Conversiones entre sistemas
numéricos
Extracción de potencias.
Para números con decimales
Este método consiste en tres pasos
Primero elaborar una tabla de potencias de la base a la cual se va a
convertir el número decimal.
Segundo restar sucesivamente al numero en base diez la potencia igual
o próxima menor hasta que la diferencia sea igual a cero.
Tercer con las potencias utilizadas en la resta formar el numero.
Ejemplo 1 convertir un numero decimal a binario
25.5(10) → N(2)
2-2 .25
2-1 .5
20 1
21 2
22 4
23 8
24 16
25 32
1.- Tabla de potencias
En donde el rango de valores asignado a la
tabla para efectuar la resta deberá cubrir de
un valor menor a 0.5 que representa la parte
mas pequeña de numero 25.5 la potencia
requerida es 2-2 = 0.25 y un valor mayor a 25
como 25 = 32.
25.5(10) → N(2)
2-2 .25
2-1 .5
20 1
21 2
22 4
23 8
24 16
25 32
1.- Tabla de potencias
25.5
2.- Restar sucesivamente
16.0 24
9.5
8.0 23
1.5
1.0 20
0.5
0.5 2-1
0.0
25.5(10) → N(2)
2-2 .25
2-1 .5
20 1
21 2
22 4
23 8
24 16
25 32
1.- Tabla de potencias 2.- Restar sucesivamente 3.- Formar el numero
4 3 2 1 0 -1
1 1 0 0 1 1
25.5(10)=11001.1(2
)
25.5
16.0 24
9.5
8.0 23
1.5
1.0 20
0.5
0.5 2-1
0.0
Ejemplo 2: 25.5(10) → N(8)
8-1 .125
80 1
81 8
82 64
1.- Tabla de potencias
25.5
2.- Restar sucesivamente
24.0 3 veces 81
1.5
1.0 80
0.5
0.5 4 veces 8-1
0.0
Ejemplo 2: 25.5(10) → N(8)
8-1 .125
80 1
81 8
82 64
1.- Tabla de potencias
25.5
2.- Restar sucesivamente
24.0 3 veces 81
1.5
1.0 80
0.5
0.5 4 veces 8-1
0.0
3.- Formar el numero
1 0 -1
3 1
25.5(10)=31.4(8)
4
Ejemplo 3: 27.5(10) → N(16)
16-1 .0625
160 1
161 16
162 256
1.- Tabla de potencias
Ejemplo 3: 27.5(10) → N(16)
16-1 .0625
160 1
161 16
162 256
1.- Tabla de potencias
27.5
2.- Restar sucesivamente
16.0 161
11.5
11.0 11 veces 160
0.5
0.5 8 veces 16-1
0.0
Ejemplo 3 27.5(10) → N(16)
16-1 .0625
160 1
161 16
162 256
1.- Tabla de potencias
27.5
2.- Restar sucesivamente
16.0 161
11.5
11.0 11 veces 160
0.5
0.5 8 veces 16-1
0.0
3.- Formar el numero
1 0 -1
1 B
27.5(10)=1B.8(16)
8
Ejemplo 4: 16.5(10) → N(16)
16-1 .0625
160 1
161 16
162 256
1.- Tabla de potencias
16.5
2.- Restar sucesivamente
16.0 161
0.5
0.5 8 veces 16-1
0.0
3.- Formar el numero
1 0 -1
1 0
16.5(10)=10.8(16)
8
Realice la siguiente Actividad
27.6(10) → N(5)
5-1 .2
50 1
51 5
52 25
1.- Tabla de potencias 2.- Restar sucesivamente 3.- Formar el numero
2 1 0 -1
1 2
27.6(10)=102.3(5)
30
Conversiones entre sistemas
numéricos
Residuos
Este método consiste en dividir sucesivamente el
numero decimal entre la base a la que se desee
convertir hasta que el cociente sea menor que la
base.
El numero equivalente se forma con el ultimo
cociente y los residuos.
N(10) → N(X)
Ejemplo 1:
convertir un numero decimal a binario
35 (10) → N(2)
35 2
171LSB 2
81 2
40 2
20 2
1
0 MSB
100011(2)
Ejemplo 2
convertir un numero decimal a octal
85 (10) → N(8)
85 8
105LSD 8
1
2
MSD
125(8)
Ejemplo 3
convertir un numero decimal a Hexadecimal
46 (10) → N(16)
46 16
214LSD
MSD
2E(16)
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Ejemplo 4
convertir un numero decimal a base 5
47 (10) → N(5)
47 5
92LSD
MSD
142(5)
5
1
4
Ejemplo 5
convertir un numero decimal a base 7
47 (10) → N(7)
65(7)
Realice la siguiente Actividad
47 (8) → N(16)
27(16)
N(x) → N(10) Multiplicar por la base y sumar
N(10) → N(X) Residuos
Clase del Miércoles
Resumen de Sistemas Numéricos
Múltiplo en potencia
La relación que existe entre la base dos y la
base ocho es de 3 ya que 23 = 8.
de la misma forma entre la base dos y el
Hexadecimal es de 4 ya que 24 = 16.
