SlideShare una empresa de Scribd logo
1 de 11
Cemento
El cemento es un conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas
y posteriormente molidas, que tiene la propiedad de endurecerse al contacto con el agua.
Hasta este punto la molienda entre estas rocas es llamada clinker, esta se convierte en
cemento cuando se le agrega yeso, este le da la propiedad a esta mezcla para que pueda
fraguar y endurecerse. Mezclado con agregados pétreos (grava y arena) y agua, crea una
mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo consistencia
pétrea, denominada hormigón (en España, parte de Suramérica y el Caribe hispano)
o concreto (en México y parte de Suramérica). Su uso está muy generalizado
en construcción e ingeniería civil.
Historia[editar]
Desde la antigüedad se emplearon pastas y morteros elaborados
con arcilla o greda, yeso y cal para unir mampuestos en las edificaciones. El cemento se
empezó a utilizar en laAntigua Grecia utilizando tobas volcánicas extraídas de la isla
de Santorini, los primeros cementos naturales. En el siglo I a. C. se empezó a utilizar en
la Antigua Roma, un cemento natural, que ha resistido la inmersión en agua marina por
milenios, los cementos Portland no duran más de los 60 años en esas condiciones; formaban
parte de su composición cenizas volcánicas obtenidas en Pozzuoli, cerca del Vesubio. La
bóveda del Panteón es un ejemplo de ello. En el siglo XVIII John Smeaton construye
la cimentaciónde un faro en el acantilado de Eddystone, en la costa Cornwall, empleando un
mortero de cal calcinada. El siglo XIX, Joseph Aspdin y James Parker patentaron en 1824
elPortland Cement, denominado así por su color gris verdoso oscuro similar a la piedra de
Portland. Isaac Johnson, en 1845, obtiene el prototipo del cemento moderno, con una mezcla
de caliza y arcilla calcinada a alta temperatura. En el siglo XX surge el auge de la industria del
cemento, debido a los experimentos de los químicos franceses Vicat y Le Chatelier y el alemán
Michaélis, que logran cemento de calidad homogénea; la invención del horno rotatorio para
calcinación y el molino tubular y los métodos de transportar hormigón fresco ideados por
Juergen Heinrich Magens que patenta entre 1903 y 1907.
Propiedades generales del cemento[editar]
 Buena resistencia al ataque químico.
 Resistencia a temperaturas elevadas. Refractario.
 Resistencia inicial elevada que disminuye con el tiempo. Conversión interna.
 Se ha de evitar el uso de armaduras. Con el tiempo aumenta la porosidad.
 Uso apropiado para bajas temperaturas por ser muy exotérmico.
Está prohibido el uso de cemento aluminoso en hormigón pretensado. La vida útil de las
estructuras de hormigón armado es más corta.
El fenómeno de conversión (aumento de la porosidad y caída de la resistencia) puede tardar
en aparecer en condiciones de temperatura y humedad baja.
El proyectista debe considerar como valor de cálculo, no la resistencia máxima sino, el valor
residual, después de la conversión, y no será mayor de 40 N/mm2.
Se recomienda relaciones A/C ≤ 0,4, alta cantidad de cemento y aumentar los recubrimientos
(debido al pH más bajo).
TIPOS
TIPO I, cemento común, para usos generales, es el que más se emplea para fines
estructurales cuando no se requieren de las propiedades especiales especificadas para
los otros cuatro tipos de cemento.
En las tablas 1.5 y 1.6 se dan diferentes características para los cementos Tipo I.
ESPECIFICACIONES
Norma
Boliviana
NB 011
Norma
Española
UNE 80-
301
Tipo I I
Categoría resistente 40 45
Composición
clinker % 95-100 95-99
componentes adicionales % 0 a 5 1 a 5
Requerimientos Químicos
Perdidas por calcinación, %
Máx.
5,0 5,0
Residuo insoluble, % Máx. 3,0 5,0
Trióxido de azufre, % Máx. 3,5 4,5
Oxido de magnesio, % Máx. 6,0 -
Requerimientos Físicos
Resistencia a la
compresión, Mpa
Mínima a los :3 días 17,0 -
7 días 25,0 30,0
28 días 40,0 45,0
Fraguado Vicat
Mínimo inicial, Minutos 45 60
Máximo final, Horas 10 12
Superficie especifica mínima,
cm2/g
2600 -
Expansión
Autoclave, % máximo 0,8 -
Le Chatelier, mm máx. 10 10
TABLA 1.6 ESPECIFICACIONES QUÍMICAS PARA LOS CEMENTOS TIPO I
CARACTERÍSTICAS QUÍMICAS
(NB 061)
TIPO DE CEMENTO
I IP IF P
Perdida por calcinación (% máx.) 5 7 7 8
Residuo insoluble (% máx.) 3 - 5 -
Trióxido de azufre (S03) (% máx.) 3,5 4 4 4
Oxido de magnesio (MgO) (% máx.)6 6 6 6
Puzolanicidad 8 o 15 días - - - > 0
TIPO II, cemento modificado para usos generales y se emplea cuando se prevé una
exposición
moderada al ataque por sulfatos o cuando se requiere un moderado calor de hidratació
n. Estas
características se logran al imponer limitaciones en el contenido de C3A y C3S del cem
ento. El cemento tipo II adquiere resistencia con más lentitud que el tipo I; pero a final de
cuentas, alcanza la misma resistencia. Este tipo de cemento se usa en el hormigón expuesto al
agua de mar.
TIPO III, cemento de alta resistencia inicial, recomendable cuando se necesita una re
sistencia temprana en una situación particular de construcción. Este cemento se obtiene por
un molido más fino y un porcentaje más elevado de C3A y C3S. El hormigón tiene una
resistencia a la compresión a los 3 días aproximadamente igual a la resistencia a la
compresión a los 7 días para los tipos I y II y una resistencia a la compresión a los 7 días casi
igual a la resistencia a la compresión a los 28 días para los tipos I y II. Sin embargo, la
resistencia última es más o menos la misma o menor que la de los tipos I y II.
Dado que el cemento tipo III tiene un gran desprendimiento de calor, no se debe usar en
hormigones
masivos. Con un 15% de C3A presenta una mala resistencia a los sulfatos. El contenido
de C3A
puede limitarse al 8% para obtener una resistencia moderada a los sulfatos o a 5% cua
ndo se requiere alta resistencia.
TIPO IV. Cemento de bajo calor de hidratación. Los porcentajes de C2S y C4AF son
relativamente altos; El bajo calor de hidratación en el cemento tipo IV se logra limitando los
compuestos que más
influyen en la formación de calor por hidratación, o sea, C3A y C3S. Dado que estos co
mpuestos también aportan la resistencia inicial de la mezcla de cemento, al limitarlos se tiene
una mezcla que gana resistencia con lentitud. Este cemento se usa para estructuras de
hormigón masivo, con bajas relaciones superficie/volumen. Requiere mucho más tiempo de
curado que los otros tipos.
TIPO V. Cemento resistente a los sulfatos. La resistencia al sulfato se logra minimiza
ndo el contenido de C3A (≤5%), pues este compuesto es el más susceptible al ataque por
sulfatos.
Este tipo se usa en las estructuras expuestas a los sulfatos alcalinos del suelo o del agu
a, a los sulfatos de las aguas freáticas y para exposición al agua de mar.
Las resistencias relativas de los hormigones preparados con cada uno de los cinco tipos de
cemento se
comparan en la tabla 1.9, a cuatro edades diferentes; en cada edad, se han normalizado
