SlideShare una empresa de Scribd logo
1 de 6
Instituto Tecnológico de Mexicali
Ing. Química
Materia: Laboratorio Integral I
Practica #2: Lecho Empacado
Integrantes:
Blancas Wong Luis Adolfo
Blanchet Eduardo
Huizar Felipe de Jesus
Torres Tinoco Josua
Juarez Zavala Celina
Nombre del profesor:
Rivera Pazos Norman Edilberto
Objetivo: Determinar la caída de presión del agua a través de un lecho empacado y sin
relleno.
Objetivos específicos:
 Determinar el tipo de fluido
 Dependiendo del tipo de fluido, la ecuación para obtener la caída de presión se
modificara.
Introducción:
En estos tiempos se utilizan los lechos empacados en la industria, ya que este tipo de sistemas
da facilidad a darle uso en agrícola y filtración, solo por unos tantos que hay de aplicaciones.
El flujo a través del lecho empacado es relevante en los procesos industriales, por ejemplo en
aquellos procesos donde se necesitan caídas de presión, los procesos catalíticos,
Marco Teórico:
Los empaques incrementan la caída de presión, en el sistema y en consecuencia, cambios en
la dirección de la velocidad del fluido por el efecto de las fugas.
En un lecho de partículas con flujo ascendente, la circulación de un gas o un líquido a baja
velocidad no produce movimiento de las partículas. El fluido circula por los huecos del lecho
perdiendo presión. Esta caída de presión en un lecho estacionario de sólidos viene dada por la
ecuación de Ergun.
La resistencia al flujo de un fluido a través de los huecos de un lecho de sólidos es la resultante
del rozamiento total de todas las partículas del lecho.
Material:
•Bomba sumergible.
•Sellador
•Manguera de 5/8”
•Cuba hidroneumática
•Teflón
•Red
•Probeta graduada de 1L
•Conectores para mangueras
•Cronómetro
•Plastilina
Reactivo:
•Perlas de ebullición
•Agua
Procedimiento:
Se llenó la cuba hidroneumática con agua a una temperatura de 20ºC donde se
sumergió la bomba conectada a una manguera de 5/8”. Se juntaron dos mangueras
conectadas por el conector donde en una parte de esta, se colocaron perlas de
ebullición de 5mm de diámetro. Las perlas se aislaron evitando el movimiento de las
mismas con una red la cual fue sellada con plastilina. Al momento de juntar la sección
transversal con las otras mangueras, se usó el teflón para apretar unas con otras y
evitar la fuga de agua, ya que si esta existiese, la caída de presión sería errónea y por
consiguiente los cálculos también.
Cuando todo estuvo conectado, se encendió la bomba para así hacer que el
agua subiera por las mangueras tomando el tiempo de cuánto tardaría en subir y pasar
por el lecho empacado hasta llenar un litro de agua. De esta manera con la fórmula de
presión, la calculamos tanto con perlas como sin ellas.
Cálculos y Resultados:
Para los cálculos se tomaron en cuenta muchas cosas como la esfericidad, la
fricción, el número de Reynolds, épsilon, caudal, la velocidad, la altura, la temperatura
del agua, etc.
Para calcular la caída de presión utilizamos esta fórmula para flujo laminar.
( Ecuación de Burke-Plummer," válida para (DpGo/p (l - E)) > 1000)
Para aplicar la siguiente formula, calculamos los siguientes parámetros.
Calcular el diámetro de partícula:
Calcular épsilon:
Calcular Densidad:
Ya que el agua en el momento de hacer la práctica estaba a 20, utilizamos esta
densidad.
𝜌 𝐻2 𝑂 𝑎 20°𝐶 =988.49
Kg
m3
Calcular V0
Es la velocidad sin relleno y se calcula de la siguiente manera.
Calcular Esfericidad
Tomamos 5 perlas de ebullición y con un vernier obtuvimos el diámetro por cada perla
y sacamos un promedio.
Relleno Flujo (m3
/s) Velocidad (m/s) Caída de presión (Pa/m)
Empacado
Sin
Empacar Empacado Sin Empacar Empacado
Sin
Empacar
Perlasde
Ebullición
0.3669 0.6274
0.038666667 0.054333333 656134.837 79.78
Análisis:
En esta práctica en particular se mostraba que mientras hubiese una obstrucción al
flujo de agua a través de la manguera con relleno, la presión aumentaría gradualmente.
Si se deja el flujo libre de empaques la presión disminuiría y esto llevaría a que el flujo
fuera continuo y sin variación de P. Tuvimos algunas fugas de agua y de esta manera
pudimos llegar a la conclusión de que éstas afectan a la P de la manguera y del lecho.
Con el sin relleno se notaba que tardaba menos en llenarse 1L de agua a comparación
con el lecho empacado que medimos anteriormente; esto sucedía porque la cantidad
de perlas que se tenían en la sección transversal era de 150 perlas, lo cual obstruía en
gran medida el flujo.
Conclusión:
Podemos llegar a la conclusión de que la obstrucción del agua en el lecho empacado
hace que la presión aumenta exponencialmente comparado con el lecho sin relleno.
Mientras más empacado sea el lecho, más tardará en llenarse un litro de agua debido a
la carencia de espacio para que fluya el agua.
Bibliografía:
Fuente de cálculos, ecuaciones y suposiciones del lecho:
•Fenómenos de Transporte, R.B. Bird; W.E. Stewart; N.E. Lightfoot

