SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
1
UNIVERSIDAD FERMIN TORO
VICERRECTORADO ACADEMICO
DECANATO DE INGENIERIA
ESCUELA DE TELECOMUNICACIONES
REALIZADO POR:
MARIANGEL MILANO
PROFESOR
DOMINGO MENDEZ
2
EJEMPLOS DE CONJUNTOS:
 N: conjunto de los números naturales.
 Z: conjunto de los números enteros.
 Q: conjunto de los números racionales.
 R: conjunto de los números reales.
 C: conjunto de los números complejos.
El concepto de conjunto es fundamental en todas las
ramas de la matemática. Intuitivamente, un conjunto es una
lista, colección o clase de objetos bien definidos, objetos
que pueden ser: número, personas, letras, ríos, etc. Estos
objetos se llaman elementos o miembros del conjunto.
Conjuntos y Subconjuntos
3
Es usual denotar los conjuntos con letras mayúsculas.
A, B, X, Y, …
Los elementos de los conjuntos se representan con letras minúsculas.
a, b ,x , y, …
Al definir un conjunto por la efectiva enumeración de sus elementos,
por ejemplo, el conjunto A que tiene por elementos a los números 1, 2, 3 y 4, se
escribe:
A ={ 1,2,3,4}
1
3
4
2
4
Separando los elementos por comas y encerrándolos entre llaves {}. Esta
forma es la llamada forma tabular de un conjunto. Pero si se define un conjunto
enunciando propiedades que deben tener sus elementos como, por ejemplo, el
conjunto B, conjunto de todos los números pares, entonces se emplea una letra, por
lo general “x”, para representar un elemento cualquiera y se escribe:
B={x / x es par}
Lo que se lee” B es el conjunto de todos los números x tales que x es
par”. Se dice que esta es la forma definir por comprensión o constructiva de un
conjunto. Téngase en cuenta que la barra vertical “/” se lee tales que.
Índice
A
C
5
Para indicar que un elemento pertenece a un conjunto, se escribe el
signo .
Así: a {vocales} quiere decir que a es un elemento del conjunto
de las vocales. Para indicar que un conjunto no pertenece a un conjunto, se
escribe el signo , pero cruzado con una raya .Al escribir z
{vocales}, se indica que la letra z no pertenece al conjunto de las vocales.
Representación gráfica:
∈
∈
∈ ∉∉
a
o i
u e
Conjunto de las vocales
Z
Índice
6
Los conjuntos pueden ser finitos o infinitos. Intuitivamente un
conjunto puede ser finito si consta de un cierto numero de elementos distintos,
es decir, si al contar los diferentes elementos del conjunto el proceso del
contar puede acabar. Si no, el conjunto es infinito.
EJEMPLOS:
Si M es el conjunto de los días de la semana, entonces M es finito.
Si N={2,4,6,8,...}, entonces N es infinito.
Si P={x/x es un río de la tierra}, entonces P es también finito aunque
sea difícil de contar los ríos del mundo se puede hacer
Índice
A
C
7
POR EXTENSIÓN: para determinar un conjunto por extensión se citan
o escriben todos y cada uno de sus elementos, separándolos por comas y
encerrándolos entre dos llaves. Por ejemplo, el conjunto de las vocales será:
A={a,e,i,o,u}
POR COMPRENSIÓN: para determinar un conjunto por comprensión
se indican todas las propiedades comunes a los elementos del conjunto, de
forma que todo elemento que este en el conjunto posee dichas propiedades y
todo elemento que posee esas propiedades esta en el conjunto. El mismo
ejemplo anterior escrito por comprensión sería:
A={vocales}
Índice
A
C
8
Para un mejor entendimiento del concepto de conjunto, así como
de las relaciones entre conjuntos, se recurre a representar gráficas que
permiten adquirir, con una mirada, una idea general del conjunto y de sus
propiedades. Los más utilizados son los denominados diagrama de Venn.
