SlideShare una empresa de Scribd logo
1 de 27
________________________________________________________________________________________________________________________
.
MEMORIA DE CALCULO DE
ESTRUCTURAS
MEMORIA DE CALCULO DE ESTRUCTURAS
1. DESCRIPCIÓN GENERAL DEL PROYECTO
La presente memoria de cálculo se refiere al Proyecto Estructural de una Vivienda
Multifamiliar, ubicada en la Av. Ayacucho con Jr. Juan A. Pezet Mz J Lt. 01, LIGURIA , Distrito
de SURCO, Departamento de Lima. Se realizará el siguiente informe para un análisis sísmico
espacial modal a la Vivienda Multifamiliar completa.
A continuación mostramos las plantas del proyecto.
VISTA PLANTA GENERAL DE LA VIVIENDA DEL
SOTANO MULTIFAMILIAR
VISTA PLANTA GENERAL DE LA VIVIENDA
MULTIFAMILIAR
2. ANALISIS ESTRUCTURAL
Después de la compatibilización con la arquitectura, se procedió a realizar el análisis estructural
de la estructura comprendida de columnas, muros estructurales, muros de albañilería confinada,
vigas, viguetas y losas.
2.1. Modelo Estructural
2.1.1. Geometría
De acuerdo a las medidas indicadas en el plano de arquitectura, se procedió a hacer un
modelo tridimensional con tres coordenadas dinámicas por nivel, tomando en cuenta
deformaciones por flexión, fuerza cortante y carga axial. Los apoyos se consideraron como
empotramientos perfectos en el primer piso.
2.1.2. Materiales Utilizados
 Para las estructuras de concreto armado se ha empleado concreto de f'c=210
kg/cm2 y acero corrugado de grado 60 fy= 4200 kg/cm2.
2.1.3. Cargas Verticales.
Carga muertas
 Concreto 2400 kg/m³
 Acero 7850 kg/m³
Tal como lo indica la Norma E.020, las sobrecargas utilizadas son:
100 kg/m2 para techo de azotea.
2.1.4. Modelo Estructural
Con la geometría anteriormente descrita y los materiales indicados se procedió a hacer un
análisis de la estructura.
2.2. Análisis Sísmico
2.2.1. Parámetros Sísmicos
El análisis sísmico se desarrolló de acuerdo a las indicaciones de la Norma Peruana de
Diseño Sismorresistente E.030.
La Norma E.030 señala que al realizar el análisis sísmico empleando el método de
superposición espectral se debe considerar como criterio de superposición el ponderado
entre la suma de absolutos y la media cuadrática según se indica en la siguiente ecuación:
Alternativamente se puede utilizar como criterio de superposición la Combinación
Cuadrática Completa (CQC). En el presente análisis se utilizó este último criterio.
Para la determinación del espectro de pseudo aceleraciones sísmicas, usamos la relación
dada por la Norma Peruana de Diseño Sismorresistente, la cual indica que dicho espectro se
determina por la siguiente relación:
Dónde:
Z : Factor de zona.
U : Factor de Uso o de importancia.
S : Factor del suelo.
C : Coeficiente de amplificación sísmico.
R : Coeficiente de reducción de solicitaciones sísmicas.
Para nuestro caso Vivienda Multifamiliar:
Z = 0.4 Por ser zona 3 de acuerdo al reglamento.
U = 1.0 Edificaciones Comunes.
S = 1.2 Por ser considerado suelo tipo S2 Tp(s) = 0.60
Rx= 8.0 Sistema de Pórtico.
Ry= 8.0 Sistema de Pórtico.
C = 2.5 Coeficiente de Amplificación Sísmica.
Para el análisis estructural se empleó el programa ETABS Versión 9.7.0 cuyos resultados
nos muestra los desplazamientos, distorsiones, fuerzas concentradas y cortantes en cada
nivel, tanto para la estructura en el contexto global como para cada uno de los pórticos que
la constituyen en las dos direcciones de análisis.
0.00
0.50
1.00
1.50
2.00
2.50
0.00 0.50 1.00 1.50 2.00 2.50 3.00
Sa
T
Espectro de Aceleraciones ZUSC / R
Sx Sy
Modelo tridimensional de la “VIVIENDA MULTIFAMILIAR”
“VIVIENDA MULTIFAMILIAR”– Desplazamiento Sismo X
“VIVIENDA MULTIFAMILIAR”– Desplazamiento Sismo Y
2.2.2. Resultados del Análisis Sísmico
El Análisis Sísmico se hizo, según la Norma E.030, considerando un 5% de excentricidad
accidental. Se hicieron varios modelos considerando distintas posiciones del Centro de
Masas y considerando el Sismo aplicado en cuatro direcciones (ortogonales dos a dos).
Como resultados del análisis sísmico se obtuvieron los desplazamientos laterales en cada
nivel y las fuerzas de sección en los elementos.
A continuación se muestran los resultados para las direcciones X-Y.
 Períodos de Vibración
Vivienda Multifamiliar
Los períodos de vibración fundamentales para la edificación analizada son los siguientes:
Período T (seg) % Participación
Dirección X-X 0.5525 96.72
Dirección Y-Y 0.3457 96.70
Puede apreciarse que los porcentajes de participación de los modos fundamentales en cada
dirección son altos, lo cual indica que el edificio tiene buena regularidad torsional.
 Fuerza Cortante en la Base del Edificio
Vivienda Multifamiliar
V dinámico (ton) V estático (ton) 80% V estático
Dirección X-X 109.19 246.39 197.11
Dirección Y-Y 119.08 246.39 197.11
Como se puede apreciar la fuerza cortante basal del análisis dinámico en dirección “X” y no
es mayor que el 80% del valor obtenido del análisis estático por lo que SI necesita hacer
modificaciones en los esfuerzos, la fuerza cortante basal del análisis dinámico en dirección
“Y” y no es mayor que el 80% del valor obtenido del análisis estático por lo que SI necesita
hacer modificaciones en los esfuerzos obtenidos del análisis dinámico.
En la dirección XX por 197.11/109.19= 1.81
En la dirección YY por 197.11/109.19= 1.66
 Control de Desplazamientos
3. DISEÑO DE LOS ELEMENTOS
3.1. Normas
Para el diseño de los elementos se han empleado las Normas de Diseño vigentes en el
Reglamento Nacional de Edificaciones, que comprenden:
 E020 Cargas
 E030 Sismorresistente
 E050 Suelos y Cimentaciones
 E060 Concreto Armado
 E070 Albañilería
Además se han considerado las siguientes Normas:
 American Concrete Institute ACI 318 – 99 del ACI para el Diseño de Elementos de
Concreto Armado.
3.2. Combinaciones de Cargas
Para el diseño de los elementos de concreto armado se han utilizado las siguientes
combinaciones:
U = 1.4D1
U= 1.4D+1.7L
U = 1.25 (D+L)+- SX
U= 1.25 (D+L) +-SY
U = 0.9D+- SX
U= 0.9D+-SY
Factor de reducción de flexión f = 0.90.
Factor de reducción de compresión f = 0.85.
3.3. Consideraciones
El diseño de los elementos de concreto se realizó por el método a la rotura, cumpliéndose
con los criterios de ACI-318-99 y con los capítulos pertinentes del Reglamento Nacional de
Edificaciones. Para el diseño de las columnas se procedió a realizar el diseño convencional
esto es verificando la compresión, diseñando a flexo compresión.
Para el diseño de los techos aligerados se consideró un espesor de 20 cm para todos los
niveles de la estructura principal. La cimentación se reforzó para asegurar no solo la
estabilidad ante cargas verticales y de sismo, sino también para asegurar la estabilidad en
planta frente al momento de volteo que las fuerzas de sismo generan, se empleó un factor de
seguridad de F.S. =1.5 para este caso.
Materiales utilizados:
Concreto f´c = 210 Kg/cm² Columnas, vigas, losas y placas
f’c = 210 Kg/cm² Cimentación.
Acero fy = 4200 Kg/cm²
 Cargas Verticales
Las cargas verticales se evaluaron conforme a la norma de Cargas, E-020. Para las losas
aligeradas, armadas en una dirección, se supuso un peso de 300 kg/m2.
Los pesos de vigas, columnas y escaleras se estimaron a partir de sus dimensiones reales,
considerando un peso específico de 2,400 kg/m3. Para las particiones se usó un promedio
de 150 kg/m2, valor que excede el estimado a partir de los pesos reales con la distribución
de vivienda existente. Se incluyó igualmente el peso de acabados de piso y de techo,
estimado en 100 kg/m2.
Para el primer nivele se asumió una sobrecarga de diseño de 200 kg/m2 y lo que
corresponde al uso de azoteas una sobrecarga de 100 kg/m2, según consta en la norma
E.020. No se hicieron reducciones de carga viva. Cabe anotar que la carga viva tiene poca
incidencia en los resultados en el análisis sísmico.
3.3.1. Diseño de Vigas
 Requisitos Generales:
- fy  4200 kg/cm2; ya que se pueden deformar más sin pérdida de su capacidad
estática.
- 210 kg/cm2  f´c ; porque retrasa el aplastamiento del concreto.
- b  25cm.; b  0.3h
- ln  4h
Todos estos requisitos se están cumpliendo y se puso en práctica en la etapa de
predimensionamiento.
 Cuantías de Refuerzo
Para todas las secciones de momento positivo y negativo se tiene:
0033
.
0
4200
14
14
mín 


