SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
CURSO BÁSICO DE INMUNOLOGÍA
10. MOLÉCULAS DE SUPERFICIE DE LAS CÉLULAS T
10.1 INTRODUCCIÓN
En este capítulo nos vamos a centrar en las proteínas de superficie de los linfocitos T
que están implicadas de una forma u otra en la detección de antígenos y en la
transmisión de la señal al interior de dicha célula, haciendo especial hincapié en el
receptor clonotípico (específico).
El receptor clonotípico para antígeno de las células T (TCR) ha tardado más tiempo en
ser conocido, debido a que, a diferencia de las inmunoglobulinas, no existe versión
secretada, sino que siempre va unido a membrana. Otro factor que ha dificultado el
estudio de su funcionalidad es que aunque el TCR tiene especificidad antigénica,
reconoce al antígeno de modo restringido por el haplotipo MHC propio.
A partir de los años 80, debido al empleo de las modernas técnicas de anticuerpos
monoclonales y de clonación molecular del ADN se pudieron aislar los genes que
codifican las cadenas del TCR. Se ha visto que su organización genómica y su modo de
generar diversidad son muy parecidos a los de los genes de las inmunoglobulinas.
El receptor de los linfocitos T se presenta como heterodímeros, que pueden ser de dos
tipos:
el TCR-2 está compuesto por una cadena  y otra 
el TCR-1 está compuesto por una cadena  y otra  .
En ambos casos, el TCR está asociado a un complejo de proteínas de membrana,
denominado CD3 que es el encargado de transducir la señal al interior celular.
10.2 ESTRUCTURA DEL TCR
Aún no se han logrado análisis cristalográficos por rayos X del TCR completo (aunque
sí de la cadena ), por lo que sólo podemos "sospechar" su estructura en función de la
secuencia de aminoácidos y su parecido con las inmunoglobulinas.
10.2.1 El TCR-2 ( )
Está formado por dos cadenas polipeptídicas distintas, asociadas con cadenas
polisacarídicas. Cada polipéptido posee dos dominios globulares de tipo
inmunoglobulina (es decir, unos 110 aminoácidos cada dominio, con el característico
bucle de Ig formado por la unión por puentes disulfuro de dos cisteínas separadas 60-
70 aminoácidos):
cadena  : tiene unos 49 kDa de peso molecular. Consta de un dominio amino-
terminal variable (V ), un dominio proximal constante (C ), un segmento
transmembranal de unos 20 aminoácidos, con abundantes cargas positivas, y una
cola citoplásmica en el extremo carboxi-terminal.
cadena  (43 kDa): dominio amino-terminal distal, variable (V ), dominio proximal
constante (C ), segmento transmembranal cargado positivamente, de unos 20
aminoácidos, y cola citoplásmica en el extremo carboxi-terminal.
Las dos cadenas están unidas entres sí por puentes disulfuro, en una secuencia
cercana a la membrana. Una característica notable de las dos cadenas es que sus
respectivos segmentos transmembranales contienen aminoácidos cargados
positivamente. Ya veremos que aunque en principio ello debería conllevar la
inestabilización de la unión entre  y , esto no ocurre debido a que dichas cargas
están contrarrestadas por las cargas negativas de las cadenas asociadas del CD3.
En cada dominio variable (V, V ) existen tres regiones hipervariables que también
reciben el nombre (como en el caso de las Ig) de regiones determinantes de
complementariedad (CDR).
El TCR se parece, pues, a un brazo Fab de anticuerpo que estuviera unido a membrana, si bien
diferencias entre las respectivas zonas de transición entre los dominios V y C sugieren que el TCR
es una estructura más rígida.
10.2.2 El TCR-1 ( )
Es parecido al TCR-2, aunque se han detectado varias formas diferentes, algunas
unidas intercaternariamente por puentes disulfuro, y otras no.
En humanos, las células T dotadas de TCR de tipo   son poco abundantes en
circulación, pero en cambio son las predominantes en el epitelio intestinal. En el ratón
se encuentran células   en la piel (no así en humanos), en útero y en la lengua.
10.3 ORGANIZACIÓN Y REORDENACIÓN DE LOS GENES DEL TCR
10.3.1 Organización en línea germinal de los genes del TCR
Al igual que con las inmunoglobulinas, los TCR están codificados a partir de la
reordenación de segmentos génicos de tipo V, D, J y C.
Existen cuatro familias multigénicas: una para  , una para  , una para  y otra para 
, estando esta última "dentro" de la familia  . Las familias de  y  poseen segmentos
V, J y C, mientras que las familias de  y  poseen V, D, J y C.
En los mapas genéticos se puede ver que los segmentos de la familia  están dentro de
la zona  ("rompiéndola en dos"), entre V y J . Esto implica que una reordenación
productiva de cadenas  deja fuera toda la región  ; es decir, que las reordenaciones
de cadenas  y  son mutuamente excluyentes en la misma célula.
En humanos existen unos 70-80 genes V, 61 genes de J y un solo gene C . Para las cadenas 
existen 52 genes V, tras los cuales existen dos bloques D-J-C: el primero comienza con el
segmento D1, al que se asocian 6 segmentos J y el segmento C1. El segundo bloque comienza
con D2, sigue con 7 segmentos J y acaba con el C2.
Se puede deducir que en el pasado evolutivo ocurrió una duplicación de un bloque original D-J-C.
Esta duplicación en tándem de D, J y C debió de ocurrir al comienzo de la evolución de los
mamíferos, ya que la comparten especies actuales separadas filogenéticamente (como ratón y
humanos).
Como se puede ver, en comparación con los genes de inmunoglobulinas hay mayor
cantidad de segmentos de tipo J, lo cual tiene importantes consecuencias para el
reconocimiento del antígeno por parte de los linfocitos T.
10.3.2 Reordenaciones de segmentos de regiones variables
Su base es similar a la ya tratada en inmunoglobulinas: cada segmento está limitado
por una (en el caso de V y J) o dos (en D) secuencia(s) RSS consistente en una
sucesión de heptámero-espaciador-nonámero, idéntico al de los segmentos génicos de
Ig, y las reordenaciones se guían por la "regla" que dice que una RSS de una vuelta se
empareja con una RSS de dos vueltas.
Las células pre-T del timo expresan los genes RAG1, RAG2, así como la TdT
(desoxinucleotidil transferasa terminal), todas ellos implicados en estas
reordenaciones.
Al igual que en las Ig, existe un orden para las reordenaciones: primero se reorganizan
los segmentos de cadenas , y posteriormente lo hacen los de las cadenas .
10.3.3 Exclusión alélica
Existe exclusión alélica estricta para las reordenaciones de las cadenas  . Pero para
cadenas  parece que no se da una exclusión alélica: de vez en cuando se pueden
expresar simultáneamente los dos alelos de  en la misma célula T.
10.3.4 Rescate de reordenaciones improductivas
Los genes de las cadenas del TCR tienen una propiedad en su reordenación que no
aparece (o aparece raramente) en el caso de los genes de Ig: Si la reordenación de