Estos gráficos son una representación de los elementos del conjunto
mediante puntos situados en el interior de una línea cerrada.
a e
i
u o Diagrama de Venn representativo del
conjunto de las vocales.
Índice
9
Ejemplo:
Sea A={divisores del número 12} (definido por comprensión) = {1,2,3,
4 ,6,12} (definido por extensión)
1 2 3
2 12
6
Que 1 A indica que 1 es un divisor de 12. Si 5 A quiere decir que el 5 no
es divisor de 12
∉∈
Índice
10
El conjunto A es igual al conjunto B si ambos tienen los mismos
elementos, es decir, si cada elemento que pertenece a A pertenece también a B y
si cada elemento que pertenece a B pertenece también a A. Se denota la igualdad
de los conjuntos A y B por:
A=B
EJEMPLO:
Sean A={1,2,3,4} y B={3,1,4,2}. Entonces A=B, es decir,
{1,2,3,4}={3,1,4,2} pues cada uno de los elementos 1,2,3 y 4 de A pertenece a B y
cada uno de los elementos 3,1,4 y 2 de B pertenecen a A. Obsérvese, por tanto,
que un conjunto no cambia al reordenar sus elementos.
Índice
A
C
11
El conjunto vacío es un conjunto que carece de elementos. Este conjunto
se suele llamar conjunto nulo. Aquí diremos de un conjunto semejante que es vacío
y se le denota por el símbolo:
“Φ” que significa vacío.
EJEMPLO:
Si A es el conjunto de personas vivientes mayores de 200 años. A es
vacío según las estadísticas conocidas.
Sea B={x / x²=4, x es impar}.B es entonces un conjunto vacío.
Índice
A
C
12
Si todo elemento de un conjunto A es también elemento de un conjunto
B, entonces se dice que A es un subconjunto de B. Más claro: A es un subconjunto
de B si xεA implica xεB. Se denota esta relación escribiendo:
A B
Se puede leer “A esta contenido en B”
Su representación gráfica sería:
⊂
A
B
A B⊂
Índice
13
EJEMPLOS:
El conjunto C={1,3,5} es un subconjunto del D={5,4,3,2,1}, ya que todo
número 1,3 y 5 de C pertenece a D
El conjunto E={2,4,6} es un subconjunto del F={6,2,4}, pues cada número
2,4, y 6 que pertenece a E pertenece también a F. Obsérvese en particular que
E=F. De la misma manera se puede mostrar que todo conjunto es subconjunto de si
mismo.
Dado dos conjuntos M y N, siendo M={a,e,i} y N={a,e,i,o,u}.Entonces se
dice que M N. Ya que: M está en N⊂
Índice
14
Puesto que todo conjunto A es un subconjunto de si mismo, se dirá que
B es un subconjunto propio de A si, en primer lugar, B es un subconjunto de A y,
en segundo lugar, B no es igual a A. Más brevemente, B es un subconjunto propio
de A si:
B A y B = A
En algunos libros “B es un subconjunto de A” se denota por:
B A
Y “B es un subconjunto propio de A” se denota por:
B A
⊆
⊂
⊂
⊆
Índice
A
C
15
Dos conjuntos A y B se dicen comparable si:
A B o B A
Esto es, si uno de los conjuntos es subconjunto del otro. En cambio,
dos conjuntos A y B se dicen no comparables si:
A B o B A
Nótese que si A no es comparable con B, entonces hay en A un
elemento que no está en B y hay también en B un elemento que no está en A.
EJEMPLOS:
Sean A={a,b} y B={a,b,c}. Entonces A es comparable con B, pues A es
un subconjunto de B
Si C={a,b} y D={b,c,d}, C y D no son comparable, pues a C y a D
y c D y c C
⊂⊂
⊄ ⊄
∉∈
∈ ∉
Índice
A
C
16
CONJUNTO DE LOS NUMEROS NATURALES “N”:
Un número natural es cualquiera de los números 0, 1, 2, 3... que
se pueden usar para contar los elementos de un conjunto finito.
Algunos matemáticos (especialmente los de Teoría de Números)
prefieren no reconocer el cero como un número natural, mientras que otros,
especialmente los de Teoría de Conjuntos, Lógica e Informática, tienen la
postura opuesta. En esta enciclopedia, cero es considerado un número
natural.
