Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INDICE 
TITULO 
PAGINA 
INTRODUCCIÓN HISTÓRICA 
2 
CLASIFICACIÓN DE LOS TIPOS DE DIBUJOS TÉCNICOS 
4 
GEOMETRÍA PLANA - POLÍGONOS REGULARES 
Consideraciones generales. 
6 
Construcción de polígonos regulares dada la circunferencia circunscrita. 
7 
Construcción de polígonos regulares dados el lado del convexo, el lado del estrellado o la distancia entre caras. 
13 
GEOMETRÍA DESCRIPTIVA 
SISTEMAS DE REPRESENTACIÓN 
19 
NORMALIZACIÓN 
21 
Evolución histórica, normas DIN e ISO 
22 
Normas UNE españolas. 
23 
Clasificación de las normas. 
24 
FORMATOS NORMALIZADOS 
26 
LÍNEAS NORMALIZADAS 
30 
ESCALAS 
34 
REPRESENTACIÓN NORMALIZADA DE CUERPOS 
Obtención de las vistas de un objeto. 
37 
Elección de las vistas de un objeto, y vistas especiales. 
40 
Cortes, secciones y roturas. 
47 
LÍNEAS DE ROTURA EN LOS MATERIALES 
49 
Secciones 
50 
Roturas 
56 
Indicaciones convencionales de los materiales en las secciones 
60 
ACOTACIÓN 
Generalidades, elementos y clasificación de las cotas. 
63 
ACOTADO DE LOS DIBUJOS 
66 
Acotaciones de los dibujos 
68 
Normas especiales de acotación 
76 
NORMAS SOBRE LA NATURALEZA, CALIDAD Y FORMA DE LAS SUPERFICIES DE LAS PIEZAS 
86 
Grados de aspereza 
87 
Chaflanes y redondeados 
92 
Moleteado 
93 
Conicidad e inclinaciones 
94 
Fuentes consultadas: 
1
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
INTRODUCCIÓN HISTÓRICA 
INTRODUCCIÓN 
Desde sus orígenes, el hombre ha tratado de comunicarse mediante grafismos o dibujos. Las primeras representaciones que conocemos son las pinturas rupestres, en ellas no solo se intentaban representar la realidad que le rodeaba, animales, astros, al propio ser humano, etc., sino también sensaciones, como la alegría de las danzas, o la tensión de las cacerías. A lo largo de la historia, esta ansia de comunicarse mediante dibujos, ha evolucionado, dando lugar por un lado al dibujo artístico y por otro al dibujo técnico. Mientras el primero intenta comunicar ideas y sensaciones, basándose en la sugerencia y estimulando la imaginación del espectador, el dibujo técnico, tiene como fin, la representación de los objetos lo más exactamente posible, en forma y dimensiones. Hoy en día, se está produciendo una confluencia entre los objetivos del dibujo artístico y técnico. Esto es consecuencia de la utilización de los ordenadores en el dibujo técnico, con ellos se obtienen recreaciones virtuales en 3D, que si bien representan los objetos en verdadera magnitud y forma, también conllevan una fuerte carga de sugerencia para el espectador. 
Imagen generada con Autocad 
EL DIBUJO TÉCNICO EN LA ANTIGÜEDAD 
La primera manifestación del dibujo técnico, data del año 2450 antes de Cristo, en un dibujo de construcción que aparece esculpido en la estatua del rey sumerio Gudea, llamada El arquitecto, y que se encuentra en el museo del Louvre de París. En dicha escultura, de forma esquemática, se representan los planos de un edificio. Del año 1650 A.C. data el papiro de Ahmes. Este escriba egipcio, redactó, en un papiro de 33 por 548 cm., una exposición de contenido geométrico dividida en cinco partes que abarcan: la aritmética, la esteorotomía, la geometría y el cálculo de pirámides. En este papiro se llega a dar valor aproximado al numero p. En el año 600 A.C., encontramos a Tales, filósofo griego nacido en Mileto. Fue el fundador de la filosofía griega, y está considerado como uno de los Siete Sabios de Grecia. Tenía conocimientos en todas las ciencias, pero llegó a ser famoso por sus conocimientos de 
2
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
astronomía, después de predecir el eclipse de sol que ocurrió el 28 de mayo del 585 A.C.. Se dice de él que introdujo la geometría en Grecia, ciencia que aprendió en Egipto. Sus conocimientos, le sirvieron para descubrir importantes propiedades geométricas. Tales no dejó escritos; el conocimiento que se tiene de él, procede de lo que se cuenta en la metafísica de Aristóteles. Del mismo siglo que Tales, es Pitágoras, filósofo griego, cuyas doctrinas influyeron en Platón. Nacido en la isla de Samos, Pitágoras fue instruido en las enseñanzas de los primeros filósofos jonios, Tales de Mileto, Anaximandro y Anaxímedes. Fundó un movimiento con propósitos religiosos, políticos y filosóficos, conocido como pitagorismo. A dicha escuela se le atribuye el estudio y trazado