uno de los dos alelos de un tipo de cadena no resulta productiva, se intentan nuevas
reordenaciones del mismo alelo.
Recuérdese que en el caso de los genes de cadena  hay en línea germinal dos
bloques distintos D-J-C. Esto permite que se puedan intentar varias reordenaciones
sucesivas, y eleva la probabilidad de lograr una productiva al 80% (frente al 50%
de los genes de Ig).
En el caso de las cadenas , hay que considerar la abundancia de segmentos J en
línea germinal. Ello permite que se intente una tras otra varias reordenaciones en el
mismo alelo (o sea, en el mismo cromosoma), hasta agotar los segmentos
disponibles. De esta forma se aumenta igualmente la probabilidad de obtener
reordenaciones productivas para esta cadena. Pero aún más, puede ocurrir que
debido a que para cadenas  no hay exclusión alélica, una misma célula produzca
dos tipos de cadenas , una por cada alelo (cromosoma).
10.3.5 Estructura de los genes reordenados del TCR
Los segmentos fusionados V+J o V+D+J codifican los respectivos dominios variables
de la cadena  y  .
Los genes C constan de un conjunto de exones e intrones:
primer exón determina el dominio globular de tipo Ig (C o C )
primer intrón
segundo exón (H) determina el segmento conector que hay desde el domino
globular hasta la parte de membrana
segundo intrón
tercer exón ( Tm) determina el segmento transmembrana
tercer intrón
cuarto exón (ct) codifica la cola citoplásmica.
10.3.6 Producción de diversidad de los TCR
Ciertas peculiaridades de los genes y de las reordenaciones hacen que la diversidad del
receptor de las células T sea aún mayor que en el caso de las Ig.
10.2.6.1 Unión aleatoria entre V, (D) y J
Veamos unos cálculos teóricos (para el caso del ratón) sobre la diversidad que existe
potencialmente solamente por el hecho de que los segmentos V (D) y J se pueden unir
aleatoriamente:
para cadenas  :100 V x 50 J = 5·103
combinaciones
para cadenas  :25 V x 2 D x 12 J = 6·102
combinaciones
total combinaciones aleatorias de  con  = 3·106
combinaciones.
Como vemos, una cantidad ya respetable, pero a ella hay que añadir el efecto de otros
mecanismos suministradores de variedad, incluido uno que no existe en el caso de la
variedad de inmunoglobulinas:
10.3.6.2 Unión alternativa de segmentos D
Este mecanismo no interviene en las inmunoglobulinas, pero sí en el TCR. Para
entender este mecanismo basta observar que los segmentos D del TCR están limitados
por una RSS de una vuelta y otra RSS de dos vueltas (en lugar de dos RSS de dos
vueltas como tienen los segmentos D de las inmunoglobulinas). Esto permite que en el
caso de las cadenas  y  se puedan unir dos o más segmentos D, ocurriendo estas
varios tipos de uniones adicionales:
unión directa entre V y J (sin intervención de D)
unión V+D+J (lo normal en el caso de las Ig)
unión V+D+D+J (es decir, dos segmentos D)
(en humanos) V+D+D+D+J (tres segmentos D)
10.3.6.3 Flexibilidad de unión
Se produce como lo ya visto para las Ig: al producirse el empalme entre segmentos, se
puede dar un "recorte" de algunos nucleótidos en los extremos originales, y posterior
empalme aleatorio escogiendo entre varios de los nucleótidos de cada zona terminal.
Esto origina, como es lógico, muchas reordenaciones no productivas, pero a cambio
aumenta la diversidad por las cadenas productivas nuevas, al producir aminoácidos
alternativos en las zonas de empalme V-J, V-D y D-J.
Pero aún más, se ha visto que en el caso del TCR los segmentos D se pueden leer
en las tres fases de lectura posibles, lo que supone otro factor potenciador de la
diversidad, ya que aumentan las posibilidades de lecturas productivas.
10.3.6.4 Adición de N-nucleótidos y P-nucleótidos (horquilla P)
Este mecanismo se debe a la acción de la desoxinucleotidil-transferasa terminal (TdT).
Pero mientras que en el caso de las Ig afectaba sólo a los genes de las cadenas
pesadas, en el de las TCR la adición de nucleótidos aleatorios sin molde genético
ocurre en los cuatro tipos de cadenas (,, , ).
En cada zona de juntura entre segmentos se puede añadir una media de 6 nucleótidos
al azar, lo que produce en cada caso 5.461 permutaciones posibles. Teniendo en
cuenta las posibilidades entre segmentos que hemos visto en el apartado 10.3.5.2 los
cálculos de las nuevas combinaciones posibles de cadenas son:
para V+J:5.461 = 5.5·103
para V+D+J(5.461)2
= 3.3·107
para V+D+D+J(5.461)3
= 1.6·1011
Los números que resultan de combinar las posibilidades de los diferentes mecanismos
generadores de diversidad son inimaginables:
combinando el efecto de los N-nucleótidos con el de la flexibilidad de unión, resultan
10 billones (1013
) de posibilidades
combinando todas las posibilidades para   obtenemos 1015
posibilidades distitintas
de receptores TCR2
combinando todas las posibilidades para   resulta la inimaginable cantidad de 1018
combinaciones de TCR1.
( ¡… y eso que no hemos incluido en este cómputo el efecto de que los segmentos D se
pueden leer en las tres fases!).
Se ha calculado que aún suponiendo que sólo el 1% de estas combinaciones fueran viables,
todavía resultarían unos 10
22
tipos de receptores TCR. Suponiendo ahora que aún así, el 99% de
éstos fueran seleccionados negativamente en el timo, nos quedaría la descomunal cifra de unos
10
19
. Pero el ratón sólo produce unos 10
9
linfocitos. Esto plantea una pregunta aún sin respuesta:
¿los linfocitos T reales suponen un subpoblación aleatoria de la gigantesca "población virtual"
teóricamente posible, o sus TCR están "seleccionados" de alguna manera?
Lo que no aparece en el caso de las TCR es el mecanismo de mutación
somática, pero ello tiene un sentido biológico adaptativo: una vez que un TCR ha sido
seleccionado en el timo, al no poder cambiar ya más, se reduce la posibilidad de que
en el supuesto cambio surjan células T autorreactivas que pudieran a atacar al propio
individuo.
10.4 EL COMPLEJO RECEPTOR TCR-CD3
El TCR se asocia no covalentemente a una serie de proteínas que constituyen el
marcador de células T conocido como CD3, y que está implicado en la transducción de
señal al interior del linfocito T.
El CD3 es un complejo de cinco tipos de cadenas polipeptídicas invariantes, que se
asocian de dos en dos, formando tres clases de dímeros:
heterodímero  
heterodímero  
homodímero   (a veces sustituido por el heterodímero   o el homodímero   ).
Así pues, el complejo TCR-CD3 se puede considerar formado por cuatro tipos de
dímeros:
el heterodímero TCR clonotípico (  o   ), que es el que reconoce el péptido
procesado junto con el MHC
tres tipos de dímeros invariantes del CD3, que se requieren para:
a. La expresión adecuada del TCR (se necesitan para que TCR llegue a la
membrana citoplásmica).
b. Estabilizar al TCR: las cargas negativas de la porción transmembranal de
cadenas del CD3 equilibran las cargas positivas de las cadenas del TCR,