Naturales {0,1,2,3,4,5,6,7...}
17
CONJUNTO DE LOS NUMEROS ENTEROS “Z”:
Los números enteros son del tipo: -59, -3, 0, 1, 5, 78, 34567, etc.,
es decir, los naturales, sus opuestos (negativos) y el cero.Los enteros con la
adición y la multiplicación forman una estructura algebraica llamada anillo.
Pueden ser considerados una extensión de los números naturales y un
subconjunto de los números racionales (fracciones).
Enteros {...3,-2,-1,0,+1,+2,+3...}
18
CONJUNTO DE LOS NUMEROS RACIONALES “Q”:
Se llama número racional a todo aquel número que puede ser
expresado como resultado de la división de dos números enteros, con el divisor
distinto de 0.El conjunto de los racionales se nota Q, por "quotient", o sea
"cociente" en varios idiomas europeos. Este conjunto de números es
superconjunto de los números enteros, de los números decimales, y es un
subconjunto de los números reales. Los números racionales cumplen la
propiedad arquimediana, esto es, para cualquier pareja de números.
Racionales {...-1/2..0..1/2..1...}
19
CONJUNTO DE LOS NUMEROS REALES “R”
Los números reales son números usados para representar una
cantidad continua (incluyendo el cero y los negativos). Se puede pensar
en un número real como una fracción decimal posiblemente infinita, como
3.141592.... Los números reales tienen una correspondencia biunívoca
con los puntos en una línea.
I : Irracionales
Expresión decimal infinita no
periódica. No son expresables mediante
fracciones.
√2 = 1,4142135623715.......
π = 3,1415926535914039.............
φ = (1 + √5)/2 =
1,618033988750540..............
Q : Racionales
Son expresables mediante fracciones.
Expresión decimal finita o periódica
0,34; 0,444444.......; -4/5
Z : Enteros
-1, -2, -3, -4, .........
N : Naturales
0,1,2,3,4,5......
20
CONJUNTO DE LOS NUMEROS COMPLEJOS “C”
Los Números Complejos son una extensión natural de los
números reales: la recta real puede ser vista como un subconjunto del plano
de los números complejos. Cada número complejo sería un punto en este
plano. Usando las definiciones que siguen, se hacen posibles la suma, la
resta, la multiplicación y la división entre estos puntos.
21
Operaciones con conjuntos: unión, intersección, y
complemento
La unión de A y B es el conjunto de todos los elementos que están en A o
en B (o en ambos).
A B = {x | x A o x B}
Podemos representar la unión A B por la siguiente diagrama de Venn;
22
La intersección de A y B es el conjunto de todos los
elementos que están en A y también en B.
A B = {x | x A y x B}
Podemos representar la intersección A B por la
siguiente diagrama de Venn;
23
Si A es un subconjunto de S, entonces A' es
el complemento de A en S, el conjunto de todos los
elementos de S que no están en A.
Podemos representar el complemento A' por la siguiente
diagrama de Venn:
24
Producto cartesiano
El producto cartesiano de dos conjuntos, A y B, es el conjunto
de todos pares ordenados (a, b) tal que a A y b B.
A × B = { (a, b) | a A y b B }.
En palabras:
A×B es el conjunto de todos pares ordenados tal que la primera
coordenada pertenece aA y la segunda coordenada pertenece
a B.
 Cardinalidad
 Si A es un conjunto finito, entonces n(A), el número de
elementos que contiene A, se llama la  cardinalidad deA.
 Si A y B son conjuntos finitos, entonces
 n(A  B) = n(A) + n(B) - n(A  B).En particular, si A y B son disjuntos
(es decir, A  B = ), entoncesn(A  B) = n(A) + n(B).Si S es un
conjunto universal finito y A es un subconjunto de S, entonces
 n(A') = n(S) - n(A) y n(A) = n(S) - n(A').Si A y B son conjuntos
finitos, entonces
25

