SlideShare una empresa de Scribd logo
1 de 8
Instituto Tecnológico de Mexicali
Practica: Ley de Stokes
Materia: Laboratorio integral I
Profesor: Norman Rivera Pasos
Fecha:
16 de septiembre del 2015
Integrantes:
García Aguilera Paulina
Martínez Moreno Miroslava
Meza Green Leonardo Alfonso
Navarro Orrantia Alicia
Meza Alvarado Jair Alexis
García Flores Víctor Emmanuel
Amador Liera Karen Esperanza
Ceballos Soto Alexandra
Título:
“Ley de Stokes”
Objetivo:
Observar mediante un experimento un objeto caer por un medio líquido,
tomando en cuenta tanto las condiciones y propiedades del objeto tanto como
el del medio líquido, tomando el tiempo en el que le toma cae al fondo.
Introducción:
El flujo de Stokes, también llamado flujo reptante, es aquel que describe el movimiento
de una partícula en un fluido viscoso. Este sucede debido a, que la partícula es muy
pequeña, o por unas viscosidades de fluido muy altas o ambas.
Marco Teórico
La Ley de Stokes se refiere a la fuerza de fricción experimentada por objetos
esféricos moviéndose en el seno de un fluido viscoso en un régimen laminar de
bajos números de Reynolds. Fue derivada en 1851 por George Gabriel
Stokes tras resolver un caso particular de las ecuaciones de Navier-Stokes. En
general la ley de Stokes es válida en el movimiento de partículas esféricas
pequeñas moviéndose a velocidades bajas.
La condición de bajos números de Reynolds implica un flujo laminar lo cual
puede traducirse por una velocidad relativa entre la esfera y el medio inferior a
un cierto valor crítico. En estas condiciones la resistencia que ofrece el medio
es debida casi exclusivamente a las fuerzas de rozamiento que se oponen al
deslizamiento de unas capas de fluido sobre otras a partir de la capa límite
adherida al cuerpo. La ley de Stokes se ha comprobado experimentalmente en
multitud de fluidos y condiciones.
Si las partículas están cayendo verticalmente en un fluido viscoso debido a su
propio peso puede calcularse su velocidad de caída o sedimentación igualando
la fuerza de fricción con el peso aparente de la partícula en el fluido.
La ley de Stokes es el principio usado en los viscosímetros de bola en caída
libre, en los cuales el fluido está estacionario en un tubo vertical de vidrio y una
esfera, de tamaño y densidad conocidas, desciende a través del líquido. Si la
bola ha sido seleccionada correctamente alcanzará la velocidad terminal, la
cual puede ser medida por el tiempo que pasa entre dos marcas de un tubo. A
veces se usan sensores electrónicos para fluidos opacos. Conociendo las
densidades de la esfera, el líquido y la velocidad de caída se puede calcular la
viscosidad a partir de la fórmula de la ley de Stokes. Para mejorar la precisión
del experimento se utilizan varias bolas. La técnica es usada en la industria
para verificar la viscosidad de los productos, en caso como la glicerina o el
sirope.
Material
*3 vasos de precipitado o pipetas
*canicas de diferentes diámetros
*cronometro
*Miel, aceite de cocina, aceite de bebe
Procedimiento:
1. Se midenlosdiámetrosde lascanicas.
2. Se tomanlospesosde las canicas.
3. Determinamosladensidadde lascanicas.
4. Determinamosladensidadde cadalíquido.
5. Se marcó un sistemade referenciaal tubo.
6. Se llenaconlos líquidoseneste casofue jabón,miel,aceite.
7. Se coloca la canica enla parte superiordel tubo
8. se pone el cronómetroenla posicióncero.
9. Se sueltalacanica y ponemosel cronómetroenfuncionamientoenel momentoenel
que la pelotapasapor lasmarcas puestasen nuestromarco de referencia.
10.Se registrael tiempoyse repite este procesoconcadalíquido.