de los tres primeros poliedros regulares: tetraedro, hexaedro y octaedro. Pero quizás su contribución más conocida en el campo de la geometría es el teorema de la hipotenusa, conocido como teorema de Pitágoras, que establece que "en un triángulo rectángulo, el cuadrado de la hipotenusa, es igual a la suma de los cuadrados de los catetos". En el año 300 A.C., encontramos a Euclides, matemático griego. Su obra principal "Elementos de geometría", es un extenso tratado de matemáticas en 13 volúmenes sobre materias tales como: geometría plana, magnitudes inconmensurables y geometría del espacio. Probablemente estudio en Atenas con discípulos de Platón. Enseñó geometría en Alejandría, y allí fundó una escuela de matemáticas. Arquímedes (287-212 A.C.), notable matemático e inventor griego, que escribió importantes obras sobre geometría plana y del espacio, aritmética y mecánica. Nació en Siracusa, Sicilia, y se educó en Alejandría, Egipto. Inventó formas de medir el área de figuras curvas, así como la superficie y el volumen de sólidos limitados por superficies curvas. Demostró que el volumen de una esfera es dos tercios del volumen del cilindro que la circunscribe. También elaboró un método para calcular una aproximación del valor de pi (p), la proporción entre el diámetro y la circunferencia de un circulo, y estableció que este número estaba en 3 10/70 y 3 10/71. Apolonio de Perga, matemático griego, llamado el "Gran Geómetra", que vivió durante los últimos años del siglo III y principios del siglo II A.C. Nació en Perga, Panfilia (hoy Turquía). Su mayor aportación a la geometría fue el estudio de las curvas cónicas, que reflejó en su Tratado de las cónicas, que en un principio estaba compuesto por ocho libros. 
EL DIBUJO TÉCNICO EN LA ERA MODERNA 
Es durante el Renacimiento, cuando las representaciones técnicas, adquieren una verdadera madurez, son el caso de los trabajos del arquitecto Brunelleschi, los dibujos de Leonardo de Vinci, y tantos otros. Pero no es, hasta bien entrado el siglo XVIII, cuando se produce un significativo avance en las representaciones técnicas. Uno de los grandes avances, se debe al matemático francés Gaspard Monge (1746- 1818). Nació en Beaune y estudió en las escuelas de Beaune y Lyón, y en la escuela militar de Mézieres. A los 16 años fue nombrado profesor de física en Lyón, cargo que ejerció hasta 1765. Tres años más tarde fue profesor de matemáticas y en 1771 profesor de física en Mézieres. Contribuyó a fundar la Escuela Politécnica en 1794, en la que dio clases de geometría descriptiva durante más de diez años. Es considerado el inventor de la geometría descriptiva. La geometría descriptiva es la que nos permite representar sobre una superficie bidimensional, las superficies tridimensionales de los objetos. Hoy en día existen diferentes sistemas de representación, que sirven a este fin, como la perspectiva cónica, el sistema de 
3
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
planos acotados, etc. pero quizás el más importante es el sistema diédrico, que fue desarrollado por Monge en su primera publicación en el año 1799. Finalmente cave mencionar al francés Jean Víctor Poncelet (1788-1867). A él se debe a introducción en la geometría del concepto de infinito, que ya había sido incluido en matemáticas. En la geometría de Poncelet, dos rectas, o se cortan o se cruzan, pero no pueden ser paralelas, ya que se cortarían en el infinito. El desarrollo de esta nueva geometría, que él denominó proyectiva, lo plasmó en su obra "Traité des propietés projectivas des figures" en 1822. La última gran aportación al dibujo técnico, que lo ha definido, tal y como hoy lo conocemos, ha sido la normalización. Podemos definirla como "el conjunto de reglas y preceptos aplicables al diseño y fabricación de ciertos productos". Si bien, ya las civilizaciones caldea y egipcia utilizaron este concepto para la fabricación de ladrillos y piedras, sometidos a unas dimensiones preestablecidas, es a finales del siglo XIX en plena Revolución Industrial, cuando se empezó a aplicar el concepto de norma, en la representación de planos y la fabricación de piezas. Pero fue durante la 1ª Guerra Mundial, ante la necesidad de abastecer a los ejércitos, y reparar los armamentos, cuando la normalización adquiere su impulso definitivo, con la creación en Alemania en 1917, del Comité Alemán de Normalización. 
