SlideShare una empresa de Scribd logo
1 de 8
DISEÑO DE LA CARROCERIA
Introducción.
A la hora de proyectar un nuevo modelo se deben conjugar de forma satisfactoria
una serie de factores, como son la habitabilidad, el confort, la aerodinámica y
l seguridad, encaminados a obtener un producto que ofrezca una potencia
significativa basada en una notable economía de consumo armonizada con la imagen
de la marca. Como ejemplo en un vehículo deportivo se sacrifica la habitabilidad
a favor de la estética y aerodinámica, en un monovolumen lo que prima es la
habitabilidad interior pasando a segundo plano la aerodinámica.
Para intentar conseguir estos objetivos se recurre a diferentes estrategias:
 Optimizar las tareas de organización de todos los departamentos implicados
en la elaboración del nuevo modelo que tienden hacia la unificación de en
diferentes grupos de trabajo (proyectos, métodos y fabricación) permitiendo
detectar rápidamente cualquier problema presente.
 Aplicación de nuevos conceptos y nuevas tecnologías.
 Reducción de los plazos de puesta a punto de un nuevo modelo.
 Capacidad de innovación. La fuerza de una empresa resida en su capacidad
para innovar mas rápidamente que sus competidores.
 Se debe diversificar la oferta a partir de un modelo base realizando varias
versiones del mismo. Versiones familiares, deportivas...
 Para reducir el tiempo de lanzamiento y los costes, los fabricantes de
vehículos suelen compartir plataformas de carrocería entre los modelos de la
misma marca o grupo.
 La idea de la seguridad se encuentra en un primer plano a la hora de
diseñar una carrocería que aparte de la estética se debe estudiar la
deformabilidad de sus creaciones y en dotar los habitáculos de una elevada
estabilidad de forma.
Tradicionalmente, a la hora de establecer los gustos y modas se que condicionan
la elección de un vehículo, pueden establecerse tres áreas de población que
marcan las tendencias de la demanda mundial:
 Zona europea.
 Zona norteamericana.
 Zona asiática.
En Europa suelen predominar los vehículos compactos (berlinas) de estética
discreta y colores sobrios, de cierto aire urbano adaptado plenamente a la
circulación por carretera. El precio del combustible y la no excesiva abundancia
de espacios abiertos determina el tamaño y la monitorización de un vehículo
típico.
En Norteamérica en cambio, el precio mas reducido del combustible, la existencia
de amplios espacios abiertos y el estilo de vida determina un mercado en el que
abundan las berlinas de gran tamaño y elevada monitorización, los pick-up y los
todoterreno.
En la zona asiática (en especial Japón) prefieren los vehículos pequeños
(especialmente todoterreno) de colores vivos, estética vanguardista y un marcado
carácter urbano condicionado por la escasez de suelo libre.
No obstante, en cada zona de influencia cada país presenta rasgos diferenciales
propios que influyen de manera notable en el mercado.
En el proceso de puesta en marcha de un nuevo modelo se encuentran involucrados
aspectos económicos, plazos, producción, calidad y técnicos. El periodo de
desarrollos cuenta con las siguientes fases y medios:
De ejecución de proyecto:
 Estudios de viabilidad previa.
 Estudios de viabilidad definitiva.
 Ficheros de geometría 3D de piezas.
 Ficheros 2D de piezas.
 Ficheros de planos 2D de conjuntos.
 Pirámide grafica (despiece)
 Realización base.
De verificación del proyecto:
 Análisis modal de fallos y efectos.
 Simulación (estructural y de estampación).
 Taller piloto virtual.
 Métodos de operaciones de estampación.
 Estudios de tolerancias, sistemas de ensamblaje y estudios de referencias.
 Construcción de prototipos.
 Experimentación.
 Taller piloto de producción.
 Medios de verificación de calidad.
Teniendo en cuenta que cada constructor aplica su propio método secuencial en la
ejecución del proyecto, para el estudio del proceso en si podemos partir de una
secuencia típica en la que una vez establecido el pliego de condiciones el
proyecto se desarrolla en las siguientes fases:
 Concepción.
 Diseño.
 Creación de maquetas.
 Construcción de prototipos.
 Pruebas.
 Fabricación.
 Necesidades de fabricación de la carrocería.
Concepción.
En esta fase se realizan los primeros
bocetos a partir de dibujos a mano
utilizando instrumentos de dibujo. El
trabajo culmina con la aprobación del
mejor boceto propuesto.
A continuación los diseñadores determinan
las dimensiones del vehículo (prestando
especial atención al interior del mismo).
Para ello se divide el vehículo en tres zonas diferenciadas: zonamotor, zona de
ocupantes, zona maletero.
Para el calculo inicial de las medidas exteriores de la carrocería suele tenerse
en cuenta:
 Exigencias aerodinámicas.
 Ergonomía del puesto de conducción, concepción de los asientos y del
maletero.
 Altura libre de la carrocería sobre el suelo.
 Posición y tamaño del deposito de combustible.
 Necesidades de espacio de las ruedas.
 Tamaño y disposición de los paragolpes.
 Tipo de emplazamiento de los órganos mecánicos: motor, radiador, cambio...
Para iniciar la fase de diseño de as formas interiores y exteriores deben
tenerse en cuenta los siguientes aspectos:
Condiciones de visibilidad. Disposición de los montantes, techo, capo, maletero,
retrovisores, curvatura del parabrisas, barrido del limpiaparabrisas, etc.
Funciones mecánicas. Deben poder bajarse los cristales laterales, apertura del
capo y maletero, reglaje de luces, etc.
Posibilidad de fabricación y facilidad de reparación.
Condiciones de seguridad. Establecimiento de un plan de deformación programada,
forma y disposición de los refuerzos y paragolpes, eliminación de aristas, etc.
Una vez calculadas las medidas exteriores el ordenador proporciona una visión
del vehículo (interior y exterior) y cada parte constituyente del mismo pudiendo
introducir modificaciones que se estimen oportunas.
Diseño de la carrocería.
Una vez definido el vehículo se pasa a la fase de diseño, en la que se emplean
medios altamente sofisticados. Mediante estos desarrollos informáticos se
sustituyen las maquetas físicas por maquetas numéricas a partir de parámetros
geométricos obtenidos en la fase de concepción del vehículo con la ayuda de
potentes ordenadores.
Como norma general un buen diseño debe reunir las siguientes características:
 Resultar lo mas atractivo posible.
 La transición a la fase de fabricación debe ser lo más fácil posible.
 Garantizar una alta funcionalidad y larga vida útil.
 El numero de piezas constituyentes debe ser el mínimo posible y su desglose
debe resultar sencillo.
 Tener un alto numero de piezas aprovechables para otros modelos.
 Utilizar el mayor numero de piezas reaprovechables.
 Ofrecer una buena relación calidad precio.
A través de este método el diseñador puede ensayar diferentes soluciones
técnicas, simular el funcionamiento de cada pieza, introducir modificaciones,
ensamblar piezas virtualmente e integrarlas en el sistema al cual van a
pertenecer analizando su compatibilidad.
Cálculos de la estructura.
El principio universal en el calculo de estructuras se basa en el hecho de que