los valores de resistencia para comparación con el hormigón de cemento tipo I.
CARACTERÍSTICAS DE LOS CEMENTOS PÓRTLAND*
Tipo* Descripción
Características
Opcionales
I Uso General 1, 5
II Uso general; calor de hidratación
moderado y resistencia moderada a
los sulfatos
1, 4, 5
III Alta resistencia inicial 1, 2, 3, 5
IV Bajo calor de hidratación 5
V Alta resistencia a los sulfatos 5, 6
Características Opcionales
1. Aire incluido, IA, IIA, IIIA.
2. Resistencia moderada a los sulfatos: C3A máximo, 8%.
3. Alta resistencia a los sulfatos: C3A máximo, 5%.
4. Calor de hidratación moderado: calor máximo de 290 kJ/kg
(70cal/g) a los 7
días, o la suma de C3S y C3A, máximo 58%.
5. Álcali bajo: máximo de 0.60%, expresado
como Na2O equivalente.
6. El limite de resistencia Alternativa de sulfatos esta basado en
el ensayo de
expansión de barras de mortero.
(*) Para cementos especificados en la ASTM C 150.
COMPOSICIÓN TÍPICA DE LOS COMPUESTOS DE LOS
CEMENTOS PÓRTLAND
Tipo de
cemento
Compuesto %
Perdida
por
Calcinación
%
CaO Libre %
C3SC2SC3A C4AFMgO SO3
I 55 19 10 7 2.8 2.9 1 1
II 51 24 6 11 2.9 2.5 0.8 1
III 57 19 10 7 3 3.1 1 1.6
IV 28 49 4 12 1.8 1.9 0.9 0.8
V 38 43 4 9 1.9 1.8 0.9 0.8
RESISTENCIAS DE LOS CEMENTOS TIPO I, II, III, IV Y V
En el mundo existen una
gran variedad de tipos
de cementos
-8 tipos de cemento
Pórtland, ASTM C150: I,
IA, II, IIA, III, IIIA, IV, V.
La norma ASTM especifica:
-6 tipos de
cemento
hidráulico
mezclado,
ASTM C595:
IS, IP, P,
I(PM), I(SM),
S.
Tipo IS.-
Cemento
Pórtland
con escoria
de alto
horno
28 días 3 meses
Tipo IP.- Cemento
Pórtland con adicion
Puzolanica.
Tipo P.-
Cemento
Pórtland con
puzolana
para usos
cuando no se
requiere alta
resistencia
inicial. Tipo I
(PM).-
Cemento
Pórtland con
Puzolana
modificado.
Tipo I
(SM).-
Cemento
portland
con
escoria,
modificado.
100 100
Tipo S.- Cemento con
escoria para la
combinacion con
cemento Portland en la
fabricaciónde concretoy
en combinacion con cal
hidratada en la
fabricación del mortero
de albañilería.
-3 tipos de
cemento para
mampostería,
ASTM C91: N,
M, S.
96 100
En el mundo existen una
gran variedad de tipos
de cementos
La norma
ASTM
especifica:
110 100
-8 tipos de cemento
Pórtland, ASTM C150: I,
IA, II, IIA, III, IIIA, IV, V.
-6 tipos de
cemento
hidráulico
mezclado,
ASTM C595:
IS, IP, P,
I(PM), I(SM),
S.
Tipo IS.-
Cemento
Pórtland
con escoria
de alto
horno
62 100
Tipo IP.- Cemento
Pórtland con adicion
Puzolanica.
Tipo P.-
Cemento
Pórtland con
puzolana
para usos
cuando no se
requiere alta
resistencia
inicial. Tipo I
(PM).-
Cemento
Pórtland con
Puzolana
modificado.
Tipo I
(SM).-
Cemento
portland
con
escoria,
modificado.
85 100
CON INCLUSIÓN DE AIRE, ASTM C150: TIPO IA, IIA Y IIIA,.. Estos tipos tienen una
composición semejante a las de los tipos I, II y III, excepto que durante la fabricación, se muele
junto con estos últimos un agente inclusor de aire. Este constituye un mal método para
obtener aire incluido, ya que
no se puede hacer variar la dosis del agente para compensar otros factores que influya
n en el contenido de aire en el hormigón.
Estos cementos se usan para la producción de hormigón expuesto a heladas severas.
CEMENTOS MEZCLADOS ASTM C595: TIPO IS, IP, P, I(PM), I(SM), S. Estos cementos
consisten en mezclas, que se muelen juntas, de clinker y ceniza muy fina, puzolana natural o
calcinada, o bien,
escoria, dentro de los límites en porcentaje especificados de los componentes. También
pueden consistir en mezclas de cal de escoria y cal de puzolana. En general, pero no
necesariamente, estos cementos dan lugar a una resistencia mayor a la reacción álcali-
agregado, al ataque por sulfato y al ataque del agua de
mar, pero requieren un curado de mayor duración y tienden a ser menos resistentes a
los daños por la sal para deshelar y descongelar. Dan lugar a una menor liberación de calor y
es posible que ganen resistencia con mayor lentitud, en especial a bajas temperaturas.
Cementos Puzolánicos1.-
Endurecen más lentamente, en especial en ambiente frío, yrequieren
en general más agua de amasado que el Pórtland normal; pero a largo plazo llegan asuperar
lasresistencias de este, confiere al hormigón una elevada densidad,disminuyendo su porosi
dad yhaciéndolo mas compacto, lo que aumenta su resistencia química. Todo ello lo
hacerecomendable para gran numero de obras(canales, pavimentos. obras en aguas muy p
uras o ambientes medianamente agresivos, hormigonados bajo agua, obras marítimas, etc.).
Cemento de Alto Horno.- Se obtiene por enfriamiento brusco en agua de laganga fundida
procedente de procesos siderúrgicos. Dado su contenido en calcombinada, la escoria no es un
asimple puzolana, sino que tiene de por si propiedadeshidráulicas, es decir, que es un verdad
erocemento, fragua y endurece muylentamente, por lo que debe ser acelerada por la presenc
ia de algo que libere cal, como el clinker de Pórtland.
Estos cementos presentan poca retracción y un débil calor de hidratación, por lo quepueden s
erutilizados sin riesgo en grandes macizos. A cambio y por la misma razón,son muy sensibl
es alas bajas temperaturas, que retardan apreciablemente suendurecimiento, por lo que no
deben utilizarse por debajo de los + 5 ºC.
PARA MAMPOSTERÍA, ASTM C91, TIPO N, S Y M. Son cementos de baja resistencia
utilizados exclusivamente en albañilería. El tipo M tiene la resistencia más alta, alcanzando
20MPa. Una característica de este tipo de cemento es su mayor plasticidad. Este tipo se usa
también pararevoque; asimismo, suele contener una piedra caliza finamente molida junt
o con el clinker y un plastificante inclusor de aire. Una marca que se encuentra en el mercado
es CALCEMIT.
CEMENTO BLANCO. Este tipo cumple con los requisitos del tipo I o del tipo III, o los deambos.
En él se utilizan materias primas de bajo hierro y bajo manganeso y un apagadoespecial par
a producir un color blanco puro.
API especial 10 para pozos petroleros. Este tipo consta de varias clases y estádiseñado
para satisfacer las condiciones de presión y temperatura elevadas que seencuentran en la i
nyección de grout en los pozos petroleros. Este tipo produce una pastaaguada de baja visco
sidad y fraguado
lento, tan líquida como es posible para facilitar elbombeo a presión en los pozos profundos
. Es de
bajo contenido de C3A, de molidogrueso y no puede contener alguna sustancia para ayudar
a la pulverización.
TIPOS EXPANSIVOS. Estos tipos se usan para inhibir la contracción del hormigón yminimi
zar el agrietamiento. Tienen baja resistencia al sulfato.
CEMENTOS DE ALTA ALÚMINA. Este tipo contiene aluminatos de calcio, en lugarde silicat
os decalcio. Tiene una elevada resistencia temprana (a las 24hrs) y propiedades refracta
rias. Puedeexperimentar un 40% de regresión en la resistenciadespués de secar durante
un periodo de 6 meses, si el hormigón no se mantiene frío durante las primeras 24 h después
de mezclar y vaciar.
. COMPOSICIÓN QUÍMICA
Análisis químico.-
