REPÚBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN UNIVERSITARIA
UNIVERSIDAD POLITICA TERRITORIAL “Andrés Eloy Blancos”
Expresiones algébricas
Estudiante
Yeinelith Segueri
CI: 30.803063
Expresión Algebraica
Una expresión algebraica es una combinación de letras ó letras y números unidos por
medio de las operaciones: suma, resta, multiplicación, división, potenciación ó radicación,
de manera finita, Usualmente las primeras letras de nuestro alfabeto: a, b, c, d, etc. si no
se dice otra cosa, representan valores fijos en la expresión. Estas letras también se pueden
llamar parámetros. Las últimas letras de nuestro alfabeto: x, y, z, u otros símbolos,
representan variables que pueden tomar valores dentro de un subconjunto de números
reales.
El dominio de una variable en una expresión algebraica, es un subconjunto de números
reales, que al reemplazarlos en la expresión, siempre se obtiene un número real.Es
conveniente dar el dominio de cada una de las variables contenidas en una expresión
algebraica.
Dos expresiones algebraicas son equivalentes cuando toman ambas el mismo valor
numérico, para cualquier valor del dominio de cada una de las variables.
Se conoce como expresiones algebraicas a la combinación de letras, signos y números en
la operaciones matemáticas. Por lo general, las letras representan cantidades
desconocidas y son llamadas variables o incógnitas. Las expresiones algebraicas permiten
las traducciones a las expresiones del lenguaje matemático del lenguaje habitual. Las
expresiones algebraicas surgen de la obligación de traducir valores desconocidos a
números que están representados por letras. La rama de las matemáticas responsable del
estudio de estas expresiones en las que aparecen números y letras, así como signos de
operaciones matemáticas, es Álgebra.
Coeficiente Exponente
X + 4X . 22
– ( 3/ X)
Variable Operadores Parentesis
Suma
Para sumar expresiones algebraicas, hay que tener en cuenta dos cosas, la suma de dos
términos semejantes se pueden reducir a un solo término, si tales términos son
diferentes ante una suma, simplemente el resultado se deja expresada tal cual es sin
cambiar los signos de los términos. Una suma algebraica es una sucesión de sumas y
restas. Para resolverla, se suman todos los números positivos y se le resta la suma de los
números negativos. La suma algebraica puede resolverse:
Operando en el orden dado (Resolviendo las sumas parciales):
50 + 20 – 10 – 15 =
70 – 10 – 15 =
60 – 15 =
45
Operando del siguiente modo:
1°) Calcular la suma de términos positivos 50 + 20 = 70
2°) Calcular la suma de los términos negativos 10 + 15 = 25
3°) Hallar la diferencia entre los resultados de ambas sumas 70 – 20 = 45
Conclusión: Una suma algebraica es una combinación de sumas y restas.
Realicemos esta operación para un caso más particular, si queremos sumar los términos
2a y – 5b se expresaría así: (2a) + (- 5b) = 2a – 5b Esto es, la suma de 2a y – 5b es 2a – 5b,
Significa que el signo suma + no afecta el signo menos de – 5b, naturalmente la suma
entre 2a y 5b es : 2a + 5b
Ejercicio:
1°) (2x – 3y + 4z – 8) + ( 5x + y – 3 ) + (-3x – 6z) = 4x – 2y – 2z – 11
2°) 3x y+ 2x – 2x + 9y = 3xy + 9y
3°) x + 12x + 17y – 3y = 10x + 17y
Resta
La resta es una operación matemática en la cual se elimina una parte a una cantidad, lo
que se representa con dos números o cifras separados por el signo menos (-), también es
conocida como diferencia. Esta operación puede llevarse a cabo con números positivos,
negativos, enteros, decimales, fracciones o con estructuras más complejas como los
polinomios, vectores, números imaginarios, entre otros, pero siempre entre términos
semejantes. Consiste en establecer la diferencia existente entre dos elementos: gracias a
la resta, se puede saber cuánto le falta a un elemento para resultar igual al otro. La resta
algebraica es el proceso inverso de la suma algebraica. Se dice que la resta algebraica es el
proceso inverso de la suma algebraica. Lo que permite la resta es encontrar la cantidad
desconocida que, cuando se suma al sustraendo (el elemento que indica cuánto hay que
restar), da como resultado el minuendo (el elemento que disminuye en la operación).
Ejemplo: La operación 8 – 2 es una resta algebraica. En este caso, 8 es el minuendo (el
número que será reducido a través de la resta) y 2 es el sustraendo (el número que indica
cuánto se debe reducir el minuendo). El resultado de esta resta algebraica es 6.
Decíamos también que la resta algebraica es una operación inversa a la suma, ya que
permite descubrir qué cantidad se necesita sumar al sustraendo para llegar al minuendo.
Con esta incógnita, podemos plantear la operación de la siguiente forma:
2 + x = 8
x = 8 – 2
x = 6
Ejercicio:
1°) 5b + 2b = 7b
2°) -7a – 5ª = 12a
3°) 2x y- 3x – 2x + 5y = 2xy – 5x + 5y
Valor numérico:
El Valor numérico de una expresión algebraica o fórmula matemática es el número que se
obtiene al quitar las letras o sustituir por números y realizar las operaciones indicadas. es
el valor obtenido al sustituir las variables por números y desarrollar las operaciones. Una
misma expresión algebraica puede tener muchos valores numéricos diferentes, en función
del número que se asigne a cada una de las variables de la misma para un determinado
valor, es el número que se obtiene al sustituir en ésta por valor numérico dado y realizar
las operaciones indicadas.