estabilizando el complejo.
c. Para la transducción intracelular de la señal que supone la unión TCR-
péptido-MHC.
Las cadenas  ,  y  del CD3 pertenecen a la superfamilia de las inmunoglobulinas, y
cada una de ellas posee un solo dominio extracelular globular de tipo Ig estabilizado
por un puente disulfuro. A ello sigue un segmento transmembrana con carga neta
negativa, y finalmente un dominio citoplásmico de unos 40 aminoácidos.
Estas tres cadenas están codificadas por sendos genes, muy parecidos en su secuencia, y que
están estrechamente ligados. Estos genes a su vez parecen "parientes" de los que codifican las
cadenas Ig e Ig que acompañan siempre a la Ig de membrana.
Las cadenas  y  son distintas a las anteriores; poseen un segmento extracelular muy
corto (sólo 9 aminoácidos), una región transmembrana con carga neta negativa y una
cola citoplásmica larga (de 113 aa. en el caso de  y de 155 aa. en el caso de  ).
Las cadenas  y  están codificadas por el mismo gen, que en cada caso sufre un proceso de
empalme diferencial del ARN, que afecta al extremo 3’.
Todos los péptidos de CD3 tienen en común un mismo tipo de secuencia en sus colas
citoplásmicas, que se denomina motivo ARAM (iniciales inglesas de "motivo de
activación tras reconocimiento de antígeno". Recientemente se va imponiendo la
denominación de ITAM, que significa motivo de inmunorreceptor activable por
tirosina). Las cadenas  ,  y  tienen un solo motivo ARAM, mientras que las  y 
cuentan con tres. En el próximo capítulo veremos la implicación de tales secuencias en
la transducción de señal; baste decir aquí que el ARAM contiene ciertas tirosinas que
son susceptibles de ser fosforiladas por determinadas proteínquinasas tras la
estimulación del receptor clonotípico TCR.
10.5 MOLÉCULAS DE MEMBRANA ACCESORIAS
Aparte del complejo formado por el TCR y el CD3 que cumple un papel central en la
unión con el antígeno procesado, la célula T madura cuenta con varias moléculas
accesorias de membrana, con funciones de
adhesión a la célula presentadora de antígeno o a la célula diana, reforzando la
interacción;
(varias de ellas) transducción de señales desde el TCR al citoplasma.
1. CD4: es una glucoproteína monomérica de unos 55 kDa, con 4 dominios
extracelulares de tipo Ig (D1, D2, D3 Y D4), región transmembrana y larga cola
citoplásmica en la que existen tres serinas fosforilables. Cumple funciones de
adhesión y co-señalización: se une al dominio proximal  2 del MHC-II de
las células presentadoras de antígeno. Su presencia suele conferir al linfocito T
papeles de célula coadyuvante (TH).
2. CD8: Suele ser un heterodímero   donde las dos cadenas están unidas por
puente disulfuro. Cada cadena tiene de 30 a 38 kDa y un solo dominio
extracelular de tipo Ig, una región transmembrana y cola citoplásmica de 25 a
27 aminoácidos, varios de ellos susceptibles de ser fosforilados. Cumple papeles
de adhesión y co-señalización al unirse al dominio  3 de la MHC-I de las
células diana. Su existencia en los linfocitos suele caracterizar a las células T
matadoras (citotóxicas, TC).
En su papel como moléculas de adhesión, las CD4 y CD8 incrementan unas 100
veces la avidez de la interacción entre el TCR y el complejo {péptido-MHC}.
En su papel como correceptores (co-señalizadores) se piensa que actúan detectando
el cambio del TCR cuando se une al complejo péptido:MHC, y facilitando una señal al
interior celular, a través de sus dominios citoplásmicos, que están asociados a Lck,
una proteín-quinasa de tirosina.
3. CD2: se une a LFA-3 (también conocida como CD58).
4. LFA-1 (=CD11a/CD18): se une a ICAM-1
5. CD45R: se une a CD22
6. CD28 (de TH) se une a la molécula B7 de la célula presentadora de antígeno,
suministrando una segunda señal que se requiere para la activación del linfocito
T coadyuvante (véase el tema 11).
10.6 INTERACCIÓN TCR-ANTÍGENO
Aún sabemos poco "en directo" sobre cómo es la interacción ternaria entre el TCR, el
péptido procesado y el MHC (ello se debe en buena parte a la falta de datos de
difracción de rayos X del TCR de membrana).
Por sí mismo, el TCR tiene una Kd hacia {péptido-MHC} de sólo 4 a 6·10-5
M (frente a
10-7
a 10-11
M para la interacción Ac-Ag). Ello sugiere que aunque la interacción
específica depende del TCR, el aumento de la afinidad que realmente se observa se
debe al papel de moléculas accesorias y de adhesión.
Se piensa que en principio, el primer contacto entre la célula T y la célula presentadora
o célula diana se produce por moléculas de adhesión mutuamente interactuantes, y
entonces el TCR del linfocito T puede "rastrear" la superficie de la membrana de la
célula que tiene enfrente en busca de complejos específicos {péptido-MHC}. A su vez,
cuando se ha efectuado el contacto ternario TCR-péptido-MHC se induce un incremento
transitorio en las moléculas de adhesión (CD2, LFA-1) que permite un contacto más
estrecho y más prolongado, durante el cual la célula T ejecuta su papel (liberar ciertas
citoquinas en el caso de la TH y excretar sustancias citolíticas en el de la TC).
Finalmente, la célula T se desliga de la célula presentadora o de la célula diana.
Aunque no existen datos de cristalografía de rayos X del TCR, parece que éste debe
tener parecido a un brazo de Fab de Ig que estuviera unido a la membrana, de modo
que los dominios variables exteriores deben estar formando una estructura globular de
tipo Ig, con las regiones CDR (hipervariables) formando bucles hacia el exterior.
Modelo hipotético de interacción TCR-péptido-MHC:
De los tres CDR de cada cadena del TCR, los dos primeros (CDR1 y CDR2) son menos
variables que el CDR3:
Recuérdese que la enorme diversidad generada por la flexibilidad de unión, lectura
en las tres fases posibles y por la adición de N-nucleótidos afecta al CDR3.
En cambio, las CDR1 y CDR2 derivan directamente de las secuencias V de línea
germinal que cada linfocito haya elegido para la reordenación.
Se sospecha, pues, que CDR1 y CDR2 deben contactar con MHC, probablemente
interactuando con las dos hélices en , y CDR3 debe hacerlo con la porción hidrófila de
los péptidos. Es decir, la variabilidad del TCR complementa la variabilidad del complejo
MHC-péptido.
Se ha propuesto la siguiente nomenclatura: la parte del TCR que interacciona con el péptido, por
analogía con la de la Ig, se llamaría paratopo (y según el modelo anterior, residiría sobre todo en
la zona de CDR3); las porciones de TCR que se ligan al MHC se llamarían histotopos.
En cuanto al MHC, el sitio de unión al antígeno (que algunos llaman desetopo)
reside, como vimos, en el surco que queda entre las dos  -hélices.
El péptido (que como estudiamos, suele ser anfipático), mostraría su lado hidrófobo
(el agretopo) al surco del MHC, mientras que por su porción hidrófila (epitopo) se
uniría con el paratopo del TCR.