CLASIFICACIÓN DE LOS TIPOS DE DIBUJOS TÉCNICOS 
Veremos en este apartado la clasificación de los distintos tipos de dibujos técnicos según la norma DIN 199 La norma DIN 199 clasifica los dibujos técnicos atendiendo a los siguientes criterios: - Objetivo del dibujo - Forma de confección del dibujo. - Contenido. - Destino. 
Clasificación de los dibujos según su objetivo: - Croquis: Representación a mano alzada respetando las proporciones de los objetos. - Dibujo: Representación a escala con todos los datos necesarios para definir el objeto. - Plano: Representación de los objetos en relación con su posición o la función que cumplen. 
- Gráficos, Diagramas y Ábacos: Representación gráfica de medidas, valores, de procesos de trabajo, etc. Mediante líneas o superficies. Sustituyen de forma clara y resumida a tablas numéricas, resultados de ensayos, procesos matemáticos, físicos, etc. 
4
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Clasificación de los dibujos según la forma de confección: - Dibujo a lápiz: Cualquiera de los dibujos anteriores realizados a lápiz. - Dibujo a tinta: Ídem, pero ejecutado a tinta. - Original: El dibujo realizado por primera vez y, en general, sobre papel traslúcido. - Reproducción: Copia de un dibujo original, obtenida por cualquier procedimiento. Constituyen los dibujos utilizados en la práctica diaria, pues los originales son normalmente conservados y archivados cuidadosamente, tomándose además las medidas de seguridad convenientes. 
Clasificación de los dibujos según su contenido: - Dibujo general o de conjunto: Representación de una máquina, instrumento, etc., en su totalidad. - Dibujo de despiece: Representación detallada e individual de cada uno de los elementos y piezas no normalizadas que constituyen un conjunto. - Dibujo de grupo: Representación de dos o más piezas, formando un subconjunto o unidad de construcción. - Dibujo de taller o complementario: Representación complementaria de un dibujo, con indicación de detalles auxiliares para simplificar representaciones repetidas. - Dibujo esquemático o esquema: Representación simbólica de los elementos de una máquina o instalación. 
Clasificación de los dibujos según su destino: - Dibujo de taller o de fabricación: Representación destinada a la fabricación de una pieza, conteniendo todos los datos necesarios para dicha fabricación. - Dibujo de mecanización: Representación de una pieza con los datos necesarios para efectuar ciertas operaciones del proceso de fabricación. Se utilizan en fabricaciones complejas, sustituyendo a los anteriores. - Dibujo de montaje: Representación que proporciona los datos necesarios para el montaje de los distintos subconjuntos y conjuntos que constituyen una máquina, instrumento, dispositivo, etc. - Dibujo de clases: Representación de objetos que sólo se diferencian en las dimensiones. - Dibujo de ofertas, de pedido, de recepción: Representaciones destinadas a las funciones mencionadas. 
5
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO CONSIDERACIONES GENERALES 
Un polígono se considera regular cuando tiene todos sus lados y ángulos iguales, y por tanto puede ser inscrito y circunscrito en una circunferencia. El centro de dicha circunferencia se denomina centro del polígono, y equidista de los vértices y lados del mismo. Se denomina ángulo central de un polígono regular el que tiene como vértice el centro del polígono, y sus lados pasan por dos vértices consecutivos. Su valor en grados resulta de dividir 360º entre el número de lados del polígono (ver figura). Se denomina ángulo interior, al formado por dos lados consecutivos. Su valor es igual a 180º, menos el valor del ángulo central correspondiente. 
Si unimos todos los vértices del polígono, de forma consecutiva, dando una sola vuelta a la circunferencia, el polígono obtenido se denomina convexo. Si la unión de los vértices se realiza, de forma que el polígono cierra después de dar varias vueltas a la circunferencia, se denomina estrellado. Se denomina falso estrellado aquel que resulta de construir varios polígonos convexos o estrellados iguales, girados un mismo ángulo, es el caso del falso estrellado del hexágono, compuesto por dos triángulos girados entre sí 60º. Para averiguar si un polígono tiene construcción de estrellados, y como unir los vértices, buscaremos los números enteros, menores que la mitad del número de lados del polígono, y de ellos los que sean primos respeto a dicho número de lados. Por ejemplo: para el octógono (8 lados), los números menores que la mitad de sus lados son el 3, el 2 y el 1, y de ellos, primos respecto a 8 solo tendremos el 3, por lo tanto podremos afirmar que el octógono tiene un único estrellado, que se obtendrá uniendo los vértices de 3 en 3 (ver figura). 
En un polígono regular convexo, se denomina apotema a la distancia del centro del polígono al punto medio de cada lado (ver figura). En un polígono regular convexo, se denomina perímetro a la suma de la longitud de todos sus lados. El área de un polígono regular convexo, es igual al producto del semiperímetro por la apotema. 