las deformaciones resultantes son proporcionales a las tensiones aplicadas ya
que la estructura del nuevo modelo debe absorber la máxima energía
sacrificándose en defensa de los pasajeros.
Para determinar las características estáticas, dinámicas y acústicas se recurre
a la integración de elementos finitos, lo cual se basa en la idea fundamental de
descomponer cualquier cuerpo tridimensional en figuras geométricas simples cuyos
comportamientos elásticos son conocidos y fáciles de formular matemáticamente.
Habitualmente suele descomponerse en triángulos cuyos vértices presentan
coordenadas espaciales y que fruto de las tensiones aplicadas se desplazan en el
espacio haciendo que los vértices de los triángulos adyacentes se desplacen
vuelvan a desplazarse y así hasta que la tensión producida en cadena se anula.
Con ello es posible construir un modelo que represente fielmente as propiedades
elásticas de la pieza real. El proceso puede resumirse en:
En primer lugar se realiza una discretizacion finita de la pieza, consistente en
dividirla en trozos muy pequeños a los cuales aplicar las ecuaciones de
comportamiento elástico-resistente.
Una vez realizado el mallado se aplica cargas exteriores en algunos de esos
elementos y se estudia la deformación.
De este modo se puede analizar la deformación macroscópica de la pieza, y los
puntos de esfuerzo critico y, por tanto, susceptible a la rotura.
Para la integración de elementos finitos se utilizan superordenadores del tipo
Cray que procesan millones de operaciones en nanosegundos, de manera que se
puede visualizar el efecto de cualquier tensión aplicada en un punto determinado
obteniendo deformaciones, oscilaciones, distribuciones de las tensiones y
trabajos de variación de forma. Las ventajas de que ofrece la utilización del
método de los elementos finitos se centran fundamentalmente en los siguientes
aspectos:
Posibilidad de determinar procesos de carga invisibles (transmisión de fuerzas,
concentraciones de esfuerzos) en estructuras complicadas.
Calcular variables como: grueso de chapa, refuerzos, materiales, etc.
Por el contrario las limitaciones que presenta la utilización de este método
son:
 La exactitud depende del tipo de elemento, de su numero y de su distribución
en la estructura.
 Las variaciones entre el grueso de la chapa calculado y el real, una vez
laminada y embutida, debido a la anisotropía de los distintos materiales.
 Dificultad para estimar exactamente las uniones soldadas.
Cálculo de la resistencia.
El estudio de calculo de estructuras consiste en calcular la relación entre
fuerza y desplazamiento para cada elemento componente de la estructura. Una vez
realizado dicho estudio se procede al ensamblaje del conjunto de elementos en el
que se debe establecer el equilibrio de fuerzas en cada unión.
Además de las tensiones causadas por sistemas de sujeción y cargas suspendidas,
que se calculan por el método de los elementos finitos, hay ciertas piezas del
vehículo como montantes, travesaños y paragolpes, que se encuentran sometidas
frecuentemente a cargas de flexión o torsión. En estos casos resulta adecuado el
empleo de programas de calculo de secciones.
Cálculo del comportamiento ante colisiones.
El uso del ordenador y de sofisticados instrumentos de calculo permiten realizar
ensayos virtuales de colisiones en los que ejecuta mega operaciones de calculo
en nanosegundos que permiten dar el planteamiento correcto al vehículo sin
realizar pruebas sin haber destruido ningún prototipo.
En la realización de los crash-test virtuales se utilizan los modelos
tridimensionales del vehículo, dividiendo la estructura portante de la
carrocería en elementos finitos cada uno de los cuales tiene definido con
anterioridad su comportamiento cuando se le aplican determinadas fuerzas, y que
sirven de base para los cálculos simulados.
Si se aplica sobre una zona del vehículo virtual una fuerza dada se inicia una
reacción en cadena en la que cada área se deforma según los cálculos anteriores
y transmite fuerza a las que están en contacto con ella. De esta forma es
posible determinar cual ha sido la deformación total del vehículo completadas
con las pruebas reales permiten validar las dimensiones y el comportamiento por
separado de ciertos elementos de la carrocería como largueros, travesaños, etc.
Creación de maquetas.
La siguiente fase consiste en "dar volumen" al dibujo. Se construyen maquetas de
escayola o materiales sintéticos primero a escala 1:5 y luego a tamaño natural.
En esta fase, el diseñador afirma determina la agresividad de las formas curvas
determinando el volumen en todos sus aspectos.
Como resultado se obtiene la maqueta virtual definitiva que define numéricamente
el diseño para establecer el plan de forma del primer prototipo. Cuando se acaba
la fase de diseño los datos anteriormente plasmados en un plano digitalizado se
transfieren en forma de ordenes de un ordenador a una fresadora automática de
cinco ejes que clona el modelo diseñado sobre un bloque de material
termoplástico generalmente poliestireno.
A la forma conseguida suele hacerse un molde exterior de resina epoxi para
construir una maqueta hueca que se utiliza para obtener una visión conjunta
transparente del estilo exterior e interior del modelo y sufrirán los primeros
test en el túnel de viento para confirmar los cálculos efectuados sobre el
papel.
Construcción de prototipos.
Los prototipos suelen montarse en instalaciones especificas para definir las
matrices, los moldes y el utillaje del vehículo necesario para la construcción.
Se analizan los detalles en profundidad prestándose especial atención al control
geométrico de la carrocería.
Como resultado de todo el proceso se determina el proceso de estampación más
idóneos, ultiman los útiles de las prensas a la vez que se realizan los estudios
de las tolerancias, referencias, sistemas de unión y se regulan los equipos de
ensamblaje.
Pruebas.
Una vez fabricado el prototipo se inician una serie de pruebas para analizarlo.
Se comprueban los motores sometiéndolos a ensayos acústicos y de vibraciones,
los materiales se controlan con microscopios electrónicos y equipos de
metalurgia comprobando la resistencia a la fatiga de algunos elementos en bancos
hidráulicos. El modelo también pasa una prueba de seguridad para comprobar su
rigidez estructural.
Se realizan pruebas climáticas sometiendo el prototipo a extremas condiciones de
temperatura y también se comprueba la resistencia de la carrocería frente a la
corrosión simulando diferentes climas.
Se verifica la emisión de gases y se analizan los materiales empleados pensando
en su posterior reciclaje. También tienen lugar ensayos de golpes y la seguridad
tanto activa como pasiva, se realizan ensayos de durabilidad de determinados
componentes de la carrocería.
Fase de fabricación de la carrocería.
La chapa de acero se suministra en forma de bobinas o en piezas prerrecortadas,
las bobinas deben ser enderezadas mediante una serie de rodillos que eliminan la
curvatura y a continuación se procede al recorte en cizallas automáticas para
ser introducidas en la cadena de embutición. Cada recorte se introduce en un