Más contenido relacionado

La actualidad más candente

Practica 5 guia viscosidad y tension superficial version 2021
Practica 5 guia viscosidad y tension superficial  version 2021Practica 5 guia viscosidad y tension superficial  version 2021
Practica 5 guia viscosidad y tension superficial version 2021
JOEL738067
 
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTOEXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
Lucero Gallegos González
 
Calculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosCalculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidos
Higinio Flores
 

La actualidad más candente (20)

Practica 5 guia viscosidad y tension superficial version 2021
Practica 5 guia viscosidad y tension superficial  version 2021Practica 5 guia viscosidad y tension superficial  version 2021
Practica 5 guia viscosidad y tension superficial version 2021
 
Caidas de presion en lechos empacados
Caidas de presion en lechos empacadosCaidas de presion en lechos empacados
Caidas de presion en lechos empacados
 
P 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosP 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizados
 
Reporte practica 3 Caída de presión en lechos empacados
Reporte practica 3 Caída de presión en lechos empacadosReporte practica 3 Caída de presión en lechos empacados
Reporte practica 3 Caída de presión en lechos empacados
 
bm Lecho practica completa
bm Lecho practica completabm Lecho practica completa
bm Lecho practica completa
 
Reporte practica 1 mecanica de fluidos
Reporte practica 1 mecanica de fluidosReporte practica 1 mecanica de fluidos
Reporte practica 1 mecanica de fluidos
 
Flujo reptante (ley de stokes)
Flujo reptante (ley de stokes)Flujo reptante (ley de stokes)
Flujo reptante (ley de stokes)
 
INFORME 7
INFORME 7INFORME 7
INFORME 7
 
Tiempo de-escurrimiento-pdf
Tiempo de-escurrimiento-pdfTiempo de-escurrimiento-pdf
Tiempo de-escurrimiento-pdf
 
Practica 3 Puntos de inundacion y porosidad en lechos empacados
Practica 3 Puntos de inundacion y porosidad en lechos empacadosPractica 3 Puntos de inundacion y porosidad en lechos empacados
Practica 3 Puntos de inundacion y porosidad en lechos empacados
 
Final escurrimiento
Final escurrimientoFinal escurrimiento
Final escurrimiento
 
Informe de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosInforme de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidos
 
Práctica 2 Flujo Reptante (Ley de Stokes)
Práctica 2 Flujo Reptante (Ley de Stokes)Práctica 2 Flujo Reptante (Ley de Stokes)
Práctica 2 Flujo Reptante (Ley de Stokes)
 
Practica2
Practica2Practica2
Practica2
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
 
Práctica 5
Práctica 5Práctica 5
Práctica 5
 
Lechos empacados
Lechos empacadosLechos empacados
Lechos empacados
 
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTOEXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
 
Calculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosCalculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidos
 
Practica 7 Flujo reptante "Ley de Stoks"
Practica 7 Flujo reptante "Ley de Stoks"Practica 7 Flujo reptante "Ley de Stoks"
Practica 7 Flujo reptante "Ley de Stoks"
 

