SlideShare una empresa de Scribd logo
1 de 5
Instituto Tecnológico de Mexicali
Practica: Ecuación de Bernoulli
Materia: Laboratorio integral I
Profesor: Norman Rivera Pasos
Fecha:
del 2015
Integrantes:
Amador Liera Karen Esperanza
Ceballos Soto Alexandra
García Aguilera Paulina
García Flores Víctor Emmanuel
Meza Alvarado Jair Alexis
Meza Green Leonardo Alfonso
Martínez Moreno Miroslava
Navarro Orrantia Alicia
Título:
“Ecuación de Bernoulli”
Objetivo
Diseñar un experimento que cumpla con la ecuación de Bernoulli en este caso
determinar el cambio de presión del sistema.
Introducción
Ecuación de Bernoulli
El caudal (o gasto) se define como el producto de la sección por la que fluye el
fluido y la velocidad a la que fluye. En dinámica de fluidos existe una ecuación
de continuidad que nos garantiza que en ausencia de manantiales o sumideros,
este caudal es constante. Como implicación directa de esta continuidad del
caudal y la ecuación de Bernoulli tenemos un tubo de Venturi.
Un tubo de Venturi es una cavidad de sección s1 por la que fluye un fluido y
que en una parte se estrecha, teniendo ahora una sección S2<S1. Como el
caudal se conserva entonces tenemos que v2>v1. Por tanto:
P1= presión de entrada (Pa)
P2= presión de salida (Pa)
g= gravedad (m/seg2)
ρ= densidad (kg/m3)
V1=velocidad del fluido inicial (m/seg)
V2= velocidad del fluido final (m/seg)
h1= altura inicial (m)
h2= altura final (m)
Marco teórico
Formulación de la ecuación
La ecuación de Bernoulli describe el comportamiento de un fluído bajo
condiciones variantes y tiene la forma siguiente:
Parámetros
En la ecuación de Bernoulli intervienen los parámetros siguientes:
 : Es la presión estática a la que está sometido el fluído, debida a las
moléculas que lo rodean
 : Densidad del fluído.
 : Velocidad de flujo del fluído.
 : Valor de la aceleración de la gravedad ( en la superficie de
la Tierra).
 : Altura sobre un nivel de referencia.
Aplicabilidad
Esta ecuación se aplica en la dinámica de fluidos. Un fluido se caracteriza por
carecer de elasticidad de forma, es decir, adopta la forma del recipiente que la
contiene, esto se debe a que las moléculas de los fluidos no están rígidamente
unidas, como en el caso de los sólidos. Fluidos son tanto gases como líquidos.
Para llegar a la ecuación de Bernoulli se han de hacer ciertas suposiciones que
nos limitan el nivel de aplicabilidad:
 El fluido se mueve en un régimen estacionario, o sea, la velocidad del
flujo en un punto no varía con el tiempo.
 Se desprecia la viscosidad del fluido (que es una fuerza de rozamiento
interna).
 Se considera que el líquido está bajo la acción del campo gravitatorio
únicamente.
Material
Procedimiento:
1. Hicimos un sistema cerrado con embutirá de plástico y un vaso de
precipitado
2. Se le conecto un manguera sostenida por soportes universales
3. Se inhalo por el tubo agua
4. Cuando el agua empezó a caer, se llenó cierta cantidad un vaso de
precipitado por el cual se pudo medir el caudal.
Análisis:
La única complicación en este procedimiento fue la fuerza de pulmón necesaria
para poder hacer que el agua llegara a la salida de la manguera y que este se
hiciera un flujo continuo
Cálculos y resultados
Para obtener el diferencial de presión primero necesitamos obtener el caudal
con el tiempo al que saldrá el chorro de agua, el volumen que ocuparemos
llenar y la altura.
Nuestro primero paso será obtener el tiempo que tardaría en llenar cierto
volumen en este caso 1LT.
Altura = 45cm = .45m Diámetro = 0.012
Tiempo: 40 s Peso específico del agua: 9.78 N / m3
Volumen = 0.001 m3
Área = 3.1416 x d2 / 4 Área = 0.0001m2
Cantidad Material
2 Vasos de precipitado de 500ml
2 Soporte universal
2 Pinzas
1 Mangueras
Q = Volumen / tiempo
Q= 0.000025 m2/s
Velocidad = Q / a
Velocidad = 0.000025 / 0.001 m2 V = 0.25 m / s
Tomando la ecuación de Bernoulli
Y despejando para Diferencial de presiones
Diferencial de presión = Peso específico ( Z2 – Z1 )+ (V22 – V12 / 2g ) + Hf
Nuestra ecuación quedaría así: (Despreciado Z, V , Hf) Debido a que el cambio
es mínimo.
Diferencial de presión = (( V22/ 2 g ) + .45m )peso específico
Diferencial de presión = 4.432 Kpa
Conclusión
Pudimos ver como se comprobaba la teoría , es decir nosotros teníamos las
ecuaciones ya planteadas y basándonos en un problema realizado en la clase
de procesos de separación 1 y un episodio de los simpsons donde otto robaba
gasolina, diseñamos nuestro experimento el cual afortunadamente se llevó a
cabo sin percances el experimento nos permitió obtener los datos necesarios
para las ecuaciones ya planteadas, por la naturaleza del experimento se obtuvo
un flujo laminar y calculamos el diferencial de presión pues de esta manera
simplificábamos el experimento el cual nos dio un número muy real.

