SlideShare una empresa de Scribd logo
1 de 40
UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE ESTELÍ MECANICA DE SUELOS I Ing. Moisés Suárez.
OBJETIVOS DE LA ASIGNATURA   1. Proporcionar al estudiante una base de conocimientos que permita conocer el comportamiento de los suelos y saber utilizar los parámetros necesarios que la Mecánica de Suelos ofrece para la solución de problemas ingenieriles.    2. Que el estudiante conozca la realización de Pruebas de Laboratorio, (para la determinación de propiedades físicas y mecánicas de suelos), como un complemento importante de la Mecánica de Suelos I.
UNIDADES DE LA ASIGNATURA
BIBLIOGRAFÍA  Mecánica de Suelos. Juarez Badillo. (T I-III)  Mecánica de Suelos. Lambe-Whitman. Mecánica de Suelos. Crespo Villalaz  Apuntes de clase. http://civilgeek.blogspot.com
SISTEMA DE EVALUACIÓN Examen Parcial		25 Puntos Examen Final			25 Puntos Sistemáticos			50 Puntos  SISTEMÁTICOS (IP) Prueba Corta			5 Pts Tarea grupal			5 Pts Trabajo Investigativo		15 pts SISTEMATICOS (IIP) Prueba Corta			5 Pts Laboratorios de suelos	20 Pts
UNIDAD I: CONCEPTOS GENERALES Objetivo de la Unidad: Leer  y analizar  los principales fundamentos teóricos relacionados con la Mecánica  de Suelos I, para su posterior aplicación en problemas típicos ingenieriles.
CONTENIDOS Conceptos  básicos Origen y formación de los suelos. El suelo como material de construcción. 4.Tipos de suelos para fundaciones.
MECANICA DE SUELOS I En ingeniería, la mecánica de suelos es la aplicación de las leyes de la física y las ciencias naturales a los problemas que involucran las cargas impuestas a la capa superficial de la corteza terrestre. Esta ciencia fue fundada por Karl Von Terzaghi, a partir de 1925. Todas las obras de ingeniería civil se apoyan sobre el suelo de una u otra forma, y muchas de ellas, además, utilizan la tierra como elemento de construcción para terraplenes, diques y rellenos en general; por lo que, en consecuencia, su estabilidad y comportamiento funcional y estético estarán determinados, entre otros factores, por el desempeño del material de asiento situado.
Si se sobrepasan los límites de la capacidad resistente del suelo o si, aún sin llegar a ellos, las deformaciones son considerables, se pueden producir esfuerzos secundarios en los miembros estructurales, quizás no tomados en consideración en el diseño, productores a su vez de deformaciones importantes, fisuras, grietas, alabeo o desplomos que pueden producir, en casos extremos, el colapso de la obra o su inutilización y abandono. En consecuencia, las condiciones del suelo como elemento de sustentación y construcción y las del cimiento como dispositivo de transición entre aquel y la superestructura, han de ser siempre observadas.
CONCEPTO: El suelo es la capa de transformación de la corteza sólida terrestre, sometida a un constante cambio estacional y a un desarrollo peculiar. Aparece como resultado de un conjunto de procesos físicos, químicos y biológicos sobre el medio rocoso original (roca madre) denominados genéricamente meteorización. .  La roca es considerada como un agregado natural de partículas minerales unidas mediante grandes fuerzas cohesivas. Y se llama roca a todo material que suponga una alta resistencia, y suelo, contrariamente, a todo elemento natural compuesto de corpúsculos minerales separables por medios mecánicos de poca intensidad, como son la agitación en agua y la presión de los dedos de la mano.
ORIGEN Y FORMACION DE LOS SUELOS También puede definirse como la descomposición de la roca, en su lugar; sería un proceso estático por el cual la roca se rompe en pequeños fragmentos, se disuelve, se descompone, se forman nuevos minerales.  Los suelos son el resultado del proceso de meteorización. Los factores que condicionan las características de la meteorización y por lo tanto, la evolución de un suelo, son el clima, la topografía, los organismos vivos, la roca madre y el tiempo transcurrido. El resultado es la formación de un perfil de suelo, sucesión típica de capas horizontales que denota el conjunto de factores que han intervenido en su formación.  .
.  Proceso de formación del suelo
ESTRATOS DE SUELO
COMPOSICION Desde el punto de vista de su composición, el suelo es un material complejo compuesto por sólidos (materia mineral y materia orgánica), líquidos (sobre todo el agua, que en ocasiones, es un componente más de las rocas) y gases (aire y vapor de agua, esencialmente). A su vez, los gases y los líquidos llevan sustancias disueltas o en suspensión que pueden adherirse a la matriz sólida. La génesis del suelo es un proceso extremadamente lento. La formación de una capa de 30 cm de suelo puede durar de 1.000 a 10.000 años. Desde este punto de vista, se debe considerar el suelo como un recurso no renovable y por lo tanto un bien a proteger.
El suelo como material de construcción Como consecuencia de la actividad humana desarrollada a través de los años sobre la superficie terrestre, surge la necesidad de introducir un nuevo concepto, el suelo artificial, entendido como aporte de materiales sobre el propio suelo natural. La procedencia de los materiales puede ser diversa, diferenciando entre materiales naturales (arcillas, arenas, y gravas heterométricas) y materiales artificiales (escombros de construcción, residuos de diversos procesos de fabricación como las escorias, etc.) En el ámbito de la construcción los suelos se distinguen principalmente de acuerdo a su capacidad de soporte o cimentación. Los suelos rocosos  poseen altas resistencias  a acciones o solicitaciones de  carga por eso lo convierte en el suelo por excelencia para cimentación.