Destacado (14)

SEPARACION POR FLOTACION
SEPARACION POR FLOTACIONSEPARACION POR FLOTACION
SEPARACION POR FLOTACION
 
Práctica 1
Práctica 1Práctica 1
Práctica 1
 
Practica 4
Practica 4Practica 4
Practica 4
 
Práctica 2
Práctica 2Práctica 2
Práctica 2
 
Practica #2 Lecho empacado
Practica #2 Lecho empacadoPractica #2 Lecho empacado
Practica #2 Lecho empacado
 
Lab
LabLab
Lab
 
Practica 2
Practica 2Practica 2
Practica 2
 
Práctica 3
Práctica 3Práctica 3
Práctica 3
 
Práctica 3
Práctica 3Práctica 3
Práctica 3
 
Practica No.5
Practica No.5Practica No.5
Practica No.5
 
Practica 1
Practica 1Practica 1
Practica 1
 
Practica 3.-ecuacion-de-bernoulli
Practica 3.-ecuacion-de-bernoulliPractica 3.-ecuacion-de-bernoulli
Practica 3.-ecuacion-de-bernoulli
 
Laboratorio Integral I, Practica #4 Destilacion
Laboratorio Integral I, Practica #4 DestilacionLaboratorio Integral I, Practica #4 Destilacion
Laboratorio Integral I, Practica #4 Destilacion
 
Practica no-4
Practica no-4Practica no-4
Practica no-4
 

Similar a Practica 2

Lab. inte. i practica #4-columna-empacada
Lab. inte. i practica #4-columna-empacadaLab. inte. i practica #4-columna-empacada
Lab. inte. i practica #4-columna-empacada
jricardo001
 
Laboratorio 2 -_reynolds_y_vertederos fluidos
Laboratorio 2 -_reynolds_y_vertederos fluidosLaboratorio 2 -_reynolds_y_vertederos fluidos
Laboratorio 2 -_reynolds_y_vertederos fluidos
rudychuchon
 
Practica 3 laminar o turbulento.
Practica 3 laminar o turbulento.Practica 3 laminar o turbulento.
Practica 3 laminar o turbulento.
Alan Romero
 
Lab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bombaLab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bomba
jricardo001
 

Similar a Practica 2 (20)

Tuberia con empaque
Tuberia con empaqueTuberia con empaque
Tuberia con empaque
 
Lab. inte. i practica #4-columna-empacada
Lab. inte. i practica #4-columna-empacadaLab. inte. i practica #4-columna-empacada
Lab. inte. i practica #4-columna-empacada
 
Reporte practica 11 Mesa Hidrodinamica
Reporte practica 11 Mesa HidrodinamicaReporte practica 11 Mesa Hidrodinamica
Reporte practica 11 Mesa Hidrodinamica
 
Trespracticas (1)
Trespracticas (1)Trespracticas (1)
Trespracticas (1)
 
Reporte practica 11 Mesa Hidrodinamica
Reporte practica 11 Mesa HidrodinamicaReporte practica 11 Mesa Hidrodinamica
Reporte practica 11 Mesa Hidrodinamica
 
1. Hidrodinámica
1. Hidrodinámica1. Hidrodinámica
1. Hidrodinámica
 
Practica 2
Practica 2Practica 2
Practica 2
 
Laboratorio 2 -_reynolds_y_vertederos fluidos
Laboratorio 2 -_reynolds_y_vertederos fluidosLaboratorio 2 -_reynolds_y_vertederos fluidos
Laboratorio 2 -_reynolds_y_vertederos fluidos
 
Practica 3 laminar o turbulento.
Practica 3 laminar o turbulento.Practica 3 laminar o turbulento.
Practica 3 laminar o turbulento.
 