Más contenido relacionado

La actualidad más candente

Cap 3 dinámica de fluidos elemental.en.es
Cap 3 dinámica de fluidos elemental.en.esCap 3 dinámica de fluidos elemental.en.es
Cap 3 dinámica de fluidos elemental.en.esAlejandraMaya12
 
Deducción de h a partir de numeros adimensionales
Deducción de h a partir de numeros adimensionalesDeducción de h a partir de numeros adimensionales
Deducción de h a partir de numeros adimensionalesKaren M. Guillén
 
4. mecánica de fluidos hidrodinamica
4. mecánica de fluidos   hidrodinamica4. mecánica de fluidos   hidrodinamica
4. mecánica de fluidos hidrodinamicaDavid Narváez
 
ecuaciones empiricas y leyes de transferencia de calor
ecuaciones empiricas y leyes de transferencia de calor ecuaciones empiricas y leyes de transferencia de calor
ecuaciones empiricas y leyes de transferencia de calor 477000
 
Fluidos hidrodinamicos
Fluidos hidrodinamicosFluidos hidrodinamicos
Fluidos hidrodinamicosleslyanaya
 
Lab. inte. i practica #7-obtencion de coeficiente de conveccion termica
Lab. inte. i practica #7-obtencion de coeficiente de conveccion termicaLab. inte. i practica #7-obtencion de coeficiente de conveccion termica
Lab. inte. i practica #7-obtencion de coeficiente de conveccion termicajricardo001
 
Tippens fisica 7e_diapositivas_15b
Tippens fisica 7e_diapositivas_15bTippens fisica 7e_diapositivas_15b
Tippens fisica 7e_diapositivas_15bvotrefolie
 
Tuberías fluidos incompresibles
Tuberías fluidos incompresiblesTuberías fluidos incompresibles
Tuberías fluidos incompresiblesJess Lee
 
Fluidos compresibles e incompresibles
Fluidos compresibles e incompresiblesFluidos compresibles e incompresibles
Fluidos compresibles e incompresiblesIvan Metalion
 
Flujo de fluidos
Flujo de fluidosFlujo de fluidos
Flujo de fluidosEfraín Rs
 

La actualidad más candente (20)

Cap 3 dinámica de fluidos elemental.en.es
Cap 3 dinámica de fluidos elemental.en.esCap 3 dinámica de fluidos elemental.en.es
Cap 3 dinámica de fluidos elemental.en.es
 
Deducción de h a partir de numeros adimensionales
Deducción de h a partir de numeros adimensionalesDeducción de h a partir de numeros adimensionales
Deducción de h a partir de numeros adimensionales
 
4. mecánica de fluidos hidrodinamica
4. mecánica de fluidos   hidrodinamica4. mecánica de fluidos   hidrodinamica
4. mecánica de fluidos hidrodinamica
 
Hidrodinámica
HidrodinámicaHidrodinámica
Hidrodinámica
 
ecuaciones empiricas y leyes de transferencia de calor
ecuaciones empiricas y leyes de transferencia de calor ecuaciones empiricas y leyes de transferencia de calor
ecuaciones empiricas y leyes de transferencia de calor
 
Convección Forzada en Interfases Transporte de masa
Convección Forzada en Interfases Transporte de masaConvección Forzada en Interfases Transporte de masa
Convección Forzada en Interfases Transporte de masa
 
Convección..
Convección..Convección..
Convección..
 