La tabla 1.1 muestra los porcentajes típicos en que se presentan los compuestos en el cemento
y las abreviaturas con las que suelen ser denominados:
TABLA 1.1 PORCENTAJES TÍPICOS DE INTERVENCIÓN DE LOS ÓXIDOS
Oxido
componente
Porcentaje
Típico
Abreviatura
Cal combinada CaO 62.5% C
Sílice SiO2 21% S
Alúmina Al2O3 6.5% A
Hierro Fe2O3 2.5% F
Cal Libre CaO 0%
Azufre SO3 2%
Magnesio MgO 2%
Álcalis Na2O y K2O 0.5%
Perdida al Fuego P.F. 2%
Residuo insoluble R.I. 1%
Los cuatro primeros componentes nombrados en la tabla 1.1 no se encuentran libremen
te en el
cemento, si no combinados formando los componentes potenciales, conocidos como “co
mpuestos
Boguea”
Los compuestos Bogue, sus fórmulas químicas y abreviaturas simbólicas son los siguientes:
Silicato tricálcico 3CaO · SiO2 = C3S
Silicato dicálcico 2CaO · SiO2 = C2S Aluminato tricálcico 3CaO · Al2O3 = C3A
Ferroaluminato tetracálcico 4CaO · Al2O3 · Fe2O3 = C4AF
Estos compuestos o “Fases”, como se les llama, no son compuestos verdaderos en el se
ntido
químico; sin embargo, las proporciones calculadas de estos compuestos proporcionan inf
ormación
valiosa en la predicción de las propiedades del cemento. Las formulas utilizadas para ca
lcular los compuestos Bogue se pueden encontrar en la ASTM C150.
2. EFECTO DE LOS COMPONENTES
Cada uno de los cuatro compuestos principales del cemento Pórtland, así como los com
puestos
secundarios, contribuye en el comportamiento del cemento, cuando pasa del estado plás
tico al
endurecido después de la hidratación. El conocimiento del comportamiento de cada uno
de los compuestos principales, durante la hidratación, permite ajustar las cantidades de cada
uno durante la fabricación, para producir las propiedades deseadas en el cemento.
El Silicato Tricálcico, C3S, es el compuesto activo por excelencia del clinker, es el que produce
la
alta resistencia inicial del cemento Pórtland hidratado. Pasa del fraguado inicial al final
en unas
cuantas horas. El C3S reacciona con el agua desprendiendo una gran cantidad de calor
(calor de
hidratación). La rapidez de endurecimiento de la pasta de cemento está en relación dire
cta con el calor de hidratación; cuanto más rápido sea el fraguado, mayor será la exotermia.
El C3S hidratado
alcanza gran parte de su resistencia en siete días. Debe limitarse el contenido de S3C e
n los cementos para obras de grandes masas de hormigón, no debiendo rebasarse un 35%,
con objeto de evitar valores elevados del calor de hidratación.
El Silicato Dicálcico, C2S, requiere algunos días para fraguar. Es el causante principal de
la
resistencia posterior de la pasta de cemento Pórtland. Debido a que su reacción de hidr
atación
avanza con lentitud, genera un bajo calor de hidratación. Este compuesto en el cemento
Pórtland
desarrolla menores resistencias que el C3S en las primeras edades; sin embargo,
aumenta gradualmente, alcanzando a unos tres meses una resistencia similar a la del C3S. Los
cementos con alto contenido en silicato dicálcico son más resistentes a los sulfatos.
Aluminato Tricálcico, C3A, presenta fraguado instantáneo al ser hidratado y gran retracción.
Es el causante primario del fraguado inicial del cemento Pórtland y desprende grandes
cantidades de calor
durante la hidratación. El yeso, agregado al cemento durante el proceso de fabricación,
en la
trituración o en la molienda, se combina con el C3A para controlar el tiempo de fragua
do, por su acción al retardar la hidratación de este. El compuesto C3A muestra poco aumento
en la resistencia
después de un día. Aunque el C3A hidratado, por si solo, produce una resistencia muy
baja, su
presencia en el cemento Pórtland hidratado produce otros efectos importantes. Por eje
mplo un
aumento en la cantidad de C3A en el cemento Pórtland ocasiona un fraguado más rápid
o, pero
conduce a propiedades indeseables del hormigón, como una mala resistencia a los sulfat
os y un mayor cambio de volumen. Su estabilidad química es buena frente a ciertas aguas
agresivas (de mar,
por ejemplo) y muy débil frente a sulfatos. Con objeto de frenar la rápida reacción del
aluminato
tricálcico con el agua y regular el tiempo de fraguado del cemento, se añade al clinker
un sulfato (piedra de yeso).
El Ferroaluminato Tetracálcico, C4AF, El uso de más óxido de hierro en la alimentación del
horno ayuda a disminuir el C3A, pero lleva a la formación de C4AF, un producto que actúa
como relleno con poca o ninguna resistencia. No obstante, es necesario como fundente para
bajar la temperatura de
formación del clinker. Es semejante al C3A, porque se hidrata con rapidez y sólo desarr
olla baja resistencia. No obstante, al contrario del C3A, no muestra fraguado instantáneo. Su
resistencia a las aguas selenitosas y agresivos en general es la mas alta de todos los
constituyentes. Su color oscuro le hace prohibitivo para los cementos blancos por lo que en
este caso se utilizan otros fundentes en la fabricación.
La Cal libre, CaO, No debe sobrepasar el 2%, ya que en cantidades excesivas puede dar
por
resultado una calcinación insuficiente del clinker en el horno, esto puede provocar expa
nsión y desintegración del hormigón. Inversamente, cantidades muy bajas de cal libre
reducen la eficiencia en el consumo de combustible y producen un clinker duro para moler
que reacciona con mayor lentitud.
El Oxido de Magnesio queda limitado por las especificaciones al 6%, ya que conduce a
una expansión de volumen variable en el hormigón, debido a la hidratación retardada, en
especial en un medio ambiente húmedo.
Los Álcalis (Na2O y K2O) son componentes secundarios importantes, ya que pueden ca
usar
deterioro expansivo cuando se usan tipos reactivos de agregados silíceos para el hormig
ón. Se especifica cemento de bajo álcali en zonas en donde se encuentran estos agregados. El
cemento de bajo álcali contiene no más del 0,6% de álcalis totales. Sin embargo, debe
controlarse el porcentaje
de álcalis totales en el hormigón, ya que el álcali puede entrar a la mezcla de ese hor
migón proveniente de ingredientes que no son el cemento, como el agua, los agregados y los
aditivos.
Trioxido de azufre, SO3, el azufre proviene de la adición de piedra de yeso que se hace al
clinker durante la molienda para regular su fraguado, pudiendo también provenir del
combustible empleado en el homo. Un exceso de SO3 puede conducir al fenómeno de falso
fraguado, por lo que conviene limitarlo a no mas del 4%.
Perdida al fuego, cuando su valor es apreciable, la perdida al fuego proviene de la pres
encia de
adiciones de naturaleza caliza o similar, lo cual no suele ser conveniente. Si el cemento
ha experimentado un prolongado almacenamiento, la perdida al fuego puede provenir del
vapor de agua
o del CO2 presentes en el conglomerante, siendo entonces expresiva de una meteorizac
ión del cemento.
Residuo insoluble, proviene de la presencia de adiciones de naturaleza silicea. No debe
superar el 5% para el Pórtland I.