11.Se tomaran losdatos necesariosyse calcularalodeseado.
Análisis
La ley de Stokes se refiere a la fuerza de fricción experimentada por objetos
esféricos moviéndose en el seno de un fluido viscoso en un régimen laminar de
bajos número de Reynolds. La ley de Stokes es válida en el movimiento de
partículas esféricas moviéndose a velocidades bajas.
Un cuerpo que cumple la ley de Stokes se ve sometido a dos fuerzas que es la
fuerza gravitatoria a fuerza de arrastre, donde en el momento que ambas se
igualan su aceleración se vuelve nula su velocidad constante.
En esta práctica consideramos el flujo de un fluido incomprensible alrededor de
una esfera solida de radio R y diámetro D.
El fluido tiene una densidad y una viscosidad, donde se aproxima a la esfera
fija ascendiendo verticalmente en la dirección z con una velocidad∞.
El flujo reptante = Re =
𝐷 𝑉∞ 𝜌
𝜇
< .1
El régimen del fluido se caracteriza por la ausencia de formación de remolinos
corriente abajo a partir de la esfera.
Se determinó la viscosidad de una sustancia con respecto a la velocidad con la
que desciende un objeto sumergido dentro de la misma, así como su fuerza de
fricción, y se observó el comportamiento del objeto sumergido en la sustancia.
Sustancia Densidad
Aceite Vegetal 870 kg/𝑚3
JabónLiquido 1261 Kg/𝑚3
Miel 1400 Kg/𝑚3
Se utilizóunacanica,de lacual se midióel diámetro,tambiénse pesóyacon estosdatos
obtenidosutilizamosestafórmula:
Volumen=(4/3)(𝜋)(R)3
La cual nos sirvió paradeterminarel volumenyasí mismopodercalcularladensidad.
Calculosy Resultados
CalculandoVolumen
Volumen=(4/3)(π)(.0085)3
Volumen =2.52 x 10 -6
m3
Calculandola densidad
ρ =
m
v
ρ =
0.02078Kg
2.52 𝑥 10−6 𝑚3
ρ=8246.03 Kg/m3
Distancia17cm
CalculandoVelocidades
Miel
V =
d
t
V =
.17𝑚
2.75𝑠
V=.0618m/s
Jabón
V=
.17𝑚
1 𝑠𝑒𝑔
V=.17m/s
Aceite
V=
.17𝑚
.51𝑠𝑒𝑔
V=.33m/s
CalculandoViscosidad
Canica Peso(Kg) Radio(m) Densidad(Kg/𝑚3)
ColorAmarila .02078 .0085 8246.03
ViscosidadMiel
V= (4/3)(𝜋)(.0075m)3
V=1.76 x 10-6
m3
µ=
2
9
R2
(𝜌s−𝜌)g/Vt
µ=
2
9
(.0085)2(8246.03−1400𝐾𝑔/𝑚3)(9.81𝑚/𝑠2)
0.0618𝑚/𝑠
µ=17.67 Poises
ViscosidadJabon
µ=
2
9
R2
(𝜌s−𝜌)g/Vt
µ=
2
9
(.0085)2(8246.03−870𝐾𝑔/𝑚3)(9.81𝑚/𝑠2)
0.17𝑚/𝑠
µ= 6.83 Poises
ViscosidadAceite
µ=
2
9
R2
(𝜌s−𝜌)g/Vt
µ=
2
9
(.0085)2(8246.03−1261𝐾𝑔/𝑚3)(9.81𝑚/𝑠2)
0.33𝑚/𝑠
µ= 3.33 Poises
Numero de Reynolds
Miel
• 𝑅𝑒 =
(.0085𝑚)(
.0619𝑚
𝑠
)(1400
𝑘𝑔
𝑚3)
17.67𝐾𝑔𝑚/𝑠
• 𝑅𝑒 =.0416
Jabón Líquido
• 𝑅𝑒 =
(.0085𝑚)(
.33𝑚
𝑠
)(1261
𝑘𝑔
𝑚3)
6.83𝐾𝑔𝑚/𝑠
• 𝑅𝑒 =0.5170
Aceite Vegetal
• 𝑅𝑒 =
(.0085𝑚)(
.27𝑚
𝑠
)(870
𝑘𝑔
𝑚3)
3.33𝐾𝑔𝑚/𝑠
• 𝑅𝑒 =0.599
La fuerzatotal del fluidosobre laesferaestádadapor la sumade las ecuaciones
𝐹 =
4
3
𝜋𝑅3 𝜌𝑔 + 2𝜋𝜇𝑅𝑣∞ + 4𝜋𝜇𝑅𝑣∞
F = Fuerzade flotación+ Resistenciade Forma+ Resistenciade Fricción
F = 𝐹𝑏 + 𝐹𝑘 =
4
3
𝜋𝑅3 𝜌𝑔 + 6𝜋𝜇𝑅𝑣∞
F = 𝐹𝑏 + 𝐹𝑘 = Fuerzade flotación+fuerzacinética
𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞
Miel
𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞
𝐹𝑘 = 6𝜋(17.67𝐾𝑔𝑚/𝑠)(.0085𝑚)(
0.0619𝑚
𝑠
)
𝐹𝑘 = 0.1752N
JabónLíquido
𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞
𝐹𝑘 = 6𝜋(6.83𝐾𝑔𝑚/𝑠)(.0085𝑚)(
0.17𝑚
𝑠
)
𝐹𝑘 = 0.1860N
Aceite Vegetal
𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞
𝐹𝑘 = 6𝜋(3.33𝐾𝑔𝑚/𝑠)(.0085𝑚)(
0.33𝑚
𝑠
)
𝐹𝑘 = 0.1760N
Conclusiones
En esta práctica pudimos comparar el movimiento de un objeto esférico en
diferentes fluidos y en base a ciertas variables como la viscosidad y
densidades, cuando el radio de las canicas utilizadas en la práctica cambiaban
la viscosidad de gran manera, pero las veces que se repitió el experimento con
la misma canica los valores eran casi constantes con ligeras variaciones
debidas a error humano.