IMPORTANCIA DE UN ESTUDIO DE SUELO Hoy en día es cada vez más concluyente el hecho de que ningún ingeniero que sienta la responsabilidad técnica y moral de su profesión deja de efectuar un estudio de las condiciones del subsuelo cuando diseñan estructuras de cierta importancia. Ya que ello conlleva dos características que se conjugan: seguridad y economía.  No olvidemos: “Quien solo conoce la teoría de la Mecánica de Suelos y carece de práctica, puede ser un peligro público”, Dr. Karl V. Terzaghi (Fundador de la Mecánica de Suelos). Es por eso que en los proyectos de construcción se desprende la necesidad de contar, tanto en la etapa de proyecto, como durante la ejecución de la obra, con datos firmes, seguros y abundantes respecto al suelo que se está tratando. El conjunto de estos datos debe llevar al proyectista a adquirir una concepción razonablemente exacta de las propiedades físicas del suelo que hayan de ser consideradas en sus análisis.
Laboratorio de Suelos En realidad es en el laboratorio de Mecánica de Suelos en donde el proyectista ha de obtener los datos definitivos para su trabajo; Primero al realizar las pruebas de Clasificación ubicará en forma correcta la ubicación del problema que se le presenta y de esta ubicación podrá decidir como segunda fase de un trabajo, las pruebas más adecuadas que requiere su problema en particular, para definir las características de deformación y resistencia a los esfuerzos en el suelo donde se vaya a laborar.
Laboratorio de Suelos Pero para llegar en el laboratorio a unos resultados razonablemente dignos de crédito es preciso cubrir en forma adecuada una etapa previa e imprescindible: la obtención de muestras de suelo apropiadas para la realización de las correspondientes pruebas. Resultan así estrechamente ligados las dos importantes actividades, el muestreo de los suelos y la realización de las pruebas necesarias de laboratorio. El muestreo debe estar regido ya anticipadamente por los requerimientos impuestos a las muestras obtenidas por el programa de pruebas de laboratorio y, a su vez, el programa de pruebas debe estar definido en términos de la naturaleza de los problemas que se suponga puedan resultar del suelo presente en cada obra, el cual no puede conocerse sin efectuar previamente el correspondiente muestreo.
Equipo existente en un Laboratorio de Suelos Malla de distintas graduaciones para clasificar el suelo según el tamaño de sus partículas Equipo básico para determinar la densidad del suelo o dicho de otra forma para conocer el porcentaje de compactación del suelo donde se construirá.
PRUEBA DE PENETRACIÓN STANDART: Para determinar capacidad de soporte del suelo.
CONSTRUCCIONES Y CIMENTACIONES El programa exploratorio para la cimentación de una construcción depende de dos factores: 1. El peso de la construcción y otras fuerzas que actúan sobre ella. 2. El servicio de la construcción o fin para el que se va a construir.Si la estructura es ligera no es necesario mucho estudio, pero para estructuras pesadas es imprescindible explorar la profundidad mediante la toma de muestras con pozos y perforaciones, además conocer la geología local y regional
Identificación de los suelos en el campo Para un control adecuado de los suelos se necesita su perfecta identificación. La falta de tiempo o de medios hace que frecuentemente sea imposible realizar detenidos ensayos para poderlos clasificar. Así pues la habilidad de identificarlos en el campo por simple inspección visual y su examen al tacto es de gran importancia. Los suelos en la construcción pueden agruparse en 5 tipos básicos:La grava:Esta formada por grandes granos minerales con diámetros mayores de ¼ de pulgada. Las piezas grandes se llaman piedras, cuando son mayores a 10 pulgadas se llaman morrillos.La arena:Se componen de partículas minerales que varían aproximadamente desde ¼ de pulgada a 0.002 pulgadas en diámetros.
El limo: Consiste en partículas minerales naturales, mas pequeñas de 0.02 pulgadas de diámetro, las cuales carecen de plasticidad y tienen poca o ninguna resistencia en seco.La arcilla: Contienen partículas de tamaño coloidal que producen su plasticidad. La plasticidad y resistencia en seco están afectadas por la forma y la composición mineral de las partículas.La materia orgánica: Consiste en vegetales parcialmente descompuesto como sucede en la turba o en materia vegetal finalmente dividida, como sucede en los limos orgánicos y en las arcillas orgánicas
Suelos para fundaciones
UNIDAD II:  Propiedades Indices de los suelos Objetivo de la Unidad: Determinar las principales propiedades índice y de comprensibilidad de los suelos, para su posterior interpretación y  aplicación práctica de los resultados obtenidos.
Propiedades principales PROPIEDADES FÍSICAS DE LOS SUELOS: MINERALOGÍA: Composición mineralógica de las  partículas de suelo. RUGOSIDAD: Características de la superficie  de las partículas. FORMA: Área de las partículas diferente  para igual volumen. TAMAÑO: Cantidad de partículas para cada  tamaño.
Propiedades del sistema de Fase
Propiedades del sistema de Fase
Propiedades Índices de los suelos Las propiedades índice son algunas propiedades físicas características (o índice) que refieren a los resultados numéricos de ciertos ensayos, llamados pruebas de clasificación. (Estos ensayos constituyen la forma de dar una información precisa y detallada de un suelo).
Partículas constituyentes de los suelos Según el Sistema Unificado de Clasificación de Suelos (SUCS) en atención al tamaño de las partículas se dividen en: ,[object Object]
Arena: 4.75 a 0.075 mm
Finos (Limos y arcillas): < 0.075 mmSegún el Massachusetts Institute of Technology (MIT) se clasifican así: ,[object Object]
Arenas: 2 a 0.06 mm
Limos: 0.06 a 0.002 mm
Arcillas < 0.002 mm,[object Object]
GRANULOMETRÍA Es la determinación del rango de tamaños de las partículas presente en una muestra de suelo, se expresa como porcentaje de peso total seco. USO ,[object Object]
Filtros
Ascenso Capilar