Más contenido relacionado

La actualidad más candente (20)

El cemento y sus tipos de cementos
El cemento y sus tipos de cementosEl cemento y sus tipos de cementos
El cemento y sus tipos de cementos
 
El cemento tipós y usos
El cemento tipós y usosEl cemento tipós y usos
El cemento tipós y usos
 
Cementos
CementosCementos
Cementos
 
El cemento
El cementoEl cemento
El cemento
 
Cementos y concreto
Cementos y concretoCementos y concreto
Cementos y concreto
 
Cemento y sus_tipos
Cemento y sus_tiposCemento y sus_tipos
Cemento y sus_tipos
 
El cemento
El cementoEl cemento
El cemento
 
El cemento
El cementoEl cemento
El cemento
 
Cemento
CementoCemento
Cemento
 
Cemento contru1
Cemento contru1Cemento contru1
Cemento contru1
 
Cemento exposición
Cemento exposiciónCemento exposición
Cemento exposición
 
Exposicion de cementos
Exposicion de cementosExposicion de cementos
Exposicion de cementos
 
Análisis del Ciclo de vida del cemento puzolánico
Análisis del Ciclo de vida del cemento puzolánicoAnálisis del Ciclo de vida del cemento puzolánico
Análisis del Ciclo de vida del cemento puzolánico
 
Cemento pórtland tipo iii
Cemento pórtland tipo iiiCemento pórtland tipo iii
Cemento pórtland tipo iii
 
Tipos de cemento y sus usos
Tipos de cemento y sus usosTipos de cemento y sus usos
Tipos de cemento y sus usos
 
Puzolanas
PuzolanasPuzolanas
Puzolanas
 
Historia del cemento
Historia del cementoHistoria del cemento
Historia del cemento
 
Cementos Portland
 Cementos Portland Cementos Portland
Cementos Portland
 
Monografia cemento gladyz cs
Monografia cemento gladyz csMonografia cemento gladyz cs
Monografia cemento gladyz cs
 
El cemento
El cemento El cemento
El cemento
 

Similar a Cemento: tipos y especificaciones

Similar a Cemento: tipos y especificaciones (20)

Para uso general y especifica- mente cuando se desea moderada resistencia a l...
Para uso general y especifica- mente cuando se desea moderada resistencia a l...Para uso general y especifica- mente cuando se desea moderada resistencia a l...
Para uso general y especifica- mente cuando se desea moderada resistencia a l...
 