N(2) ↔ N(8) R=3
N(2) ↔ N(16) R=4
Ejemplo 1
Conversión de N(2) → N(8)
1 0 1 1 0 1 0 1(2) → N(8)
Separe de en grupos de tres bits iniciando con
la de menor peso, como lo indica la figura.
N(2) ↔ N(8) R=3 23=8
Ejemplo 1
Conversión de N(2) → N(8)
10110101(2) → N(8)
De el valor de 1 2 y 4 a cada digito correspondiente
como lo muestra la figura.
1 0 1 1 0 1 0 1
12412412
Conversión de N(2) → N(8)
10110101(2) → N(8)
Obtenga el valor de la suma de los tres bits tomando en
cuenta solo los unos.
2 1 4 2 1 4 2 1
1 0 1 1 0 1 0 1
562
10110101(2)=265(8)
1010000101(2)= 1205(8)
Realice la siguiente Actividad
convertir un número binario a octal
1010000101 (2)→ N(8)
Conversión de N(8) → N(2)
603(8) → N(2)
Cada Digito del
octal tiene que
representarse
por 3 Bits
6 0 3
22 21 20
4 2 1
Conversión de N(8) → N(2)
603(8) → N(2)
Cada Digito del
octal tiene que
representarse
por 3 Bits
6 0 3
22 21 20
4 2 1
Conversión de N(8) → N(2)
603(8) → N(2)
Cada Digito del
octal tiene que
representarse
por 3 Bits
6 0 3
1 1 022 21 20
4 2 1
Conversión de N(8) → N(2)
603(8) → N(2)
Cada Digito del
octal tiene que
representarse
por 3 Bits
6 0 3
1 1 0 0 0 022 21 20
4 2 1
Conversión de N(8) → N(2)
603(8) → N(2)
Cada Digito del
octal tiene que
representarse
por 3 Bits
6 0 3
1 1 0 0 0 0 0 1 122 21 20
4 2 1
603(8)=110000011(2)
4172(8)= 100001111010(2)
Realice la siguiente Actividad
convertir un número octal a binario
4172 (8)→ N(2)
22 21 20
4 2 1
Conversión de N(2) → N(16)
ejemplo 10110101(2) → N(16)
Separe de en grupos de cuatro bits iniciando con la
de menor peso, como lo indica la figura.
1 0 1 1 0 1 0 1
Conversión de N(2) → N(16)
ejemplo 10110101(2) → N(16)
Separe de en grupos de cuatro bits iniciando con la
de menor peso, como lo indica la figura.
1 0 1 1 0 1 0 1
Conversión de N(2) → N(16)
ejemplo 10110101(2) → N(16)
De el valor de 1, 2, 4 y 8 a cada digito
correspondiente como lo muestra la figura.
1 0 1 1 0 1 0 1
12481248
Obtenga el valor de la suma de los cuatro
bits tomando en cuenta solo los unos.