fy

........()
0028
.
0
4200
210
80
.
0
´
80
.
0
mín 

 x
fy
c
f

........()
b
máx 
 75
.
0

........()
fy
fy
c
f
b


6000
6000
´
85
.
0 1


........()
Reemplazando datos en las ecuaciones  y  para f’c = 210 kg/cm2, fy = 4200 kg/cm2 y
1=0.85 se tiene:
b=0.0213;
máx = 0.75x0.0213 = 0.016
 Diseño por corte
La resistencia nominal al corte en una sección cualquiera, será la suma de las resistencias
aportadas por el concreto y por el refuerzo:
s
c
n V
V
V 

Y en todas las secciones deberá cumplirse:
n
u V
V 

La sección crítica que se encuentra sometida al mayor cortante de diseño del elemento se
encuentra ubicada entre la cara de apoyo y una sección ubicada a “d” de ella, entonces las
secciones situadas en este tramo se diseñarán para un cortante último igual al
correspondiente a la sección ubicada a “d” del apoyo.
 Cortante máximo que toma el concreto Vc
Teóricamente la resistencia del concreto al corte es igual a la carga que produce la primera
fisura inclinada en el extremo del elemento.
El corte máximo que toma el concreto en elementos a flexión esta dado por:
d
b
c
f
Vc '
53
.
0

 Requerimientos mínimos de refuerzo transversal
La falla por corte es frágil y debe ser evitada siempre. Por ello el código recomienda colocar
una cantidad mínima de refuerzo transversal para brindar mayor seguridad al diseño y
para garantizar que el elemento sea capaz de resistir los esfuerzos que se presentan
después de producirse el agrietamiento diagonal. El refuerzo mínimo sugerido por el código
debe colocarse siempre que:
c
u
c V
V
V 
 

2
1
y es igual a:
y
w
vmín
f
s
b
A 5
.
3
 .....()
donde:
s: Separación del refuerzo transversal
Av: Área del acero transversal provisto para resistir corte.
 Espaciamiento máximo del refuerzo transversal
Tanto el código del ACI como la Norma E-060, recomiendan que para estribos
perpendiculares al eje del elemento, el espaciamiento máximo sea:
.
60 cm
s  2
d
s 
Estos espaciamientos máximos precisados en las expresiones anteriores son válidos
siempre que:
d
b
c
f
Vs '
06
.
1
 .......()
En caso que se exceda éstos límites, los espaciamientos máximos deben de reducirse a la
mitad, es decir:
.
30 cm
s  4
d
s 
 Aporte máximo del refuerzo transversal a la resistencia al corte
El refuerzo longitudinal tiene una cuantía máxima que no debe superarse para garantizar el
comportamiento dúctil del elemento. Del mismo modo, el refuerzo transversal tiene una
limitación similar que busca evitar la falla del concreto comprimido, ubicado en el extremo
superior de las fisuras diagonales, antes de la fluencia del acero transversal. La Norma E-
060 y el código del ACI recomiendan que:
d
b
c
f
Vs '
1
.
2
 ........ ()
En caso que se requiera un aporte mayor del refuerzo transversal es necesario incrementar
las dimensiones de la sección del elemento o aumentar la resistencia del concreto.
 Diseño de Vigas Dúctiles en regiones de alto riesgo sísmico
El código del ACI incluye recomendaciones para elementos sometidos a flexión que resisten
cargas inducidas por sismos severos, que se menciona a continuación:
El refuerzo longitudinal en cualquier sección del elemento, tanto positivo como negativo
tendrá como cuantías mínimas y cuantía máxima los especificados más adelante.
Los empalmes traslapados del refuerzo longitudinal se podrán emplear siempre que se
distribuya refuerzo transversal a todo lo largo de éste para darle confinamiento en caso que
el recubrimiento de concreto se desprenda.
El refuerzo transversal brinda apoyo al refuerzo longitudinal y confina el núcleo de
concreto cuando el recubrimiento se desprende. Por ello, debe estar constituido por
estribos cerrados. La inversión de esfuerzos por efecto de las cargas sísmicas, hace
necesario el uso de estribos perpendiculares al refuerzo longitudinal pues éstos son
igualmente efectivos ante solicitaciones inversas.
En los planos presentados se muestran los requisitos para el refuerzo longitudinal, así como
la distribución del refuerzo transversal mínimo de elementos sometidos a flexión. La
concentración de refuerzo en los extremos busca confinar el núcleo de concreto en caso que
el recubrimiento se desprenda por lo que se denomina refuerzo de confinamiento. El
desprendimiento del recubrimiento se suele presentar después de la formación de rótulas
plásticas.
 Zona de confinamiento
Está comprendida entre la cara de apoyo de la viga hasta una distancia 2h en cada extremo
de la viga tal como se muestra en el esquema de distribución del confinamiento.
En el cuadro de resultados se observa que el aporte del refuerzo transversal a la resistencia
al corte en la zona de confinamiento es ínfimo; esto es:
d
xbx
Vs .
210
06
.
1
 ....()
El espaciamiento “s” se determina con:
.
84
.
15
95
.
16
45
2
.
4
71
.
0
2
cm
x
x
x
V
d
fy
A
s
s
v