6
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
CONSTRUCCIONES DE POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA 
La construcción de polígonos inscritos en una circunferencia dada, se basa en la división de dicha circunferencia en un número partes iguales. En ocasiones, el trazado pasa por la obtención de la cuerda correspondiente a cada uno de esos arcos, es decir el lado del polígono, y otras ocasiones pasa por la obtención del ángulo central del polígono correspondiente. Cuando en una construcción obtenemos el lado del polígono, y hemos de llevarlo sucesivas veces a lo largo de la circunferencia, se aconseja no llevar todos los lados sucesivamente en un solo sentido de la circunferencia, sino, que partiendo de un vértice se lleve la mitad de los lados en una dirección y la otra mitad en sentido contrario, con objeto de minimizar los errores de construcción, inherentes al instrumental o al procedimiento. 
TRIÁNGULO, HEXÁGONO Y DODECÁGONO (construcción exacta) 
eterminarán, 
Comenzaremos trazando dos diámetros perpendiculares entre sí, que nos dsobre la circunferencia dada, los puntos A-B y 1-4 respectivamente. A continuación, con centro en 1 y 4 trazaremos dos arcos, de radio igual al de la circunferencia dada, que nos determinarán, sobre ella, los puntos 2, 6, 3 y 5. Por último con centro en B trazaremos un arco del mismo radio, que nos determinará el punto C sobre la circunferencia dada. Uniendo los puntos 2, 4 y 6, obtendremos el triángulo inscrito. Uniendo los puntos 1, 2, 3, 4, 5 y 6, obtendremos el hexágono inscrito. Y uniendo los puntos 3 y C, obtendremos el lado del dodecágono inscrito; para su total construcción solo tendríamos que llevar este lado, 12 veces sobre la circunferencia. De los tres polígonos, solo el dodecágono admite la construcción de estrellados, concretamente del estrellado de 5. El hexágono admite la construcción de un falso estrellado, formado por dos triángulos girados entre sí 60º. NOTA: Todas las construcciones de este ejercicio se realizan con una misma abertura del compás, igual al radio de la circunferencia dada. 
7
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
CUADRADO Y OCTÓGONO (construcción exacta) 
Comenzaremos trazando dos diámetros perpendiculares entre sí, que nos determinarán, sobre la circunferencia dada, los puntos 1-5 y 3-7 respectivamente. A continuación, trazaremos las bisectrices de los cuatro ángulos de 90º, formados por la diagonales trazadas, dichas bisectrices nos determinarán sobre la circunferencia los puntos 2, 4, 6 y 8. Uniendo los puntos 1, 3, 5 y 7, obtendremos el cuadrado inscrito. Y uniendo los puntos 1, 2, 3, 4, 5, 6, 7 y 8, obtendremos el octógono inscrito. El cuadrado no admite estrellados. El octógono sí, concretamente el estrellado de 3. El octógono también admite la construcción de un falso estrellado, compuesto por dos cuadrados girados entre sí 45º. NOTA: De esta construcción podemos deducir, la forma de construir un polígono de doble número de lados que uno dado. Solo tendremos que trazar las bisectrices de los ángulos centrales del polígono dado, y estas nos determinarán, sobre la circunferencia circunscrita, los vértices necesarios para la construcción. 
PENTÁGONO Y DECÁGONO (construcción exacta) 
Comenzaremos trazando dos diámetros perpendiculares entre sí, que nos determinarán sobre la circunferencia dada los puntos A- B y 1-C respectivamente. Con el mismo radio de la circunferencia dada trazaremos un arco de centro en A, que nos determinará los puntos D y E sobre la circunferencia, uniendo dichos puntos obtendremos el punto F, punto medio del radio A-O Con centro en F trazaremos un arco de radio F-1, que determinará el punto G sobre la diagonal A-B. La distancia 1-G es el lado de pentágono inscrito, mientras que la distancia O- G es el lado del decágono inscrito. Para la construcción del pentágono y el decágono, solo resta llevar dichos lados, 5 y 10 
8
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
veces respectivamente, a lo largo de la circunferencia. El pentágono tiene estrellado de 2. El decágono tiene estrellado de 3, y un falso estrellado, formado por dos pentágonos estrellados girados entre sí 36º. 
HEPTÁGONO (construcción aproximada) 
Comenzaremos trazando una diagonal de la circunferencia dada, que nos determinará sobre ella puntos A y B. A continuación, con centro en A, trazaremos el arco de radio A-O, que nos determinará, sobre la circunferencia, los puntos 1 y C, uniendo dichos puntos obtendremos el punto D, punto medio del radio A-O. En 1-D habremos obtenido el lado del heptágono inscrito. Solo resta llevar dicho lado, 7 veces sobre la circunferencia, para obtener el heptágono buscado. Como se indicaba al principio de este tema, partiendo del punto 1, se ha llevado dicho lado, tres veces en cada sentido de la circunferencia, para minimizar los errores de construcción. El heptágono tiene estrellado de 3 y de 2. NOTA: Como puede apreciarse en la construcción, el lado del heptágono inscrito en una circunferencia, es igual a la mitad del lado del triángulo inscrito. 