Cemento portland
Cemento portlandCemento portland
Cemento portland
 
Cemento
CementoCemento
Cemento
 
Fundamentos básicos del Cemento Portland
Fundamentos básicos del Cemento PortlandFundamentos básicos del Cemento Portland
Fundamentos básicos del Cemento Portland
 
Tecnología de los Materiales-Materiales de construcción
Tecnología de los Materiales-Materiales de construcciónTecnología de los Materiales-Materiales de construcción
Tecnología de los Materiales-Materiales de construcción
 
Presentacion materiales pawr poit
Presentacion materiales pawr poitPresentacion materiales pawr poit
Presentacion materiales pawr poit
 
Presentacion materiales pawr poit
Presentacion materiales pawr poitPresentacion materiales pawr poit
Presentacion materiales pawr poit
 
Presentacion materiales pawr poit
Presentacion materiales pawr poitPresentacion materiales pawr poit
Presentacion materiales pawr poit
 
Clase 5_.pptx
Clase 5_.pptxClase 5_.pptx
Clase 5_.pptx
 
Concreto
ConcretoConcreto
Concreto
 
Cemento
CementoCemento
Cemento
 
Cemento exposicion ing angela
Cemento exposicion ing angelaCemento exposicion ing angela
Cemento exposicion ing angela
 
01_CONCRETO_Gral.pdf
01_CONCRETO_Gral.pdf01_CONCRETO_Gral.pdf
01_CONCRETO_Gral.pdf
 
El Cemento
El CementoEl Cemento
El Cemento
 
Cemento.
Cemento.Cemento.
Cemento.
 
Cemento ASTM C150-07.pptx
Cemento ASTM C150-07.pptxCemento ASTM C150-07.pptx
Cemento ASTM C150-07.pptx
 
1. Presentación-CONCRETO-2022-II.pdf
1. Presentación-CONCRETO-2022-II.pdf1. Presentación-CONCRETO-2022-II.pdf
1. Presentación-CONCRETO-2022-II.pdf
 
Tecnologia del concreto
Tecnologia del concreto Tecnologia del concreto
Tecnologia del concreto
 
Concreto
ConcretoConcreto
Concreto
 
El cemento
El cementoEl cemento
El cemento
 

Último

Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasAhmedMontaoSnchez1
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOCamiloSaavedra30
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónAlexisHernandez885688
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptxluiscisnerosayala23
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdfRicardoRomeroUrbano
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 

Último (20)

Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnas
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdfMATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
presentación manipulación manual de cargas sunafil
presentación manipulación manual de cargas sunafilpresentación manipulación manual de cargas sunafil
presentación manipulación manual de cargas sunafil
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Linea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptxLinea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptx
 