Se está considerando estribos cerrados de 2 ramas de  3/8”.
Dado la conformidad en la desigualdad (), en ésta zona tendremos los espaciamientos
máximos del refuerzo transversal cuyas limitaciones son:
.
60 cm
s 
.
5
.
22
2
45
2
cm
d
s 


También se tiene limitaciones del espaciamiento del refuerzo transversal en la zona de
confinamiento por capacidad de ductilidad, ilustrada en la Figura:
CONDICIONES:
2H 2H
CONFINAMIENTO EN VIGAS
Ln
5 cm
s
5 cm
s
s
















.
10
.
80
.
22
95
.
0
24
24
.
70
.
12
58
.
1
8
8
.
.
11
4
44
4
cm
cm
x
cm
x
cm
d
s
estribo
lmenor


Por lo tanto se recomienda usar en la zona de confinamiento:
Estribos  3/8” 1 @ .05, 10 @ .10
Se determinara la resistencia al corte de la sección con el confinamiento mínimo por
ductilidad:
.
84
.
26
10
45
2
.
4
71
.
0
2
Tn
x
x
x
s
d
fy
A
V v
s 


 Zona no confinada
Corresponde a la zona fuera de la longitud de confinamiento, en el cuadro de resultados se
aprecia que los cortantes actuantes últimos son menores que la resistencia del concreto al
corte, se tendrá que colocar refuerzo transversal mínimo dado por la ecuación.
fy
s
b
A w
vmín 5
.
3
 ; siempre que: c
u
c V
V
V 
 

2
1
Usando estribos cerrados de dos ramas de  3/8” se tiene:
.
80
.
56
30
5
.
3
4200
71
.
0
2
5
.
3
cm
x
x
x
b
fy
A
s
w
vmín



,
La limitación en el espaciamiento esta dado por los requisitos que aseguran una capacidad
de ductilidad en vigas, que indica donde no se requiera estribos de confinamiento el
espaciamiento debe de ser:
.
5
.
22
2
45
2
cm
d
s 


Por lo tanto se recomienda usar en la zona no confinada: Estribos  3/8” @ .20
Finalmente en cada uno de los tramos se usaran:
Estrib Ø 3/8”: 1 @.05, 10@.10, Rto. @.20 en c/extremo.
s
c
u
V
V
V



3.3.2. Diseño de Columnas
 Consideraciones de dimensionamiento
Estas son consideraciones que se tomaron en cuenta en la etapa de predimensionamiento,
que volveremos a mencionarlo a continuación:
- D  ho/4
-
3
1
´


D
b
c
f
Ps
n n  0.25
- D30 cm.
- 4
.
0

máx
mín
D
D
 Consideraciones de diseño
Cuantías
La cuantía de refuerzo longitudinal en elementos sometidos a flexión y carga axial no debe
ser inferior a 0.01 ni superior a 0.06. Sin embargo, esta cuantía máxima se reduce aun más
en la práctica profesional, esto es para evitar el congestionamiento del refuerzo de tal forma
de permitir facilidad constructiva y a su vez limitar los esfuerzos de corte en la pieza cuando
alcance su resistencia última a la flexión. En consecuencia estamos hablando de cuantías
máximas del orden de 2 – 3%.
Traslapes
Los traslapes sólo son permitidos dentro de la mitad central de la columna y éstos son
proporcionados como empalmes a tracción. Esto se debe a la probabilidad que existe que el
recubrimiento de concreto se desprenda en los extremos del elemento haciendo que estos
empalmes se tornen inseguros. El Reglamento ACI-99 considera para zonas muy sísmicas
que en cada nudo, la suma de las capacidades últimas en flexión de las columnas sean por lo
menos igual a 1.2 veces la suma de las capacidades últimas de las vigas que concurren a las
caras del nudo, y si alguna columna no cumple con ésta condición debe de llevar refuerzo
transversal de confinamiento en toda su longitud.
Refuerzo transversal
El Reglamento Nacional de Edificaciones indica:
1.- Deberá colocarse en ambos extremos del elemento estribos cerrados sobre una longitud
“l” medida desde la cara del nudo (zona de confinamiento) que no sea menor que:
- Un sexto de la luz libre del elemento.
- La máxima dimensión de la sección transversal del elemento: 45 cm.
Estos estribos tendrán un espaciamiento que no deben exceder del menor de los
siguientes valores:
- Un cuarto de la dimensión más pequeña de la sección transversal del elemento:
10 cm.
- El primer estribo deberá ubicarse a no más de 5 cm. de la cara del nudo.
2.- El espaciamiento del refuerzo transversal fuera de la zona de confinamiento, no deberá
de exceder de 6 veces el diámetro de la barra longitudinal de menor diámetro, 15 cm. o la
mitad de la dimensión más pequeña de la sección transversal del elemento.
Recomendaciones del ACI para refuerzo transversal en columnas confinadas
El ACI da las siguientes recomendaciones para garantizar la existencia de ductilidad en las
columnas:
- Refuerzo por confinamiento
fy
c
f
hc
s
Ach
Ag
Ash
´
1
30
.
0 







fy
c
f
hc
s
Ash
´
09
.
0

Las expresiones anteriores permiten determinar el espaciamiento “s” de estribos en la zona
de confinamiento donde:
Ash : en la dirección de análisis.
hc : Ancho del núcleo de concreto confinado por el acero medido centro a centro de los
estribos exteriores.
Ach : Área del núcleo de concreto confinado por el acero.
Ag : Área total de la sección transversal de la columna.
s : Espaciamiento del refuerzo transversal.
Refuerzo longitudinal
Para el diseño de las columnas se consideró el aumento de las secciones debido al aumento
del cortante basal, esto por la condición de que los pórticos deberán de resistir por lo
menos el 25% del cortante total en la base.
La capacidad resistente en el resto de las columnas es conforme. Las nuevas plantas típicas
de elementos estructurales son las mostradas en los planos correspondientes, se presenta
en resumen las secciones típicas y el correspondiente refuerzo para cada una de ellas.
Fuerza Cortante que toma el concreto
En elementos sometidos a compresión axial, corte y flexión, el agrietamiento disminuye y
por lo tanto existe una mayor área para resistir el corte. La expresión para determinar el
corte que toma el concreto en este tipo de elementos es:










Ag
Nu
d
b
c
f
x
Vc 0071
.
0
1
'
53
.
0

Donde Nu es la fuerza axial mayorada que actúa sobre el elemento y es positiva cuando es
de compresión, Ast es el área de acero y Ag es el área bruta de la sección de concreto.
Considerando Nu la carga axial máxima en compresión que puede tomar el elemento,
entonces tenemos:
Pn máx = 0.80(0.85 f´c (Ag-Ast) + Ast fy) 
Pn máx = 0.80(0.85 f´c (Ag) + Ast fy)
Diseño por cortante en los extremos de la columna (2d)
Se analiza en la dirección más desfavorable. En esta zona no se toma en cuenta la
contribución del concreto, por lo tanto el requerimiento de estribos está dado por la
expresión:
.
36
52
.
6
40
2
.
4
71
.
0
2
cm
x
x
x
V
d
fy
A
s
n
v