9
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
ENEÁGONO (construcción aproximada) 
Comenzaremos trazando dos diámetros perpendiculares, que nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-C respectivamente. Con centro en A, trazaremos un arco de radio A-O, que nos determinará, sla circunferencia dada, el punto D. Con centro en B y radio B-D, trazaremos un arco de circunferencia, que nos determinará el punto E, sobre la prolongación de la diagonal 1-C. Por último con centro en E y radio E-B=E-A, trazaremos un arco de circunferencia que nos determinará el punto F sobre la diagonal C-1. En 1-F habremos obtenido el lado del eneágono inscrito en la circunferencia. Procediendo como en el caso del heptágono, llevaremos dicho lado, 9 veces sobre la circunferencia, para obtener el heptágono buscado. El eneágono tiene estrellado de 4 y de 2. También presenta un falso estrellado, formado por 3 triángulos girados entre sí 40º. 
obre 
DECÁGONO (construcción exacta) 
Comenzaremos trazando dos diámetros perpendiculares, que nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-6 respectivamente. Con centro A, y radio A-O, trazaremos un arco que nos determinará los puntos C y D sobre la circunferencia, uniendo dichos puntos, obtendremos el punto E, punto medio del radio A-O. A continuación trazaremos la circunferencia de centro en E y radio E- O. Trazamos la recta 1-E, la cual intercepta a la circunferencia anterior en el punto F, siendo la distancia 1-F, el lado del decágono inscrito. 
10
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Procediendo con en el caso del heptágono, llevaremos dicho lado, 10 veces sobre la circunferencia, para obtener el decágono buscado. El decágono como se indicó anteriormente presenta estrellado de 3, y un falso estrellado, formado por dos pentágonos estrellados, girados entre sí 36º. 
PENTADECÁGONO (construcción exacta) 
Esta construcción se basa en la obtención del ángulo de 24º, correspondiente al ángulo interior del pentadecágono. Dicho ángulo lo obtendremos por diferencia del ángulo de 60º, ángulo interior del hexágono inscrito, y el ángulo de 36º, ángulo interior del decágono inscrito. Comenzaremos con las construcciones necesarias para la obtención del lado del decágono (las del ejercicio anterior), hasta la obtención del punto H de la figura. A continuación, con centro en C trazaremos un arco de radio C-H, que nos determinará sobre la circunferencia el punto 1. de nuevo con centro en C, trazaremos un arco de radio C-O, que nos determinará el punto 2 sobre la circunferencia. Como puede apreciarse en la figura, el ángulo CO1 corresponde al ángulo interior del decágono, de 36º, y el ángulo CO2 corresponde al ángulo interior del hexágono, de 60º, luego de su diferencia obtendremos el ángulo 1O2 de 24º, ángulo interior del pentadecágono buscado, siendo el segmento 1-2 el lado del polígono. Solo resta llevar, por el procedimiento ya explicado, dicho lado, 15 veces sobre la circunferencia dada. El pentadecágono presenta estrellado de 7, 6, 4 y 2, así como tres falsos estrellados, compuesto por: tres pentágonos convexos, tres pentágonos estrellados y 5 triángulos, girados entre sí, en todos los casos, 24º. 
11
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
PROCEDIMIENTO GENERAL (construcción aproximada) 
Este procedimiento se utilizará solo cuando el polígono buscado no tenga una construcción 
articular, ni pueda obtenerse como múltiplo de otro, dado que este procedimiento lleva 
herente una gran imprecisión. 
Comenzaremos con el trazado del diámetro A-B, que dividiremos, mediante el Teorema de 
ales en tantas partes iguales como lados tenga el polígono que deseamos trazar, en nuestro 
aso 11. 
Con centro en A y B trazaremos dos arcos de radio A-B, los cuales se interceptarán en los 
untos C y D. Uniendo dichos puntos con las divisiones alternadas del diámetro A-B, 
btendremos sobre la circunferencia, los puntos P, Q, R, .. etc., vértices del polígono. 
ualmente se procedería con el punto D, uniéndolo con los puntos 2, 4, etc., y obteniendo así 
l resto de los vértices del polígono. 
Solo restaría unir dichos puntos para obtener el polígono buscado. 
p 
i n 
T 
c 
p 
o 
I g 
e 
12
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO CONVEXO, EL LADO DEL ESTRELLADO O LA DISTANCIEXO, DISTANCI 
CONSTRUCCIONES DE POLÍGONOS REGULARES DADO EL LADO DEL 
A ENTRE CARAS 
nerencia de radio A-B. Uniremos el 
PENTÁGONO DADO EL LADO DEL CONVEXO (construcción exacta) 
Dividiendo el lado del pentágono en 
media y extrema razón, obtendremos la 
diagonal del pentágono buscado, solo 
restará construirlo por simple 
triangulación. 