Más contenido relacionado

La actualidad más candente

12726251 1-molaridad-y-molalidad
12726251 1-molaridad-y-molalidad12726251 1-molaridad-y-molalidad
12726251 1-molaridad-y-molalidadDany O.
 
Fisica antologia fenómenos de transporte
Fisica   antologia fenómenos de transporteFisica   antologia fenómenos de transporte
Fisica antologia fenómenos de transporteabner alvarado
 
Practica 3.-ecuacion-de-bernoulli
Practica 3.-ecuacion-de-bernoulliPractica 3.-ecuacion-de-bernoulli
Practica 3.-ecuacion-de-bernoulliErnestoFabela1196
 
Reporte practica-1 Viscosimetros
Reporte practica-1 ViscosimetrosReporte practica-1 Viscosimetros
Reporte practica-1 ViscosimetrosGustavo Salazar
 
Metodo integral-hasta-vida-fraccionaria
Metodo integral-hasta-vida-fraccionariaMetodo integral-hasta-vida-fraccionaria
Metodo integral-hasta-vida-fraccionariaLilia Zamora Raico
 
Reporte.tubode stefan
Reporte.tubode stefanReporte.tubode stefan
Reporte.tubode stefanCarlos Mtz
 
Practica 7 Flujo reptante "Ley de Stoks"
Practica 7 Flujo reptante "Ley de Stoks"Practica 7 Flujo reptante "Ley de Stoks"
Practica 7 Flujo reptante "Ley de Stoks"Diana Aguilar
 
Viscometria en Polimeros
Viscometria en PolimerosViscometria en Polimeros
Viscometria en PolimerosErick Connor
 
Antologia fenómenos de transporte
Antologia fenómenos de transporteAntologia fenómenos de transporte
Antologia fenómenos de transporteMacario Paramo
 
Ejerciciosresueltos sna
Ejerciciosresueltos snaEjerciciosresueltos sna
Ejerciciosresueltos snapmalinalli8
 
mecanica de fluidos Cengel 1ed (solucionario)
mecanica de fluidos Cengel 1ed (solucionario)mecanica de fluidos Cengel 1ed (solucionario)
mecanica de fluidos Cengel 1ed (solucionario)Diego Ortiz
 
39368106 7-6-punto-triple-so2
39368106 7-6-punto-triple-so239368106 7-6-punto-triple-so2
39368106 7-6-punto-triple-so2Ronald Collado
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoJasminSeufert
 

La actualidad más candente (20)

Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
12726251 1-molaridad-y-molalidad
12726251 1-molaridad-y-molalidad12726251 1-molaridad-y-molalidad
12726251 1-molaridad-y-molalidad
 
m- dinitrobenceno
m- dinitrobencenom- dinitrobenceno
m- dinitrobenceno
 
Informe n° 01. evaluacion reologica de fluidos
Informe n° 01. evaluacion reologica de fluidosInforme n° 01. evaluacion reologica de fluidos
Informe n° 01. evaluacion reologica de fluidos
 