Se aprecia que 36cm>10cm. lo que demuestra que no hay exigencia de diseño por corte.
Diseño por cortante en la parte central
En esta zona se toma en cuenta la contribución del concreto; se hace uso de la expresión:
.
c
n
v
V
V
d
fy
A
s

















).
99
.......(
5
.
22
2
45
2
)
060
......(
30
)
060
......(
48
.
30
91
.
1
16
)
(
16
ACI
cm
D
E
cm
E
cm
x
longitunal
d
s
menor
b
máx
Por lo tanto usar: 3/8”: 1 @.05, 8 @.10, Rto @.20 c/ext.
3.4. Resistencia del Terreno
Para el diseño de la cimentación se ha utilizado la resistencia del terreno de 3.80 kg/cm2.
Con los valores anteriormente descritos de procedió al diseño completo de los elementos
estructurales que aparecen detallados en los planos.
3.5. ANALISIS Y DISEÑO DE LA CIMENTACION
3.5.1. Diseño de la cimentación
El sistema de cimentación propuesta es una platea de cimentación en todo el contorno de la
cimentación. Se consideró un comportamiento lineal y elástico tanto para la cimentación como para
el material de fundación.
El procedimiento de análisis consistió en modelar el suelo como resortes elásticos bajo la losa y
analizar el conjunto estructura–cimentación-suelo con un método matricial resuelto en un
programa de cómputo para este caso se empleó el programa SAFE que resuelve la distribución de
las presiones considerando los resortes elásticos en función del módulo de balastro del terreno,
además se analizó algunas zapatas con hojas de cálculo en el Excel cuyas formulas son acorde a las
ya mencionadas.
Se realizó una revisión global de la cimentación, determinando las cargas transmitidas por la
estructura y sus puntos de aplicación.
La presión promedio en el suelo (como presión neta igual a la transmitida por la construcción) se
comparó a la capacidad portante del suelo para que este no exceda este promedio. El procedimiento
de análisis comprendió lo siguiente:
a) Se supuso una distribución de presiones congruente con el tipo de suelo de cimentación, se
asumió condición uniforme del terreno.
b) Con la presión neta supuesta se determina los hundimientos del suelo y se revisa que no
excedan los admisibles.
c) Se modela la cimentación con una retícula de vigas que unen las columnas y sometida a una
carga igual a la fuerza que actúa en el área tributaria de cada viga (distribuida en su
longitud).
d) Se realiza un análisis de retícula que queda en equilibrio global bajo cargas externas. Se
despreció la rigidez a flexión de las columnas.
e) Este procedimiento considera el carácter bidimensional de la cimentación.
f) Para el diseño de la viga de cimentación se empleó el método convencional, esto es
asumiendo secciones rígidas.
Modelo tridimensional de la cimentación de la VIVIENDA MULTIFAMILIAR
Verificación del esfuerzo sea menor que la capacidad admisible de la VIVIENDA
MULTIFAMILIAR
Diseño de las zapatas, con  5/8”@0.20 acero cumple
DISEÑO DE LOS ELEMENTOS
Diseño de la columna:
Escogemos la columna (Columna C1 0.25x0.40 ver plano de estructuras) donde esta es la más
cargada donde presentamos las fuerzas existentes:
Fuerzas para el Diseño
P V2 V3 T M2 M3
COMBINACIÓN 1 -81.55 0.16 0.01 0 -0.012 -0.308
COMBINACIÓN 2 -90.95 -0.5 -0.24 -0.001 -0.509 -1.502
COMBINACIÓN 3 -86.55 -0.38 -0.18 0 -0.383 -1.278
COMBINACIÓN 4 -58.32 -0.57 -0.25 -0.001 -0.489 -1.353
COMBINACIÓN 5 -53.91 -0.46 -0.19 0 -0.363 -1.129
Revisión del acero con las combinaciones de carga.
Diagrama de interacción de la sección, donde la cantidad de acero colocado cumple con
las cargas existentes.
Cantidad de acero colocado de 4∅1”+ 6 ∅3/4”, cumple con las cargas existentes.
Diseño de la losa aligerada (a20= h=20cm).
Etiqueta b h bw t
(m) (m) (m) (m)
a20 0.400 0.200 0.100 0.050
Acero Requerido por los paños:
Detalle de acero requerido en la losa aligerada.

Más contenido relacionado

Similar a Memoria_de_Calculo_Estrctural_de_Edifici.docx

M. descriptiva estructuras casa de playa
M. descriptiva estructuras   casa de playaM. descriptiva estructuras   casa de playa
M. descriptiva estructuras casa de playaErick Ehzu
 
INFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docx
INFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docxINFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docx
INFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docxJhomerBriceoEulogio
 
Memoria calculo estructural edif.mult. el tambo2011(contenido)
Memoria calculo estructural edif.mult. el tambo2011(contenido)Memoria calculo estructural edif.mult. el tambo2011(contenido)
Memoria calculo estructural edif.mult. el tambo2011(contenido)GuillermoFloresNol
 
Memoria estructuras teresa mendoza
Memoria estructuras teresa mendozaMemoria estructuras teresa mendoza
Memoria estructuras teresa mendozaJoel Adriano
 
Memoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructurasMemoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructurasChristian Padilla Farfan
 
Club house lpp m. estructural bloque a
Club house lpp   m. estructural bloque aClub house lpp   m. estructural bloque a
Club house lpp m. estructural bloque aAngelCristhianRosale
 
MEMORIA DE CALCULO ESTRUCTURAS.docx
MEMORIA DE CALCULO ESTRUCTURAS.docxMEMORIA DE CALCULO ESTRUCTURAS.docx
MEMORIA DE CALCULO ESTRUCTURAS.docxRyin Arenas
 
INFORME DE INGENIERIA ANTISISMICA
INFORME DE INGENIERIA ANTISISMICAINFORME DE INGENIERIA ANTISISMICA
INFORME DE INGENIERIA ANTISISMICACristian Chavez
 
Memoria descriptiva final estructuras - proyecto comedor - arequipa
Memoria descriptiva final   estructuras - proyecto comedor - arequipaMemoria descriptiva final   estructuras - proyecto comedor - arequipa
Memoria descriptiva final estructuras - proyecto comedor - arequipa983259102
 
Influencia de la zona sismica en una edificación
Influencia de la zona sismica en una edificaciónInfluencia de la zona sismica en una edificación
Influencia de la zona sismica en una edificaciónToño Maldonado Mendieta
 
Memoria de calculo
Memoria de calculoMemoria de calculo
Memoria de calculopatrick_amb
 
Comparación de codigos de diseño sismorresistente de países sudamericanos
Comparación de codigos de diseño sismorresistente de países sudamericanosComparación de codigos de diseño sismorresistente de países sudamericanos
Comparación de codigos de diseño sismorresistente de países sudamericanosMarlon Valarezo
 
214526410 albanileria-confinada-xls
214526410 albanileria-confinada-xls214526410 albanileria-confinada-xls
214526410 albanileria-confinada-xlsAmerico Diaz Mariño
 
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
Memoria de calculo estrutura lpdf02.  memoria de calculo estrutural (1)Memoria de calculo estrutura lpdf02.  memoria de calculo estrutural (1)
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)Frank Michael Villafuerte Olazabal
 
CÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍCÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍRegularizacinConcn
 
Calculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de AtacamaCalculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de AtacamaRegularizacinConcn
 

Similar a Memoria_de_Calculo_Estrctural_de_Edifici.docx (20)

Memoria de calculo estructural mercado
Memoria de calculo estructural mercadoMemoria de calculo estructural mercado
Memoria de calculo estructural mercado
 
M. descriptiva estructuras casa de playa
M. descriptiva estructuras   casa de playaM. descriptiva estructuras   casa de playa
M. descriptiva estructuras casa de playa
 
INFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docx
INFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docxINFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docx
INFORME MEMORIA DE CÁLCULO-MÓDULO SSHH.docx
 
Memoria calculo estructural edif.mult. el tambo2011(contenido)
Memoria calculo estructural edif.mult. el tambo2011(contenido)Memoria calculo estructural edif.mult. el tambo2011(contenido)
Memoria calculo estructural edif.mult. el tambo2011(contenido)
 
PPT INGENIERÍA SÍSMICA.pptx
PPT INGENIERÍA SÍSMICA.pptxPPT INGENIERÍA SÍSMICA.pptx
PPT INGENIERÍA SÍSMICA.pptx
 
Memoria estructuras teresa mendoza
Memoria estructuras teresa mendozaMemoria estructuras teresa mendoza
Memoria estructuras teresa mendoza
 
Memoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructurasMemoria descriptiva arq, elect. sant. estructuras
Memoria descriptiva arq, elect. sant. estructuras
 
Club house lpp m. estructural bloque a
Club house lpp   m. estructural bloque aClub house lpp   m. estructural bloque a
Club house lpp m. estructural bloque a
 
MEMORIA DE CALCULO ESTRUCTURAS.docx
MEMORIA DE CALCULO ESTRUCTURAS.docxMEMORIA DE CALCULO ESTRUCTURAS.docx
MEMORIA DE CALCULO ESTRUCTURAS.docx
 
INFORME DE INGENIERIA ANTISISMICA
INFORME DE INGENIERIA ANTISISMICAINFORME DE INGENIERIA ANTISISMICA
INFORME DE INGENIERIA ANTISISMICA
 
Memoria descriptiva final estructuras - proyecto comedor - arequipa
Memoria descriptiva final   estructuras - proyecto comedor - arequipaMemoria descriptiva final   estructuras - proyecto comedor - arequipa
Memoria descriptiva final estructuras - proyecto comedor - arequipa
 
Influencia de la zona sismica en una edificación
Influencia de la zona sismica en una edificaciónInfluencia de la zona sismica en una edificación
Influencia de la zona sismica en una edificación
 
Memoria de calculo
Memoria de calculoMemoria de calculo
Memoria de calculo
 
Comparación de codigos de diseño sismorresistente de países sudamericanos
Comparación de codigos de diseño sismorresistente de países sudamericanosComparación de codigos de diseño sismorresistente de países sudamericanos
Comparación de codigos de diseño sismorresistente de países sudamericanos
 
Memoria descriptiva de estructuras
Memoria descriptiva de estructurasMemoria descriptiva de estructuras
Memoria descriptiva de estructuras
 
214526410 albanileria-confinada-xls
214526410 albanileria-confinada-xls214526410 albanileria-confinada-xls
214526410 albanileria-confinada-xls
 
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
Memoria de calculo estrutura lpdf02.  memoria de calculo estrutural (1)Memoria de calculo estrutura lpdf02.  memoria de calculo estrutural (1)
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
 
CÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍCÁLCULO ESTRUCTURAL CURACAVÍ
CÁLCULO ESTRUCTURAL CURACAVÍ
 
Calculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de AtacamaCalculista Estructuras San Pedro de Atacama
Calculista Estructuras San Pedro de Atacama
 
Cálculo estructural Calama
Cálculo estructural CalamaCálculo estructural Calama
Cálculo estructural Calama
 

Último

Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones025ca20
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfDanielaVelasquez553560
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
TALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación públicaTALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación públicaSantiagoSanchez353883
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxEverardoRuiz8
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfPresentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfMIGUELANGELCONDORIMA4
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 

Último (20)

Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdf
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
TALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación públicaTALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación pública
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptx
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfPresentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 