Comenzaremos trazando la 
perpendicular en el extremo 2 del lado, 
con centro en 2 trazaremos un arco de 
radio 1-2, que nos determinará sobre la 
A-2, que nos determinará su punto 
medio B. 
A continuación, con centro en B, trazaremos la circu f 
a, interceptará a la circunferencia anterior 
s 
perpendicular anterior el punto A, ytrazaremos la mediatriz del segmento 
punto 1 con el punto B, la prolongación de esta recten el punto C, siendo 1-C el lado del estrellado, o diagonal del pentágono buscado. Por triangulación obtendremos los vértices restanteobteniendo así el pentágono buscado. PENTÁGONO DADO EL LADO DEL ESTRELLADO (construcción exacta) oe p 
, que uniremos convenientemente, Operaremos como en el caso anterior, teniendo en la media razón del lado delrellado, el lado del convexo. Como en el caso anterior, trazaremos lrpendicular en el extremo A del ladosobre dicha perpendicular, y trazaremos mediatriz del segmento A-B, que nos determinará punto medio C. A continuación, con centro en C trazaremos una circunferencia de radio A-C. Uniendo epunto 1 con el punto C, esta recta deter 
b 
st 
a 
e , 
con centro en A, trazaremos un arco de 
radio A-1, que determinará el punto B, 
la 
l 
minará sobre la circunferencia anterior el punto 5, 
endo el segmento 1-5, el lado del convexo del pentágono buscado. 
si 
13
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
buscado. Solo resta construir dicha circunferencia circunscrita, y obtener los vértices restantes del octógono, que convenientemente unidos, nos d 14 
s restantes, y 
uniéndolos convenientemente. 
Completaremos el trazado por triangulación, obteniendo así los vértice 
Solo resta construir dicha circunferencia circunscrita, y obtener los vért 
HEPTÁGONO DADO EL LADO DEL CONVEXO (co 
S 
hep 
med 
perp 
A 
con ue 
interceptará a la perpendicular trazada en el 
l 
con centro en 1 y radio 1- 
D, trazamos un arco de circunferencia que 
en el 
punto O, centro de la circunferencia 
circunscrita. 
ices restantes del 
inarán el polígono buscado. 
nstrucción aproximada) iendo el segmento 1-2 el lado del tágono, comenzaremos trazando la iatriz de dicho lado, y trazaremos la endicular en su extremo 2. continuación, en el extremo 1 struiremos el ángulo de 30º, qextremo 2, en el punto D, la distancia 1-D, esel radio de la circunferencia circunscrita aheptágono buscado, interceptará a la mediatriz del lado 1-2 
heptágono, que convenientemente unidos, nos determ 
OCTÓGONO DADO EL LADO DEL ONVEXO (construcción exacta) Siendo el segmento 1-2 el lado dectógono, comenzaremos trazando unuadrado de lado igual al lado del octógono ado. A continuación, trazaremos la mediatriz del ado 1-2, y una diagonal del cuadrado onstruido anteriormente, ambas rectas se circunferencia intercepta a la mediatriz del lado 1-2, en el punto O, centro de la circunferencia circunscrita al octógono terminarán el polígono buscado. 
C 
l 
o 
c 
d 
l 
c 
cortan en el punto C, centro del cuadrado. Con 
centro en C trazaremos la circunferencia 
circunscrita a dicho cuadrado, dicha 
e
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Dado el lado 1-2 del eneágono, construiremos un triángulo equilátero con A continuación, trazaremos la mediatriz dlado A-2, de dicho triángulo, que centro de la circunferenc 
ENEÁGONO DADO EL LADO DEL CONVEXO (construcción aproximada) 
dicho lado, hallando el tercer vértice en A. 
el 
pasará por el 
vértice 1, y la mediatriz del lado 1-2, que 
pasará por A. Con centro en A y radio A-B, 
trazaremos un arco, que determinará sobre la 
mediatriz anterior el punto O, que será el 
ia circunscrita al 
eágono buscado. 
ncia 
em 
en 
Solo resta trazar dicha circunferecircunscrita, y determinar sobre ella los ente unidos nos determinarán el eneágono (construcción exacta) Dividiendo el lado del decágono enmedia y extrema razón, obtendremosradio de la circ Comenzaremos trazando la perpendicular en el extremo 2 del lado 
vértices restantes del polígono, que convenientbuscado. DECÁGONO DADO EL LADO DEL CONVEXO 
2, que nos determinará su punto mediB, y con centro en B trazaremos 
el 
unferencia circunscrita al 
polígono. 