8 4 2 1 8 4 2 1
1 0 1 1 0 1 0 1
8 4 2 1 8 4 2 1
1 0 1 1 0 1 0 1
5
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Conversión de N(2) → N(16)
ejemplo 10110101(2) → N(16)
10110101(2) → B5(16)
8 4 2 1 8 4 2 1
1 0 1 1 0 1 0 1
B 5
10101100(2)= AC(16)
Realice la siguiente Actividad
convertir un número Binario a Hexadecimal
10101100 (2)→ N(16)
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Conversión de N(16) → N(2)
2DF(16) → N(2)
Cada Digito del Hexadecimal tiene
que representarse por 4 Bits
23 22 21 20
8 4 2 1
2 D F
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Conversión de N(16) → N(2)
2DF(16) → N(2)
Cada Digito del Hexadecimal tiene
que representarse por 4 Bits
23 22 21 20
8 4 2 1
2 D F
0 0 1 0
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Conversión de N(16) → N(2)
2DF(16) → N(2)
Cada Digito del Hexadecimal tiene
que representarse por 4 Bits
23 22 21 20
8 4 2 1
2 D F
0 0 1 0 1 1 0 1
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Conversión de N(16) → N(2)
2DF(16) → N(2)
Cada Digito del Hexadecimal tiene
que representarse por 4 Bits
23 22 21 20
8 4 2 1
2 D F
0 0 1 0 1 1 0 1 1 1 1 1
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
Conversión de N(16) → N(2)
2DF(16) → N(2)
Cada Digito del Hexadecimal tiene que representarse
por 4 Bits
2DF(16) → 1011011111(2)
5BC(16)= 10110111100(2)
Realice la siguiente Actividad
convertir un número Hexadecimal a Binario
5BC (16)→ N(2)
A = 10
B = 11
C = 12
D = 13
E = 14
F = 15
23 22 21 20
8 4 2 1
Conversiones entre sistemas
numéricos
Ejemplo 1 convertir un número binario N(2)
a N(8), N(10), N(16) y N(6)
Secuencia propuesta:
N(2) →N(8) Múltiplo (separar de 3 bits en 3 empezando del LSB)
N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB)
N(16) →N(10) Multiplicar por base y sumar
N(10) →N(6) Residuos
N(2) →N(8) Múltiplo (separar de 3 bits en 3 empezando del LSB)
N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB)
N(16) →N(10) Multiplicar por base y sumar
N(10) →N(6) Residuos
Ejemplo 2 convertir un número octal N(8)
a N(2), N(10), N(16) y N(5)
Ejemplo: convertir un número octal N(8)
a N(2), N(10), N(16)
Secuencia propuesta:
N(8) →N(2) Múltiplo (cada digito corresponde a de 3 bits )
N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB)
N(16) →N(10) Multiplicar por base y sumar
Ejemplo 2 convertir un número octal N(8)
a N(2), N(10), N(16)
Secuencia propuesta:
N(8) →N(2) Múltiplo (cada digito corresponde a de 3 bits )
N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB)
N(16) →N(10) Multiplicar por base y sumar

12. cambiosdebase1.ppt

  • 1.
  • 2.
    Extracción de potencias. Paranúmeros con decimales Este método consiste en tres pasos Primero elaborar una tabla de potencias de la base a la cual se va a convertir el número decimal. Segundo restar sucesivamente al numero en base diez la potencia igual o próxima menor hasta que la diferencia sea igual a cero. Tercer con las potencias utilizadas en la resta formar el numero.
  • 3.
    Ejemplo 1 convertirun numero decimal a binario 25.5(10) → N(2) 2-2 .25 2-1 .5 20 1 21 2 22 4 23 8 24 16 25 32 1.- Tabla de potencias En donde el rango de valores asignado a la tabla para efectuar la resta deberá cubrir de un valor menor a 0.5 que representa la parte mas pequeña de numero 25.5 la potencia requerida es 2-2 = 0.25 y un valor mayor a 25 como 25 = 32.
  • 4.
    25.5(10) → N(2) 2-2.25 2-1 .5 20 1 21 2 22 4 23 8 24 16 25 32 1.- Tabla de potencias 25.5 2.- Restar sucesivamente 16.0 24 9.5 8.0 23 1.5 1.0 20 0.5 0.5 2-1 0.0
  • 5.
    25.5(10) → N(2) 2-2.25 2-1 .5 20 1 21 2 22 4 23 8 24 16 25 32 1.- Tabla de potencias 2.- Restar sucesivamente 3.- Formar el numero 4 3 2 1 0 -1 1 1 0 0 1 1 25.5(10)=11001.1(2 ) 25.5 16.0 24 9.5 8.0 23 1.5 1.0 20 0.5 0.5 2-1 0.0
  • 6.
    Ejemplo 2: 25.5(10)→ N(8) 8-1 .125 80 1 81 8 82 64 1.- Tabla de potencias 25.5 2.- Restar sucesivamente 24.0 3 veces 81 1.5 1.0 80 0.5 0.5 4 veces 8-1 0.0
  • 7.
    Ejemplo 2: 25.5(10)→ N(8) 8-1 .125 80 1 81 8 82 64 1.- Tabla de potencias 25.5 2.- Restar sucesivamente 24.0 3 veces 81 1.5 1.0 80 0.5 0.5 4 veces 8-1 0.0 3.- Formar el numero 1 0 -1 3 1 25.5(10)=31.4(8) 4
  • 8.
    Ejemplo 3: 27.5(10)→ N(16) 16-1 .0625 160 1 161 16 162 256 1.- Tabla de potencias
  • 9.