Memoria_de_Calculo_Estrctural_de_Edifici.docx

  • 2. MEMORIA DE CALCULO DE ESTRUCTURAS 1. DESCRIPCIÓN GENERAL DEL PROYECTO La presente memoria de cálculo se refiere al Proyecto Estructural de una Vivienda Multifamiliar, ubicada en la Av. Ayacucho con Jr. Juan A. Pezet Mz J Lt. 01, LIGURIA , Distrito de SURCO, Departamento de Lima. Se realizará el siguiente informe para un análisis sísmico espacial modal a la Vivienda Multifamiliar completa. A continuación mostramos las plantas del proyecto. VISTA PLANTA GENERAL DE LA VIVIENDA DEL SOTANO MULTIFAMILIAR VISTA PLANTA GENERAL DE LA VIVIENDA MULTIFAMILIAR
  • 3. 2. ANALISIS ESTRUCTURAL Después de la compatibilización con la arquitectura, se procedió a realizar el análisis estructural de la estructura comprendida de columnas, muros estructurales, muros de albañilería confinada, vigas, viguetas y losas. 2.1. Modelo Estructural 2.1.1. Geometría De acuerdo a las medidas indicadas en el plano de arquitectura, se procedió a hacer un modelo tridimensional con tres coordenadas dinámicas por nivel, tomando en cuenta deformaciones por flexión, fuerza cortante y carga axial. Los apoyos se consideraron como empotramientos perfectos en el primer piso. 2.1.2. Materiales Utilizados  Para las estructuras de concreto armado se ha empleado concreto de f'c=210 kg/cm2 y acero corrugado de grado 60 fy= 4200 kg/cm2. 2.1.3. Cargas Verticales. Carga muertas  Concreto 2400 kg/m³  Acero 7850 kg/m³ Tal como lo indica la Norma E.020, las sobrecargas utilizadas son: 100 kg/m2 para techo de azotea. 2.1.4. Modelo Estructural Con la geometría anteriormente descrita y los materiales indicados se procedió a hacer un análisis de la estructura. 2.2. Análisis Sísmico 2.2.1. Parámetros Sísmicos El análisis sísmico se desarrolló de acuerdo a las indicaciones de la Norma Peruana de Diseño Sismorresistente E.030. La Norma E.030 señala que al realizar el análisis sísmico empleando el método de superposición espectral se debe considerar como criterio de superposición el ponderado entre la suma de absolutos y la media cuadrática según se indica en la siguiente ecuación: Alternativamente se puede utilizar como criterio de superposición la Combinación Cuadrática Completa (CQC). En el presente análisis se utilizó este último criterio. Para la determinación del espectro de pseudo aceleraciones sísmicas, usamos la relación dada por la Norma Peruana de Diseño Sismorresistente, la cual indica que dicho espectro se determina por la siguiente relación:
  • 4. Dónde: Z : Factor de zona. U : Factor de Uso o de importancia. S : Factor del suelo. C : Coeficiente de amplificación sísmico. R : Coeficiente de reducción de solicitaciones sísmicas. Para nuestro caso Vivienda Multifamiliar: Z = 0.4 Por ser zona 3 de acuerdo al reglamento. U = 1.0 Edificaciones Comunes. S = 1.2 Por ser considerado suelo tipo S2 Tp(s) = 0.60 Rx= 8.0 Sistema de Pórtico. Ry= 8.0 Sistema de Pórtico. C = 2.5 Coeficiente de Amplificación Sísmica. Para el análisis estructural se empleó el programa ETABS Versión 9.7.0 cuyos resultados nos muestra los desplazamientos, distorsiones, fuerzas concentradas y cortantes en cada nivel, tanto para la estructura en el contexto global como para cada uno de los pórticos que la constituyen en las dos direcciones de análisis. 0.00 0.50 1.00 1.50 2.00 2.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 Sa T Espectro de Aceleraciones ZUSC / R Sx Sy
  • 5. Modelo tridimensional de la “VIVIENDA MULTIFAMILIAR”
  • 8. 2.2.2. Resultados del Análisis Sísmico El Análisis Sísmico se hizo, según la Norma E.030, considerando un 5% de excentricidad accidental. Se hicieron varios modelos considerando distintas posiciones del Centro de Masas y considerando el Sismo aplicado en cuatro direcciones (ortogonales dos a dos). Como resultados del análisis sísmico se obtuvieron los desplazamientos laterales en cada nivel y las fuerzas de sección en los elementos. A continuación se muestran los resultados para las direcciones X-Y.  Períodos de Vibración Vivienda Multifamiliar Los períodos de vibración fundamentales para la edificación analizada son los siguientes: Período T (seg) % Participación Dirección X-X 0.5525 96.72 Dirección Y-Y 0.3457 96.70 Puede apreciarse que los porcentajes de participación de los modos fundamentales en cada dirección son altos, lo cual indica que el edificio tiene buena regularidad torsional.
  • 9.  Fuerza Cortante en la Base del Edificio Vivienda Multifamiliar V dinámico (ton) V estático (ton) 80% V estático Dirección X-X 109.19 246.39 197.11 Dirección Y-Y 119.08 246.39 197.11 Como se puede apreciar la fuerza cortante basal del análisis dinámico en dirección “X” y no es mayor que el 80% del valor obtenido del análisis estático por lo que SI necesita hacer modificaciones en los esfuerzos, la fuerza cortante basal del análisis dinámico en dirección
  • 10. “Y” y no es mayor que el 80% del valor obtenido del análisis estático por lo que SI necesita hacer modificaciones en los esfuerzos obtenidos del análisis dinámico. En la dirección XX por 197.11/109.19= 1.81 En la dirección YY por 197.11/109.19= 1.66
  • 11.
  • 12.  Control de Desplazamientos 3. DISEÑO DE LOS ELEMENTOS 3.1. Normas Para el diseño de los elementos se han empleado las Normas de Diseño vigentes en el Reglamento Nacional de Edificaciones, que comprenden:  E020 Cargas  E030 Sismorresistente  E050 Suelos y Cimentaciones  E060 Concreto Armado  E070 Albañilería Además se han considerado las siguientes Normas:  American Concrete Institute ACI 318 – 99 del ACI para el Diseño de Elementos de Concreto Armado.
  • 13. 3.2. Combinaciones de Cargas Para el diseño de los elementos de concreto armado se han utilizado las siguientes combinaciones: U = 1.4D1 U= 1.4D+1.7L U = 1.25 (D+L)+- SX U= 1.25 (D+L) +-SY U = 0.9D+- SX U= 0.9D+-SY Factor de reducción de flexión f = 0.90. Factor de reducción de compresión f = 0.85. 3.3. Consideraciones El diseño de los elementos de concreto se realizó por el método a la rotura, cumpliéndose con los criterios de ACI-318-99 y con los capítulos pertinentes del Reglamento Nacional de Edificaciones. Para el diseño de las columnas se procedió a realizar el diseño convencional esto es verificando la compresión, diseñando a flexo compresión. Para el diseño de los techos aligerados se consideró un espesor de 20 cm para todos los niveles de la estructura principal. La cimentación se reforzó para asegurar no solo la estabilidad ante cargas verticales y de sismo, sino también para asegurar la estabilidad en planta frente al momento de volteo que las fuerzas de sismo generan, se empleó un factor de seguridad de F.S. =1.5 para este caso. Materiales utilizados: Concreto f´c = 210 Kg/cm² Columnas, vigas, losas y placas f’c = 210 Kg/cm² Cimentación. Acero fy = 4200 Kg/cm²  Cargas Verticales Las cargas verticales se evaluaron conforme a la norma de Cargas, E-020. Para las losas aligeradas, armadas en una dirección, se supuso un peso de 300 kg/m2. Los pesos de vigas, columnas y escaleras se estimaron a partir de sus dimensiones reales, considerando un peso específico de 2,400 kg/m3. Para las particiones se usó un promedio de 150 kg/m2, valor que excede el estimado a partir de los pesos reales con la distribución de vivienda existente. Se incluyó igualmente el peso de acabados de piso y de techo, estimado en 100 kg/m2. Para el primer nivele se asumió una sobrecarga de diseño de 200 kg/m2 y lo que corresponde al uso de azoteas una sobrecarga de 100 kg/m2, según consta en la norma E.020. No se hicieron reducciones de carga viva. Cabe anotar que la carga viva tiene poca incidencia en los resultados en el análisis sísmico.