transfer que dispone de varias matrices en línea cada una encargada de realizar
una secuencia en el conformado total de la pieza.
Para conseguir una gran variedad de piezas que conforman la estructura de la
carrocería únicamente se cambian las matrices de las prensas, debido al gran
tamaño que estas ocupan y el coste de las mismas.
El ensamblado de las piezas se realiza en instalaciones distribuidas en zonas
diferenciadas:
 Áreas o líneas dedicadas a los elementos amovibles de la carrocería
(puertas, capos, portones, etc.)
 Áreas dedicadas a elementos integrantes de la carrocería (plataforma,
paneles, laterales, etc.)
 Áreas dedicadas a la conformación y soldadura de la carrocería (basamento,
techo, etc.)
 Áreas de acabado donde se le añaden a la caja ya conformada los elementos
separados y se finaliza el conjunto.
La carrocería autoportante consta de cuerpos huecos de chapa y laminas que se
unen en las instalaciones de soldadura continua o por puntos múltiples
realizados por robots. La soldadura proporciona alta resistencia mecánica y
buena transmisión de esfuerzos entre las piezas estructurales y las uniones
atornilladas proporcionan una excelente reparabilidad de las piezas.
En el ensamblado se emplean mayoritariamente las uniones soldadas por
resistencia aunque también se emplean otros métodos:
 Soldadura láser que solo puede ejecutarse en fabrica y se emplea
generalmente para unir el techo a los montantes.
 Piezas pegadas, cuyo objetivo
consiste en que el acero que conforma cada
pieza soporte niveles da carga
equivalentes. Los adhesivos estructurales
mas utilizados son de naturaleza epoxi
debido a su excelente resistencia y buenas
propiedades mecánicas y de aplicación.
 Soldadura de latón, reduce los huecos
de las chapas para aumentar la rigidez de
la carrocería. Se realiza bajo atmósfera
de gas protector.
Materiales empleados en la fabricación de carrocerías.
Las tendencias de los fabricantes de vehículos están dirigidas a conseguir una
sustancial reducción de peso y un aumento de la seguridad pasiva. La
incorporación de materiales nuevos como aleaciones, tratamientos térmicos,
superficiales, etc. han posibilitado la consecución de materiales más
resistentes y ligeros en la construcción tanto de órganos mecánicos como de las
piezas de la carrocería. El empleo de materiales plásticos como la fibra de
vidrio o de carbono se limita a piezas que no tienen una elevada responsabilidad
estructural.
Grupos materiales.
Los grupos materiales más empleados en la fabricación de la carrocería son los
elementos metálicos y materiales sintéticos. A su vez podemos distinguir los
metales férreos y los no férreos, y entre los sintéticos termoplásticos y
termoestables.
Para mejorar las propiedades de ciertos metales puros se fabrican aleaciones que
son mezclas de dos o más metales.
Los metales férreos contienen como elemento principal el hierro y carbono en
proporciones variables. Según este porcentaje se distinguen: hierro, acero y
fundiciones.
Los metales no férreos no llevan hierro en su composición. Los principales son:
aluminio, magnesio, cobre, plomo, estaño, cinc, níquel, titanio, etc.
Las principales aleaciones no férreas son:
 Aluminio (ligeras)
 Magnesio (ultra-ligeras)
 níquel (superaleaciones)
 Aleaciones de metales pesados (cobre, plomo, cinc, etc.)
Aceros empleados en la fabricación de carrocerías del automóvil.
Actualmente los espesores más habituales de material casi alcanzan 0,5mm pero
sin llegar a ello. El espesor máximo puede alcanzar los 2mm pudiendo algunas
piezas sobrepasar ligeramente este espesor.
Los espesores menores se utilizan en los elementos que no tienen demasiada
importancia estructural y que se utilizan en la parte exterior del vehículo.
En una clasificación de tipo general de las chapas de acero se distinguen dos
tipos: las comerciales y las finas.
Las primeras son de una calidad de acabado no definida, por el contrario la
chapa fina posee características de aptitud para la embutición, soldadura y
acabado.
Esta primera división de tipos de aceros podría aplicarse a aceros laminados en
frió, cuyas calidades comerciales tienen un tratamiento sencillo para emplear
doblador y embuticiones poco exigentes.
La división que se pude hacer atendiendo a los grandes grupos de tipos de
producto son:
 Laminados en caliente.
 Laminados en frió.
 Recubiertos después de la laminación en frío.
Tecnología USLAB.
Uno de los proyectos más importantes se ha llevado a cabo con este tipo de acero
(Ultralight Steel Auto Body), las claves del éxito de este proyecto se centran
en todos los ámbitos del desarrollo de un nuevo vehículo con la mejor
utilización de los materiales, sobre todo aceros ALE sumado a la ayuda de las
tecnologías de soldadura láser, realización de Tailored Blanks, hidroconformado
de tubos, hidroestampado, etc.
El resultado es una carrocería más económica y un 25% más ligera de lo que hoy
DIA es un modelo promedio y presenta una rigidez 80% mayor, prestando una mejor
respuesta debido a la superior integridad estructural.
Nuevas técnicas de fabricación.
Entre las técnicas de fabricación destacan la utilización de tailored blank, la
hidroconformación y el empleo de paneles tipo "sándwich".
Tailored blank. Son componentes de una sola pieza con un diseño complejo que
combina varios espesores, recubrimientos y distinto grado de resistencia. Los
diferentes aceros se sueldan (generalmente por láser) para obtener un único
desarrollo a partir del cual se conforma la pieza. Los componentes así
fabricados tienen la capacidad de optimizar la función estructural asegurando un
proceso de absorción más progresivo y efectivo.
Hidroconformación. Se fabrican formas complejas en componentes tubulares de
zonas en las que la carrocería forma una sección cerrada (como largueros,
montantes, travesías, etc.). Se basa en la expansión de un tubo recto de chapa
de acero en una matriz (molde) con la forma que se desea para el tubo. A
continuación se introduce agua a alta presión consiguiéndose así la forma
deseada en el tubo. Este procedimiento proporciona una gran estabilidad de
dimensiones y un alto limite elástico de la pieza al realizarse en frió el
proceso de trabajo. La hidroconformación consigue reducir el peso de dos formas
distintas:
 Se aprovecha al máximo el tamaño de la sección de la pieza al eliminar la
necesidad de disponer de pestañas de soldadura.
 El larguero hidroconformado del techo distribuye de una forma mucho más
eficiente las cargas eliminando así las necesidades de material en otras zonas.
 Sándwich de acero. Consiste en un núcleo termoplástico (generalmente
polipropileno) en un sándwich de dos recubrimientos de acero de bajo espesor
consiguiendo una notable disminución de peso, hasta un 50%, sin comprometer las
prestaciones.
COMENTARIO
La fabricacion de un vehiculo como se vio toma muchos pasos debido a la complejidad que
representa diseñar, calcular, analizar, todas las funciones que este llevara acabo.
esperamos este articulo les haya sido de su interes, en otra oportunidad seguiremos
ampliando sobre el mantenimiento automotriz.