Cemento: tipos y especificaciones

  • 1. Cemento El cemento es un conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas y posteriormente molidas, que tiene la propiedad de endurecerse al contacto con el agua. Hasta este punto la molienda entre estas rocas es llamada clinker, esta se convierte en cemento cuando se le agrega yeso, este le da la propiedad a esta mezcla para que pueda fraguar y endurecerse. Mezclado con agregados pétreos (grava y arena) y agua, crea una mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo consistencia pétrea, denominada hormigón (en España, parte de Suramérica y el Caribe hispano) o concreto (en México y parte de Suramérica). Su uso está muy generalizado en construcción e ingeniería civil. Historia[editar] Desde la antigüedad se emplearon pastas y morteros elaborados con arcilla o greda, yeso y cal para unir mampuestos en las edificaciones. El cemento se empezó a utilizar en laAntigua Grecia utilizando tobas volcánicas extraídas de la isla de Santorini, los primeros cementos naturales. En el siglo I a. C. se empezó a utilizar en la Antigua Roma, un cemento natural, que ha resistido la inmersión en agua marina por milenios, los cementos Portland no duran más de los 60 años en esas condiciones; formaban parte de su composición cenizas volcánicas obtenidas en Pozzuoli, cerca del Vesubio. La bóveda del Panteón es un ejemplo de ello. En el siglo XVIII John Smeaton construye la cimentaciónde un faro en el acantilado de Eddystone, en la costa Cornwall, empleando un mortero de cal calcinada. El siglo XIX, Joseph Aspdin y James Parker patentaron en 1824 elPortland Cement, denominado así por su color gris verdoso oscuro similar a la piedra de Portland. Isaac Johnson, en 1845, obtiene el prototipo del cemento moderno, con una mezcla de caliza y arcilla calcinada a alta temperatura. En el siglo XX surge el auge de la industria del cemento, debido a los experimentos de los químicos franceses Vicat y Le Chatelier y el alemán Michaélis, que logran cemento de calidad homogénea; la invención del horno rotatorio para calcinación y el molino tubular y los métodos de transportar hormigón fresco ideados por Juergen Heinrich Magens que patenta entre 1903 y 1907. Propiedades generales del cemento[editar]  Buena resistencia al ataque químico.  Resistencia a temperaturas elevadas. Refractario.  Resistencia inicial elevada que disminuye con el tiempo. Conversión interna.  Se ha de evitar el uso de armaduras. Con el tiempo aumenta la porosidad.  Uso apropiado para bajas temperaturas por ser muy exotérmico. Está prohibido el uso de cemento aluminoso en hormigón pretensado. La vida útil de las estructuras de hormigón armado es más corta.
  • 2. El fenómeno de conversión (aumento de la porosidad y caída de la resistencia) puede tardar en aparecer en condiciones de temperatura y humedad baja. El proyectista debe considerar como valor de cálculo, no la resistencia máxima sino, el valor residual, después de la conversión, y no será mayor de 40 N/mm2. Se recomienda relaciones A/C ≤ 0,4, alta cantidad de cemento y aumentar los recubrimientos (debido al pH más bajo). TIPOS TIPO I, cemento común, para usos generales, es el que más se emplea para fines estructurales cuando no se requieren de las propiedades especiales especificadas para los otros cuatro tipos de cemento. En las tablas 1.5 y 1.6 se dan diferentes características para los cementos Tipo I. ESPECIFICACIONES Norma Boliviana NB 011 Norma Española UNE 80- 301 Tipo I I Categoría resistente 40 45 Composición clinker % 95-100 95-99 componentes adicionales % 0 a 5 1 a 5 Requerimientos Químicos Perdidas por calcinación, % Máx. 5,0 5,0 Residuo insoluble, % Máx. 3,0 5,0 Trióxido de azufre, % Máx. 3,5 4,5 Oxido de magnesio, % Máx. 6,0 - Requerimientos Físicos Resistencia a la compresión, Mpa Mínima a los :3 días 17,0 - 7 días 25,0 30,0 28 días 40,0 45,0 Fraguado Vicat Mínimo inicial, Minutos 45 60 Máximo final, Horas 10 12 Superficie especifica mínima, cm2/g 2600 - Expansión Autoclave, % máximo 0,8 - Le Chatelier, mm máx. 10 10
  • 3. TABLA 1.6 ESPECIFICACIONES QUÍMICAS PARA LOS CEMENTOS TIPO I CARACTERÍSTICAS QUÍMICAS (NB 061) TIPO DE CEMENTO I IP IF P Perdida por calcinación (% máx.) 5 7 7 8 Residuo insoluble (% máx.) 3 - 5 - Trióxido de azufre (S03) (% máx.) 3,5 4 4 4 Oxido de magnesio (MgO) (% máx.)6 6 6 6 Puzolanicidad 8 o 15 días - - - > 0 TIPO II, cemento modificado para usos generales y se emplea cuando se prevé una exposición moderada al ataque por sulfatos o cuando se requiere un moderado calor de hidratació n. Estas características se logran al imponer limitaciones en el contenido de C3A y C3S del cem ento. El cemento tipo II adquiere resistencia con más lentitud que el tipo I; pero a final de cuentas, alcanza la misma resistencia. Este tipo de cemento se usa en el hormigón expuesto al agua de mar. TIPO III, cemento de alta resistencia inicial, recomendable cuando se necesita una re sistencia temprana en una situación particular de construcción. Este cemento se obtiene por un molido más fino y un porcentaje más elevado de C3A y C3S. El hormigón tiene una resistencia a la compresión a los 3 días aproximadamente igual a la resistencia a la compresión a los 7 días para los tipos I y II y una resistencia a la compresión a los 7 días casi igual a la resistencia a la compresión a los 28 días para los tipos I y II. Sin embargo, la resistencia última es más o menos la misma o menor que la de los tipos I y II. Dado que el cemento tipo III tiene un gran desprendimiento de calor, no se debe usar en hormigones masivos. Con un 15% de C3A presenta una mala resistencia a los sulfatos. El contenido de C3A puede limitarse al 8% para obtener una resistencia moderada a los sulfatos o a 5% cua ndo se requiere alta resistencia. TIPO IV. Cemento de bajo calor de hidratación. Los porcentajes de C2S y C4AF son relativamente altos; El bajo calor de hidratación en el cemento tipo IV se logra limitando los compuestos que más influyen en la formación de calor por hidratación, o sea, C3A y C3S. Dado que estos co mpuestos también aportan la resistencia inicial de la mezcla de cemento, al limitarlos se tiene una mezcla que gana resistencia con lentitud. Este cemento se usa para estructuras de hormigón masivo, con bajas relaciones superficie/volumen. Requiere mucho más tiempo de curado que los otros tipos.