  • 14. 3.3.1. Diseño de Vigas  Requisitos Generales: - fy  4200 kg/cm2; ya que se pueden deformar más sin pérdida de su capacidad estática. - 210 kg/cm2  f´c ; porque retrasa el aplastamiento del concreto. - b  25cm.; b  0.3h - ln  4h Todos estos requisitos se están cumpliendo y se puso en práctica en la etapa de predimensionamiento.  Cuantías de Refuerzo Para todas las secciones de momento positivo y negativo se tiene: 0033 . 0 4200 14 14 mín    fy  ........() 0028 . 0 4200 210 80 . 0 ´ 80 . 0 mín    x fy c f  ........() b máx   75 . 0  ........() fy fy c f b   6000 6000 ´ 85 . 0 1   ........() Reemplazando datos en las ecuaciones  y  para f’c = 210 kg/cm2, fy = 4200 kg/cm2 y 1=0.85 se tiene: b=0.0213; máx = 0.75x0.0213 = 0.016  Diseño por corte La resistencia nominal al corte en una sección cualquiera, será la suma de las resistencias aportadas por el concreto y por el refuerzo: s c n V V V   Y en todas las secciones deberá cumplirse: n u V V   La sección crítica que se encuentra sometida al mayor cortante de diseño del elemento se encuentra ubicada entre la cara de apoyo y una sección ubicada a “d” de ella, entonces las secciones situadas en este tramo se diseñarán para un cortante último igual al correspondiente a la sección ubicada a “d” del apoyo.  Cortante máximo que toma el concreto Vc Teóricamente la resistencia del concreto al corte es igual a la carga que produce la primera fisura inclinada en el extremo del elemento. El corte máximo que toma el concreto en elementos a flexión esta dado por: d b c f Vc ' 53 . 0 
  • 15.  Requerimientos mínimos de refuerzo transversal La falla por corte es frágil y debe ser evitada siempre. Por ello el código recomienda colocar una cantidad mínima de refuerzo transversal para brindar mayor seguridad al diseño y para garantizar que el elemento sea capaz de resistir los esfuerzos que se presentan después de producirse el agrietamiento diagonal. El refuerzo mínimo sugerido por el código debe colocarse siempre que: c u c V V V     2 1 y es igual a: y w vmín f s b A 5 . 3  .....() donde: s: Separación del refuerzo transversal Av: Área del acero transversal provisto para resistir corte.  Espaciamiento máximo del refuerzo transversal Tanto el código del ACI como la Norma E-060, recomiendan que para estribos perpendiculares al eje del elemento, el espaciamiento máximo sea: . 60 cm s  2 d s  Estos espaciamientos máximos precisados en las expresiones anteriores son válidos siempre que: d b c f Vs ' 06 . 1  .......() En caso que se exceda éstos límites, los espaciamientos máximos deben de reducirse a la mitad, es decir: . 30 cm s  4 d s   Aporte máximo del refuerzo transversal a la resistencia al corte El refuerzo longitudinal tiene una cuantía máxima que no debe superarse para garantizar el comportamiento dúctil del elemento. Del mismo modo, el refuerzo transversal tiene una limitación similar que busca evitar la falla del concreto comprimido, ubicado en el extremo superior de las fisuras diagonales, antes de la fluencia del acero transversal. La Norma E- 060 y el código del ACI recomiendan que: d b c f Vs ' 1 . 2  ........ () En caso que se requiera un aporte mayor del refuerzo transversal es necesario incrementar las dimensiones de la sección del elemento o aumentar la resistencia del concreto.  Diseño de Vigas Dúctiles en regiones de alto riesgo sísmico El código del ACI incluye recomendaciones para elementos sometidos a flexión que resisten cargas inducidas por sismos severos, que se menciona a continuación: El refuerzo longitudinal en cualquier sección del elemento, tanto positivo como negativo tendrá como cuantías mínimas y cuantía máxima los especificados más adelante. Los empalmes traslapados del refuerzo longitudinal se podrán emplear siempre que se distribuya refuerzo transversal a todo lo largo de éste para darle confinamiento en caso que el recubrimiento de concreto se desprenda. El refuerzo transversal brinda apoyo al refuerzo longitudinal y confina el núcleo de concreto cuando el recubrimiento se desprende. Por ello, debe estar constituido por estribos cerrados. La inversión de esfuerzos por efecto de las cargas sísmicas, hace
  • 16. necesario el uso de estribos perpendiculares al refuerzo longitudinal pues éstos son igualmente efectivos ante solicitaciones inversas. En los planos presentados se muestran los requisitos para el refuerzo longitudinal, así como la distribución del refuerzo transversal mínimo de elementos sometidos a flexión. La concentración de refuerzo en los extremos busca confinar el núcleo de concreto en caso que el recubrimiento se desprenda por lo que se denomina refuerzo de confinamiento. El desprendimiento del recubrimiento se suele presentar después de la formación de rótulas plásticas.  Zona de confinamiento Está comprendida entre la cara de apoyo de la viga hasta una distancia 2h en cada extremo de la viga tal como se muestra en el esquema de distribución del confinamiento. En el cuadro de resultados se observa que el aporte del refuerzo transversal a la resistencia al corte en la zona de confinamiento es ínfimo; esto es: d xbx Vs . 210 06 . 1  ....() El espaciamiento “s” se determina con: . 84 . 15 95 . 16 45 2 . 4 71 . 0 2 cm x x x V d fy A s s v    Se está considerando estribos cerrados de 2 ramas de  3/8”. Dado la conformidad en la desigualdad (), en ésta zona tendremos los espaciamientos máximos del refuerzo transversal cuyas limitaciones son: . 60 cm s  . 5 . 22 2 45 2 cm d s    También se tiene limitaciones del espaciamiento del refuerzo transversal en la zona de confinamiento por capacidad de ductilidad, ilustrada en la Figura: CONDICIONES: 2H 2H CONFINAMIENTO EN VIGAS Ln 5 cm s 5 cm s s
  • 17.                 . 10 . 80 . 22 95 . 0 24 24 . 70 . 12 58 . 1 8 8 . . 11 4 44 4 cm cm x cm x cm d s estribo lmenor   Por lo tanto se recomienda usar en la zona de confinamiento: Estribos  3/8” 1 @ .05, 10 @ .10 Se determinara la resistencia al corte de la sección con el confinamiento mínimo por ductilidad: . 84 . 26 10 45 2 . 4 71 . 0 2 Tn x x x s d fy A V v s     Zona no confinada Corresponde a la zona fuera de la longitud de confinamiento, en el cuadro de resultados se aprecia que los cortantes actuantes últimos son menores que la resistencia del concreto al corte, se tendrá que colocar refuerzo transversal mínimo dado por la ecuación. fy s b A w vmín 5 . 3  ; siempre que: c u c V V V     2 1 Usando estribos cerrados de dos ramas de  3/8” se tiene: . 80 . 56 30 5 . 3 4200 71 . 0 2 5 . 3 cm x x x b fy A s w vmín    , La limitación en el espaciamiento esta dado por los requisitos que aseguran una capacidad de ductilidad en vigas, que indica donde no se requiera estribos de confinamiento el espaciamiento debe de ser: . 5 . 22 2 45 2 cm d s    Por lo tanto se recomienda usar en la zona no confinada: Estribos  3/8” @ .20 Finalmente en cada uno de los tramos se usaran: Estrib Ø 3/8”: 1 @.05, 10@.10, Rto. @.20 en c/extremo. s c u V V V   