Lab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bombaLab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bomba
 
Práctica no.4
Práctica no.4Práctica no.4
Práctica no.4
 
Lab. int. i, pract. 4
Lab. int. i, pract. 4Lab. int. i, pract. 4
Lab. int. i, pract. 4
 
Permeabilidad
PermeabilidadPermeabilidad
Permeabilidad
 
Lab 7 fluidos
Lab 7   fluidosLab 7   fluidos
Lab 7 fluidos
 
Lechos empacados bnbn
Lechos empacados bnbnLechos empacados bnbn
Lechos empacados bnbn
 
Lechos empacados bn
Lechos empacados bnLechos empacados bn
Lechos empacados bn
 
Practica#5 lechos empacados
Practica#5  lechos empacadosPractica#5  lechos empacados
Practica#5 lechos empacados
 
Hidrodinámica 1
Hidrodinámica 1Hidrodinámica 1
Hidrodinámica 1
 
Pérdida de energía en tuberías y accesorios
Pérdida de energía en tuberías y accesoriosPérdida de energía en tuberías y accesorios
Pérdida de energía en tuberías y accesorios
 
Practica n-03-de-mecanica-de-fluido
Practica n-03-de-mecanica-de-fluidoPractica n-03-de-mecanica-de-fluido
Practica n-03-de-mecanica-de-fluido
 

Más de Luis Blancas Wong (20)

Practica #12
Practica #12Practica #12
Practica #12
 
Practica 11
Practica 11Practica 11
Practica 11
 
Practica #9
Practica #9Practica #9
Practica #9
 
Practica #10
Practica #10Practica #10
Practica #10
 
Practica #8
Practica #8Practica #8
Practica #8
 
Practica #6
Practica #6Practica #6
Practica #6
 
Presentación1
Presentación1Presentación1
Presentación1
 
Pruebas de-hipotesis-equipo
Pruebas de-hipotesis-equipoPruebas de-hipotesis-equipo
Pruebas de-hipotesis-equipo
 
Encuesta (1)
Encuesta (1)Encuesta (1)
Encuesta (1)
 
Mt 2
Mt 2Mt 2
Mt 2
 
Celda solar 2
Celda solar 2Celda solar 2
Celda solar 2
 
Celda solar 1
Celda solar 1Celda solar 1
Celda solar 1
 
Analisis
AnalisisAnalisis
Analisis
 
Unidad 1 mt
Unidad 1 mtUnidad 1 mt
Unidad 1 mt
 
Adeee
AdeeeAdeee
Adeee
 
Unidad 1 mt
Unidad 1 mtUnidad 1 mt
Unidad 1 mt
 
Analisis de datos experimentales.
Analisis de datos experimentales.Analisis de datos experimentales.
Analisis de datos experimentales.
 
Unidad 1 mt
Unidad 1 mtUnidad 1 mt
Unidad 1 mt
 
Diagrama S
Diagrama SDiagrama S
Diagrama S
 
3
33
3
 

Último

SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALSESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
EdwinC23
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
evercoyla
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
gustavoiashalom
 

Último (20)

Determinación de espacios en la instalación
Determinación de espacios en la instalaciónDeterminación de espacios en la instalación
Determinación de espacios en la instalación
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo process
 
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALSESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxEFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
 
Desigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdfDesigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdf
 
Cereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. CerealesCereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. Cereales
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
 
Suelo, tratamiento saneamiento y mejoramiento
Suelo, tratamiento saneamiento y mejoramientoSuelo, tratamiento saneamiento y mejoramiento
Suelo, tratamiento saneamiento y mejoramiento
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptx
 
PostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCDPostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCD
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 