  • 4. TIPO V. Cemento resistente a los sulfatos. La resistencia al sulfato se logra minimiza ndo el contenido de C3A (≤5%), pues este compuesto es el más susceptible al ataque por sulfatos. Este tipo se usa en las estructuras expuestas a los sulfatos alcalinos del suelo o del agu a, a los sulfatos de las aguas freáticas y para exposición al agua de mar. Las resistencias relativas de los hormigones preparados con cada uno de los cinco tipos de cemento se comparan en la tabla 1.9, a cuatro edades diferentes; en cada edad, se han normalizado los valores de resistencia para comparación con el hormigón de cemento tipo I. CARACTERÍSTICAS DE LOS CEMENTOS PÓRTLAND* Tipo* Descripción Características Opcionales I Uso General 1, 5 II Uso general; calor de hidratación moderado y resistencia moderada a los sulfatos 1, 4, 5 III Alta resistencia inicial 1, 2, 3, 5 IV Bajo calor de hidratación 5 V Alta resistencia a los sulfatos 5, 6 Características Opcionales 1. Aire incluido, IA, IIA, IIIA. 2. Resistencia moderada a los sulfatos: C3A máximo, 8%. 3. Alta resistencia a los sulfatos: C3A máximo, 5%. 4. Calor de hidratación moderado: calor máximo de 290 kJ/kg (70cal/g) a los 7 días, o la suma de C3S y C3A, máximo 58%. 5. Álcali bajo: máximo de 0.60%, expresado como Na2O equivalente. 6. El limite de resistencia Alternativa de sulfatos esta basado en el ensayo de expansión de barras de mortero. (*) Para cementos especificados en la ASTM C 150. COMPOSICIÓN TÍPICA DE LOS COMPUESTOS DE LOS CEMENTOS PÓRTLAND Tipo de cemento Compuesto % Perdida por Calcinación % CaO Libre % C3SC2SC3A C4AFMgO SO3 I 55 19 10 7 2.8 2.9 1 1
  • 5. II 51 24 6 11 2.9 2.5 0.8 1 III 57 19 10 7 3 3.1 1 1.6 IV 28 49 4 12 1.8 1.9 0.9 0.8 V 38 43 4 9 1.9 1.8 0.9 0.8 RESISTENCIAS DE LOS CEMENTOS TIPO I, II, III, IV Y V En el mundo existen una gran variedad de tipos de cementos -8 tipos de cemento Pórtland, ASTM C150: I, IA, II, IIA, III, IIIA, IV, V. La norma ASTM especifica: -6 tipos de cemento hidráulico mezclado, ASTM C595: IS, IP, P, I(PM), I(SM), S. Tipo IS.- Cemento Pórtland con escoria de alto horno 28 días 3 meses Tipo IP.- Cemento Pórtland con adicion Puzolanica. Tipo P.- Cemento Pórtland con puzolana para usos cuando no se requiere alta resistencia inicial. Tipo I (PM).- Cemento Pórtland con Puzolana modificado. Tipo I (SM).- Cemento portland con escoria, modificado. 100 100 Tipo S.- Cemento con escoria para la combinacion con cemento Portland en la fabricaciónde concretoy en combinacion con cal hidratada en la fabricación del mortero de albañilería. -3 tipos de cemento para mampostería, ASTM C91: N, M, S. 96 100
  • 6. En el mundo existen una gran variedad de tipos de cementos La norma ASTM especifica: 110 100 -8 tipos de cemento Pórtland, ASTM C150: I, IA, II, IIA, III, IIIA, IV, V. -6 tipos de cemento hidráulico mezclado, ASTM C595: IS, IP, P, I(PM), I(SM), S. Tipo IS.- Cemento Pórtland con escoria de alto horno 62 100 Tipo IP.- Cemento Pórtland con adicion Puzolanica. Tipo P.- Cemento Pórtland con puzolana para usos cuando no se requiere alta resistencia inicial. Tipo I (PM).- Cemento Pórtland con Puzolana modificado. Tipo I (SM).- Cemento portland con escoria, modificado. 85 100 CON INCLUSIÓN DE AIRE, ASTM C150: TIPO IA, IIA Y IIIA,.. Estos tipos tienen una composición semejante a las de los tipos I, II y III, excepto que durante la fabricación, se muele junto con estos últimos un agente inclusor de aire. Este constituye un mal método para obtener aire incluido, ya que no se puede hacer variar la dosis del agente para compensar otros factores que influya n en el contenido de aire en el hormigón. Estos cementos se usan para la producción de hormigón expuesto a heladas severas. CEMENTOS MEZCLADOS ASTM C595: TIPO IS, IP, P, I(PM), I(SM), S. Estos cementos consisten en mezclas, que se muelen juntas, de clinker y ceniza muy fina, puzolana natural o calcinada, o bien, escoria, dentro de los límites en porcentaje especificados de los componentes. También pueden consistir en mezclas de cal de escoria y cal de puzolana. En general, pero no necesariamente, estos cementos dan lugar a una resistencia mayor a la reacción álcali- agregado, al ataque por sulfato y al ataque del agua de mar, pero requieren un curado de mayor duración y tienden a ser menos resistentes a los daños por la sal para deshelar y descongelar. Dan lugar a una menor liberación de calor y es posible que ganen resistencia con mayor lentitud, en especial a bajas temperaturas. Cementos Puzolánicos1.- Endurecen más lentamente, en especial en ambiente frío, yrequieren
  • 7. en general más agua de amasado que el Pórtland normal; pero a largo plazo llegan asuperar lasresistencias de este, confiere al hormigón una elevada densidad,disminuyendo su porosi dad yhaciéndolo mas compacto, lo que aumenta su resistencia química. Todo ello lo hacerecomendable para gran numero de obras(canales, pavimentos. obras en aguas muy p uras o ambientes medianamente agresivos, hormigonados bajo agua, obras marítimas, etc.). Cemento de Alto Horno.- Se obtiene por enfriamiento brusco en agua de laganga fundida procedente de procesos siderúrgicos. Dado su contenido en calcombinada, la escoria no es un asimple puzolana, sino que tiene de por si propiedadeshidráulicas, es decir, que es un verdad erocemento, fragua y endurece muylentamente, por lo que debe ser acelerada por la presenc ia de algo que libere cal, como el clinker de Pórtland. Estos cementos presentan poca retracción y un débil calor de hidratación, por lo quepueden s erutilizados sin riesgo en grandes macizos. A cambio y por la misma razón,son muy sensibl es alas bajas temperaturas, que retardan apreciablemente suendurecimiento, por lo que no deben utilizarse por debajo de los + 5 ºC. PARA MAMPOSTERÍA, ASTM C91, TIPO N, S Y M. Son cementos de baja resistencia utilizados exclusivamente en albañilería. El tipo M tiene la resistencia más alta, alcanzando 20MPa. Una característica de este tipo de cemento es su mayor plasticidad. Este tipo se usa también pararevoque; asimismo, suele contener una piedra caliza finamente molida junt o con el clinker y un plastificante inclusor de aire. Una marca que se encuentra en el mercado es CALCEMIT. CEMENTO BLANCO. Este tipo cumple con los requisitos del tipo I o del tipo III, o los deambos. En él se utilizan materias primas de bajo hierro y bajo manganeso y un apagadoespecial par a producir un color blanco puro. API especial 10 para pozos petroleros. Este tipo consta de varias clases y estádiseñado para satisfacer las condiciones de presión y temperatura elevadas que seencuentran en la i nyección de grout en los pozos petroleros. Este tipo produce una pastaaguada de baja visco sidad y fraguado lento, tan líquida como es posible para facilitar elbombeo a presión en los pozos profundos . Es de bajo contenido de C3A, de molidogrueso y no puede contener alguna sustancia para ayudar a la pulverización. TIPOS EXPANSIVOS. Estos tipos se usan para inhibir la contracción del hormigón yminimi zar el agrietamiento. Tienen baja resistencia al sulfato. CEMENTOS DE ALTA ALÚMINA. Este tipo contiene aluminatos de calcio, en lugarde silicat os decalcio. Tiene una elevada resistencia temprana (a las 24hrs) y propiedades refracta rias. Puedeexperimentar un 40% de regresión en la resistenciadespués de secar durante un periodo de 6 meses, si el hormigón no se mantiene frío durante las primeras 24 h después de mezclar y vaciar.