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Como identificar una Llanta
Como identificar una LlantaComo identificar una Llanta
Como identificar una Llanta
 
basico frenos
basico frenosbasico frenos
basico frenos
 
Frenos
FrenosFrenos
Frenos
 
Estructura del vehiculo.
Estructura del vehiculo.Estructura del vehiculo.
Estructura del vehiculo.
 
Sistema de suspension
Sistema de suspensionSistema de suspension
Sistema de suspension
 
Manual de fallas corsa 1.6
Manual de fallas corsa 1.6Manual de fallas corsa 1.6
Manual de fallas corsa 1.6
 
Clases de aceites y lubricantes
Clases de aceites y lubricantesClases de aceites y lubricantes
Clases de aceites y lubricantes
 
Cuestionario no 1_mantenimiento_vehicular_aldrin[1]
Cuestionario no 1_mantenimiento_vehicular_aldrin[1]Cuestionario no 1_mantenimiento_vehicular_aldrin[1]
Cuestionario no 1_mantenimiento_vehicular_aldrin[1]
 
Rotulas
RotulasRotulas
Rotulas
 
ClasificacióN De Los Motores
ClasificacióN De Los MotoresClasificacióN De Los Motores
ClasificacióN De Los Motores
 
tipos de suspencion y sus componentes
tipos de suspencion y sus componentestipos de suspencion y sus componentes
tipos de suspencion y sus componentes
 
3stf X
3stf X3stf X
3stf X
 
Elevadores automotrices, una guia inicial parte 5
Elevadores automotrices, una guia inicial  parte 5 Elevadores automotrices, una guia inicial  parte 5
Elevadores automotrices, una guia inicial parte 5
 
Ventilación y calefacción
Ventilación y calefacciónVentilación y calefacción
Ventilación y calefacción
 
Elementos que constituyen la trasmision automatica
Elementos que constituyen la trasmision automaticaElementos que constituyen la trasmision automatica
Elementos que constituyen la trasmision automatica
 
Sistema de suspensión
Sistema de suspensiónSistema de suspensión
Sistema de suspensión
 
Los frenos
Los frenosLos frenos
Los frenos
 
NOMENCLATURA DE LOS NEUMATICOS.pptx
NOMENCLATURA DE LOS NEUMATICOS.pptxNOMENCLATURA DE LOS NEUMATICOS.pptx
NOMENCLATURA DE LOS NEUMATICOS.pptx
 
Basic of automobile.ppt
Basic of automobile.pptBasic of automobile.ppt
Basic of automobile.ppt
 
Ruedas y neumaticos
Ruedas y neumaticosRuedas y neumaticos
Ruedas y neumaticos
 

Similar a Diseño de la carroceria

Presentacion_tema_1_estructurasdelautomovil.pdf
Presentacion_tema_1_estructurasdelautomovil.pdfPresentacion_tema_1_estructurasdelautomovil.pdf
Presentacion_tema_1_estructurasdelautomovil.pdfVictorRomero327479
 
38 cisev iv barrera hormigon eloi boix
38 cisev iv barrera hormigon eloi boix38 cisev iv barrera hormigon eloi boix
38 cisev iv barrera hormigon eloi boixSierra Francisco Justo
 
Estudio comparativo de un producto cotidiano
Estudio comparativo de un producto cotidianoEstudio comparativo de un producto cotidiano
Estudio comparativo de un producto cotidianoCarlos Alberto Vazquez
 
Diseño racional de carreteras
Diseño racional de carreterasDiseño racional de carreteras
Diseño racional de carreterasalexa842003
 
Capitulo 1. introducción al diseño (parte 1)
Capitulo 1. introducción al diseño (parte 1)Capitulo 1. introducción al diseño (parte 1)
Capitulo 1. introducción al diseño (parte 1)racabrera
 
1.2 definiciòn de simulaciòn exposicion
1.2 definiciòn de simulaciòn   exposicion1.2 definiciòn de simulaciòn   exposicion
1.2 definiciòn de simulaciòn exposicionJose Hernandez Landa
 
1.2 Definición de simulación
1.2 Definición de simulación   1.2 Definición de simulación
1.2 Definición de simulación avengers92
 
Fabricar autos
Fabricar autosFabricar autos
Fabricar autospeter6204
 
proceso de fabricación de un automovil en una empresa
proceso de fabricación de un automovil en una empresaproceso de fabricación de un automovil en una empresa
proceso de fabricación de un automovil en una empresaPabloAngelesBaldeon2
 