Fluidos hidrodinamicos
Fluidos hidrodinamicosFluidos hidrodinamicos
Fluidos hidrodinamicos
 
Lab. inte. i practica #7-obtencion de coeficiente de conveccion termica
Lab. inte. i practica #7-obtencion de coeficiente de conveccion termicaLab. inte. i practica #7-obtencion de coeficiente de conveccion termica
Lab. inte. i practica #7-obtencion de coeficiente de conveccion termica
 
Flujo compresible
Flujo compresibleFlujo compresible
Flujo compresible
 
Tippens fisica 7e_diapositivas_15b
Tippens fisica 7e_diapositivas_15bTippens fisica 7e_diapositivas_15b
Tippens fisica 7e_diapositivas_15b
 
Presentación 1 semana 2
Presentación 1 semana 2Presentación 1 semana 2
Presentación 1 semana 2
 
Tuberías fluidos incompresibles
Tuberías fluidos incompresiblesTuberías fluidos incompresibles
Tuberías fluidos incompresibles
 
Ecuacion de bernoulli
Ecuacion de bernoulliEcuacion de bernoulli
Ecuacion de bernoulli
 
Fluidos compresibles e incompresibles
Fluidos compresibles e incompresiblesFluidos compresibles e incompresibles
Fluidos compresibles e incompresibles
 
Ecuaciones flujo fluidos
Ecuaciones flujo fluidosEcuaciones flujo fluidos
Ecuaciones flujo fluidos
 
Flujo de fluidos
Flujo de fluidosFlujo de fluidos
Flujo de fluidos
 
Laboratorio n° 1 viscosidad
Laboratorio n° 1 viscosidadLaboratorio n° 1 viscosidad
Laboratorio n° 1 viscosidad
 
Numero de Reynolds
Numero de ReynoldsNumero de Reynolds
Numero de Reynolds
 
Conveccion externa forzada
Conveccion externa forzadaConveccion externa forzada
Conveccion externa forzada
 

Destacado

Ecuacion de la continuidad
Ecuacion de la continuidadEcuacion de la continuidad
Ecuacion de la continuidadJose Alfredo
 
Ecuacion de continuidad
Ecuacion de continuidadEcuacion de continuidad
Ecuacion de continuidadclaotabares
 
Ecuacion de continuidad
Ecuacion de continuidadEcuacion de continuidad
Ecuacion de continuidadAiiDe'h GoOm's
 
Ecuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliEcuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliYuri Milachay
 

Destacado (6)

Ecuacion de continuidad
Ecuacion de continuidadEcuacion de continuidad
Ecuacion de continuidad
 
Ecuacion de la continuidad
Ecuacion de la continuidadEcuacion de la continuidad
Ecuacion de la continuidad
 
Ecuacion de continuidad
Ecuacion de continuidadEcuacion de continuidad
Ecuacion de continuidad
 
Ecuacion de continuidad
Ecuacion de continuidadEcuacion de continuidad
Ecuacion de continuidad
 
Ecuación de bernoulli
Ecuación de bernoulliEcuación de bernoulli
Ecuación de bernoulli
 
Ecuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliEcuación de continuidad y de Bernoulli
Ecuación de continuidad y de Bernoulli
 

Similar a Ecuacion de bernoulli bnbn

Similar a Ecuacion de bernoulli bnbn (20)

Trespracticas (1)
Trespracticas (1)Trespracticas (1)
Trespracticas (1)
 
Reporte practica 4 Ecuación de Bernoulli
Reporte practica 4 Ecuación de BernoulliReporte practica 4 Ecuación de Bernoulli
Reporte practica 4 Ecuación de Bernoulli
 
unidad 2
unidad 2unidad 2
unidad 2
 
Práctica 3
Práctica 3Práctica 3
Práctica 3
 
Hidrodinámica Fluido en movimientoAA.pptx
Hidrodinámica Fluido  en movimientoAA.pptxHidrodinámica Fluido  en movimientoAA.pptx
Hidrodinámica Fluido en movimientoAA.pptx
 
Hidrodinámica Fluido en movimiento.pptx
Hidrodinámica Fluido  en movimiento.pptxHidrodinámica Fluido  en movimiento.pptx
Hidrodinámica Fluido en movimiento.pptx
 
Practica 1_U2
Practica 1_U2Practica 1_U2
Practica 1_U2
 
Ecuación de bernoulli
Ecuación de bernoulliEcuación de bernoulli
Ecuación de bernoulli
 
Bernoulli luisa
Bernoulli luisaBernoulli luisa
Bernoulli luisa
 
Fisica- Hidrodinamica
Fisica- HidrodinamicaFisica- Hidrodinamica
Fisica- Hidrodinamica
 
96983098 informe-fluidos
96983098 informe-fluidos96983098 informe-fluidos
96983098 informe-fluidos
 