, 
con centro en 2 trazaremos un arco de 
radio 1-2, que nos determinará sobre la 
perpendicular anterior el punto A, 
azaremos la mediatriz del segmento A-o 
la 
ircunferencia de radio B-A. 
f 
tinuación, trazaremos la mediatriz del lado 1-2, 
inará sobre la mediatriz anterior, el punto O, 
n 
tr 
prolongación obtendremos el punto C sobre la circunla circunferencia circunscrita al polígono. A cony con centro en 1 un arco de radio 1-C, que determcentro de la circunferencia circunscrita. Solo resta trazar dicha circunferencia circunscrita, restantes del polígono, que convenientemente unidos 
c 
Uniendo el punto 1 con el B, en su erencia anterior, siendo 1-C, el radio de y determinar sobre ella los vértices os determinarán el decágono buscado. 
15
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Dividiendo el lado del decágono en media y extrema razón, obtendremos el rapolígono y el lado del convexo. trazaremos un arco de radio 2-A, que nos 
DECÁGONO DADO EL LADO DEL ESTRELLADO (construcción exacta) 
dio de la circunferencia circunscrita al 
Comenzaremos trazando la perpendicular 
el extremo 2 del lado, con centro en 2 
eterminará sobre la perpendicular anterior 
l punto B, trazaremos la mediatriz del 
unto 
A continuación, uniremos A con C, 
io d 
m 
x 
ue no 
unferencia circu 
estantes del polígono, que convenienteme 
16 
en 
d 
e segmento B-2, que nos determinará su pmedio C, y con centro en C trazaremos lacircunferencia de radio C-B. determinando el punto D, sobre la circunferencia anterior, siendo A-D el radcon centro en A, y radio A-D, determinareresultando en 1-2 el lado del decágono convetrazaremos dos arcos, de radio igual R, qcircunferencia circunscrita al polígono. Solo resta trazar dicha circr HEXÁGONO DADA LA DISTANCIA ENTRE CARAS (construcción exacta) Comenzaremos trazando dos rectas par Con vértice en 1, construiremos un ángulo de 30º, 
e la circunferencia circunscrita. Trazando un arco os sobre el lado del estrellado dado el punto 1, o correspondiente. Con centro en 1 y 2 s determinarán en O, el centro de la nscrita, y determinar sobre ella los vértices nte unidos nos determinarán el decágono buscado. determinará el punto 6 sobre la recta r. En los segmentos 3-4 y 1-6 
alelas, r y s, 
y trazaremos una perpendicular a ambas rectas, que 
nos determinará los puntos 1 y 3. 
e nos determinará sobre la recta s el punto 4, por 
icho punto trazaremos una perpendicular que nos 
, habremos obtenido el lado del 
exágono buscado, la obtención de los dos vértices 
stantes, se hará por simple triangulación. 
r 
qu 
d 
h 
r e Solo nos resta unir todos los vértices, para obteneel hexágono buscado.
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
OCTÓGONO DADA LA DISTANCIA ENTRE CARAS (co Con centro en los cuatro vértices del cuadrado 
nstrucción exacta) 
Dada la distancia entre caras d, con dicha 
istancia construiremos un cuadrado de vértices A, 
, C y D, mediante el trazado de sus diagonales 
btendremos su centro en O. 
nterior, trazaremos arcos de radio igual a la mitad 
e la diagonal del cuadrado, arcos que pasarán por 
Solo nos resta unir todos los vértices, para 
d 
B 
o 
a 
dO, y que nos determinarán sobre los lados delcuadrado, los puntos 1, 2, 3, ... y 8, vértices del polígono. obtener el octógono buscado. CONSTR 
Comenzaremos por la construcción de udecágono in 
UCCIÓN POR SEMEJANZA DE UN 
construcción de un decágono, el procedimiento 
es aplicable a cualquier otro polígono. 
n 
scrito en una circunferencia 
ualquiera, por el procedimiento ya visto en el 
ma anterior, obteniendo en este caso, uno de 
rolongación del lado 1'-2', llevaremos la 
s 
p 
emos dicha circunferencia con centro en O, 
no 
el 
a te 
POLÍGONO REGULAR DADO EL LADO DEL CONVEXO Aunque en este caso, se trata de la 
c 
tesus lados en 1'-2'. A partir del vértice 1', y sobre la plongitud del lado del decágono buscado, obteniendo el punto G. Prolongaremos loradios O-1' y O-2'. Por G trazaremos una rolongación del radio O-2', el punto 2, siendo en el punto 1, otro vértice del polígo polígono buscado. circunscrita, los vértices restantes del rminarán el decágono buscado. 
paralela al radio O-1', que determinará sobre laeste uno de los vértices del polígono buscado, y resultando la distancia O-2, el radio de la circunferencia circunscrita a dicho polígono. Trazarque interceptará a la prolongación del radio O-1' buscado, obteniendo en la cuerda 1-2 el lado d Solo resta determinar sobre la circunferencipolígono, que convenientemente unidos nos de 
17
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
CONSTRUCCIÓN POR SEMEJANZA DE UN POLÍGONO REGULAR DADO EL LADO DELESTRELLADO Como en caso anterior, aunque se trconstrucción de un decágono, el p 
construyendo un decágono inscrito en una 
ata de la 
rocedimiento 
es aplicable a cualquier otro polígono. 