Fisica antologia fenómenos de transporte
Fisica   antologia fenómenos de transporteFisica   antologia fenómenos de transporte
Fisica antologia fenómenos de transporte
 
Practica 3.-ecuacion-de-bernoulli
Practica 3.-ecuacion-de-bernoulliPractica 3.-ecuacion-de-bernoulli
Practica 3.-ecuacion-de-bernoulli
 
Reporte practica-1 Viscosimetros
Reporte practica-1 ViscosimetrosReporte practica-1 Viscosimetros
Reporte practica-1 Viscosimetros
 
Metodo integral-hasta-vida-fraccionaria
Metodo integral-hasta-vida-fraccionariaMetodo integral-hasta-vida-fraccionaria
Metodo integral-hasta-vida-fraccionaria
 
Reporte.tubode stefan
Reporte.tubode stefanReporte.tubode stefan
Reporte.tubode stefan
 
Guía 5 b balance de masa juan sandoval herrera
Guía 5 b balance de masa juan sandoval herreraGuía 5 b balance de masa juan sandoval herrera
Guía 5 b balance de masa juan sandoval herrera
 
Practica 7 Flujo reptante "Ley de Stoks"
Practica 7 Flujo reptante "Ley de Stoks"Practica 7 Flujo reptante "Ley de Stoks"
Practica 7 Flujo reptante "Ley de Stoks"
 
Informe teorema-de-bernoulli
Informe teorema-de-bernoulliInforme teorema-de-bernoulli
Informe teorema-de-bernoulli
 
Viscosidad
ViscosidadViscosidad
Viscosidad
 
Viscometria en Polimeros
Viscometria en PolimerosViscometria en Polimeros
Viscometria en Polimeros
 
Antologia fenómenos de transporte
Antologia fenómenos de transporteAntologia fenómenos de transporte
Antologia fenómenos de transporte
 
Ejerciciosresueltos sna
Ejerciciosresueltos snaEjerciciosresueltos sna
Ejerciciosresueltos sna
 
mecanica de fluidos Cengel 1ed (solucionario)
mecanica de fluidos Cengel 1ed (solucionario)mecanica de fluidos Cengel 1ed (solucionario)
mecanica de fluidos Cengel 1ed (solucionario)
 
39368106 7-6-punto-triple-so2
39368106 7-6-punto-triple-so239368106 7-6-punto-triple-so2
39368106 7-6-punto-triple-so2
 
UCR FS0310 Oscilaciones
UCR FS0310 OscilacionesUCR FS0310 Oscilaciones
UCR FS0310 Oscilaciones
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
 

Similar a Ley de stoke bienbn (20)

Leydestokebien 151204063812-lva1-app6891
Leydestokebien 151204063812-lva1-app6891Leydestokebien 151204063812-lva1-app6891
Leydestokebien 151204063812-lva1-app6891
 
Ley de stoke
Ley de stoke Ley de stoke
Ley de stoke
 
Practicas de-lab
Practicas de-labPracticas de-lab
Practicas de-lab
 
Practica #7
Practica #7 Practica #7
Practica #7
 
Flujo reptante (ley de stokes)
Flujo reptante (ley de stokes)Flujo reptante (ley de stokes)
Flujo reptante (ley de stokes)
 
Practica 3_U3
Practica 3_U3Practica 3_U3
Practica 3_U3
 
Práctica II
Práctica IIPráctica II
Práctica II
 
Practica 7
Practica 7Practica 7
Practica 7
 
Ley stokes
Ley stokesLey stokes
Ley stokes
 
Leystokes-lva1-app6891
Leystokes-lva1-app6891Leystokes-lva1-app6891
Leystokes-lva1-app6891
 
Práctica II Completo listo
Práctica II Completo listoPráctica II Completo listo
Práctica II Completo listo
 
Práctica II Completo
Práctica II CompletoPráctica II Completo
Práctica II Completo
 
Práctica II Completo
Práctica II CompletoPráctica II Completo
Práctica II Completo
 
Ley de-stokes
Ley de-stokesLey de-stokes
Ley de-stokes
 
Practica 1 flujo de fluidos
Practica 1 flujo de fluidosPractica 1 flujo de fluidos
Practica 1 flujo de fluidos
 