La gestión del proceso de diseño y desarrollo
La gestión del proceso de diseño y desarrolloLa gestión del proceso de diseño y desarrollo
La gestión del proceso de diseño y desarrolloinstituto superior
 
Alcala fazio estabilidad o2 p resumen-borrador ok
Alcala fazio estabilidad o2 p resumen-borrador okAlcala fazio estabilidad o2 p resumen-borrador ok
Alcala fazio estabilidad o2 p resumen-borrador okSierra Francisco Justo
 
WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...
WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...
WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...Hexagon Production Software Iberia
 
Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...
Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...
Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...matiaskb
 
TFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdf
TFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdfTFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdf
TFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdfAarnMejaAlfaro
 
Simulación - Unidad 4 Lenguajes de Simulación (Promodel)
Simulación - Unidad 4 Lenguajes de Simulación (Promodel)Simulación - Unidad 4 Lenguajes de Simulación (Promodel)
Simulación - Unidad 4 Lenguajes de Simulación (Promodel)José Antonio Sandoval Acosta
 

Similar a Diseño de la carroceria (20)

Diseño de Carroceria
Diseño de Carroceria Diseño de Carroceria
Diseño de Carroceria
 
Capitulo 2
Capitulo 2Capitulo 2
Capitulo 2
 
Presentacion_tema_1_estructurasdelautomovil.pdf
Presentacion_tema_1_estructurasdelautomovil.pdfPresentacion_tema_1_estructurasdelautomovil.pdf
Presentacion_tema_1_estructurasdelautomovil.pdf
 
38 cisev iv barrera hormigon eloi boix
38 cisev iv barrera hormigon eloi boix38 cisev iv barrera hormigon eloi boix
38 cisev iv barrera hormigon eloi boix
 
SOMIM_Correctores_(A5_159)
SOMIM_Correctores_(A5_159)SOMIM_Correctores_(A5_159)
SOMIM_Correctores_(A5_159)
 
Estudio comparativo de un producto cotidiano
Estudio comparativo de un producto cotidianoEstudio comparativo de un producto cotidiano
Estudio comparativo de un producto cotidiano
 
Diseño racional de carreteras
Diseño racional de carreterasDiseño racional de carreteras
Diseño racional de carreteras
 
Capitulo 1. introducción al diseño (parte 1)
Capitulo 1. introducción al diseño (parte 1)Capitulo 1. introducción al diseño (parte 1)
Capitulo 1. introducción al diseño (parte 1)
 
1.2 definiciòn de simulaciòn exposicion
1.2 definiciòn de simulaciòn   exposicion1.2 definiciòn de simulaciòn   exposicion
1.2 definiciòn de simulaciòn exposicion
 
1.2 Definición de simulación
1.2 Definición de simulación   1.2 Definición de simulación
1.2 Definición de simulación
 
Fabricar autos
Fabricar autosFabricar autos
Fabricar autos
 
proceso de fabricación de un automovil en una empresa
proceso de fabricación de un automovil en una empresaproceso de fabricación de un automovil en una empresa
proceso de fabricación de un automovil en una empresa
 
La gestión del proceso de diseño y desarrollo
La gestión del proceso de diseño y desarrolloLa gestión del proceso de diseño y desarrollo
La gestión del proceso de diseño y desarrollo
 
Alcala fazio estabilidad o2 p resumen-borrador ok
Alcala fazio estabilidad o2 p resumen-borrador okAlcala fazio estabilidad o2 p resumen-borrador ok
Alcala fazio estabilidad o2 p resumen-borrador ok
 
37 tfg jesus manuel_donaire_sanchez
37 tfg jesus manuel_donaire_sanchez37 tfg jesus manuel_donaire_sanchez
37 tfg jesus manuel_donaire_sanchez
 
WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...
WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...
WorkNC V23. Optimiza el proceso de gestión de colisiones incorporando la func...
 
Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...
Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...
Jit 2016. diseño óptimo de una cercha de nave industrial existente mediante a...
 
TFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdf
TFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdfTFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdf
TFM_ADRIAN_GARCIA_CARRIZO_PRUEBA_ONCEPTO.pdf
 
Simulaci
SimulaciSimulaci
Simulaci
 
Simulación - Unidad 4 Lenguajes de Simulación (Promodel)
Simulación - Unidad 4 Lenguajes de Simulación (Promodel)Simulación - Unidad 4 Lenguajes de Simulación (Promodel)
Simulación - Unidad 4 Lenguajes de Simulación (Promodel)
 

Último

UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesElianaCceresTorrico
 
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLTERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLdanilojaviersantiago
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdfvictoralejandroayala2
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASfranzEmersonMAMANIOC
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptxBRAYANJOSEPTSANJINEZ
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingKevinCabrera96
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfXimenaFallaLecca1
 
Ingeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaIngeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaANACENIMENDEZ1
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptCRISTOFERSERGIOCANAL
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
clasificasion de vias arteriales , vias locales
clasificasion de vias arteriales , vias localesclasificasion de vias arteriales , vias locales
clasificasion de vias arteriales , vias localesMIGUELANGEL2658
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Dr. Edwin Hernandez
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILProblemSolved
 

Último (20)

UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
 
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLTERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdf
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards Deming
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
 
Ingeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaIngeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedica
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
clasificasion de vias arteriales , vias locales
clasificasion de vias arteriales , vias localesclasificasion de vias arteriales , vias locales
clasificasion de vias arteriales , vias locales
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
 