Más contenido relacionado

La actualidad más candente

Capitulo5 propiedadeshidraulicasfluidos
Capitulo5 propiedadeshidraulicasfluidosCapitulo5 propiedadeshidraulicasfluidos
Capitulo5 propiedadeshidraulicasfluidosRaul Cabanillas
 
Solucionariodelosexamenesdemecanicadesuelosii
SolucionariodelosexamenesdemecanicadesuelosiiSolucionariodelosexamenesdemecanicadesuelosii
Solucionariodelosexamenesdemecanicadesuelosiioscar torres
 
NIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA I
NIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA INIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA I
NIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA IDesign Huanca
 
Presiones efectivas y las presiones totales
Presiones efectivas y  las presiones        totalesPresiones efectivas y  las presiones        totales
Presiones efectivas y las presiones totalesHeiner Ruiz Sanchez
 
Cimentaciones Profundas con Pilotes
Cimentaciones Profundas con PilotesCimentaciones Profundas con Pilotes
Cimentaciones Profundas con PilotesAlan H
 
Mecánica de Suelos I (2010)
Mecánica de Suelos I (2010)  Mecánica de Suelos I (2010)
Mecánica de Suelos I (2010) mosesic
 
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidadInforme de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidadCarlos Ismael Campos Guerra
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOSANDYSANTOSARRIERTA
 
ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850
ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850
ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850Carlo Clemente
 
C06 nivelacion topografica(metodos)
C06 nivelacion topografica(metodos)C06 nivelacion topografica(metodos)
C06 nivelacion topografica(metodos)Glenn Ortiz
 
Peso especifico o volumetrico de los agregados secos y sueltos
Peso especifico o volumetrico de los agregados secos y sueltosPeso especifico o volumetrico de los agregados secos y sueltos
Peso especifico o volumetrico de los agregados secos y sueltosUPAO
 

La actualidad más candente (20)

Trazo y replanteo curvas circulares - mut
Trazo y replanteo curvas circulares - mutTrazo y replanteo curvas circulares - mut
Trazo y replanteo curvas circulares - mut
 
Mecánica de suelos
Mecánica de suelosMecánica de suelos
Mecánica de suelos
 
Capitulo5 propiedadeshidraulicasfluidos
Capitulo5 propiedadeshidraulicasfluidosCapitulo5 propiedadeshidraulicasfluidos
Capitulo5 propiedadeshidraulicasfluidos
 
Compresion no confinada
Compresion no confinada Compresion no confinada
Compresion no confinada
 
Informe granulometria de los agregados
Informe granulometria de los agregadosInforme granulometria de los agregados
Informe granulometria de los agregados
 