    Ejemplo 3: 27.5(10)→ N(16) 16-1 .0625 160 1 161 16 162 256 1.- Tabla de potencias 27.5 2.- Restar sucesivamente 16.0 161 11.5 11.0 11 veces 160 0.5 0.5 8 veces 16-1 0.0
  • 10.
    Ejemplo 3 27.5(10)→ N(16) 16-1 .0625 160 1 161 16 162 256 1.- Tabla de potencias 27.5 2.- Restar sucesivamente 16.0 161 11.5 11.0 11 veces 160 0.5 0.5 8 veces 16-1 0.0 3.- Formar el numero 1 0 -1 1 B 27.5(10)=1B.8(16) 8
  • 11.
    Ejemplo 4: 16.5(10)→ N(16) 16-1 .0625 160 1 161 16 162 256 1.- Tabla de potencias 16.5 2.- Restar sucesivamente 16.0 161 0.5 0.5 8 veces 16-1 0.0 3.- Formar el numero 1 0 -1 1 0 16.5(10)=10.8(16) 8
  • 12.
    Realice la siguienteActividad 27.6(10) → N(5) 5-1 .2 50 1 51 5 52 25 1.- Tabla de potencias 2.- Restar sucesivamente 3.- Formar el numero 2 1 0 -1 1 2 27.6(10)=102.3(5) 30
  • 13.
  • 14.
    Residuos Este método consisteen dividir sucesivamente el numero decimal entre la base a la que se desee convertir hasta que el cociente sea menor que la base. El numero equivalente se forma con el ultimo cociente y los residuos. N(10) → N(X)
  • 15.
    Ejemplo 1: convertir unnumero decimal a binario 35 (10) → N(2) 35 2 171LSB 2 81 2 40 2 20 2 1 0 MSB 100011(2)
  • 16.
    Ejemplo 2 convertir unnumero decimal a octal 85 (10) → N(8) 85 8 105LSD 8 1 2 MSD 125(8)
  • 17.
    Ejemplo 3 convertir unnumero decimal a Hexadecimal 46 (10) → N(16) 46 16 214LSD MSD 2E(16) A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 18.
    Ejemplo 4 convertir unnumero decimal a base 5 47 (10) → N(5) 47 5 92LSD MSD 142(5) 5 1 4
  • 19.
    Ejemplo 5 convertir unnumero decimal a base 7 47 (10) → N(7) 65(7)
  • 20.
    Realice la siguienteActividad 47 (8) → N(16) 27(16) N(x) → N(10) Multiplicar por la base y sumar N(10) → N(X) Residuos
  • 21.
    Clase del Miércoles Resumende Sistemas Numéricos
  • 22.
    Múltiplo en potencia Larelación que existe entre la base dos y la base ocho es de 3 ya que 23 = 8. de la misma forma entre la base dos y el Hexadecimal es de 4 ya que 24 = 16. N(2) ↔ N(8) R=3 N(2) ↔ N(16) R=4
  • 23.
    Ejemplo 1 Conversión deN(2) → N(8) 1 0 1 1 0 1 0 1(2) → N(8) Separe de en grupos de tres bits iniciando con la de menor peso, como lo indica la figura. N(2) ↔ N(8) R=3 23=8
  • 24.
    Ejemplo 1 Conversión deN(2) → N(8) 10110101(2) → N(8) De el valor de 1 2 y 4 a cada digito correspondiente como lo muestra la figura. 1 0 1 1 0 1 0 1 12412412
  • 25.
    Conversión de N(2)→ N(8) 10110101(2) → N(8) Obtenga el valor de la suma de los tres bits tomando en cuenta solo los unos. 2 1 4 2 1 4 2 1 1 0 1 1 0 1 0 1 562 10110101(2)=265(8)
  • 26.
    1010000101(2)= 1205(8) Realice lasiguiente Actividad convertir un número binario a octal 1010000101 (2)→ N(8)
  • 27.
    Conversión de N(8)→ N(2) 603(8) → N(2) Cada Digito del octal tiene que representarse por 3 Bits 6 0 3 22 21 20 4 2 1
  • 28.
    Conversión de N(8)→ N(2) 603(8) → N(2) Cada Digito del octal tiene que representarse por 3 Bits 6 0 3 22 21 20 4 2 1
  • 29.
    Conversión de N(8)→ N(2) 603(8) → N(2) Cada Digito del octal tiene que representarse por 3 Bits 6 0 3 1 1 022 21 20 4 2 1
  • 30.
    Conversión de N(8)→ N(2) 603(8) → N(2) Cada Digito del octal tiene que representarse por 3 Bits 6 0 3 1 1 0 0 0 022 21 20 4 2 1
  • 31.