Diseño de la carroceria

  • 1. DISEÑO DE LA CARROCERIA Introducción. A la hora de proyectar un nuevo modelo se deben conjugar de forma satisfactoria una serie de factores, como son la habitabilidad, el confort, la aerodinámica y l seguridad, encaminados a obtener un producto que ofrezca una potencia significativa basada en una notable economía de consumo armonizada con la imagen de la marca. Como ejemplo en un vehículo deportivo se sacrifica la habitabilidad a favor de la estética y aerodinámica, en un monovolumen lo que prima es la habitabilidad interior pasando a segundo plano la aerodinámica. Para intentar conseguir estos objetivos se recurre a diferentes estrategias:  Optimizar las tareas de organización de todos los departamentos implicados en la elaboración del nuevo modelo que tienden hacia la unificación de en diferentes grupos de trabajo (proyectos, métodos y fabricación) permitiendo detectar rápidamente cualquier problema presente.  Aplicación de nuevos conceptos y nuevas tecnologías.  Reducción de los plazos de puesta a punto de un nuevo modelo.  Capacidad de innovación. La fuerza de una empresa resida en su capacidad para innovar mas rápidamente que sus competidores.  Se debe diversificar la oferta a partir de un modelo base realizando varias versiones del mismo. Versiones familiares, deportivas...  Para reducir el tiempo de lanzamiento y los costes, los fabricantes de vehículos suelen compartir plataformas de carrocería entre los modelos de la misma marca o grupo.  La idea de la seguridad se encuentra en un primer plano a la hora de diseñar una carrocería que aparte de la estética se debe estudiar la deformabilidad de sus creaciones y en dotar los habitáculos de una elevada estabilidad de forma. Tradicionalmente, a la hora de establecer los gustos y modas se que condicionan la elección de un vehículo, pueden establecerse tres áreas de población que marcan las tendencias de la demanda mundial:  Zona europea.  Zona norteamericana.  Zona asiática. En Europa suelen predominar los vehículos compactos (berlinas) de estética discreta y colores sobrios, de cierto aire urbano adaptado plenamente a la circulación por carretera. El precio del combustible y la no excesiva abundancia de espacios abiertos determina el tamaño y la monitorización de un vehículo típico.
  • 2. En Norteamérica en cambio, el precio mas reducido del combustible, la existencia de amplios espacios abiertos y el estilo de vida determina un mercado en el que abundan las berlinas de gran tamaño y elevada monitorización, los pick-up y los todoterreno. En la zona asiática (en especial Japón) prefieren los vehículos pequeños (especialmente todoterreno) de colores vivos, estética vanguardista y un marcado carácter urbano condicionado por la escasez de suelo libre. No obstante, en cada zona de influencia cada país presenta rasgos diferenciales propios que influyen de manera notable en el mercado. En el proceso de puesta en marcha de un nuevo modelo se encuentran involucrados aspectos económicos, plazos, producción, calidad y técnicos. El periodo de desarrollos cuenta con las siguientes fases y medios: De ejecución de proyecto:  Estudios de viabilidad previa.  Estudios de viabilidad definitiva.  Ficheros de geometría 3D de piezas.  Ficheros 2D de piezas.  Ficheros de planos 2D de conjuntos.  Pirámide grafica (despiece)  Realización base. De verificación del proyecto:  Análisis modal de fallos y efectos.  Simulación (estructural y de estampación).  Taller piloto virtual.  Métodos de operaciones de estampación.  Estudios de tolerancias, sistemas de ensamblaje y estudios de referencias.  Construcción de prototipos.  Experimentación.  Taller piloto de producción.  Medios de verificación de calidad. Teniendo en cuenta que cada constructor aplica su propio método secuencial en la ejecución del proyecto, para el estudio del proceso en si podemos partir de una secuencia típica en la que una vez establecido el pliego de condiciones el proyecto se desarrolla en las siguientes fases:  Concepción.  Diseño.  Creación de maquetas.  Construcción de prototipos.  Pruebas.  Fabricación.  Necesidades de fabricación de la carrocería. Concepción. En esta fase se realizan los primeros bocetos a partir de dibujos a mano utilizando instrumentos de dibujo. El trabajo culmina con la aprobación del mejor boceto propuesto. A continuación los diseñadores determinan las dimensiones del vehículo (prestando especial atención al interior del mismo).
  • 3. Para ello se divide el vehículo en tres zonas diferenciadas: zonamotor, zona de ocupantes, zona maletero. Para el calculo inicial de las medidas exteriores de la carrocería suele tenerse en cuenta:  Exigencias aerodinámicas.  Ergonomía del puesto de conducción, concepción de los asientos y del maletero.  Altura libre de la carrocería sobre el suelo.  Posición y tamaño del deposito de combustible.  Necesidades de espacio de las ruedas.  Tamaño y disposición de los paragolpes.  Tipo de emplazamiento de los órganos mecánicos: motor, radiador, cambio... Para iniciar la fase de diseño de as formas interiores y exteriores deben tenerse en cuenta los siguientes aspectos: Condiciones de visibilidad. Disposición de los montantes, techo, capo, maletero, retrovisores, curvatura del parabrisas, barrido del limpiaparabrisas, etc. Funciones mecánicas. Deben poder bajarse los cristales laterales, apertura del capo y maletero, reglaje de luces, etc. Posibilidad de fabricación y facilidad de reparación. Condiciones de seguridad. Establecimiento de un plan de deformación programada, forma y disposición de los refuerzos y paragolpes, eliminación de aristas, etc. Una vez calculadas las medidas exteriores el ordenador proporciona una visión del vehículo (interior y exterior) y cada parte constituyente del mismo pudiendo introducir modificaciones que se estimen oportunas. Diseño de la carrocería. Una vez definido el vehículo se pasa a la fase de diseño, en la que se emplean medios altamente sofisticados. Mediante estos desarrollos informáticos se sustituyen las maquetas físicas por maquetas numéricas a partir de parámetros geométricos obtenidos en la fase de concepción del vehículo con la ayuda de potentes ordenadores. Como norma general un buen diseño debe reunir las siguientes características:  Resultar lo mas atractivo posible.  La transición a la fase de fabricación debe ser lo más fácil posible.  Garantizar una alta funcionalidad y larga vida útil.  El numero de piezas constituyentes debe ser el mínimo posible y su desglose debe resultar sencillo.  Tener un alto numero de piezas aprovechables para otros modelos.  Utilizar el mayor numero de piezas reaprovechables.  Ofrecer una buena relación calidad precio. A través de este método el diseñador puede ensayar diferentes soluciones técnicas, simular el funcionamiento de cada pieza, introducir modificaciones, ensamblar piezas virtualmente e integrarlas en el sistema al cual van a pertenecer analizando su compatibilidad.