Ejemplo:
3x2 Cuando x = –1 En primer lugar, sustituimos las letras por los valores que nos han
indicado, en este caso, se cambia la x por un –1
3(-1)2= Ahora, simplificamos esta expresión numérica según el orden de las operaciones
combinadas. Primero hacemos las potencias:
3( +1)= Y, multiplicando, obtenemos +3
-2x2 + 4x – 2 Cuando x = -2 En primer lugar, sustituimos las incógnitas (letras) por el valor
dado. -2 (-2)2 + 4 (-2) -2 = Ahora, resolvemos las operaciones indicadas.
Primero hacemos las potencias: -2 (+4) +4 (-2) -2 = En segundo lugar, las multiplicaciones
-8 -8 -2= Por último, las sumas y restas -18
Ejercicio:
2x + 3y x= 3, y = 5 4x – 2xy x= –1, y = 6 3 abc a = –1,b = 2, c = –3
2 (3) + 3 (5) 4 (–1) –2 (–1) (6) 3 (–1) (2) (–3)
6 + 15 –4 + 12 = 18
= 21 = 8
Multiplicación:
La multiplicación es una operación que tiene por objeto, dadas dos cantidades llamadas
multiplicando y multiplicador, hallar una tercera cantidad llamada producto, que sea
respecto del multiplicando, en valor absoluto y signo lo que el multiplicador es respecto a
la unidad positiva, El multiplicando y multiplicador son llamados factores del producto.
Para multiplicar expresiones algebraicas con uno o más términos usar la propiedad
distributiva de la multiplicación con respecto de la suma, las reglas de los exponentes
como también los productos notables.
Ejemplo:
Por ejemplo, si queremos multiplicar los número 3 y -2 debe entenderse que el signo del
número 3 = + 3 es positivo, es decir, se sobre entiende, realizando la multiplicación:
Ejercicio
5x2
(2x3
+ 3y3?
= 10 x5
+ 15x2
y3
–3m2
n (–5m + 7mn –9n)
= 15 m3
n –21m3
n2
–7x2
y2
(5x2
–9x) –12y2
)
= –35x4
y2
+ 63x3
y3
+84x2
y4
División
La división algebraica es una operación entre dos expresiones algebraicas llamadas
dividendo y divisor para obtener otra expresión llamado cociente por medio de un
algoritmo.
Ley de signos:
Es la misma que se aplica en la multiplicación. Para signos iguales, el resultado es positivo:
(+· += +) (-· - = +) Para signos diferentes, el resultado es negativo: (+· - = -) (-· + = -)
Clases de división: División exacta. Esta división se define cuando el residuo R es cero,
entonces: D
dq +R D R
– = ______ ___> _ = q + _
d
d d d
División inexacta. Esta división se define cuando el residuo R es diferente de cero. De la
identidad, dividiendo entre el divisor d, tenemos:
D
dq + R D R
_ = ______ ___> _ = q+ _
d
d d d
Ejercicios:
3X2
+2X–8 Entre X+2 2x2
–15x+25 Entre X–5 4x2
–15x+25 Entre X–5
–3x 2
–6x 3x –4 –2x2
+10x 2x–5 –4x2
+20 4X–5
/ –4x–8 / –5x+25 / –5x+25
4x+8 5x–25 15x–25
/ / / / / /
Producto notable
Los productos notables son aquellos productos de expresión algebraicas que se pueden
resolver con la ayuda de reglas generales y evitar que se hagan todas las operaciones de
desarrollo. En este sentido, debemos recordar que el concepto de producto, en el ámbito
matemático, refiere al resultado de una operación de multiplicación. Una expresión
algebraica que aparece con frecuencia y que puede someterse a una factorización a
simple vista, por lo tanto, se denomina producto notable. Un binomio cuadrado y el
producto de dos binomios conjugados son ejemplos de productos notables.
Binomio al cuadrado
Un ejemplo concreto de binomio al cuadrado es el siguiente: (m + n)² = m² + 2mn + n²
Dicho producto notable refiere que el cuadrado de la suma de m y n es igual al cuadrado
de m más dos veces m multiplicado por n más el cuadrado de n. Lo podemos comprobar
reemplazando los términos por valores numéricos:
(2 + 4)² = 2² + 2 x 2 x 4 + 4²
6²= 4 + 16 + 16
36 = 36
De esta manera, si nos encontramos el cuadrado de un binomio como en el ejemplo
anterior, podemos factorizarlo de manera inmediata, sin necesidad de recurrir a todos los
pasos, ya que se trata de un producto notable. El binomio al cuadrado también puede
consistir en la resta de las dos variables que se elevan al cuadrado. En tal caso, la
diferencia con respecto al ejemplo anterior es que para resolverlo se debe invertir el
primer signo más después del igual, de manera que quede la siguiente ecuación:
(m – n)² = m² – 2mn + n²
Ejercicios:
(5X+3) ( 5X–3) = (5x)2
–32
(3m–2n2
) (3m+2n2
)= (3m)2
– (2n2
)2
25x2
–9 9m2
– 4n4
(5x2
– 3y3
) (5x2
+ 3y3
) = 25 x4
– 9y6
Factorización por producto notable
Uno de los principales productos notables cuyos desarrollos se suelen identificar con la
expresión a factorizar si tiene tres términos es el producto de binomios con un término en
común, escrito para identificar como: x2 + (a +b ) x + ab = (x +a) (x + b)
con a y b números enteros Para factorizar el trinomio buscamos dos números que
sumados den el coeficiente de x y multiplicados el término independiente.
La factorización es el proceso de encontrar dos o más expresiones cuyo producto sea igual
a una expresión dada; es decir; consiste en transformar a dicho polinomio con el producto
de dos o más factores
Ejercicio:
y2
+ 8x + 16 = ( x + 4)2
x2
–81 = ( x + 9) ( x – 9)
x2
+ 4x = x ( x + 4)