Más contenido relacionado

La actualidad más candente

Biología - Ciclo Celular y Replicación del ADN
Biología - Ciclo Celular y Replicación del ADNBiología - Ciclo Celular y Replicación del ADN
Biología - Ciclo Celular y Replicación del ADNDavid Sandoval
 
Ejercicios Genetica Molecular
Ejercicios Genetica MolecularEjercicios Genetica Molecular
Ejercicios Genetica MolecularVICTOR M. VITORIA
 
Preguntas De ExáMen Tema3
Preguntas De ExáMen Tema3Preguntas De ExáMen Tema3
Preguntas De ExáMen Tema3Juan Buendia
 
Síntesis de proteinas y codigo genetico 2015
Síntesis de proteinas y codigo genetico 2015Síntesis de proteinas y codigo genetico 2015
Síntesis de proteinas y codigo genetico 2015Liceo de Coronado
 
La granja del dr. frankenstein
La granja del dr. frankensteinLa granja del dr. frankenstein
La granja del dr. frankensteinInstituto
 
Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)
Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)
Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)Matias Quintana
 
Control de la expresión génica
Control de la expresión génicaControl de la expresión génica
Control de la expresión génicaSolMartnez15
 
Síntesis de proteinas y codigo genetico 2016
Síntesis de proteinas y codigo genetico 2016 Síntesis de proteinas y codigo genetico 2016
Síntesis de proteinas y codigo genetico 2016 Liceo de Coronado
 
Biologia Celular Atlasbiologiamoleculari(2)
Biologia Celular Atlasbiologiamoleculari(2)Biologia Celular Atlasbiologiamoleculari(2)
Biologia Celular Atlasbiologiamoleculari(2)graff95
 

La actualidad más candente (20)

Biología - Ciclo Celular y Replicación del ADN
Biología - Ciclo Celular y Replicación del ADNBiología - Ciclo Celular y Replicación del ADN
Biología - Ciclo Celular y Replicación del ADN
 
Ejercicios Genetica Molecular
Ejercicios Genetica MolecularEjercicios Genetica Molecular
Ejercicios Genetica Molecular
 
Las bases de la herencia
Las bases de la herencia Las bases de la herencia
Las bases de la herencia
 
Tema 4
Tema 4Tema 4
Tema 4
 
Tema 4
Tema 4Tema 4
Tema 4
 
Preguntas De ExáMen Tema3
Preguntas De ExáMen Tema3Preguntas De ExáMen Tema3
Preguntas De ExáMen Tema3
 
Síntesis de proteinas y codigo genetico 2015
Síntesis de proteinas y codigo genetico 2015Síntesis de proteinas y codigo genetico 2015
Síntesis de proteinas y codigo genetico 2015
 
Replicacion
ReplicacionReplicacion
Replicacion
 
La granja del dr. frankenstein
La granja del dr. frankensteinLa granja del dr. frankenstein
La granja del dr. frankenstein
 
4255426
42554264255426
4255426
 
ReplicacióN
ReplicacióNReplicacióN
ReplicacióN
 
áCido desoxirribonucleico
áCido desoxirribonucleicoáCido desoxirribonucleico
áCido desoxirribonucleico
 
Genetica molecular
Genetica molecularGenetica molecular
Genetica molecular
 
Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)
Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)
Organización de los sistemas vivos IV: Ácidos Nucleicos (BC04 - PDV 2013)
 
Material genético para cuartos 2013
Material genético para cuartos  2013Material genético para cuartos  2013
Material genético para cuartos 2013
 
Control de la expresión génica
Control de la expresión génicaControl de la expresión génica
Control de la expresión génica
 
Pow. po. las bases de la herencia (2)
Pow. po. las bases de la herencia (2)Pow. po. las bases de la herencia (2)
Pow. po. las bases de la herencia (2)
 
Síntesis de proteinas y codigo genetico 2016
Síntesis de proteinas y codigo genetico 2016 Síntesis de proteinas y codigo genetico 2016
Síntesis de proteinas y codigo genetico 2016
 
Tema 2 pp
Tema 2 ppTema 2 pp
Tema 2 pp
 
Biologia Celular Atlasbiologiamoleculari(2)
Biologia Celular Atlasbiologiamoleculari(2)Biologia Celular Atlasbiologiamoleculari(2)
Biologia Celular Atlasbiologiamoleculari(2)
 

Similar a 10. moléculas supresoras de las células t

Exposición_Inmunologia_ReceptordeCelulasT
Exposición_Inmunologia_ReceptordeCelulasTExposición_Inmunologia_ReceptordeCelulasT
Exposición_Inmunologia_ReceptordeCelulasT05Maema
 
9.1 restricci tony
9.1 restricci tony9.1 restricci tony
9.1 restricci tonylil dah
 
9.1 restricci tony
9.1 restricci tony9.1 restricci tony
9.1 restricci tonylil dah
 
6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerpos6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerposJanny Melo
 
6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerpos6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerposJohanaMoralesosorio
 
Genetica molecular
Genetica molecularGenetica molecular
Genetica molecularmnmunaiz
 
Curso Inmunologia 07 Diversidad Genetica
Curso Inmunologia 07 Diversidad GeneticaCurso Inmunologia 07 Diversidad Genetica
Curso Inmunologia 07 Diversidad GeneticaAntonio E. Serrano
 
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...Carlos Alfonzo
 
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...Lilibeth Rodríguez
 
Examen genetica molecular 2
Examen genetica molecular 2Examen genetica molecular 2
Examen genetica molecular 2Miriam Valle
 
Actividad ADN y reproducción celular.docx
Actividad ADN y reproducción celular.docxActividad ADN y reproducción celular.docx
Actividad ADN y reproducción celular.docxMauricioLauda
 

Similar a 10. moléculas supresoras de las células t (20)

Exposición_Inmunologia_ReceptordeCelulasT
Exposición_Inmunologia_ReceptordeCelulasTExposición_Inmunologia_ReceptordeCelulasT
Exposición_Inmunologia_ReceptordeCelulasT
 
9.1 restricci tony
9.1 restricci tony9.1 restricci tony
9.1 restricci tony
 
9.1 restricci tony
9.1 restricci tony9.1 restricci tony
9.1 restricci tony
 
Tema 8 reproduccion celular
Tema 8 reproduccion celularTema 8 reproduccion celular
Tema 8 reproduccion celular
 
Proteinas
Proteinas Proteinas
Proteinas
 
6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerpos6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerpos
 
6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerpos6. bases genéticas de la estructura de los anticuerpos
6. bases genéticas de la estructura de los anticuerpos
 
Genetica molecular
Genetica molecularGenetica molecular
Genetica molecular
 
Tema 3 Replicación del ADN
Tema 3 Replicación del  ADNTema 3 Replicación del  ADN
Tema 3 Replicación del ADN
 
Celulaclase
CelulaclaseCelulaclase
Celulaclase
 
Curso Inmunologia 07 Diversidad Genetica
Curso Inmunologia 07 Diversidad GeneticaCurso Inmunologia 07 Diversidad Genetica
Curso Inmunologia 07 Diversidad Genetica
 
Guía tema 5.
Guía tema 5.Guía tema 5.
Guía tema 5.
 
biologia
biologiabiologia
biologia
 
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
 
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
Moleculas de la superficie del leucocito y plaquetas que son distinguibles co...
 