  • 4. Cálculos de la estructura. El principio universal en el calculo de estructuras se basa en el hecho de que las deformaciones resultantes son proporcionales a las tensiones aplicadas ya que la estructura del nuevo modelo debe absorber la máxima energía sacrificándose en defensa de los pasajeros. Para determinar las características estáticas, dinámicas y acústicas se recurre a la integración de elementos finitos, lo cual se basa en la idea fundamental de descomponer cualquier cuerpo tridimensional en figuras geométricas simples cuyos comportamientos elásticos son conocidos y fáciles de formular matemáticamente. Habitualmente suele descomponerse en triángulos cuyos vértices presentan coordenadas espaciales y que fruto de las tensiones aplicadas se desplazan en el espacio haciendo que los vértices de los triángulos adyacentes se desplacen vuelvan a desplazarse y así hasta que la tensión producida en cadena se anula. Con ello es posible construir un modelo que represente fielmente as propiedades elásticas de la pieza real. El proceso puede resumirse en: En primer lugar se realiza una discretizacion finita de la pieza, consistente en dividirla en trozos muy pequeños a los cuales aplicar las ecuaciones de comportamiento elástico-resistente. Una vez realizado el mallado se aplica cargas exteriores en algunos de esos elementos y se estudia la deformación. De este modo se puede analizar la deformación macroscópica de la pieza, y los puntos de esfuerzo critico y, por tanto, susceptible a la rotura. Para la integración de elementos finitos se utilizan superordenadores del tipo Cray que procesan millones de operaciones en nanosegundos, de manera que se puede visualizar el efecto de cualquier tensión aplicada en un punto determinado obteniendo deformaciones, oscilaciones, distribuciones de las tensiones y trabajos de variación de forma. Las ventajas de que ofrece la utilización del método de los elementos finitos se centran fundamentalmente en los siguientes aspectos: Posibilidad de determinar procesos de carga invisibles (transmisión de fuerzas, concentraciones de esfuerzos) en estructuras complicadas. Calcular variables como: grueso de chapa, refuerzos, materiales, etc. Por el contrario las limitaciones que presenta la utilización de este método son:  La exactitud depende del tipo de elemento, de su numero y de su distribución en la estructura.  Las variaciones entre el grueso de la chapa calculado y el real, una vez laminada y embutida, debido a la anisotropía de los distintos materiales.  Dificultad para estimar exactamente las uniones soldadas. Cálculo de la resistencia. El estudio de calculo de estructuras consiste en calcular la relación entre fuerza y desplazamiento para cada elemento componente de la estructura. Una vez realizado dicho estudio se procede al ensamblaje del conjunto de elementos en el que se debe establecer el equilibrio de fuerzas en cada unión. Además de las tensiones causadas por sistemas de sujeción y cargas suspendidas, que se calculan por el método de los elementos finitos, hay ciertas piezas del vehículo como montantes, travesaños y paragolpes, que se encuentran sometidas frecuentemente a cargas de flexión o torsión. En estos casos resulta adecuado el empleo de programas de calculo de secciones. Cálculo del comportamiento ante colisiones. El uso del ordenador y de sofisticados instrumentos de calculo permiten realizar ensayos virtuales de colisiones en los que ejecuta mega operaciones de calculo en nanosegundos que permiten dar el planteamiento correcto al vehículo sin realizar pruebas sin haber destruido ningún prototipo.
  • 5. En la realización de los crash-test virtuales se utilizan los modelos tridimensionales del vehículo, dividiendo la estructura portante de la carrocería en elementos finitos cada uno de los cuales tiene definido con anterioridad su comportamiento cuando se le aplican determinadas fuerzas, y que sirven de base para los cálculos simulados. Si se aplica sobre una zona del vehículo virtual una fuerza dada se inicia una reacción en cadena en la que cada área se deforma según los cálculos anteriores y transmite fuerza a las que están en contacto con ella. De esta forma es posible determinar cual ha sido la deformación total del vehículo completadas con las pruebas reales permiten validar las dimensiones y el comportamiento por separado de ciertos elementos de la carrocería como largueros, travesaños, etc. Creación de maquetas. La siguiente fase consiste en "dar volumen" al dibujo. Se construyen maquetas de escayola o materiales sintéticos primero a escala 1:5 y luego a tamaño natural. En esta fase, el diseñador afirma determina la agresividad de las formas curvas determinando el volumen en todos sus aspectos. Como resultado se obtiene la maqueta virtual definitiva que define numéricamente el diseño para establecer el plan de forma del primer prototipo. Cuando se acaba la fase de diseño los datos anteriormente plasmados en un plano digitalizado se transfieren en forma de ordenes de un ordenador a una fresadora automática de cinco ejes que clona el modelo diseñado sobre un bloque de material termoplástico generalmente poliestireno. A la forma conseguida suele hacerse un molde exterior de resina epoxi para construir una maqueta hueca que se utiliza para obtener una visión conjunta transparente del estilo exterior e interior del modelo y sufrirán los primeros test en el túnel de viento para confirmar los cálculos efectuados sobre el papel. Construcción de prototipos. Los prototipos suelen montarse en instalaciones especificas para definir las matrices, los moldes y el utillaje del vehículo necesario para la construcción. Se analizan los detalles en profundidad prestándose especial atención al control geométrico de la carrocería.
  • 6. Como resultado de todo el proceso se determina el proceso de estampación más idóneos, ultiman los útiles de las prensas a la vez que se realizan los estudios de las tolerancias, referencias, sistemas de unión y se regulan los equipos de ensamblaje. Pruebas. Una vez fabricado el prototipo se inician una serie de pruebas para analizarlo. Se comprueban los motores sometiéndolos a ensayos acústicos y de vibraciones, los materiales se controlan con microscopios electrónicos y equipos de metalurgia comprobando la resistencia a la fatiga de algunos elementos en bancos hidráulicos. El modelo también pasa una prueba de seguridad para comprobar su rigidez estructural. Se realizan pruebas climáticas sometiendo el prototipo a extremas condiciones de temperatura y también se comprueba la resistencia de la carrocería frente a la corrosión simulando diferentes climas. Se verifica la emisión de gases y se analizan los materiales empleados pensando en su posterior reciclaje. También tienen lugar ensayos de golpes y la seguridad tanto activa como pasiva, se realizan ensayos de durabilidad de determinados componentes de la carrocería. Fase de fabricación de la carrocería. La chapa de acero se suministra en forma de bobinas o en piezas prerrecortadas, las bobinas deben ser enderezadas mediante una serie de rodillos que eliminan la curvatura y a continuación se procede al recorte en cizallas automáticas para ser introducidas en la cadena de embutición. Cada recorte se introduce en un transfer que dispone de varias matrices en línea cada una encargada de realizar una secuencia en el conformado total de la pieza. Para conseguir una gran variedad de piezas que conforman la estructura de la carrocería únicamente se cambian las matrices de las prensas, debido al gran tamaño que estas ocupan y el coste de las mismas. El ensamblado de las piezas se realiza en instalaciones distribuidas en zonas diferenciadas:  Áreas o líneas dedicadas a los elementos amovibles de la carrocería (puertas, capos, portones, etc.)  