  • 18. 3.3.2. Diseño de Columnas  Consideraciones de dimensionamiento Estas son consideraciones que se tomaron en cuenta en la etapa de predimensionamiento, que volveremos a mencionarlo a continuación: - D  ho/4 - 3 1 ´   D b c f Ps n n  0.25 - D30 cm. - 4 . 0  máx mín D D  Consideraciones de diseño Cuantías La cuantía de refuerzo longitudinal en elementos sometidos a flexión y carga axial no debe ser inferior a 0.01 ni superior a 0.06. Sin embargo, esta cuantía máxima se reduce aun más en la práctica profesional, esto es para evitar el congestionamiento del refuerzo de tal forma de permitir facilidad constructiva y a su vez limitar los esfuerzos de corte en la pieza cuando alcance su resistencia última a la flexión. En consecuencia estamos hablando de cuantías máximas del orden de 2 – 3%. Traslapes Los traslapes sólo son permitidos dentro de la mitad central de la columna y éstos son proporcionados como empalmes a tracción. Esto se debe a la probabilidad que existe que el recubrimiento de concreto se desprenda en los extremos del elemento haciendo que estos empalmes se tornen inseguros. El Reglamento ACI-99 considera para zonas muy sísmicas que en cada nudo, la suma de las capacidades últimas en flexión de las columnas sean por lo menos igual a 1.2 veces la suma de las capacidades últimas de las vigas que concurren a las caras del nudo, y si alguna columna no cumple con ésta condición debe de llevar refuerzo transversal de confinamiento en toda su longitud. Refuerzo transversal El Reglamento Nacional de Edificaciones indica: 1.- Deberá colocarse en ambos extremos del elemento estribos cerrados sobre una longitud “l” medida desde la cara del nudo (zona de confinamiento) que no sea menor que: - Un sexto de la luz libre del elemento. - La máxima dimensión de la sección transversal del elemento: 45 cm. Estos estribos tendrán un espaciamiento que no deben exceder del menor de los siguientes valores: - Un cuarto de la dimensión más pequeña de la sección transversal del elemento: 10 cm. - El primer estribo deberá ubicarse a no más de 5 cm. de la cara del nudo. 2.- El espaciamiento del refuerzo transversal fuera de la zona de confinamiento, no deberá de exceder de 6 veces el diámetro de la barra longitudinal de menor diámetro, 15 cm. o la mitad de la dimensión más pequeña de la sección transversal del elemento.
  • 19. Recomendaciones del ACI para refuerzo transversal en columnas confinadas El ACI da las siguientes recomendaciones para garantizar la existencia de ductilidad en las columnas: - Refuerzo por confinamiento fy c f hc s Ach Ag Ash ´ 1 30 . 0         fy c f hc s Ash ´ 09 . 0  Las expresiones anteriores permiten determinar el espaciamiento “s” de estribos en la zona de confinamiento donde: Ash : en la dirección de análisis. hc : Ancho del núcleo de concreto confinado por el acero medido centro a centro de los estribos exteriores. Ach : Área del núcleo de concreto confinado por el acero. Ag : Área total de la sección transversal de la columna. s : Espaciamiento del refuerzo transversal. Refuerzo longitudinal Para el diseño de las columnas se consideró el aumento de las secciones debido al aumento del cortante basal, esto por la condición de que los pórticos deberán de resistir por lo menos el 25% del cortante total en la base. La capacidad resistente en el resto de las columnas es conforme. Las nuevas plantas típicas de elementos estructurales son las mostradas en los planos correspondientes, se presenta en resumen las secciones típicas y el correspondiente refuerzo para cada una de ellas. Fuerza Cortante que toma el concreto En elementos sometidos a compresión axial, corte y flexión, el agrietamiento disminuye y por lo tanto existe una mayor área para resistir el corte. La expresión para determinar el corte que toma el concreto en este tipo de elementos es:
  • 20.           Ag Nu d b c f x Vc 0071 . 0 1 ' 53 . 0  Donde Nu es la fuerza axial mayorada que actúa sobre el elemento y es positiva cuando es de compresión, Ast es el área de acero y Ag es el área bruta de la sección de concreto. Considerando Nu la carga axial máxima en compresión que puede tomar el elemento, entonces tenemos: Pn máx = 0.80(0.85 f´c (Ag-Ast) + Ast fy)  Pn máx = 0.80(0.85 f´c (Ag) + Ast fy) Diseño por cortante en los extremos de la columna (2d) Se analiza en la dirección más desfavorable. En esta zona no se toma en cuenta la contribución del concreto, por lo tanto el requerimiento de estribos está dado por la expresión: . 36 52 . 6 40 2 . 4 71 . 0 2 cm x x x V d fy A s n v    Se aprecia que 36cm>10cm. lo que demuestra que no hay exigencia de diseño por corte. Diseño por cortante en la parte central En esta zona se toma en cuenta la contribución del concreto; se hace uso de la expresión: . c n v V V d fy A s                  ). 99 .......( 5 . 22 2 45 2 ) 060 ......( 30 ) 060 ......( 48 . 30 91 . 1 16 ) ( 16 ACI cm D E cm E cm x longitunal d s menor b máx Por lo tanto usar: 3/8”: 1 @.05, 8 @.10, Rto @.20 c/ext. 3.4. Resistencia del Terreno Para el diseño de la cimentación se ha utilizado la resistencia del terreno de 3.80 kg/cm2. Con los valores anteriormente descritos de procedió al diseño completo de los elementos estructurales que aparecen detallados en los planos.
  • 21. 3.5. ANALISIS Y DISEÑO DE LA CIMENTACION 3.5.1. Diseño de la cimentación El sistema de cimentación propuesta es una platea de cimentación en todo el contorno de la cimentación. Se consideró un comportamiento lineal y elástico tanto para la cimentación como para el material de fundación. El procedimiento de análisis consistió en modelar el suelo como resortes elásticos bajo la losa y analizar el conjunto estructura–cimentación-suelo con un método matricial resuelto en un programa de cómputo para este caso se empleó el programa SAFE que resuelve la distribución de las presiones considerando los resortes elásticos en función del módulo de balastro del terreno, además se analizó algunas zapatas con hojas de cálculo en el Excel cuyas formulas son acorde a las ya mencionadas. Se realizó una revisión global de la cimentación, determinando las cargas transmitidas por la estructura y sus puntos de aplicación. La presión promedio en el suelo (como presión neta igual a la transmitida por la construcción) se comparó a la capacidad portante del suelo para que este no exceda este promedio. El procedimiento de análisis comprendió lo siguiente: a) Se supuso una distribución de presiones congruente con el tipo de suelo de cimentación, se asumió condición uniforme del terreno. b) Con la presión neta supuesta se determina los hundimientos del suelo y se revisa que no excedan los admisibles. c) Se modela la cimentación con una retícula de vigas que unen las columnas y sometida a una carga igual a la fuerza que actúa en el área tributaria de cada viga (distribuida en su longitud). d) Se realiza un análisis de retícula que queda en equilibrio global bajo cargas externas. Se despreció la rigidez a flexión de las columnas. e) Este procedimiento considera el carácter bidimensional de la cimentación. f) Para el diseño de la viga de cimentación se empleó el método convencional, esto es asumiendo secciones rígidas.
  • 22. Modelo tridimensional de la cimentación de la VIVIENDA MULTIFAMILIAR
  • 23. Verificación del esfuerzo sea menor que la capacidad admisible de la VIVIENDA MULTIFAMILIAR Diseño de las zapatas, con  5/8”@0.20 acero cumple
  • 24. DISEÑO DE LOS ELEMENTOS Diseño de la columna: Escogemos la columna (Columna C1 0.25x0.40 ver plano de estructuras) donde esta es la más cargada donde presentamos las fuerzas existentes: Fuerzas para el Diseño P V2 V3 T M2 M3 COMBINACIÓN 1 -81.55 0.16 0.01 0 -0.012 -0.308 COMBINACIÓN 2 -90.95 -0.5 -0.24 -0.001 -0.509 -1.502 COMBINACIÓN 3 -86.55 -0.38 -0.18 0 -0.383 -1.278 COMBINACIÓN 4 -58.32 -0.57 -0.25 -0.001 -0.489 -1.353 COMBINACIÓN 5 -53.91 -0.46 -0.19 0 -0.363 -1.129 Revisión del acero con las combinaciones de carga.
  • 25. Diagrama de interacción de la sección, donde la cantidad de acero colocado cumple con las cargas existentes. Cantidad de acero colocado de 4∅1”+ 6 ∅3/4”, cumple con las cargas existentes.
  • 26. Diseño de la losa aligerada (a20= h=20cm). Etiqueta b h bw t (m) (m) (m) (m) a20 0.400 0.200 0.100 0.050 Acero Requerido por los paños:
  • 27. Detalle de acero requerido en la losa aligerada.