Mecanica de fluidos Dinamica Bernuolli 24.pptx
Mecanica de fluidos Dinamica Bernuolli 24.pptxMecanica de fluidos Dinamica Bernuolli 24.pptx
Mecanica de fluidos Dinamica Bernuolli 24.pptx
 
bv Practica bernoulli completa
bv Practica bernoulli completabv Practica bernoulli completa
bv Practica bernoulli completa
 
Universidad nacional de cajamarca
Universidad  nacional de cajamarcaUniversidad  nacional de cajamarca
Universidad nacional de cajamarca
 
Pract bernoulli
Pract bernoulliPract bernoulli
Pract bernoulli
 
Clase 4 principio de bernoulli
Clase 4 principio de bernoulliClase 4 principio de bernoulli
Clase 4 principio de bernoulli
 
Flujo ideal
Flujo ideal Flujo ideal
Flujo ideal
 
TEMA 2 FISICA AMBIENTAL UNEFM MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdf
TEMA 2 FISICA AMBIENTAL UNEFM  MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdfTEMA 2 FISICA AMBIENTAL UNEFM  MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdf
TEMA 2 FISICA AMBIENTAL UNEFM MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdf
 
Semana 3 hidrodinámica
Semana 3 hidrodinámicaSemana 3 hidrodinámica
Semana 3 hidrodinámica
 
Mecanica de fluidos_2015
Mecanica de fluidos_2015 Mecanica de fluidos_2015
Mecanica de fluidos_2015
 

Más de Miroslava Moreno

Más de Miroslava Moreno (20)

Ley de fourier bnbn2
Ley de fourier bnbn2Ley de fourier bnbn2
Ley de fourier bnbn2
 
Ley de fourier bnbn
Ley de fourier bnbnLey de fourier bnbn
Ley de fourier bnbn
 
Aletas bn bn2
Aletas bn bn2Aletas bn bn2
Aletas bn bn2
 
Aletas bn bn
Aletas bn bnAletas bn bn
Aletas bn bn
 
Ley de fick bnbn
Ley de fick bnbnLey de fick bnbn
Ley de fick bnbn
 
Mesa hidrodinamica bnbn
Mesa hidrodinamica bnbnMesa hidrodinamica bnbn
Mesa hidrodinamica bnbn
 
Lechos empacados bnbn
Lechos empacados bnbnLechos empacados bnbn
Lechos empacados bnbn
 
Ley de stoke bienbn
Ley de stoke bienbnLey de stoke bienbn
Ley de stoke bienbn
 
Curvas caracteristicas de una bomba bnbn
Curvas caracteristicas de una bomba bnbnCurvas caracteristicas de una bomba bnbn
Curvas caracteristicas de una bomba bnbn
 
Leydefourierbn 151204080446-lva1-app6891bnbn
Leydefourierbn 151204080446-lva1-app6891bnbnLeydefourierbn 151204080446-lva1-app6891bnbn
Leydefourierbn 151204080446-lva1-app6891bnbn
 
Leydefourierbn 151204080446-lva1-app6891bn
Leydefourierbn 151204080446-lva1-app6891bnLeydefourierbn 151204080446-lva1-app6891bn
Leydefourierbn 151204080446-lva1-app6891bn
 
Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2
 
Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2Aletasbn 151204081635-lva1-app6893bnbn 2
Aletasbn 151204081635-lva1-app6893bnbn 2
 
Conveccion bn
Conveccion bnConveccion bn
Conveccion bn
 
Aletas bn
Aletas bnAletas bn
Aletas bn
 
Perfiles de temperatura bn
Perfiles de temperatura bnPerfiles de temperatura bn
Perfiles de temperatura bn
 
Ley de fourier bn
Ley de fourier bnLey de fourier bn
Ley de fourier bn
 
Ley de fick bn
Ley de fick bnLey de fick bn
Ley de fick bn
 
Mesa hidrodinamica bn
Mesa hidrodinamica bnMesa hidrodinamica bn
Mesa hidrodinamica bn
 
Lechos empacados bn
Lechos empacados bnLechos empacados bn
Lechos empacados bn
 

Último

LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 

Último (20)

LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 

Ecuacion de bernoulli bnbn

  • 1. Instituto Tecnológico de Mexicali Practica: Ecuación de Bernoulli Materia: Laboratorio integral I Profesor: Norman Rivera Pasos Fecha: del 2015 Integrantes: Amador Liera Karen Esperanza Ceballos Soto Alexandra García Aguilera Paulina García Flores Víctor Emmanuel Meza Alvarado Jair Alexis Meza Green Leonardo Alfonso Martínez Moreno Miroslava Navarro Orrantia Alicia
  • 2. Título: “Ecuación de Bernoulli” Objetivo Diseñar un experimento que cumpla con la ecuación de Bernoulli en este caso determinar el cambio de presión del sistema. Introducción Ecuación de Bernoulli El caudal (o gasto) se define como el producto de la sección por la que fluye el fluido y la velocidad a la que fluye. En dinámica de fluidos existe una ecuación de continuidad que nos garantiza que en ausencia de manantiales o sumideros, este caudal es constante. Como implicación directa de esta continuidad del caudal y la ecuación de Bernoulli tenemos un tubo de Venturi. Un tubo de Venturi es una cavidad de sección s1 por la que fluye un fluido y que en una parte se estrecha, teniendo ahora una sección S2<S1. Como el caudal se conserva entonces tenemos que v2>v1. Por tanto: P1= presión de entrada (Pa) P2= presión de salida (Pa) g= gravedad (m/seg2) ρ= densidad (kg/m3) V1=velocidad del fluido inicial (m/seg) V2= velocidad del fluido final (m/seg) h1= altura inicial (m) h2= altura final (m)
  • 3. Marco teórico Formulación de la ecuación La ecuación de Bernoulli describe el comportamiento de un fluído bajo condiciones variantes y tiene la forma siguiente: Parámetros En la ecuación de Bernoulli intervienen los parámetros siguientes:  : Es la presión estática a la que está sometido el fluído, debida a las moléculas que lo rodean  : Densidad del fluído.  : Velocidad de flujo del fluído.  : Valor de la aceleración de la gravedad ( en la superficie de la Tierra).  : Altura sobre un nivel de referencia. Aplicabilidad Esta ecuación se aplica en la dinámica de fluidos. Un fluido se caracteriza por carecer de elasticidad de forma, es decir, adopta la forma del recipiente que la contiene, esto se debe a que las moléculas de los fluidos no están rígidamente unidas, como en el caso de los sólidos. Fluidos son tanto gases como líquidos. Para llegar a la ecuación de Bernoulli se han de hacer ciertas suposiciones que nos limitan el nivel de aplicabilidad:  El fluido se mueve en un régimen estacionario, o sea, la velocidad del flujo en un punto no varía con el tiempo.  Se desprecia la viscosidad del fluido (que es una fuerza de rozamiento interna).  Se considera que el líquido está bajo la acción del campo gravitatorio únicamente.
  • 4. Material Procedimiento: 1. Hicimos un sistema cerrado con embutirá de plástico y un vaso de precipitado 2. Se le conecto un manguera sostenida por soportes universales 3. Se inhalo por el tubo agua 4. Cuando el agua empezó a caer, se llenó cierta cantidad un vaso de precipitado por el cual se pudo medir el caudal. Análisis: La única complicación en este procedimiento fue la fuerza de pulmón necesaria para poder hacer que el agua llegara a la salida de la manguera y que este se hiciera un flujo continuo Cálculos y resultados Para obtener el diferencial de presión primero necesitamos obtener el caudal con el tiempo al que saldrá el chorro de agua, el volumen que ocuparemos llenar y la altura. Nuestro primero paso será obtener el tiempo que tardaría en llenar cierto volumen en este caso 1LT. Altura = 45cm = .45m Diámetro = 0.012 Tiempo: 40 s Peso específico del agua: 9.78 N / m3 Volumen = 0.001 m3 Área = 3.1416 x d2 / 4 Área = 0.0001m2 Cantidad Material 2 Vasos de precipitado de 500ml 2 Soporte universal 2 Pinzas 1 Mangueras
  • 5. Q = Volumen / tiempo Q= 0.000025 m2/s Velocidad = Q / a Velocidad = 0.000025 / 0.001 m2 V = 0.25 m / s Tomando la ecuación de Bernoulli Y despejando para Diferencial de presiones Diferencial de presión = Peso específico ( Z2 – Z1 )+ (V22 – V12 / 2g ) + Hf Nuestra ecuación quedaría así: (Despreciado Z, V , Hf) Debido a que el cambio es mínimo. Diferencial de presión = (( V22/ 2 g ) + .45m )peso específico Diferencial de presión = 4.432 Kpa Conclusión Pudimos ver como se comprobaba la teoría , es decir nosotros teníamos las ecuaciones ya planteadas y basándonos en un problema realizado en la clase de procesos de separación 1 y un episodio de los simpsons donde otto robaba gasolina, diseñamos nuestro experimento el cual afortunadamente se llevó a cabo sin percances el experimento nos permitió obtener los datos necesarios para las ecuaciones ya planteadas, por la naturaleza del experimento se obtuvo un flujo laminar y calculamos el diferencial de presión pues de esta manera simplificábamos el experimento el cual nos dio un número muy real.