Solucionariodelosexamenesdemecanicadesuelosii
SolucionariodelosexamenesdemecanicadesuelosiiSolucionariodelosexamenesdemecanicadesuelosii
Solucionariodelosexamenesdemecanicadesuelosii
 
NIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA I
NIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA INIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA I
NIVELACIÓN TOPOGRÁFICA - TOPOGRAFÍA I
 
Presiones efectivas y las presiones totales
Presiones efectivas y  las presiones        totalesPresiones efectivas y  las presiones        totales
Presiones efectivas y las presiones totales
 
Ingenieria geotecnica junio_2013
Ingenieria geotecnica junio_2013Ingenieria geotecnica junio_2013
Ingenieria geotecnica junio_2013
 
Curvas de nivel
Curvas de nivelCurvas de nivel
Curvas de nivel
 
Cimentaciones Profundas con Pilotes
Cimentaciones Profundas con PilotesCimentaciones Profundas con Pilotes
Cimentaciones Profundas con Pilotes
 
Mecánica de Suelos I (2010)
Mecánica de Suelos I (2010)  Mecánica de Suelos I (2010)
Mecánica de Suelos I (2010)
 
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidadInforme de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
 
APLICACIÓN DE ENSAYOS TRIAXIALES
APLICACIÓN DE ENSAYOS TRIAXIALES APLICACIÓN DE ENSAYOS TRIAXIALES
APLICACIÓN DE ENSAYOS TRIAXIALES
 
ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850
ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850
ENSAYO TRIAXIAL NTP 339.164/ ASTM D-2850
 
C06 nivelacion topografica(metodos)
C06 nivelacion topografica(metodos)C06 nivelacion topografica(metodos)
C06 nivelacion topografica(metodos)
 
Informe de-granulometria-de-los-agregados
Informe de-granulometria-de-los-agregadosInforme de-granulometria-de-los-agregados
Informe de-granulometria-de-los-agregados
 
CAPACIDAD DE CARGA-ING. DE CIMENTACIONES
CAPACIDAD DE CARGA-ING. DE CIMENTACIONESCAPACIDAD DE CARGA-ING. DE CIMENTACIONES
CAPACIDAD DE CARGA-ING. DE CIMENTACIONES
 
Peso especifico o volumetrico de los agregados secos y sueltos
Peso especifico o volumetrico de los agregados secos y sueltosPeso especifico o volumetrico de los agregados secos y sueltos
Peso especifico o volumetrico de los agregados secos y sueltos
 

Destacado

UNIDAD I y II
UNIDAD I y IIUNIDAD I y II
UNIDAD I y IImosesic
 
Conferencia de Apertura (MADERAS)
Conferencia de Apertura (MADERAS)Conferencia de Apertura (MADERAS)
Conferencia de Apertura (MADERAS)mosesic
 
Clase Sanitaria
Clase SanitariaClase Sanitaria
Clase Sanitariamosesic
 
Clase Ambiental
Clase AmbientalClase Ambiental
Clase Ambientalmosesic
 
CLASE UNIDAD I y II
CLASE UNIDAD I y IICLASE UNIDAD I y II
CLASE UNIDAD I y IImosesic
 
Clase 1 Civil
Clase 1 CivilClase 1 Civil
Clase 1 Civilmosesic
 
Ingeniería de tránsito 2010
Ingeniería de tránsito 2010Ingeniería de tránsito 2010
Ingeniería de tránsito 2010mosesic
 
Clase de concreto I
Clase de concreto IClase de concreto I
Clase de concreto Imosesic
 
Análisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armadoAnálisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armadoMiguel Sambrano
 

Destacado (10)

UNIDAD I y II
UNIDAD I y IIUNIDAD I y II
UNIDAD I y II
 
Conferencia de Apertura (MADERAS)
Conferencia de Apertura (MADERAS)Conferencia de Apertura (MADERAS)
Conferencia de Apertura (MADERAS)
 
Clase Sanitaria
Clase SanitariaClase Sanitaria
Clase Sanitaria
 
Clase Ambiental
Clase AmbientalClase Ambiental
Clase Ambiental
 
CLASE UNIDAD I y II
CLASE UNIDAD I y IICLASE UNIDAD I y II
CLASE UNIDAD I y II
 
Clase 1 Civil
Clase 1 CivilClase 1 Civil
Clase 1 Civil
 
Ingeniería de tránsito 2010
Ingeniería de tránsito 2010Ingeniería de tránsito 2010
Ingeniería de tránsito 2010
 
Clase de concreto I
Clase de concreto IClase de concreto I
Clase de concreto I
 
Análisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armadoAnálisis y diseño de Vigas de Concreto armado
Análisis y diseño de Vigas de Concreto armado
 