Examen genetica molecular 2
Examen genetica molecular 2Examen genetica molecular 2
Examen genetica molecular 2
 
FINAL DE FSH
FINAL DE FSHFINAL DE FSH
FINAL DE FSH
 
Actividad ADN y reproducción celular.docx
Actividad ADN y reproducción celular.docxActividad ADN y reproducción celular.docx
Actividad ADN y reproducción celular.docx
 
7. diversidad de ab
7.  diversidad de ab7.  diversidad de ab
7. diversidad de ab
 
Antígenos
Antígenos Antígenos
Antígenos
 

Más de Víctor Bravo P

Sindrome chediak higashi
Sindrome chediak higashi Sindrome chediak higashi
Sindrome chediak higashi Víctor Bravo P
 
Dipylidium caninum clase
Dipylidium caninum  claseDipylidium caninum  clase
Dipylidium caninum claseVíctor Bravo P
 
Diphyllobothrium latum clase
Diphyllobothrium latum claseDiphyllobothrium latum clase
Diphyllobothrium latum claseVíctor Bravo P
 
Clostridium clase teorica
Clostridium clase teoricaClostridium clase teorica
Clostridium clase teoricaVíctor Bravo P
 
Cestodos generalidades clase
Cestodos generalidades clase Cestodos generalidades clase
Cestodos generalidades clase Víctor Bravo P
 
Artropodos de interes clinico 2
Artropodos de interes clinico 2 Artropodos de interes clinico 2
Artropodos de interes clinico 2 Víctor Bravo P
 
Atropodosde interes clinico 1
Atropodosde interes clinico 1Atropodosde interes clinico 1
Atropodosde interes clinico 1Víctor Bravo P
 
17. visión conjunta del sistema inmune
17.  visión conjunta del sistema inmune17.  visión conjunta del sistema inmune
17. visión conjunta del sistema inmuneVíctor Bravo P
 
15. regulación del sistema inmune
15.  regulación del sistema inmune15.  regulación del sistema inmune
15. regulación del sistema inmuneVíctor Bravo P
 
11. maduración activa de linfocitos t
11.   maduración activa de   linfocitos t11.   maduración activa de   linfocitos t
11. maduración activa de linfocitos tVíctor Bravo P
 
9. procesamiento y presentación de antígenos
9. procesamiento y presentación de antígenos9. procesamiento y presentación de antígenos
9. procesamiento y presentación de antígenosVíctor Bravo P
 
4. antígenos (sistema inmune)
4.  antígenos (sistema inmune)4.  antígenos (sistema inmune)
4. antígenos (sistema inmune)Víctor Bravo P
 

Más de Víctor Bravo P (20)

Sindrome chediak higashi
Sindrome chediak higashi Sindrome chediak higashi
Sindrome chediak higashi
 
Vasculitis
Vasculitis Vasculitis
Vasculitis
 
Dipylidium caninum clase
Dipylidium caninum  claseDipylidium caninum  clase
Dipylidium caninum clase
 
Diphyllobothrium latum clase
Diphyllobothrium latum claseDiphyllobothrium latum clase
Diphyllobothrium latum clase
 
Clostridium clase teorica
Clostridium clase teoricaClostridium clase teorica
Clostridium clase teorica
 
Cestodos generalidades clase
Cestodos generalidades clase Cestodos generalidades clase
Cestodos generalidades clase
 
Artropodos de interes clinico 2
Artropodos de interes clinico 2 Artropodos de interes clinico 2
Artropodos de interes clinico 2
 
Atropodosde interes clinico 1
Atropodosde interes clinico 1Atropodosde interes clinico 1
Atropodosde interes clinico 1
 
17. visión conjunta del sistema inmune
17.  visión conjunta del sistema inmune17.  visión conjunta del sistema inmune
17. visión conjunta del sistema inmune
 
16 complemento
16  complemento16  complemento
16 complemento
 
15. regulación del sistema inmune
15.  regulación del sistema inmune15.  regulación del sistema inmune
15. regulación del sistema inmune
 
14. citoquinas
14.  citoquinas14.  citoquinas
14. citoquinas
 
13. inmunidad celular
13.  inmunidad celular13.  inmunidad celular
13. inmunidad celular
 
12. respuesta humoral
12.  respuesta humoral12.  respuesta humoral
12. respuesta humoral
 
11. maduración activa de linfocitos t
11.   maduración activa de   linfocitos t11.   maduración activa de   linfocitos t
11. maduración activa de linfocitos t
 
9. procesamiento y presentación de antígenos
9. procesamiento y presentación de antígenos9. procesamiento y presentación de antígenos
9. procesamiento y presentación de antígenos
 
8. mhc
8.  mhc8.  mhc
8. mhc
 
6. interacción ag-ab
6.  interacción ag-ab6.  interacción ag-ab
6. interacción ag-ab
 
5. inmunoglobulinas
5. inmunoglobulinas5. inmunoglobulinas
5. inmunoglobulinas
 
4. antígenos (sistema inmune)
4.  antígenos (sistema inmune)4.  antígenos (sistema inmune)
4. antígenos (sistema inmune)
 

Último

Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfCarlaLSarita1
 
Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...
Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...
Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...Juan Carlos Fonseca Mata
 
ESQUELETO HUMANO ARTICULADO PARA PRIMARIA
ESQUELETO HUMANO ARTICULADO PARA PRIMARIAESQUELETO HUMANO ARTICULADO PARA PRIMARIA
ESQUELETO HUMANO ARTICULADO PARA PRIMARIAjuliocesartolucarami
 
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...GloriaMeza12
 
el lugar santo y santisimo final.pptx y sus partes
el lugar santo y santisimo final.pptx y sus partesel lugar santo y santisimo final.pptx y sus partes
el lugar santo y santisimo final.pptx y sus partesAsihleyyanguez
 
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.Ralvila5
 
Pielonefritis en imagenologia clinica.pptx
Pielonefritis en imagenologia clinica.pptxPielonefritis en imagenologia clinica.pptx
Pielonefritis en imagenologia clinica.pptxLuisGuzmnHernndez1
 
Campo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdfCampo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdfArturoDavilaObando
 
EXPOSICION NORMA TECNICA DE SALUD 2024 -
EXPOSICION NORMA TECNICA DE SALUD 2024 -EXPOSICION NORMA TECNICA DE SALUD 2024 -
EXPOSICION NORMA TECNICA DE SALUD 2024 -FridaDesiredMenesesF
 
artropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chileartropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chilecatabarria8
 
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdfFowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdffrank0071
 
DIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptx
DIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptxDIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptx
DIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptxprofesionalscontable
 
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdfMata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdffrank0071
 
Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...
Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...
Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...frank0071
 
METODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptx
METODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptxMETODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptx
METODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptxlilianabarbozavasque
 
SEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdf
SEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdfSEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdf
SEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdfrvillegasp16001
 
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptxEXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptxJhonFonseca16
 
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismoPIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismoArturoDavilaObando
 
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdfSESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdfkevingblassespinalor
 
Sucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoSucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoFriasMartnezAlanZuri
 

Último (20)

Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdf
 
Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...
Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...
Documento Técnico Base del Inventario de Especies Vegetales Nativas del Estad...
 
ESQUELETO HUMANO ARTICULADO PARA PRIMARIA
ESQUELETO HUMANO ARTICULADO PARA PRIMARIAESQUELETO HUMANO ARTICULADO PARA PRIMARIA
ESQUELETO HUMANO ARTICULADO PARA PRIMARIA
 
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
Sistema Endocrino, rol de los receptores hormonales, hormonas circulantes y l...
 
el lugar santo y santisimo final.pptx y sus partes
el lugar santo y santisimo final.pptx y sus partesel lugar santo y santisimo final.pptx y sus partes
el lugar santo y santisimo final.pptx y sus partes
 
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
Carbohidratos, lipidos, acidos nucleicos, y principios del metabolismo.
 