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

conjuntos y subconjuntos
conjuntos y subconjuntosconjuntos y subconjuntos
conjuntos y subconjuntos
 
Relacion entre conjuntos
Relacion entre conjuntosRelacion entre conjuntos
Relacion entre conjuntos
 
Los numeros enteros en la vida diaria
Los numeros enteros en la vida diariaLos numeros enteros en la vida diaria
Los numeros enteros en la vida diaria
 
Conjuntos numéricos y propiedades
Conjuntos numéricos y propiedadesConjuntos numéricos y propiedades
Conjuntos numéricos y propiedades
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Propiedades de la adición
Propiedades de la adiciónPropiedades de la adición
Propiedades de la adición
 
Decimales periodicos, aprox y errores
Decimales periodicos, aprox y erroresDecimales periodicos, aprox y errores
Decimales periodicos, aprox y errores
 
Conjuntos de matematicas
Conjuntos de matematicasConjuntos de matematicas
Conjuntos de matematicas
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 
Números racionales los fraccionarios
Números racionales los fraccionariosNúmeros racionales los fraccionarios
Números racionales los fraccionarios
 
CONCEPTO DE NUMEROS ENTEROS
CONCEPTO DE NUMEROS ENTEROSCONCEPTO DE NUMEROS ENTEROS
CONCEPTO DE NUMEROS ENTEROS
 
Conjuntos ordenados
Conjuntos ordenadosConjuntos ordenados
Conjuntos ordenados
 
Diapositivas los conjuntos....
Diapositivas los conjuntos....Diapositivas los conjuntos....
Diapositivas los conjuntos....
 
Tema 1 numeros naturales
Tema 1 numeros naturalesTema 1 numeros naturales
Tema 1 numeros naturales
 
Teoría de Conjuntos y Ejercicios
Teoría de Conjuntos y Ejercicios Teoría de Conjuntos y Ejercicios
Teoría de Conjuntos y Ejercicios
 
Teoria numeros complejos
Teoria numeros complejosTeoria numeros complejos
Teoria numeros complejos
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)
 
CONJUNTOS
CONJUNTOSCONJUNTOS
CONJUNTOS
 
Numeros Naturales
Numeros NaturalesNumeros Naturales
Numeros Naturales
 
Números enteros
Números enterosNúmeros enteros
Números enteros
 

Similar a Conjuntos y subconjuntos

Estructuras Discretas
Estructuras DiscretasEstructuras Discretas
Estructuras DiscretasIvan Perez
 
Numeros Reales y Conjuntos.pptx
Numeros Reales y Conjuntos.pptxNumeros Reales y Conjuntos.pptx
Numeros Reales y Conjuntos.pptxDemsshillCoutino
 
1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx
1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx
1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptxarturo04camacaro
 
Presentacion Jose Colombo .pptx
Presentacion Jose Colombo .pptxPresentacion Jose Colombo .pptx
Presentacion Jose Colombo .pptxJsMguelCM
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...LICETHPACHAMOROARAUJ
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...LICETHPACHAMOROARAUJ
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptteoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptAlfonso Mejia Jimenez
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptteoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptCarlaLilianaGuzmnCar1
 
Numeros reales wikelman pina 27760010
Numeros reales wikelman pina 27760010Numeros reales wikelman pina 27760010
Numeros reales wikelman pina 27760010WikelmanPia
 