Concreto Armado
Concreto ArmadoConcreto Armado
Concreto Armado
 

Similar a Mecánica de Suelos I UNI-Estelí

fdocuments.ec_exposicion-mecanica-de-suelos.pptx
fdocuments.ec_exposicion-mecanica-de-suelos.pptxfdocuments.ec_exposicion-mecanica-de-suelos.pptx
fdocuments.ec_exposicion-mecanica-de-suelos.pptxLabLabingcoOaxaca
 
MECANICA DE SUELOS I - CLASE 1 - UPLA.pdf
MECANICA DE SUELOS I - CLASE 1 - UPLA.pdfMECANICA DE SUELOS I - CLASE 1 - UPLA.pdf
MECANICA DE SUELOS I - CLASE 1 - UPLA.pdfJhordinDelacruzvilla
 
La importancia de un estufio de suelo antes de la construccion.pdf
La importancia de un estufio de suelo antes de la construccion.pdfLa importancia de un estufio de suelo antes de la construccion.pdf
La importancia de un estufio de suelo antes de la construccion.pdfAlexZeaFIUNACH
 
Exposicion de suelos 2 (2)
Exposicion de suelos 2 (2)Exposicion de suelos 2 (2)
Exposicion de suelos 2 (2)keyla280
 
Teoria General
Teoria GeneralTeoria General
Teoria Generalangeldci
 
Intr inggoet
Intr inggoetIntr inggoet
Intr inggoetdfhfhj
 
Propiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelosPropiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelosalmendrasmito
 
Propiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelosPropiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelosgatuxx
 
SUELOS Y ROCAS
SUELOS Y ROCASSUELOS Y ROCAS
SUELOS Y ROCASDANJU100
 
Mécanica de suelos_-_mc2.pdf
Mécanica de suelos_-_mc2.pdfMécanica de suelos_-_mc2.pdf
Mécanica de suelos_-_mc2.pdfAdelmo Barboza
 
Geotecnia aplicada a obras de conservación de suelo y agua.
Geotecnia aplicada a obras de conservación de suelo y agua.Geotecnia aplicada a obras de conservación de suelo y agua.
Geotecnia aplicada a obras de conservación de suelo y agua.COLPOS
 
19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf
19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf
19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdfrosaangelicaportalat1
 

Similar a Mecánica de Suelos I UNI-Estelí (20)

fdocuments.ec_exposicion-mecanica-de-suelos.pptx
fdocuments.ec_exposicion-mecanica-de-suelos.pptxfdocuments.ec_exposicion-mecanica-de-suelos.pptx
fdocuments.ec_exposicion-mecanica-de-suelos.pptx
 
MECANICA DE SUELOS I - CLASE 1 - UPLA.pdf
MECANICA DE SUELOS I - CLASE 1 - UPLA.pdfMECANICA DE SUELOS I - CLASE 1 - UPLA.pdf
MECANICA DE SUELOS I - CLASE 1 - UPLA.pdf
 
La importancia de un estufio de suelo antes de la construccion.pdf
La importancia de un estufio de suelo antes de la construccion.pdfLa importancia de un estufio de suelo antes de la construccion.pdf
La importancia de un estufio de suelo antes de la construccion.pdf
 
Cimentaciones
CimentacionesCimentaciones
Cimentaciones
 
MECANICA DE SUELOS.pptx
MECANICA DE SUELOS.pptxMECANICA DE SUELOS.pptx
MECANICA DE SUELOS.pptx
 
Exposicion de suelos 2 (2)
Exposicion de suelos 2 (2)Exposicion de suelos 2 (2)
Exposicion de suelos 2 (2)
 
Cimentaciones
CimentacionesCimentaciones
Cimentaciones
 
Teoria General
Teoria GeneralTeoria General
Teoria General
 
Intr inggoet
Intr inggoetIntr inggoet
Intr inggoet
 
Propiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelosPropiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelos
 
Propiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelosPropiedades caracteristicas de los suelos
Propiedades caracteristicas de los suelos
 
SUELOS Y ROCAS
SUELOS Y ROCASSUELOS Y ROCAS
SUELOS Y ROCAS
 
Cimentaciones
CimentacionesCimentaciones
Cimentaciones
 
Geologia plicada ing. civil upig
Geologia plicada ing. civil   upigGeologia plicada ing. civil   upig
Geologia plicada ing. civil upig
 
Mecánica de suelos
Mecánica de suelosMecánica de suelos
Mecánica de suelos
 
Mécanica de suelos_-_mc2.pdf
Mécanica de suelos_-_mc2.pdfMécanica de suelos_-_mc2.pdf
Mécanica de suelos_-_mc2.pdf
 
Manual de carreteras 2
Manual de carreteras 2Manual de carreteras 2
Manual de carreteras 2
 
Manual de carreteras 2
Manual de carreteras 2Manual de carreteras 2
Manual de carreteras 2
 
Geotecnia aplicada a obras de conservación de suelo y agua.
Geotecnia aplicada a obras de conservación de suelo y agua.Geotecnia aplicada a obras de conservación de suelo y agua.
Geotecnia aplicada a obras de conservación de suelo y agua.
 