Pielonefritis en imagenologia clinica.pptx
Pielonefritis en imagenologia clinica.pptxPielonefritis en imagenologia clinica.pptx
Pielonefritis en imagenologia clinica.pptx
 
Campo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdfCampo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdf
 
EXPOSICION NORMA TECNICA DE SALUD 2024 -
EXPOSICION NORMA TECNICA DE SALUD 2024 -EXPOSICION NORMA TECNICA DE SALUD 2024 -
EXPOSICION NORMA TECNICA DE SALUD 2024 -
 
artropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chileartropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chile
 
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdfFowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
 
DIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptx
DIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptxDIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptx
DIAPOSITIVASDEPRIMERACATEGORIAIIPARTE (1).pptx
 
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdfMata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
Mata, S. - Kriegsmarine. La flota de Hitler [2017].pdf
 
Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...
Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...
Van Young, Eric. - La otra rebelión. La lucha por la independencia de México,...
 
METODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptx
METODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptxMETODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptx
METODOS ANTICONCEPTIVOS UNIVERSIDAD SEÑOR DE SIPAN.pptx
 
SEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdf
SEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdfSEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdf
SEMIOLOGIA RESPIRATORIA, CLINICA BASICA .pdf
 
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptxEXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
 
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismoPIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
 
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdfSESIÓN DE APRENDIZAJE N° 5  SEMANA 7 CYT  I BIMESTRE ESTUDIANTES.pdf
SESIÓN DE APRENDIZAJE N° 5 SEMANA 7 CYT I BIMESTRE ESTUDIANTES.pdf
 
Sucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoSucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimento
 