Numeros reales javianny aldazoro 26121391
Numeros reales javianny aldazoro 26121391Numeros reales javianny aldazoro 26121391
Numeros reales javianny aldazoro 26121391javiannyaldazorocast
 
Conjunto Numérico
Conjunto NuméricoConjunto Numérico
Conjunto Numéricoteodosiapea
 
348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...
348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...
348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...Maria Barrera
 
Conjuntos 121015222224-phpapp02 (1)
Conjuntos 121015222224-phpapp02 (1)Conjuntos 121015222224-phpapp02 (1)
Conjuntos 121015222224-phpapp02 (1)Heibita
 
conjuntos-introducción.pptx
conjuntos-introducción.pptxconjuntos-introducción.pptx
conjuntos-introducción.pptxStuarReso
 

Similar a Conjuntos y subconjuntos (20)

Estructuras Discretas
Estructuras DiscretasEstructuras Discretas
Estructuras Discretas
 
Clase 5.pdf
Clase 5.pdfClase 5.pdf
Clase 5.pdf
 
Numeros Reales y Conjuntos.pptx
Numeros Reales y Conjuntos.pptxNumeros Reales y Conjuntos.pptx
Numeros Reales y Conjuntos.pptx
 
1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx
1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx
1.2 PRESENTACION PPT CONJUNTOS ARTURO.pptx
 
Presentacion Jose Colombo .pptx
Presentacion Jose Colombo .pptxPresentacion Jose Colombo .pptx
Presentacion Jose Colombo .pptx
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
 
Estructura discreta y grafos
Estructura discreta y grafosEstructura discreta y grafos
Estructura discreta y grafos
 
Teoria basica de conjuntos.ppt
Teoria basica de conjuntos.pptTeoria basica de conjuntos.ppt
Teoria basica de conjuntos.ppt
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptteoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptteoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
 
Numeros reales wikelman pina 27760010
Numeros reales wikelman pina 27760010Numeros reales wikelman pina 27760010
Numeros reales wikelman pina 27760010
 
Numeros reales
Numeros reales   Numeros reales
Numeros reales
 
Cálculo
CálculoCálculo
Cálculo
 
Numeros reales javianny aldazoro 26121391
Numeros reales javianny aldazoro 26121391Numeros reales javianny aldazoro 26121391
Numeros reales javianny aldazoro 26121391
 
NUMEROS REALES UNIDAD II.pdf
NUMEROS REALES UNIDAD II.pdfNUMEROS REALES UNIDAD II.pdf
NUMEROS REALES UNIDAD II.pdf
 
Conjunto Numérico
Conjunto NuméricoConjunto Numérico
Conjunto Numérico
 
348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...
348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...
348852885-teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejer...
 
Conjuntos 121015222224-phpapp02 (1)
Conjuntos 121015222224-phpapp02 (1)Conjuntos 121015222224-phpapp02 (1)
Conjuntos 121015222224-phpapp02 (1)
 
conjuntos-introducción.pptx
conjuntos-introducción.pptxconjuntos-introducción.pptx
conjuntos-introducción.pptx
 

Último

Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxLuisvila35
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónjas021085
 
Cadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesCadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesal21510263
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para PlataformasSegundo Silva Maguiña
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones025ca20
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEANDECE
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdfPPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdfZamiertCruzSuyo
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUMarcosAlvarezSalinas
 
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIACOMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIARafaelPaco2
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 

Último (20)

Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporación
 
Cadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesCadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operaciones
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para Plataformas
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSE
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdfPPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
 
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIACOMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 