Ley stokes
Ley stokesLey stokes
Ley stokes
 
avance MF 1.docx
avance MF 1.docxavance MF 1.docx
avance MF 1.docx
 
Viscocidad y capilaridad
Viscocidad y capilaridadViscocidad y capilaridad
Viscocidad y capilaridad
 
Practica#7 ley de Stock
Practica#7         ley de StockPractica#7         ley de Stock
Practica#7 ley de Stock
 
P 3 ley de stokes
P 3 ley de stokesP 3 ley de stokes
P 3 ley de stokes
 

Más de Miroslava Moreno

Más de Miroslava Moreno (20)

Ley de fourier bnbn2
Ley de fourier bnbn2Ley de fourier bnbn2
Ley de fourier bnbn2
 
Ley de fourier bnbn
Ley de fourier bnbnLey de fourier bnbn
Ley de fourier bnbn
 
Aletas bn bn2
Aletas bn bn2Aletas bn bn2
Aletas bn bn2
 
Aletas bn bn
Aletas bn bnAletas bn bn
Aletas bn bn
 
Ley de fick bnbn
Ley de fick bnbnLey de fick bnbn
Ley de fick bnbn
 
Mesa hidrodinamica bnbn
Mesa hidrodinamica bnbnMesa hidrodinamica bnbn
Mesa hidrodinamica bnbn
 
Lechos empacados bnbn
Lechos empacados bnbnLechos empacados bnbn
Lechos empacados bnbn
 
Ecuacion de bernoulli bnbn
Ecuacion de bernoulli bnbnEcuacion de bernoulli bnbn
Ecuacion de bernoulli bnbn
 
Curvas caracteristicas de una bomba bnbn
Curvas caracteristicas de una bomba bnbnCurvas caracteristicas de una bomba bnbn
Curvas caracteristicas de una bomba bnbn
 
Leydefourierbn 151204080446-lva1-app6891bnbn
Leydefourierbn 151204080446-lva1-app6891bnbnLeydefourierbn 151204080446-lva1-app6891bnbn
Leydefourierbn 151204080446-lva1-app6891bnbn
 
Leydefourierbn 151204080446-lva1-app6891bn
Leydefourierbn 151204080446-lva1-app6891bnLeydefourierbn 151204080446-lva1-app6891bn
Leydefourierbn 151204080446-lva1-app6891bn
 
Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2
 
Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2
 
Conveccion bn
Conveccion bnConveccion bn
Conveccion bn
 
Aletas bn
Aletas bnAletas bn
Aletas bn
 
Perfiles de temperatura bn
Perfiles de temperatura bnPerfiles de temperatura bn
Perfiles de temperatura bn
 
Ley de fourier bn
Ley de fourier bnLey de fourier bn
Ley de fourier bn
 
Ley de fick bn
Ley de fick bnLey de fick bn
Ley de fick bn
 
Mesa hidrodinamica bn
Mesa hidrodinamica bnMesa hidrodinamica bn
Mesa hidrodinamica bn
 
Lechos empacados bn
Lechos empacados bnLechos empacados bn
Lechos empacados bn
 

Último

Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 

Último (20)

Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 

Ley de stoke bienbn

  • 1. Instituto Tecnológico de Mexicali Practica: Ley de Stokes Materia: Laboratorio integral I Profesor: Norman Rivera Pasos Fecha: 16 de septiembre del 2015 Integrantes: García Aguilera Paulina Martínez Moreno Miroslava Meza Green Leonardo Alfonso Navarro Orrantia Alicia Meza Alvarado Jair Alexis García Flores Víctor Emmanuel Amador Liera Karen Esperanza Ceballos Soto Alexandra
  • 2. Título: “Ley de Stokes” Objetivo: Observar mediante un experimento un objeto caer por un medio líquido, tomando en cuenta tanto las condiciones y propiedades del objeto tanto como el del medio líquido, tomando el tiempo en el que le toma cae al fondo. Introducción: El flujo de Stokes, también llamado flujo reptante, es aquel que describe el movimiento de una partícula en un fluido viscoso. Este sucede debido a, que la partícula es muy pequeña, o por unas viscosidades de fluido muy altas o ambas. Marco Teórico La Ley de Stokes se refiere a la fuerza de fricción experimentada por objetos esféricos moviéndose en el seno de un fluido viscoso en un régimen laminar de bajos números de Reynolds. Fue derivada en 1851 por George Gabriel Stokes tras resolver un caso particular de las ecuaciones de Navier-Stokes. En general la ley de Stokes es válida en el movimiento de partículas esféricas pequeñas moviéndose a velocidades bajas. La condición de bajos números de Reynolds implica un flujo laminar lo cual puede traducirse por una velocidad relativa entre la esfera y el medio inferior a un cierto valor crítico. En estas condiciones la resistencia que ofrece el medio es debida casi exclusivamente a las fuerzas de rozamiento que se oponen al deslizamiento de unas capas de fluido sobre otras a partir de la capa límite adherida al cuerpo. La ley de Stokes se ha comprobado experimentalmente en multitud de fluidos y condiciones. Si las partículas están cayendo verticalmente en un fluido viscoso debido a su propio peso puede calcularse su velocidad de caída o sedimentación igualando la fuerza de fricción con el peso aparente de la partícula en el fluido. La ley de Stokes es el principio usado en los viscosímetros de bola en caída libre, en los cuales el fluido está estacionario en un tubo vertical de vidrio y una esfera, de tamaño y densidad conocidas, desciende a través del líquido. Si la bola ha sido seleccionada correctamente alcanzará la velocidad terminal, la cual puede ser medida por el tiempo que pasa entre dos marcas de un tubo. A veces se usan sensores electrónicos para fluidos opacos. Conociendo las
  • 3. densidades de la esfera, el líquido y la velocidad de caída se puede calcular la viscosidad a partir de la fórmula de la ley de Stokes. Para mejorar la precisión del experimento se utilizan varias bolas. La técnica es usada en la industria para verificar la viscosidad de los productos, en caso como la glicerina o el sirope. Material *3 vasos de precipitado o pipetas *canicas de diferentes diámetros *cronometro *Miel, aceite de cocina, aceite de bebe Procedimiento: 1. Se midenlosdiámetrosde lascanicas. 2. Se tomanlospesosde las canicas. 3. Determinamosladensidadde lascanicas. 4. Determinamosladensidadde cadalíquido. 5. Se marcó un sistemade referenciaal tubo. 6. Se llenaconlos líquidoseneste casofue jabón,miel,aceite. 7. Se coloca la canica enla parte superiordel tubo 8. se pone el cronómetroenla posicióncero. 9. Se sueltalacanica y ponemosel cronómetroenfuncionamientoenel momentoenel que la pelotapasapor lasmarcas puestasen nuestromarco de referencia. 10.Se registrael tiempoyse repite este procesoconcadalíquido.