Áreas dedicadas a elementos integrantes de la carrocería (plataforma, paneles, laterales, etc.)  Áreas dedicadas a la conformación y soldadura de la carrocería (basamento, techo, etc.)  Áreas de acabado donde se le añaden a la caja ya conformada los elementos separados y se finaliza el conjunto. La carrocería autoportante consta de cuerpos huecos de chapa y laminas que se unen en las instalaciones de soldadura continua o por puntos múltiples realizados por robots. La soldadura proporciona alta resistencia mecánica y buena transmisión de esfuerzos entre las piezas estructurales y las uniones atornilladas proporcionan una excelente reparabilidad de las piezas. En el ensamblado se emplean mayoritariamente las uniones soldadas por resistencia aunque también se emplean otros métodos:  Soldadura láser que solo puede ejecutarse en fabrica y se emplea generalmente para unir el techo a los montantes.  Piezas pegadas, cuyo objetivo consiste en que el acero que conforma cada pieza soporte niveles da carga equivalentes. Los adhesivos estructurales mas utilizados son de naturaleza epoxi debido a su excelente resistencia y buenas propiedades mecánicas y de aplicación.  Soldadura de latón, reduce los huecos de las chapas para aumentar la rigidez de la carrocería. Se realiza bajo atmósfera de gas protector. Materiales empleados en la fabricación de carrocerías.
  • 7. Las tendencias de los fabricantes de vehículos están dirigidas a conseguir una sustancial reducción de peso y un aumento de la seguridad pasiva. La incorporación de materiales nuevos como aleaciones, tratamientos térmicos, superficiales, etc. han posibilitado la consecución de materiales más resistentes y ligeros en la construcción tanto de órganos mecánicos como de las piezas de la carrocería. El empleo de materiales plásticos como la fibra de vidrio o de carbono se limita a piezas que no tienen una elevada responsabilidad estructural. Grupos materiales. Los grupos materiales más empleados en la fabricación de la carrocería son los elementos metálicos y materiales sintéticos. A su vez podemos distinguir los metales férreos y los no férreos, y entre los sintéticos termoplásticos y termoestables. Para mejorar las propiedades de ciertos metales puros se fabrican aleaciones que son mezclas de dos o más metales. Los metales férreos contienen como elemento principal el hierro y carbono en proporciones variables. Según este porcentaje se distinguen: hierro, acero y fundiciones. Los metales no férreos no llevan hierro en su composición. Los principales son: aluminio, magnesio, cobre, plomo, estaño, cinc, níquel, titanio, etc. Las principales aleaciones no férreas son:  Aluminio (ligeras)  Magnesio (ultra-ligeras)  níquel (superaleaciones)  Aleaciones de metales pesados (cobre, plomo, cinc, etc.) Aceros empleados en la fabricación de carrocerías del automóvil. Actualmente los espesores más habituales de material casi alcanzan 0,5mm pero sin llegar a ello. El espesor máximo puede alcanzar los 2mm pudiendo algunas piezas sobrepasar ligeramente este espesor. Los espesores menores se utilizan en los elementos que no tienen demasiada importancia estructural y que se utilizan en la parte exterior del vehículo. En una clasificación de tipo general de las chapas de acero se distinguen dos tipos: las comerciales y las finas. Las primeras son de una calidad de acabado no definida, por el contrario la chapa fina posee características de aptitud para la embutición, soldadura y acabado. Esta primera división de tipos de aceros podría aplicarse a aceros laminados en frió, cuyas calidades comerciales tienen un tratamiento sencillo para emplear doblador y embuticiones poco exigentes. La división que se pude hacer atendiendo a los grandes grupos de tipos de producto son:  Laminados en caliente.  Laminados en frió.  Recubiertos después de la laminación en frío. Tecnología USLAB. Uno de los proyectos más importantes se ha llevado a cabo con este tipo de acero (Ultralight Steel Auto Body), las claves del éxito de este proyecto se centran en todos los ámbitos del desarrollo de un nuevo vehículo con la mejor utilización de los materiales, sobre todo aceros ALE sumado a la ayuda de las tecnologías de soldadura láser, realización de Tailored Blanks, hidroconformado de tubos, hidroestampado, etc. El resultado es una carrocería más económica y un 25% más ligera de lo que hoy DIA es un modelo promedio y presenta una rigidez 80% mayor, prestando una mejor respuesta debido a la superior integridad estructural. Nuevas técnicas de fabricación.
  • 8. Entre las técnicas de fabricación destacan la utilización de tailored blank, la hidroconformación y el empleo de paneles tipo "sándwich". Tailored blank. Son componentes de una sola pieza con un diseño complejo que combina varios espesores, recubrimientos y distinto grado de resistencia. Los diferentes aceros se sueldan (generalmente por láser) para obtener un único desarrollo a partir del cual se conforma la pieza. Los componentes así fabricados tienen la capacidad de optimizar la función estructural asegurando un proceso de absorción más progresivo y efectivo. Hidroconformación. Se fabrican formas complejas en componentes tubulares de zonas en las que la carrocería forma una sección cerrada (como largueros, montantes, travesías, etc.). Se basa en la expansión de un tubo recto de chapa de acero en una matriz (molde) con la forma que se desea para el tubo. A continuación se introduce agua a alta presión consiguiéndose así la forma deseada en el tubo. Este procedimiento proporciona una gran estabilidad de dimensiones y un alto limite elástico de la pieza al realizarse en frió el proceso de trabajo. La hidroconformación consigue reducir el peso de dos formas distintas:  Se aprovecha al máximo el tamaño de la sección de la pieza al eliminar la necesidad de disponer de pestañas de soldadura.  El larguero hidroconformado del techo distribuye de una forma mucho más eficiente las cargas eliminando así las necesidades de material en otras zonas.  Sándwich de acero. Consiste en un núcleo termoplástico (generalmente polipropileno) en un sándwich de dos recubrimientos de acero de bajo espesor consiguiendo una notable disminución de peso, hasta un 50%, sin comprometer las prestaciones. COMENTARIO La fabricacion de un vehiculo como se vio toma muchos pasos debido a la complejidad que representa diseñar, calcular, analizar, todas las funciones que este llevara acabo. esperamos este articulo les haya sido de su interes, en otra oportunidad seguiremos ampliando sobre el mantenimiento automotriz.