Conjuntos y subconjuntos

  • 1. 1 UNIVERSIDAD FERMIN TORO VICERRECTORADO ACADEMICO DECANATO DE INGENIERIA ESCUELA DE TELECOMUNICACIONES REALIZADO POR: MARIANGEL MILANO PROFESOR DOMINGO MENDEZ
  • 2. 2 EJEMPLOS DE CONJUNTOS:  N: conjunto de los números naturales.  Z: conjunto de los números enteros.  Q: conjunto de los números racionales.  R: conjunto de los números reales.  C: conjunto de los números complejos. El concepto de conjunto es fundamental en todas las ramas de la matemática. Intuitivamente, un conjunto es una lista, colección o clase de objetos bien definidos, objetos que pueden ser: número, personas, letras, ríos, etc. Estos objetos se llaman elementos o miembros del conjunto.
  • 3. Conjuntos y Subconjuntos 3 Es usual denotar los conjuntos con letras mayúsculas. A, B, X, Y, … Los elementos de los conjuntos se representan con letras minúsculas. a, b ,x , y, … Al definir un conjunto por la efectiva enumeración de sus elementos, por ejemplo, el conjunto A que tiene por elementos a los números 1, 2, 3 y 4, se escribe: A ={ 1,2,3,4} 1 3 4 2
  • 4. 4 Separando los elementos por comas y encerrándolos entre llaves {}. Esta forma es la llamada forma tabular de un conjunto. Pero si se define un conjunto enunciando propiedades que deben tener sus elementos como, por ejemplo, el conjunto B, conjunto de todos los números pares, entonces se emplea una letra, por lo general “x”, para representar un elemento cualquiera y se escribe: B={x / x es par} Lo que se lee” B es el conjunto de todos los números x tales que x es par”. Se dice que esta es la forma definir por comprensión o constructiva de un conjunto. Téngase en cuenta que la barra vertical “/” se lee tales que. Índice A C
  • 5. 5 Para indicar que un elemento pertenece a un conjunto, se escribe el signo . Así: a {vocales} quiere decir que a es un elemento del conjunto de las vocales. Para indicar que un conjunto no pertenece a un conjunto, se escribe el signo , pero cruzado con una raya .Al escribir z {vocales}, se indica que la letra z no pertenece al conjunto de las vocales. Representación gráfica: ∈ ∈ ∈ ∉∉ a o i u e Conjunto de las vocales Z Índice
  • 6. 6 Los conjuntos pueden ser finitos o infinitos. Intuitivamente un conjunto puede ser finito si consta de un cierto numero de elementos distintos, es decir, si al contar los diferentes elementos del conjunto el proceso del contar puede acabar. Si no, el conjunto es infinito. EJEMPLOS: Si M es el conjunto de los días de la semana, entonces M es finito. Si N={2,4,6,8,...}, entonces N es infinito. Si P={x/x es un río de la tierra}, entonces P es también finito aunque sea difícil de contar los ríos del mundo se puede hacer Índice A C
  • 7. 7 POR EXTENSIÓN: para determinar un conjunto por extensión se citan o escriben todos y cada uno de sus elementos, separándolos por comas y encerrándolos entre dos llaves. Por ejemplo, el conjunto de las vocales será: A={a,e,i,o,u} POR COMPRENSIÓN: para determinar un conjunto por comprensión se indican todas las propiedades comunes a los elementos del conjunto, de forma que todo elemento que este en el conjunto posee dichas propiedades y todo elemento que posee esas propiedades esta en el conjunto. El mismo ejemplo anterior escrito por comprensión sería: A={vocales} Índice A C
  • 8. 8 Para un mejor entendimiento del concepto de conjunto, así como de las relaciones entre conjuntos, se recurre a representar gráficas que permiten adquirir, con una mirada, una idea general del conjunto y de sus propiedades. Los más utilizados son los denominados diagrama de Venn. Estos gráficos son una representación de los elementos del conjunto mediante puntos situados en el interior de una línea cerrada. a e i u o Diagrama de Venn representativo del conjunto de las vocales. Índice