    Conversión de N(8)→ N(2) 603(8) → N(2) Cada Digito del octal tiene que representarse por 3 Bits 6 0 3 1 1 0 0 0 0 0 1 122 21 20 4 2 1 603(8)=110000011(2)
  • 32.
    4172(8)= 100001111010(2) Realice lasiguiente Actividad convertir un número octal a binario 4172 (8)→ N(2) 22 21 20 4 2 1
  • 33.
    Conversión de N(2)→ N(16) ejemplo 10110101(2) → N(16) Separe de en grupos de cuatro bits iniciando con la de menor peso, como lo indica la figura. 1 0 1 1 0 1 0 1
  • 34.
    Conversión de N(2)→ N(16) ejemplo 10110101(2) → N(16) Separe de en grupos de cuatro bits iniciando con la de menor peso, como lo indica la figura. 1 0 1 1 0 1 0 1
  • 35.
    Conversión de N(2)→ N(16) ejemplo 10110101(2) → N(16) De el valor de 1, 2, 4 y 8 a cada digito correspondiente como lo muestra la figura. 1 0 1 1 0 1 0 1 12481248
  • 36.
    Obtenga el valorde la suma de los cuatro bits tomando en cuenta solo los unos. 8 4 2 1 8 4 2 1 1 0 1 1 0 1 0 1
  • 37.
    8 4 21 8 4 2 1 1 0 1 1 0 1 0 1 5 A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 38.
    Conversión de N(2)→ N(16) ejemplo 10110101(2) → N(16) 10110101(2) → B5(16) 8 4 2 1 8 4 2 1 1 0 1 1 0 1 0 1 B 5
  • 39.
    10101100(2)= AC(16) Realice lasiguiente Actividad convertir un número Binario a Hexadecimal 10101100 (2)→ N(16) A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 40.
    Conversión de N(16)→ N(2) 2DF(16) → N(2) Cada Digito del Hexadecimal tiene que representarse por 4 Bits 23 22 21 20 8 4 2 1 2 D F A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 41.
    Conversión de N(16)→ N(2) 2DF(16) → N(2) Cada Digito del Hexadecimal tiene que representarse por 4 Bits 23 22 21 20 8 4 2 1 2 D F 0 0 1 0 A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 42.
    Conversión de N(16)→ N(2) 2DF(16) → N(2) Cada Digito del Hexadecimal tiene que representarse por 4 Bits 23 22 21 20 8 4 2 1 2 D F 0 0 1 0 1 1 0 1 A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 43.
    Conversión de N(16)→ N(2) 2DF(16) → N(2) Cada Digito del Hexadecimal tiene que representarse por 4 Bits 23 22 21 20 8 4 2 1 2 D F 0 0 1 0 1 1 0 1 1 1 1 1 A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
  • 44.
    Conversión de N(16)→ N(2) 2DF(16) → N(2) Cada Digito del Hexadecimal tiene que representarse por 4 Bits 2DF(16) → 1011011111(2)
  • 45.
    5BC(16)= 10110111100(2) Realice lasiguiente Actividad convertir un número Hexadecimal a Binario 5BC (16)→ N(2) A = 10 B = 11 C = 12 D = 13 E = 14 F = 15 23 22 21 20 8 4 2 1
  • 46.
  • 47.
    Ejemplo 1 convertirun número binario N(2) a N(8), N(10), N(16) y N(6) Secuencia propuesta: N(2) →N(8) Múltiplo (separar de 3 bits en 3 empezando del LSB) N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB) N(16) →N(10) Multiplicar por base y sumar N(10) →N(6) Residuos
  • 48.
    N(2) →N(8) Múltiplo(separar de 3 bits en 3 empezando del LSB) N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB) N(16) →N(10) Multiplicar por base y sumar N(10) →N(6) Residuos
  • 49.
    Ejemplo 2 convertirun número octal N(8) a N(2), N(10), N(16) y N(5)
  • 50.
    Ejemplo: convertir unnúmero octal N(8) a N(2), N(10), N(16) Secuencia propuesta: N(8) →N(2) Múltiplo (cada digito corresponde a de 3 bits ) N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB) N(16) →N(10) Multiplicar por base y sumar
  • 51.
    Ejemplo 2 convertirun número octal N(8) a N(2), N(10), N(16) Secuencia propuesta: N(8) →N(2) Múltiplo (cada digito corresponde a de 3 bits ) N(2) →N(16) Múltiplo (separar de 4 bits en 4 empezando del LSB) N(16) →N(10) Multiplicar por base y sumar