10. moléculas supresoras de las células t

  • 1. CURSO BÁSICO DE INMUNOLOGÍA 10. MOLÉCULAS DE SUPERFICIE DE LAS CÉLULAS T 10.1 INTRODUCCIÓN En este capítulo nos vamos a centrar en las proteínas de superficie de los linfocitos T que están implicadas de una forma u otra en la detección de antígenos y en la transmisión de la señal al interior de dicha célula, haciendo especial hincapié en el receptor clonotípico (específico). El receptor clonotípico para antígeno de las células T (TCR) ha tardado más tiempo en ser conocido, debido a que, a diferencia de las inmunoglobulinas, no existe versión secretada, sino que siempre va unido a membrana. Otro factor que ha dificultado el estudio de su funcionalidad es que aunque el TCR tiene especificidad antigénica, reconoce al antígeno de modo restringido por el haplotipo MHC propio. A partir de los años 80, debido al empleo de las modernas técnicas de anticuerpos monoclonales y de clonación molecular del ADN se pudieron aislar los genes que codifican las cadenas del TCR. Se ha visto que su organización genómica y su modo de generar diversidad son muy parecidos a los de los genes de las inmunoglobulinas. El receptor de los linfocitos T se presenta como heterodímeros, que pueden ser de dos tipos: el TCR-2 está compuesto por una cadena  y otra  el TCR-1 está compuesto por una cadena  y otra  . En ambos casos, el TCR está asociado a un complejo de proteínas de membrana, denominado CD3 que es el encargado de transducir la señal al interior celular. 10.2 ESTRUCTURA DEL TCR Aún no se han logrado análisis cristalográficos por rayos X del TCR completo (aunque sí de la cadena ), por lo que sólo podemos "sospechar" su estructura en función de la secuencia de aminoácidos y su parecido con las inmunoglobulinas. 10.2.1 El TCR-2 ( ) Está formado por dos cadenas polipeptídicas distintas, asociadas con cadenas polisacarídicas. Cada polipéptido posee dos dominios globulares de tipo inmunoglobulina (es decir, unos 110 aminoácidos cada dominio, con el característico bucle de Ig formado por la unión por puentes disulfuro de dos cisteínas separadas 60- 70 aminoácidos): cadena  : tiene unos 49 kDa de peso molecular. Consta de un dominio amino- terminal variable (V ), un dominio proximal constante (C ), un segmento transmembranal de unos 20 aminoácidos, con abundantes cargas positivas, y una cola citoplásmica en el extremo carboxi-terminal. cadena  (43 kDa): dominio amino-terminal distal, variable (V ), dominio proximal
  • 2. constante (C ), segmento transmembranal cargado positivamente, de unos 20 aminoácidos, y cola citoplásmica en el extremo carboxi-terminal. Las dos cadenas están unidas entres sí por puentes disulfuro, en una secuencia cercana a la membrana. Una característica notable de las dos cadenas es que sus respectivos segmentos transmembranales contienen aminoácidos cargados positivamente. Ya veremos que aunque en principio ello debería conllevar la inestabilización de la unión entre  y , esto no ocurre debido a que dichas cargas están contrarrestadas por las cargas negativas de las cadenas asociadas del CD3. En cada dominio variable (V, V ) existen tres regiones hipervariables que también reciben el nombre (como en el caso de las Ig) de regiones determinantes de complementariedad (CDR). El TCR se parece, pues, a un brazo Fab de anticuerpo que estuviera unido a membrana, si bien diferencias entre las respectivas zonas de transición entre los dominios V y C sugieren que el TCR es una estructura más rígida. 10.2.2 El TCR-1 ( ) Es parecido al TCR-2, aunque se han detectado varias formas diferentes, algunas unidas intercaternariamente por puentes disulfuro, y otras no. En humanos, las células T dotadas de TCR de tipo   son poco abundantes en circulación, pero en cambio son las predominantes en el epitelio intestinal. En el ratón se encuentran células   en la piel (no así en humanos), en útero y en la lengua. 10.3 ORGANIZACIÓN Y REORDENACIÓN DE LOS GENES DEL TCR 10.3.1 Organización en línea germinal de los genes del TCR Al igual que con las inmunoglobulinas, los TCR están codificados a partir de la reordenación de segmentos génicos de tipo V, D, J y C. Existen cuatro familias multigénicas: una para  , una para  , una para  y otra para  , estando esta última "dentro" de la familia  . Las familias de  y  poseen segmentos V, J y C, mientras que las familias de  y  poseen V, D, J y C. En los mapas genéticos se puede ver que los segmentos de la familia  están dentro de la zona  ("rompiéndola en dos"), entre V y J . Esto implica que una reordenación productiva de cadenas  deja fuera toda la región  ; es decir, que las reordenaciones de cadenas  y  son mutuamente excluyentes en la misma célula. En humanos existen unos 70-80 genes V, 61 genes de J y un solo gene C . Para las cadenas  existen 52 genes V, tras los cuales existen dos bloques D-J-C: el primero comienza con el segmento D1, al que se asocian 6 segmentos J y el segmento C1. El segundo bloque comienza con D2, sigue con 7 segmentos J y acaba con el C2. Se puede deducir que en el pasado evolutivo ocurrió una duplicación de un bloque original D-J-C. Esta duplicación en tándem de D, J y C debió de ocurrir al comienzo de la evolución de los
  • 3. mamíferos, ya que la comparten especies actuales separadas filogenéticamente (como ratón y humanos). Como se puede ver, en comparación con los genes de inmunoglobulinas hay mayor cantidad de segmentos de tipo J, lo cual tiene importantes consecuencias para el reconocimiento del antígeno por parte de los linfocitos T. 10.3.2 Reordenaciones de segmentos de regiones variables Su base es similar a la ya tratada en inmunoglobulinas: cada segmento está limitado por una (en el caso de V y J) o dos (en D) secuencia(s) RSS consistente en una sucesión de heptámero-espaciador-nonámero, idéntico al de los segmentos génicos de Ig, y las reordenaciones se guían por la "regla" que dice que una RSS de una vuelta se empareja con una RSS de dos vueltas. Las células pre-T del timo expresan los genes RAG1, RAG2, así como la TdT (desoxinucleotidil transferasa terminal), todas ellos implicados en estas reordenaciones. Al igual que en las Ig, existe un orden para las reordenaciones: primero se reorganizan los segmentos de cadenas , y posteriormente lo hacen los de las cadenas . 10.3.3 Exclusión alélica Existe exclusión alélica estricta para las reordenaciones de las cadenas  . Pero para cadenas  parece que no se da una exclusión alélica: de vez en cuando se pueden expresar simultáneamente los dos alelos de  en la misma célula T. 10.3.4 Rescate de reordenaciones improductivas Los genes de las cadenas del TCR tienen una propiedad en su reordenación que no aparece (o aparece raramente) en el caso de los genes de Ig: Si la reordenación de uno de los dos alelos de un tipo de cadena no resulta productiva, se intentan nuevas reordenaciones del mismo alelo. Recuérdese que en el caso de los genes de cadena  hay en línea germinal dos bloques distintos D-J-C. Esto permite que se puedan intentar varias reordenaciones sucesivas, y eleva la probabilidad de lograr una productiva al 80% (frente al 50% de los genes de Ig). En el caso de las cadenas , hay que considerar la abundancia de segmentos J en línea germinal. Ello permite que se intente una tras otra varias reordenaciones en el mismo alelo (o sea, en el mismo cromosoma), hasta agotar los segmentos disponibles. De esta forma se aumenta igualmente la probabilidad de obtener reordenaciones productivas para esta cadena. Pero aún más, puede ocurrir que debido a que para cadenas  no hay exclusión alélica, una misma célula produzca dos tipos de cadenas , una por cada alelo (cromosoma). 10.3.5 Estructura de los genes reordenados del TCR Los segmentos fusionados V+J o V+D+J codifican los respectivos dominios variables de la cadena  y  .
  • 4. Los genes C constan de un conjunto de exones e intrones: primer exón determina el dominio globular de tipo Ig (C o C ) primer intrón segundo exón (H) determina el segmento conector que hay desde el domino globular hasta la parte de membrana segundo intrón tercer exón ( Tm) determina el segmento transmembrana tercer intrón cuarto exón (ct) codifica la cola citoplásmica. 10.3.6 Producción de diversidad de los TCR Ciertas peculiaridades de los genes y de las reordenaciones hacen que la diversidad del receptor de las células T sea aún mayor que en el caso de las Ig. 10.2.6.1 Unión aleatoria entre V, (D) y J Veamos unos cálculos teóricos (para el caso del ratón) sobre la diversidad que existe potencialmente solamente por el hecho de que los segmentos V (D) y J se pueden unir aleatoriamente: para cadenas  :100 V x 50 J = 5·103 combinaciones para cadenas  :25 V x 2 D x 12 J = 6·102 combinaciones total combinaciones aleatorias de  con  = 3·106 combinaciones. Como vemos, una cantidad ya respetable, pero a ella hay que añadir el efecto de otros mecanismos suministradores de variedad, incluido uno que no existe en el caso de la variedad de inmunoglobulinas: 10.3.6.2 Unión alternativa de segmentos D Este mecanismo no interviene en las inmunoglobulinas, pero sí en el TCR. Para entender este mecanismo basta observar que los segmentos D del TCR están limitados por una RSS de una vuelta y otra RSS de dos vueltas (en lugar de dos RSS de dos vueltas como tienen los segmentos D de las inmunoglobulinas). Esto permite que en el caso de las cadenas  y  se puedan unir dos o más segmentos D, ocurriendo estas varios tipos de uniones adicionales: unión directa entre V y J (sin intervención de D) unión V+D+J (lo normal en el caso de las Ig) unión V+D+D+J (es decir, dos segmentos D) (en humanos) V+D+D+D+J (tres segmentos D) 10.3.6.3 Flexibilidad de unión Se produce como lo ya visto para las Ig: al producirse el empalme entre segmentos, se puede dar un "recorte" de algunos nucleótidos en los extremos originales, y posterior