  • 4. 11.Se tomaran losdatos necesariosyse calcularalodeseado. Análisis La ley de Stokes se refiere a la fuerza de fricción experimentada por objetos esféricos moviéndose en el seno de un fluido viscoso en un régimen laminar de bajos número de Reynolds. La ley de Stokes es válida en el movimiento de partículas esféricas moviéndose a velocidades bajas. Un cuerpo que cumple la ley de Stokes se ve sometido a dos fuerzas que es la fuerza gravitatoria a fuerza de arrastre, donde en el momento que ambas se igualan su aceleración se vuelve nula su velocidad constante. En esta práctica consideramos el flujo de un fluido incomprensible alrededor de una esfera solida de radio R y diámetro D. El fluido tiene una densidad y una viscosidad, donde se aproxima a la esfera fija ascendiendo verticalmente en la dirección z con una velocidad∞. El flujo reptante = Re = 𝐷 𝑉∞ 𝜌 𝜇 < .1 El régimen del fluido se caracteriza por la ausencia de formación de remolinos corriente abajo a partir de la esfera. Se determinó la viscosidad de una sustancia con respecto a la velocidad con la que desciende un objeto sumergido dentro de la misma, así como su fuerza de fricción, y se observó el comportamiento del objeto sumergido en la sustancia. Sustancia Densidad Aceite Vegetal 870 kg/𝑚3 JabónLiquido 1261 Kg/𝑚3 Miel 1400 Kg/𝑚3 Se utilizóunacanica,de lacual se midióel diámetro,tambiénse pesóyacon estosdatos obtenidosutilizamosestafórmula: Volumen=(4/3)(𝜋)(R)3 La cual nos sirvió paradeterminarel volumenyasí mismopodercalcularladensidad.
  • 5. Calculosy Resultados CalculandoVolumen Volumen=(4/3)(π)(.0085)3 Volumen =2.52 x 10 -6 m3 Calculandola densidad ρ = m v ρ = 0.02078Kg 2.52 𝑥 10−6 𝑚3 ρ=8246.03 Kg/m3 Distancia17cm CalculandoVelocidades Miel V = d t V = .17𝑚 2.75𝑠 V=.0618m/s Jabón V= .17𝑚 1 𝑠𝑒𝑔 V=.17m/s Aceite V= .17𝑚 .51𝑠𝑒𝑔 V=.33m/s CalculandoViscosidad Canica Peso(Kg) Radio(m) Densidad(Kg/𝑚3) ColorAmarila .02078 .0085 8246.03
  • 6. ViscosidadMiel V= (4/3)(𝜋)(.0075m)3 V=1.76 x 10-6 m3 µ= 2 9 R2 (𝜌s−𝜌)g/Vt µ= 2 9 (.0085)2(8246.03−1400𝐾𝑔/𝑚3)(9.81𝑚/𝑠2) 0.0618𝑚/𝑠 µ=17.67 Poises ViscosidadJabon µ= 2 9 R2 (𝜌s−𝜌)g/Vt µ= 2 9 (.0085)2(8246.03−870𝐾𝑔/𝑚3)(9.81𝑚/𝑠2) 0.17𝑚/𝑠 µ= 6.83 Poises ViscosidadAceite µ= 2 9 R2 (𝜌s−𝜌)g/Vt µ= 2 9 (.0085)2(8246.03−1261𝐾𝑔/𝑚3)(9.81𝑚/𝑠2) 0.33𝑚/𝑠 µ= 3.33 Poises Numero de Reynolds Miel • 𝑅𝑒 = (.0085𝑚)( .0619𝑚 𝑠 )(1400 𝑘𝑔 𝑚3) 17.67𝐾𝑔𝑚/𝑠 • 𝑅𝑒 =.0416 Jabón Líquido
  • 7. • 𝑅𝑒 = (.0085𝑚)( .33𝑚 𝑠 )(1261 𝑘𝑔 𝑚3) 6.83𝐾𝑔𝑚/𝑠 • 𝑅𝑒 =0.5170 Aceite Vegetal • 𝑅𝑒 = (.0085𝑚)( .27𝑚 𝑠 )(870 𝑘𝑔 𝑚3) 3.33𝐾𝑔𝑚/𝑠 • 𝑅𝑒 =0.599 La fuerzatotal del fluidosobre laesferaestádadapor la sumade las ecuaciones 𝐹 = 4 3 𝜋𝑅3 𝜌𝑔 + 2𝜋𝜇𝑅𝑣∞ + 4𝜋𝜇𝑅𝑣∞ F = Fuerzade flotación+ Resistenciade Forma+ Resistenciade Fricción F = 𝐹𝑏 + 𝐹𝑘 = 4 3 𝜋𝑅3 𝜌𝑔 + 6𝜋𝜇𝑅𝑣∞ F = 𝐹𝑏 + 𝐹𝑘 = Fuerzade flotación+fuerzacinética 𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞ Miel 𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞ 𝐹𝑘 = 6𝜋(17.67𝐾𝑔𝑚/𝑠)(.0085𝑚)( 0.0619𝑚 𝑠 ) 𝐹𝑘 = 0.1752N JabónLíquido 𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞ 𝐹𝑘 = 6𝜋(6.83𝐾𝑔𝑚/𝑠)(.0085𝑚)( 0.17𝑚 𝑠 ) 𝐹𝑘 = 0.1860N Aceite Vegetal 𝐹𝑘 = 6𝜋𝜇𝑅𝑣∞ 𝐹𝑘 = 6𝜋(3.33𝐾𝑔𝑚/𝑠)(.0085𝑚)( 0.33𝑚 𝑠 )
  • 8. 𝐹𝑘 = 0.1760N Conclusiones En esta práctica pudimos comparar el movimiento de un objeto esférico en diferentes fluidos y en base a ciertas variables como la viscosidad y densidades, cuando el radio de las canicas utilizadas en la práctica cambiaban la viscosidad de gran manera, pero las veces que se repitió el experimento con la misma canica los valores eran casi constantes con ligeras variaciones debidas a error humano.