  • 8. . COMPOSICIÓN QUÍMICA Análisis químico.- La tabla 1.1 muestra los porcentajes típicos en que se presentan los compuestos en el cemento y las abreviaturas con las que suelen ser denominados: TABLA 1.1 PORCENTAJES TÍPICOS DE INTERVENCIÓN DE LOS ÓXIDOS Oxido componente Porcentaje Típico Abreviatura Cal combinada CaO 62.5% C Sílice SiO2 21% S Alúmina Al2O3 6.5% A Hierro Fe2O3 2.5% F Cal Libre CaO 0% Azufre SO3 2% Magnesio MgO 2% Álcalis Na2O y K2O 0.5% Perdida al Fuego P.F. 2% Residuo insoluble R.I. 1% Los cuatro primeros componentes nombrados en la tabla 1.1 no se encuentran libremen te en el cemento, si no combinados formando los componentes potenciales, conocidos como “co mpuestos Boguea” Los compuestos Bogue, sus fórmulas químicas y abreviaturas simbólicas son los siguientes: Silicato tricálcico 3CaO · SiO2 = C3S Silicato dicálcico 2CaO · SiO2 = C2S Aluminato tricálcico 3CaO · Al2O3 = C3A Ferroaluminato tetracálcico 4CaO · Al2O3 · Fe2O3 = C4AF Estos compuestos o “Fases”, como se les llama, no son compuestos verdaderos en el se ntido químico; sin embargo, las proporciones calculadas de estos compuestos proporcionan inf ormación valiosa en la predicción de las propiedades del cemento. Las formulas utilizadas para ca lcular los compuestos Bogue se pueden encontrar en la ASTM C150.
  • 9. 2. EFECTO DE LOS COMPONENTES Cada uno de los cuatro compuestos principales del cemento Pórtland, así como los com puestos secundarios, contribuye en el comportamiento del cemento, cuando pasa del estado plás tico al endurecido después de la hidratación. El conocimiento del comportamiento de cada uno de los compuestos principales, durante la hidratación, permite ajustar las cantidades de cada uno durante la fabricación, para producir las propiedades deseadas en el cemento. El Silicato Tricálcico, C3S, es el compuesto activo por excelencia del clinker, es el que produce la alta resistencia inicial del cemento Pórtland hidratado. Pasa del fraguado inicial al final en unas cuantas horas. El C3S reacciona con el agua desprendiendo una gran cantidad de calor (calor de hidratación). La rapidez de endurecimiento de la pasta de cemento está en relación dire cta con el calor de hidratación; cuanto más rápido sea el fraguado, mayor será la exotermia. El C3S hidratado alcanza gran parte de su resistencia en siete días. Debe limitarse el contenido de S3C e n los cementos para obras de grandes masas de hormigón, no debiendo rebasarse un 35%, con objeto de evitar valores elevados del calor de hidratación. El Silicato Dicálcico, C2S, requiere algunos días para fraguar. Es el causante principal de la resistencia posterior de la pasta de cemento Pórtland. Debido a que su reacción de hidr atación avanza con lentitud, genera un bajo calor de hidratación. Este compuesto en el cemento Pórtland desarrolla menores resistencias que el C3S en las primeras edades; sin embargo, aumenta gradualmente, alcanzando a unos tres meses una resistencia similar a la del C3S. Los cementos con alto contenido en silicato dicálcico son más resistentes a los sulfatos. Aluminato Tricálcico, C3A, presenta fraguado instantáneo al ser hidratado y gran retracción. Es el causante primario del fraguado inicial del cemento Pórtland y desprende grandes cantidades de calor durante la hidratación. El yeso, agregado al cemento durante el proceso de fabricación, en la trituración o en la molienda, se combina con el C3A para controlar el tiempo de fragua do, por su acción al retardar la hidratación de este. El compuesto C3A muestra poco aumento en la resistencia después de un día. Aunque el C3A hidratado, por si solo, produce una resistencia muy baja, su presencia en el cemento Pórtland hidratado produce otros efectos importantes. Por eje mplo un aumento en la cantidad de C3A en el cemento Pórtland ocasiona un fraguado más rápid
  • 10. o, pero conduce a propiedades indeseables del hormigón, como una mala resistencia a los sulfat os y un mayor cambio de volumen. Su estabilidad química es buena frente a ciertas aguas agresivas (de mar, por ejemplo) y muy débil frente a sulfatos. Con objeto de frenar la rápida reacción del aluminato tricálcico con el agua y regular el tiempo de fraguado del cemento, se añade al clinker un sulfato (piedra de yeso). El Ferroaluminato Tetracálcico, C4AF, El uso de más óxido de hierro en la alimentación del horno ayuda a disminuir el C3A, pero lleva a la formación de C4AF, un producto que actúa como relleno con poca o ninguna resistencia. No obstante, es necesario como fundente para bajar la temperatura de formación del clinker. Es semejante al C3A, porque se hidrata con rapidez y sólo desarr olla baja resistencia. No obstante, al contrario del C3A, no muestra fraguado instantáneo. Su resistencia a las aguas selenitosas y agresivos en general es la mas alta de todos los constituyentes. Su color oscuro le hace prohibitivo para los cementos blancos por lo que en este caso se utilizan otros fundentes en la fabricación. La Cal libre, CaO, No debe sobrepasar el 2%, ya que en cantidades excesivas puede dar por resultado una calcinación insuficiente del clinker en el horno, esto puede provocar expa nsión y desintegración del hormigón. Inversamente, cantidades muy bajas de cal libre reducen la eficiencia en el consumo de combustible y producen un clinker duro para moler que reacciona con mayor lentitud. El Oxido de Magnesio queda limitado por las especificaciones al 6%, ya que conduce a una expansión de volumen variable en el hormigón, debido a la hidratación retardada, en especial en un medio ambiente húmedo. Los Álcalis (Na2O y K2O) son componentes secundarios importantes, ya que pueden ca usar deterioro expansivo cuando se usan tipos reactivos de agregados silíceos para el hormig ón. Se especifica cemento de bajo álcali en zonas en donde se encuentran estos agregados. El cemento de bajo álcali contiene no más del 0,6% de álcalis totales. Sin embargo, debe controlarse el porcentaje de álcalis totales en el hormigón, ya que el álcali puede entrar a la mezcla de ese hor migón proveniente de ingredientes que no son el cemento, como el agua, los agregados y los aditivos. Trioxido de azufre, SO3, el azufre proviene de la adición de piedra de yeso que se hace al clinker durante la molienda para regular su fraguado, pudiendo también provenir del combustible empleado en el homo. Un exceso de SO3 puede conducir al fenómeno de falso fraguado, por lo que conviene limitarlo a no mas del 4%. Perdida al fuego, cuando su valor es apreciable, la perdida al fuego proviene de la pres encia de adiciones de naturaleza caliza o similar, lo cual no suele ser conveniente. Si el cemento
  • 11. ha experimentado un prolongado almacenamiento, la perdida al fuego puede provenir del vapor de agua o del CO2 presentes en el conglomerante, siendo entonces expresiva de una meteorizac ión del cemento. Residuo insoluble, proviene de la presencia de adiciones de naturaleza silicea. No debe superar el 5% para el Pórtland I.