  • 9. 9 Ejemplo: Sea A={divisores del número 12} (definido por comprensión) = {1,2,3, 4 ,6,12} (definido por extensión) 1 2 3 2 12 6 Que 1 A indica que 1 es un divisor de 12. Si 5 A quiere decir que el 5 no es divisor de 12 ∉∈ Índice
  • 10. 10 El conjunto A es igual al conjunto B si ambos tienen los mismos elementos, es decir, si cada elemento que pertenece a A pertenece también a B y si cada elemento que pertenece a B pertenece también a A. Se denota la igualdad de los conjuntos A y B por: A=B EJEMPLO: Sean A={1,2,3,4} y B={3,1,4,2}. Entonces A=B, es decir, {1,2,3,4}={3,1,4,2} pues cada uno de los elementos 1,2,3 y 4 de A pertenece a B y cada uno de los elementos 3,1,4 y 2 de B pertenecen a A. Obsérvese, por tanto, que un conjunto no cambia al reordenar sus elementos. Índice A C
  • 11. 11 El conjunto vacío es un conjunto que carece de elementos. Este conjunto se suele llamar conjunto nulo. Aquí diremos de un conjunto semejante que es vacío y se le denota por el símbolo: “Φ” que significa vacío. EJEMPLO: Si A es el conjunto de personas vivientes mayores de 200 años. A es vacío según las estadísticas conocidas. Sea B={x / x²=4, x es impar}.B es entonces un conjunto vacío. Índice A C
  • 12. 12 Si todo elemento de un conjunto A es también elemento de un conjunto B, entonces se dice que A es un subconjunto de B. Más claro: A es un subconjunto de B si xεA implica xεB. Se denota esta relación escribiendo: A B Se puede leer “A esta contenido en B” Su representación gráfica sería: ⊂ A B A B⊂ Índice
  • 13. 13 EJEMPLOS: El conjunto C={1,3,5} es un subconjunto del D={5,4,3,2,1}, ya que todo número 1,3 y 5 de C pertenece a D El conjunto E={2,4,6} es un subconjunto del F={6,2,4}, pues cada número 2,4, y 6 que pertenece a E pertenece también a F. Obsérvese en particular que E=F. De la misma manera se puede mostrar que todo conjunto es subconjunto de si mismo. Dado dos conjuntos M y N, siendo M={a,e,i} y N={a,e,i,o,u}.Entonces se dice que M N. Ya que: M está en N⊂ Índice
  • 14. 14 Puesto que todo conjunto A es un subconjunto de si mismo, se dirá que B es un subconjunto propio de A si, en primer lugar, B es un subconjunto de A y, en segundo lugar, B no es igual a A. Más brevemente, B es un subconjunto propio de A si: B A y B = A En algunos libros “B es un subconjunto de A” se denota por: B A Y “B es un subconjunto propio de A” se denota por: B A ⊆ ⊂ ⊂ ⊆ Índice A C
  • 15. 15 Dos conjuntos A y B se dicen comparable si: A B o B A Esto es, si uno de los conjuntos es subconjunto del otro. En cambio, dos conjuntos A y B se dicen no comparables si: A B o B A Nótese que si A no es comparable con B, entonces hay en A un elemento que no está en B y hay también en B un elemento que no está en A. EJEMPLOS: Sean A={a,b} y B={a,b,c}. Entonces A es comparable con B, pues A es un subconjunto de B Si C={a,b} y D={b,c,d}, C y D no son comparable, pues a C y a D y c D y c C ⊂⊂ ⊄ ⊄ ∉∈ ∈ ∉ Índice A C
  • 16. 16 CONJUNTO DE LOS NUMEROS NATURALES “N”: Un número natural es cualquiera de los números 0, 1, 2, 3... que se pueden usar para contar los elementos de un conjunto finito. Algunos matemáticos (especialmente los de Teoría de Números) prefieren no reconocer el cero como un número natural, mientras que otros, especialmente los de Teoría de Conjuntos, Lógica e Informática, tienen la postura opuesta. En esta enciclopedia, cero es considerado un número natural. Naturales {0,1,2,3,4,5,6,7...}