19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf
19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf
19-igeotecniaaplicadaaobrascoussafinal-160314200824.pdf
 

Último

TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptJavierHerrera662252
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son241514984
 
definicion segun autores de matemáticas educativa
definicion segun autores de matemáticas  educativadefinicion segun autores de matemáticas  educativa
definicion segun autores de matemáticas educativaAdrianaMartnez618894
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..RobertoGumucio2
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxMariaBurgos55
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMidwarHenryLOZAFLORE
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.241514949
 
Arenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxArenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxJOSEFERNANDOARENASCA
 
Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadMiguelAngelVillanuev48
 
dokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.pptdokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.pptMiguelAtencio10
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA241531640
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfSergioMendoza354770
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx241522327
 
R1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaR1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaarkananubis
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELmaryfer27m
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxaylincamaho
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxazmysanros90
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxAlexander López
 

Último (20)

TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son
 
definicion segun autores de matemáticas educativa
definicion segun autores de matemáticas  educativadefinicion segun autores de matemáticas  educativa
definicion segun autores de matemáticas educativa
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptx
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptx
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.
 
Arenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxArenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptx
 
Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidad
 
dokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.pptdokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.ppt
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx
 
R1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaR1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en mina
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFEL
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptx
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
 

Mecánica de Suelos I UNI-Estelí

  • 1. UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE ESTELÍ MECANICA DE SUELOS I Ing. Moisés Suárez.
  • 2. OBJETIVOS DE LA ASIGNATURA   1. Proporcionar al estudiante una base de conocimientos que permita conocer el comportamiento de los suelos y saber utilizar los parámetros necesarios que la Mecánica de Suelos ofrece para la solución de problemas ingenieriles.    2. Que el estudiante conozca la realización de Pruebas de Laboratorio, (para la determinación de propiedades físicas y mecánicas de suelos), como un complemento importante de la Mecánica de Suelos I.
  • 3. UNIDADES DE LA ASIGNATURA
  • 4. BIBLIOGRAFÍA Mecánica de Suelos. Juarez Badillo. (T I-III) Mecánica de Suelos. Lambe-Whitman. Mecánica de Suelos. Crespo Villalaz Apuntes de clase. http://civilgeek.blogspot.com
  • 5. SISTEMA DE EVALUACIÓN Examen Parcial 25 Puntos Examen Final 25 Puntos Sistemáticos 50 Puntos SISTEMÁTICOS (IP) Prueba Corta 5 Pts Tarea grupal 5 Pts Trabajo Investigativo 15 pts SISTEMATICOS (IIP) Prueba Corta 5 Pts Laboratorios de suelos 20 Pts
  • 6. UNIDAD I: CONCEPTOS GENERALES Objetivo de la Unidad: Leer y analizar los principales fundamentos teóricos relacionados con la Mecánica de Suelos I, para su posterior aplicación en problemas típicos ingenieriles.
  • 7. CONTENIDOS Conceptos básicos Origen y formación de los suelos. El suelo como material de construcción. 4.Tipos de suelos para fundaciones.
  • 8. MECANICA DE SUELOS I En ingeniería, la mecánica de suelos es la aplicación de las leyes de la física y las ciencias naturales a los problemas que involucran las cargas impuestas a la capa superficial de la corteza terrestre. Esta ciencia fue fundada por Karl Von Terzaghi, a partir de 1925. Todas las obras de ingeniería civil se apoyan sobre el suelo de una u otra forma, y muchas de ellas, además, utilizan la tierra como elemento de construcción para terraplenes, diques y rellenos en general; por lo que, en consecuencia, su estabilidad y comportamiento funcional y estético estarán determinados, entre otros factores, por el desempeño del material de asiento situado.