Practica 2

  • 1. Instituto Tecnológico de Mexicali Ing. Química Materia: Laboratorio Integral I Practica #2: Lecho Empacado Integrantes: Blancas Wong Luis Adolfo Blanchet Eduardo Huizar Felipe de Jesus Torres Tinoco Josua Juarez Zavala Celina Nombre del profesor: Rivera Pazos Norman Edilberto
  • 2. Objetivo: Determinar la caída de presión del agua a través de un lecho empacado y sin relleno. Objetivos específicos:  Determinar el tipo de fluido  Dependiendo del tipo de fluido, la ecuación para obtener la caída de presión se modificara. Introducción: En estos tiempos se utilizan los lechos empacados en la industria, ya que este tipo de sistemas da facilidad a darle uso en agrícola y filtración, solo por unos tantos que hay de aplicaciones. El flujo a través del lecho empacado es relevante en los procesos industriales, por ejemplo en aquellos procesos donde se necesitan caídas de presión, los procesos catalíticos, Marco Teórico: Los empaques incrementan la caída de presión, en el sistema y en consecuencia, cambios en la dirección de la velocidad del fluido por el efecto de las fugas. En un lecho de partículas con flujo ascendente, la circulación de un gas o un líquido a baja velocidad no produce movimiento de las partículas. El fluido circula por los huecos del lecho perdiendo presión. Esta caída de presión en un lecho estacionario de sólidos viene dada por la ecuación de Ergun. La resistencia al flujo de un fluido a través de los huecos de un lecho de sólidos es la resultante del rozamiento total de todas las partículas del lecho.
  • 3. Material: •Bomba sumergible. •Sellador •Manguera de 5/8” •Cuba hidroneumática •Teflón •Red •Probeta graduada de 1L •Conectores para mangueras •Cronómetro •Plastilina Reactivo: •Perlas de ebullición •Agua Procedimiento: Se llenó la cuba hidroneumática con agua a una temperatura de 20ºC donde se sumergió la bomba conectada a una manguera de 5/8”. Se juntaron dos mangueras conectadas por el conector donde en una parte de esta, se colocaron perlas de ebullición de 5mm de diámetro. Las perlas se aislaron evitando el movimiento de las mismas con una red la cual fue sellada con plastilina. Al momento de juntar la sección transversal con las otras mangueras, se usó el teflón para apretar unas con otras y evitar la fuga de agua, ya que si esta existiese, la caída de presión sería errónea y por consiguiente los cálculos también. Cuando todo estuvo conectado, se encendió la bomba para así hacer que el agua subiera por las mangueras tomando el tiempo de cuánto tardaría en subir y pasar por el lecho empacado hasta llenar un litro de agua. De esta manera con la fórmula de presión, la calculamos tanto con perlas como sin ellas.
  • 4. Cálculos y Resultados: Para los cálculos se tomaron en cuenta muchas cosas como la esfericidad, la fricción, el número de Reynolds, épsilon, caudal, la velocidad, la altura, la temperatura del agua, etc. Para calcular la caída de presión utilizamos esta fórmula para flujo laminar. ( Ecuación de Burke-Plummer," válida para (DpGo/p (l - E)) > 1000) Para aplicar la siguiente formula, calculamos los siguientes parámetros. Calcular el diámetro de partícula: Calcular épsilon: Calcular Densidad: Ya que el agua en el momento de hacer la práctica estaba a 20, utilizamos esta densidad. 𝜌 𝐻2 𝑂 𝑎 20°𝐶 =988.49 Kg m3
  • 5. Calcular V0 Es la velocidad sin relleno y se calcula de la siguiente manera. Calcular Esfericidad Tomamos 5 perlas de ebullición y con un vernier obtuvimos el diámetro por cada perla y sacamos un promedio. Relleno Flujo (m3 /s) Velocidad (m/s) Caída de presión (Pa/m) Empacado Sin Empacar Empacado Sin Empacar Empacado Sin Empacar Perlasde Ebullición 0.3669 0.6274 0.038666667 0.054333333 656134.837 79.78 Análisis: En esta práctica en particular se mostraba que mientras hubiese una obstrucción al flujo de agua a través de la manguera con relleno, la presión aumentaría gradualmente. Si se deja el flujo libre de empaques la presión disminuiría y esto llevaría a que el flujo fuera continuo y sin variación de P. Tuvimos algunas fugas de agua y de esta manera pudimos llegar a la conclusión de que éstas afectan a la P de la manguera y del lecho. Con el sin relleno se notaba que tardaba menos en llenarse 1L de agua a comparación con el lecho empacado que medimos anteriormente; esto sucedía porque la cantidad de perlas que se tenían en la sección transversal era de 150 perlas, lo cual obstruía en gran medida el flujo.
  • 6. Conclusión: Podemos llegar a la conclusión de que la obstrucción del agua en el lecho empacado hace que la presión aumenta exponencialmente comparado con el lecho sin relleno. Mientras más empacado sea el lecho, más tardará en llenarse un litro de agua debido a la carencia de espacio para que fluya el agua. Bibliografía: Fuente de cálculos, ecuaciones y suposiciones del lecho: •Fenómenos de Transporte, R.B. Bird; W.E. Stewart; N.E. Lightfoot