos simultáneamente hacia ambos núcleos atómicos y pasan una parte del tiempo cerca de un átomo y otra parte del tiempo cerca del otro. Sin un par de electrones no es compartido igualmente, el enlace es polar. Esta polaridad es el resultado de la diferencia que hay en las electronegatividades de los átomos para atraer hacia ellos los electrones enlazantes.
  • 34. La regla del octeto predice que los átomos forman suficientes enlaces covalentes para rodearse de ocho electrones cada uno. Existen excepciones para la regla del octeto, en particular para los compuestos covalentes de berilio, para los elementos del grupo 3A y para los elementos del tercer periodo y subsecuentes de la tabla periódica VI. CUESTIONARIO A. ¿Cuándo una sustancia es soluble en otra? Petróleo hidrocarburo enlace covalente más el aceite se solubiliza- densidad Densidad del alcohol 0,8----densidad del agua 0,1 hay solubilidad B. ¿De qué manera influyen los enlaces químicos y físicos en la solubilidad de las sustancias? La presión influye en gran medida en la solubilidad de gases en líquidos, pero apenas influye en la solubilidad de sólidos en líquidos, por lo cual no la tendremos en cuenta en las disoluciones de sólidos iónicos en líquidos. En cuanto a la temperatura, un aumento de ella aumenta la solubilidad de un sólido en un líquido en la mayoría de los casos, aunque lo hace en diferente magnitud, según el compuesto de que se trate y de lo endotérmico que sea el proceso de disolución: C. ¿Porque algunas sustancias conducen la corriente eléctrica y otras no?- una sustancia para conducir la corriente eléctrica debe tener una disociación.
  • 35.
  • 36. D. ¿que son soluciones electrolitos y cuál es el papel que sufren en los procesos bilógicos? Los electrolitos son unas substancias, que al disolverse en el agua de las células del cuerpo se rompen en pequeñas partículas que transportan cargas eléctricas. El papel que juegan es el de mantener el equilibrio de los fluidos en las células para que éstas funcionen correctamente. Los electrolitos principales son el sodio, el potasio y el cloro, y en una medida menor el calcio, el magnesio y el bicarbonato La regulación de los procesos biológicos ocurre cuando algún proceso es modulado en su frecuencia, velocidad o alcance. Los procesos biológicos están regulados por muchos medios; entre los ejemplos figuran el control de la expresión génica, la modificación proteica o la interacción con una molécula de proteína o sustrato. Los procesos biológicos están regulados a menudo por la genética. En algunos casos, la mutación puede llevar a interrupciones a un proceso biológico. Los virus tienen un conjunto de procesos biológicos por los que se reproducen. Entre los procesos biológicos figuran: Adherencia celular, la unión de una célula, a otra célula o bien a un sustrato subyacente como la matriz extracelular, a través de moléculas de adherencia celular.
  • 37. Comunicación celular o unión entre una célula y otra célula, entre una célula y una matriz extracelular, o entre un célula y cualquier otro aspecto de su entorno. Morfogénesis, crecimiento celular y diferenciación celular Proceso fisiológico celular, los procesos pertinentes a la función integrada de una célula. Reconocimiento celular, el proceso por el cual una célula en un organismo multicelular interpreta sus alrededores. Proceso fisiológico, aquellos procesos específicamente pertinentes al funcionalmente de las unidades vivas integradas: células, tejidos, órganos y organismos. Pigmentación Reproducción Digestión Respuesta a estímulos, un cambio de estado o actividad de una célula u organismo (en términos de movimiento, secreción, producción de enzimas, expresión génica, etc.) como resultado de un estímulo. Interacción entre organismos. Los procesos por los cuales un organismo tiene un efecto observable en otro organismo de su misma o diferente especie. También: fermentación, fertilización, germinación, tropismo, hibridación, metamorfosis, fotosíntesis, transpiración. E. Realiza un esquema de los tipos de enlaces e indica quienes conducen o no conducen la electricidad.
  • 38. CONCLUSIÓN Durante la realización de la práctica se pudo observar la importancia que tiene conocer los equipos y materiales de laboratorio, su uso y manejo, ya que de esto dependerá la
  • 39. buena ejecución de la práctica y la obtención de resultados más confiables y al mismo tiempo conocer las propiedades de las sustancias a utilizar en el laboratorio, así como también las medidas de primeros auxilios que deberán ser prestados en caso de accidentes. Bueno, como hemos visto al hacer jugo o endulzar al té se producen una serie de reacciones químicas que nunca hubiéramos imaginado. Los enlaces, las soluciones, la fractura de enlaces y la formación de otros, ¿quien lo hubiera imaginado? Pero ahora que sabemos todo esto, cuando nos sentemos a tomarnos un té ya no se nos olvidara pensar en esto. Bueno hasta aquí llega nuestro informe, y con estos ejemplos de lo aprendido concluimos este informe: BIBLIOGRAFÍA Centro Nacional de Investigaciones Científicas. Universidad de Texas (2001): Ciencias Químicas. EE. UU. Fuertes, F. (2006): Estudio de los efectos fitosanitarios del agua ozonizada. Madrid. España Chang, Raymond. (1998). Química. México: McGraw-Hill. Sexta Edición. Ebbing, Darrell D. (1996). Química General. México. McGraw-Hill. Quinta edición Whitten, K. W., Davis R.E. y Peck, M. L. (1998). Química General. España: McGraw-Hill. Quin