  • 9. Si se sobrepasan los límites de la capacidad resistente del suelo o si, aún sin llegar a ellos, las deformaciones son considerables, se pueden producir esfuerzos secundarios en los miembros estructurales, quizás no tomados en consideración en el diseño, productores a su vez de deformaciones importantes, fisuras, grietas, alabeo o desplomos que pueden producir, en casos extremos, el colapso de la obra o su inutilización y abandono. En consecuencia, las condiciones del suelo como elemento de sustentación y construcción y las del cimiento como dispositivo de transición entre aquel y la superestructura, han de ser siempre observadas.
  • 10. CONCEPTO: El suelo es la capa de transformación de la corteza sólida terrestre, sometida a un constante cambio estacional y a un desarrollo peculiar. Aparece como resultado de un conjunto de procesos físicos, químicos y biológicos sobre el medio rocoso original (roca madre) denominados genéricamente meteorización. . La roca es considerada como un agregado natural de partículas minerales unidas mediante grandes fuerzas cohesivas. Y se llama roca a todo material que suponga una alta resistencia, y suelo, contrariamente, a todo elemento natural compuesto de corpúsculos minerales separables por medios mecánicos de poca intensidad, como son la agitación en agua y la presión de los dedos de la mano.
  • 11. ORIGEN Y FORMACION DE LOS SUELOS También puede definirse como la descomposición de la roca, en su lugar; sería un proceso estático por el cual la roca se rompe en pequeños fragmentos, se disuelve, se descompone, se forman nuevos minerales. Los suelos son el resultado del proceso de meteorización. Los factores que condicionan las características de la meteorización y por lo tanto, la evolución de un suelo, son el clima, la topografía, los organismos vivos, la roca madre y el tiempo transcurrido. El resultado es la formación de un perfil de suelo, sucesión típica de capas horizontales que denota el conjunto de factores que han intervenido en su formación. .
  • 12. . Proceso de formación del suelo
  • 14. COMPOSICION Desde el punto de vista de su composición, el suelo es un material complejo compuesto por sólidos (materia mineral y materia orgánica), líquidos (sobre todo el agua, que en ocasiones, es un componente más de las rocas) y gases (aire y vapor de agua, esencialmente). A su vez, los gases y los líquidos llevan sustancias disueltas o en suspensión que pueden adherirse a la matriz sólida. La génesis del suelo es un proceso extremadamente lento. La formación de una capa de 30 cm de suelo puede durar de 1.000 a 10.000 años. Desde este punto de vista, se debe considerar el suelo como un recurso no renovable y por lo tanto un bien a proteger.
  • 15. El suelo como material de construcción Como consecuencia de la actividad humana desarrollada a través de los años sobre la superficie terrestre, surge la necesidad de introducir un nuevo concepto, el suelo artificial, entendido como aporte de materiales sobre el propio suelo natural. La procedencia de los materiales puede ser diversa, diferenciando entre materiales naturales (arcillas, arenas, y gravas heterométricas) y materiales artificiales (escombros de construcción, residuos de diversos procesos de fabricación como las escorias, etc.) En el ámbito de la construcción los suelos se distinguen principalmente de acuerdo a su capacidad de soporte o cimentación. Los suelos rocosos poseen altas resistencias a acciones o solicitaciones de carga por eso lo convierte en el suelo por excelencia para cimentación.
  • 16. IMPORTANCIA DE UN ESTUDIO DE SUELO Hoy en día es cada vez más concluyente el hecho de que ningún ingeniero que sienta la responsabilidad técnica y moral de su profesión deja de efectuar un estudio de las condiciones del subsuelo cuando diseñan estructuras de cierta importancia. Ya que ello conlleva dos características que se conjugan: seguridad y economía. No olvidemos: “Quien solo conoce la teoría de la Mecánica de Suelos y carece de práctica, puede ser un peligro público”, Dr. Karl V. Terzaghi (Fundador de la Mecánica de Suelos). Es por eso que en los proyectos de construcción se desprende la necesidad de contar, tanto en la etapa de proyecto, como durante la ejecución de la obra, con datos firmes, seguros y abundantes respecto al suelo que se está tratando. El conjunto de estos datos debe llevar al proyectista a adquirir una concepción razonablemente exacta de las propiedades físicas del suelo que hayan de ser consideradas en sus análisis.
  • 17. Laboratorio de Suelos En realidad es en el laboratorio de Mecánica de Suelos en donde el proyectista ha de obtener los datos definitivos para su trabajo; Primero al realizar las pruebas de Clasificación ubicará en forma correcta la ubicación del problema que se le presenta y de esta ubicación podrá decidir como segunda fase de un trabajo, las pruebas más adecuadas que requiere su problema en particular, para definir las características de deformación y resistencia a los esfuerzos en el suelo donde se vaya a laborar.