  • 5. empalme aleatorio escogiendo entre varios de los nucleótidos de cada zona terminal. Esto origina, como es lógico, muchas reordenaciones no productivas, pero a cambio aumenta la diversidad por las cadenas productivas nuevas, al producir aminoácidos alternativos en las zonas de empalme V-J, V-D y D-J. Pero aún más, se ha visto que en el caso del TCR los segmentos D se pueden leer en las tres fases de lectura posibles, lo que supone otro factor potenciador de la diversidad, ya que aumentan las posibilidades de lecturas productivas. 10.3.6.4 Adición de N-nucleótidos y P-nucleótidos (horquilla P) Este mecanismo se debe a la acción de la desoxinucleotidil-transferasa terminal (TdT). Pero mientras que en el caso de las Ig afectaba sólo a los genes de las cadenas pesadas, en el de las TCR la adición de nucleótidos aleatorios sin molde genético ocurre en los cuatro tipos de cadenas (,, , ). En cada zona de juntura entre segmentos se puede añadir una media de 6 nucleótidos al azar, lo que produce en cada caso 5.461 permutaciones posibles. Teniendo en cuenta las posibilidades entre segmentos que hemos visto en el apartado 10.3.5.2 los cálculos de las nuevas combinaciones posibles de cadenas son: para V+J:5.461 = 5.5·103 para V+D+J(5.461)2 = 3.3·107 para V+D+D+J(5.461)3 = 1.6·1011 Los números que resultan de combinar las posibilidades de los diferentes mecanismos generadores de diversidad son inimaginables: combinando el efecto de los N-nucleótidos con el de la flexibilidad de unión, resultan 10 billones (1013 ) de posibilidades combinando todas las posibilidades para   obtenemos 1015 posibilidades distitintas de receptores TCR2 combinando todas las posibilidades para   resulta la inimaginable cantidad de 1018 combinaciones de TCR1. ( ¡… y eso que no hemos incluido en este cómputo el efecto de que los segmentos D se pueden leer en las tres fases!). Se ha calculado que aún suponiendo que sólo el 1% de estas combinaciones fueran viables, todavía resultarían unos 10 22 tipos de receptores TCR. Suponiendo ahora que aún así, el 99% de éstos fueran seleccionados negativamente en el timo, nos quedaría la descomunal cifra de unos 10 19 . Pero el ratón sólo produce unos 10 9 linfocitos. Esto plantea una pregunta aún sin respuesta: ¿los linfocitos T reales suponen un subpoblación aleatoria de la gigantesca "población virtual" teóricamente posible, o sus TCR están "seleccionados" de alguna manera? Lo que no aparece en el caso de las TCR es el mecanismo de mutación somática, pero ello tiene un sentido biológico adaptativo: una vez que un TCR ha sido seleccionado en el timo, al no poder cambiar ya más, se reduce la posibilidad de que en el supuesto cambio surjan células T autorreactivas que pudieran a atacar al propio individuo.
  • 6. 10.4 EL COMPLEJO RECEPTOR TCR-CD3 El TCR se asocia no covalentemente a una serie de proteínas que constituyen el marcador de células T conocido como CD3, y que está implicado en la transducción de señal al interior del linfocito T. El CD3 es un complejo de cinco tipos de cadenas polipeptídicas invariantes, que se asocian de dos en dos, formando tres clases de dímeros: heterodímero   heterodímero   homodímero   (a veces sustituido por el heterodímero   o el homodímero   ). Así pues, el complejo TCR-CD3 se puede considerar formado por cuatro tipos de dímeros: el heterodímero TCR clonotípico (  o   ), que es el que reconoce el péptido procesado junto con el MHC tres tipos de dímeros invariantes del CD3, que se requieren para: a. La expresión adecuada del TCR (se necesitan para que TCR llegue a la membrana citoplásmica). b. Estabilizar al TCR: las cargas negativas de la porción transmembranal de cadenas del CD3 equilibran las cargas positivas de las cadenas del TCR, estabilizando el complejo. c. Para la transducción intracelular de la señal que supone la unión TCR- péptido-MHC. Las cadenas  ,  y  del CD3 pertenecen a la superfamilia de las inmunoglobulinas, y cada una de ellas posee un solo dominio extracelular globular de tipo Ig estabilizado por un puente disulfuro. A ello sigue un segmento transmembrana con carga neta negativa, y finalmente un dominio citoplásmico de unos 40 aminoácidos. Estas tres cadenas están codificadas por sendos genes, muy parecidos en su secuencia, y que están estrechamente ligados. Estos genes a su vez parecen "parientes" de los que codifican las cadenas Ig e Ig que acompañan siempre a la Ig de membrana. Las cadenas  y  son distintas a las anteriores; poseen un segmento extracelular muy corto (sólo 9 aminoácidos), una región transmembrana con carga neta negativa y una cola citoplásmica larga (de 113 aa. en el caso de  y de 155 aa. en el caso de  ). Las cadenas  y  están codificadas por el mismo gen, que en cada caso sufre un proceso de empalme diferencial del ARN, que afecta al extremo 3’. Todos los péptidos de CD3 tienen en común un mismo tipo de secuencia en sus colas citoplásmicas, que se denomina motivo ARAM (iniciales inglesas de "motivo de activación tras reconocimiento de antígeno". Recientemente se va imponiendo la denominación de ITAM, que significa motivo de inmunorreceptor activable por tirosina). Las cadenas  ,  y  tienen un solo motivo ARAM, mientras que las  y  cuentan con tres. En el próximo capítulo veremos la implicación de tales secuencias en la transducción de señal; baste decir aquí que el ARAM contiene ciertas tirosinas que
  • 7. son susceptibles de ser fosforiladas por determinadas proteínquinasas tras la estimulación del receptor clonotípico TCR. 10.5 MOLÉCULAS DE MEMBRANA ACCESORIAS Aparte del complejo formado por el TCR y el CD3 que cumple un papel central en la unión con el antígeno procesado, la célula T madura cuenta con varias moléculas accesorias de membrana, con funciones de adhesión a la célula presentadora de antígeno o a la célula diana, reforzando la interacción; (varias de ellas) transducción de señales desde el TCR al citoplasma. 1. CD4: es una glucoproteína monomérica de unos 55 kDa, con 4 dominios extracelulares de tipo Ig (D1, D2, D3 Y D4), región transmembrana y larga cola citoplásmica en la que existen tres serinas fosforilables. Cumple funciones de adhesión y co-señalización: se une al dominio proximal  2 del MHC-II de las células presentadoras de antígeno. Su presencia suele conferir al linfocito T papeles de célula coadyuvante (TH). 2. CD8: Suele ser un heterodímero   donde las dos cadenas están unidas por puente disulfuro. Cada cadena tiene de 30 a 38 kDa y un solo dominio extracelular de tipo Ig, una región transmembrana y cola citoplásmica de 25 a 27 aminoácidos, varios de ellos susceptibles de ser fosforilados. Cumple papeles de adhesión y co-señalización al unirse al dominio  3 de la MHC-I de las células diana. Su existencia en los linfocitos suele caracterizar a las células T matadoras (citotóxicas, TC). En su papel como moléculas de adhesión, las CD4 y CD8 incrementan unas 100 veces la avidez de la interacción entre el TCR y el complejo {péptido-MHC}. En su papel como correceptores (co-señalizadores) se piensa que actúan detectando el cambio del TCR cuando se une al complejo péptido:MHC, y facilitando una señal al interior celular, a través de sus dominios citoplásmicos, que están asociados a Lck, una proteín-quinasa de tirosina. 3. CD2: se une a LFA-3 (también conocida como CD58). 4. LFA-1 (=CD11a/CD18): se une a ICAM-1 5. CD45R: se une a CD22 6. CD28 (de TH) se une a la molécula B7 de la célula presentadora de antígeno, suministrando una segunda señal que se requiere para la activación del linfocito T coadyuvante (véase el tema 11). 10.6 INTERACCIÓN TCR-ANTÍGENO Aún sabemos poco "en directo" sobre cómo es la interacción ternaria entre el TCR, el péptido procesado y el MHC (ello se debe en buena parte a la falta de datos de difracción de rayos X del TCR de membrana).
  • 8. Por sí mismo, el TCR tiene una Kd hacia {péptido-MHC} de sólo 4 a 6·10-5 M (frente a 10-7 a 10-11 M para la interacción Ac-Ag). Ello sugiere que aunque la interacción específica depende del TCR, el aumento de la afinidad que realmente se observa se debe al papel de moléculas accesorias y de adhesión. Se piensa que en principio, el primer contacto entre la célula T y la célula presentadora o célula diana se produce por moléculas de adhesión mutuamente interactuantes, y entonces el TCR del linfocito T puede "rastrear" la superficie de la membrana de la célula que tiene enfrente en busca de complejos específicos {péptido-MHC}. A su vez, cuando se ha efectuado el contacto ternario TCR-péptido-MHC se induce un incremento transitorio en las moléculas de adhesión (CD2, LFA-1) que permite un contacto más estrecho y más prolongado, durante el cual la célula T ejecuta su papel (liberar ciertas citoquinas en el caso de la TH y excretar sustancias citolíticas en el de la TC). Finalmente, la célula T se desliga de la célula presentadora o de la célula diana. Aunque no existen datos de cristalografía de rayos X del TCR, parece que éste debe tener parecido a un brazo de Fab de Ig que estuviera unido a la membrana, de modo que los dominios variables exteriores deben estar formando una estructura globular de tipo Ig, con las regiones CDR (hipervariables) formando bucles hacia el exterior. Modelo hipotético de interacción TCR-péptido-MHC: De los tres CDR de cada cadena del TCR, los dos primeros (CDR1 y CDR2) son menos variables que el CDR3: Recuérdese que la enorme diversidad generada por la flexibilidad de unión, lectura en las tres fases posibles y por la adición de N-nucleótidos afecta al CDR3. En cambio, las CDR1 y CDR2 derivan directamente de las secuencias V de línea germinal que cada linfocito haya elegido para la reordenación. Se sospecha, pues, que CDR1 y CDR2 deben contactar con MHC, probablemente interactuando con las dos hélices en , y CDR3 debe hacerlo con la porción hidrófila de los péptidos. Es decir, la variabilidad del TCR complementa la variabilidad del complejo MHC-péptido. Se ha propuesto la siguiente nomenclatura: la parte del TCR que interacciona con el péptido, por analogía con la de la Ig, se llamaría paratopo (y según el modelo anterior, residiría sobre todo en la zona de CDR3); las porciones de TCR que se ligan al MHC se llamarían histotopos. En cuanto al MHC, el sitio de unión al antígeno (que algunos llaman desetopo) reside, como vimos, en el surco que queda entre las dos  -hélices. El péptido (que como estudiamos, suele ser anfipático), mostraría su lado hidrófobo (el agretopo) al surco del MHC, mientras que por su porción hidrófila (epitopo) se uniría con el paratopo del TCR.