  • 17. 17 CONJUNTO DE LOS NUMEROS ENTEROS “Z”: Los números enteros son del tipo: -59, -3, 0, 1, 5, 78, 34567, etc., es decir, los naturales, sus opuestos (negativos) y el cero.Los enteros con la adición y la multiplicación forman una estructura algebraica llamada anillo. Pueden ser considerados una extensión de los números naturales y un subconjunto de los números racionales (fracciones). Enteros {...3,-2,-1,0,+1,+2,+3...}
  • 18. 18 CONJUNTO DE LOS NUMEROS RACIONALES “Q”: Se llama número racional a todo aquel número que puede ser expresado como resultado de la división de dos números enteros, con el divisor distinto de 0.El conjunto de los racionales se nota Q, por "quotient", o sea "cociente" en varios idiomas europeos. Este conjunto de números es superconjunto de los números enteros, de los números decimales, y es un subconjunto de los números reales. Los números racionales cumplen la propiedad arquimediana, esto es, para cualquier pareja de números. Racionales {...-1/2..0..1/2..1...}
  • 19. 19 CONJUNTO DE LOS NUMEROS REALES “R” Los números reales son números usados para representar una cantidad continua (incluyendo el cero y los negativos). Se puede pensar en un número real como una fracción decimal posiblemente infinita, como 3.141592.... Los números reales tienen una correspondencia biunívoca con los puntos en una línea. I : Irracionales Expresión decimal infinita no periódica. No son expresables mediante fracciones. √2 = 1,4142135623715....... π = 3,1415926535914039............. φ = (1 + √5)/2 = 1,618033988750540.............. Q : Racionales Son expresables mediante fracciones. Expresión decimal finita o periódica 0,34; 0,444444.......; -4/5 Z : Enteros -1, -2, -3, -4, ......... N : Naturales 0,1,2,3,4,5......
  • 20. 20 CONJUNTO DE LOS NUMEROS COMPLEJOS “C” Los Números Complejos son una extensión natural de los números reales: la recta real puede ser vista como un subconjunto del plano de los números complejos. Cada número complejo sería un punto en este plano. Usando las definiciones que siguen, se hacen posibles la suma, la resta, la multiplicación y la división entre estos puntos.
  • 21. 21 Operaciones con conjuntos: unión, intersección, y complemento La unión de A y B es el conjunto de todos los elementos que están en A o en B (o en ambos). A B = {x | x A o x B} Podemos representar la unión A B por la siguiente diagrama de Venn;
  • 22. 22 La intersección de A y B es el conjunto de todos los elementos que están en A y también en B. A B = {x | x A y x B} Podemos representar la intersección A B por la siguiente diagrama de Venn;
  • 23. 23 Si A es un subconjunto de S, entonces A' es el complemento de A en S, el conjunto de todos los elementos de S que no están en A. Podemos representar el complemento A' por la siguiente diagrama de Venn:
  • 24. 24 Producto cartesiano El producto cartesiano de dos conjuntos, A y B, es el conjunto de todos pares ordenados (a, b) tal que a A y b B. A × B = { (a, b) | a A y b B }. En palabras: A×B es el conjunto de todos pares ordenados tal que la primera coordenada pertenece aA y la segunda coordenada pertenece a B.
  • 25.  Cardinalidad  Si A es un conjunto finito, entonces n(A), el número de elementos que contiene A, se llama la  cardinalidad deA.  Si A y B son conjuntos finitos, entonces  n(A  B) = n(A) + n(B) - n(A  B).En particular, si A y B son disjuntos (es decir, A  B = ), entoncesn(A  B) = n(A) + n(B).Si S es un conjunto universal finito y A es un subconjunto de S, entonces  n(A') = n(S) - n(A) y n(A) = n(S) - n(A').Si A y B son conjuntos finitos, entonces 25