  • 18. Laboratorio de Suelos Pero para llegar en el laboratorio a unos resultados razonablemente dignos de crédito es preciso cubrir en forma adecuada una etapa previa e imprescindible: la obtención de muestras de suelo apropiadas para la realización de las correspondientes pruebas. Resultan así estrechamente ligados las dos importantes actividades, el muestreo de los suelos y la realización de las pruebas necesarias de laboratorio. El muestreo debe estar regido ya anticipadamente por los requerimientos impuestos a las muestras obtenidas por el programa de pruebas de laboratorio y, a su vez, el programa de pruebas debe estar definido en términos de la naturaleza de los problemas que se suponga puedan resultar del suelo presente en cada obra, el cual no puede conocerse sin efectuar previamente el correspondiente muestreo.
  • 19. Equipo existente en un Laboratorio de Suelos Malla de distintas graduaciones para clasificar el suelo según el tamaño de sus partículas Equipo básico para determinar la densidad del suelo o dicho de otra forma para conocer el porcentaje de compactación del suelo donde se construirá.
  • 20. PRUEBA DE PENETRACIÓN STANDART: Para determinar capacidad de soporte del suelo.
  • 21.
  • 22. CONSTRUCCIONES Y CIMENTACIONES El programa exploratorio para la cimentación de una construcción depende de dos factores: 1. El peso de la construcción y otras fuerzas que actúan sobre ella. 2. El servicio de la construcción o fin para el que se va a construir.Si la estructura es ligera no es necesario mucho estudio, pero para estructuras pesadas es imprescindible explorar la profundidad mediante la toma de muestras con pozos y perforaciones, además conocer la geología local y regional
  • 23. Identificación de los suelos en el campo Para un control adecuado de los suelos se necesita su perfecta identificación. La falta de tiempo o de medios hace que frecuentemente sea imposible realizar detenidos ensayos para poderlos clasificar. Así pues la habilidad de identificarlos en el campo por simple inspección visual y su examen al tacto es de gran importancia. Los suelos en la construcción pueden agruparse en 5 tipos básicos:La grava:Esta formada por grandes granos minerales con diámetros mayores de ¼ de pulgada. Las piezas grandes se llaman piedras, cuando son mayores a 10 pulgadas se llaman morrillos.La arena:Se componen de partículas minerales que varían aproximadamente desde ¼ de pulgada a 0.002 pulgadas en diámetros.
  • 24. El limo: Consiste en partículas minerales naturales, mas pequeñas de 0.02 pulgadas de diámetro, las cuales carecen de plasticidad y tienen poca o ninguna resistencia en seco.La arcilla: Contienen partículas de tamaño coloidal que producen su plasticidad. La plasticidad y resistencia en seco están afectadas por la forma y la composición mineral de las partículas.La materia orgánica: Consiste en vegetales parcialmente descompuesto como sucede en la turba o en materia vegetal finalmente dividida, como sucede en los limos orgánicos y en las arcillas orgánicas
  • 26. UNIDAD II: Propiedades Indices de los suelos Objetivo de la Unidad: Determinar las principales propiedades índice y de comprensibilidad de los suelos, para su posterior interpretación y aplicación práctica de los resultados obtenidos.
  • 27. Propiedades principales PROPIEDADES FÍSICAS DE LOS SUELOS: MINERALOGÍA: Composición mineralógica de las partículas de suelo. RUGOSIDAD: Características de la superficie de las partículas. FORMA: Área de las partículas diferente para igual volumen. TAMAÑO: Cantidad de partículas para cada tamaño.
  • 30. Propiedades Índices de los suelos Las propiedades índice son algunas propiedades físicas características (o índice) que refieren a los resultados numéricos de ciertos ensayos, llamados pruebas de clasificación. (Estos ensayos constituyen la forma de dar una información precisa y detallada de un suelo).
  • 31.
  • 32.
  • 33. Arena: 4.75 a 0.075 mm
  • 34.
  • 35. Arenas: 2 a 0.06 mm
  • 36. Limos: 0.06 a 0.002 mm
  • 37.
  • 38.
  • 41.
  • 42.
  • 43. Análisis Mecánico (Tamices) Consiste en agitar o hacer vibrar la muestra de suelo a través de una serie de mallas cuyas aberturas son progresivamente más pequeñas. VER VIDEO. La tabla muestra los tamaños estándares de tamices.
  • 44. EJEMPLO 1 Calcule los porcentajes de suelo retenido para cada tamiz y posteriormente grafique los resultados y señale si el suelo es bien o pobremente graduado.
  • 45. Ecuaciones a usar Cu: Coeficiente de uniformidad Si el Cu 1 ->Suelo uniforme (Pobremente Graduado) Si el Cu=6 Suelo graduado Cc: Coeficiente de curvatura, el cual indica la constancia de la pendiente de la curva. Si 1&lt;Cc&gt;3->Suelo bien graduado, fuera de este rango implica un suelo uniformemente graduado.
  • 46. Asignación en grupos de 4 Interacción del agua y el suelo. Estados de consistencia. (Traer video de la prueba de laboratorio y fotos de los equipos y materiales usados). 2.1Límites de Attenberg. 2.2Cartas de plasticidad. 3. Clasificación de los suelos por uso. 4.Identificación y descripción de los suelos. 5. Tipología de suelos del Departamento de Estelí y Nueva Segovia. (En atención al ámbito de la Ingeniería Civil). Forma y Fecha de Entrega : Impreso 12/12/09 Calificación: 10 Puntos (5 informe y 5 breve expo)