Procederemos, como en el caso anterior, 
circunferencia cualquiera, por el procedimiento 
ya visto en el tema anterior, obteniendo en este 
ón del lado 1'-4', llevaremos la 
ngitud del lado del estrellado dado, 
y 
os dicha circunferencia con centro en O, que interceptará a la prolongación del radio 
en el punto 1, otro vértice del polígono buscado, obteniendo en la cuerda 1-4 el lado del 
ia 
e 
caso, uno de los lados del estrellado en 1'-4'. A partir del vértice 1', y sobre la prolongaciloobteniendo el punto G. Prolongaremos los radios O-1' y O-4'. Por G trazaremos una paralela al radio O-1', que determinará sobre la prolongación del radio O-4', el punto 4, siendo este uno de los vértices del polígono buscado, circunscrita, los vértices restantes del terminarán el decágono buscado. 
resultando la distancia O-4, el radio de la circunferencia circunscrita a dicho polígono. TrazaremO-1' estrellado buscado. Solo resta determinar sobre la circunferencpolígono, que convenientemente unidos nos d 
18
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
SISTEMAS DE REPRESENTACIÓN 
dcir, que si bien a partir d 
GENERALIDADES 
Todos los sistemas de representación, tienen como objetivo representar sobre una 
superficie bidimensional, como es una hoja de papel, los objetos que son tridimensionales en el 
o. 
Con este objetivo, se han ideado a lo largo de la historia diferentes sistemas de 
resentación. Pero todos ellos cumplen una condición fundamental, la reversibilidad, es 
e e un objeto tridimensional, los diferentes sistemas permiten una 
epresentación bidimensional de dicho objeto, de igual forma, dada la representación 
los 
Todos los sistemas, se basan en la proyección de los objetos sobre un plano, que se 
ctantes. 
o, 
espaci 
rep 
rbidimensional, el sistema debe permitir obtener la posición en el espacio de cada uno de elementos de dicho objeto. denomina plano del cuadro o de proyección, mediante los denominados rayos proyeEl número de planos de proyección utilizados, la situación relativa de estos respecto al objetasí como la dirección de los rayos proyectantes, son las características que diferencian a losdistintos sistemas de representación. SISTEMAS DE PROYE En todos los sistemas de representación, la proyección de los objetos sobre el plano cuadro o de proyección, se realiza mediante los rayos proyectantes, estos son líneas imaginarias, que pasando por los vértices o puntos del objeto, proporcionan en su intersección con el plano del cuadro, la proyección de dicho vértice o punto. impropio, todos los rayos serán paralel 
CCIÓN 
del 
Si el origen de los rayos proyectantes es un punto del infinito, lo que se denomina punto 
os entre sí, dando lugar a la que se denomina, 
royección cilíndrica. Si dichos rayos resultan perpendiculares al plano de proyección 
e la proyección central o 
ónica. 
pestaremos ante la proyección cilíndrica ortogonal, en el caso de resultar oblicuos respecto a dicho plano, estaremos ante la proyección cilíndrica oblicua. Si el origen de los rayos es un punto propio, estaremos antc 
19 Proyección cilíndrica ortogonal Proyección cilíndrica oblicua Proyección central o cónica
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
TIPOS Y CARACTERÍSTICAS 
Los diferentes sistemas de representación, podemos dividirlos en dos grandes grupos: los 
as de medida y los sistemas representativos. 
Los sistemas de medida, son el sistema diédrico y el sistema de planos acotados. Se 
osición de los objetos del dibujo. El 
conveniente de estos sistemas es, que no se puede apreciar de un solo golpe de vista, la forma 
a 
tiva cónica o central. Se caracterizan por 
epresentar los objetos mediante una única proyección, pudiéndose apreciar en ella, de un solo 
an 
jo. 
ue 
nos 
sistem 
caracterizan por la posibilidad de poder realizar mediciones directamente sobre el dibujo, para obtener de forma sencilla y rápida, las dimensiones y piny proporciones de los objetos representados. Los sistemas representativos, son el sistema de perspectiva axonométrica, el sistemde perspectiva caballera, el sistema de perspectiva militar y de rana, variantes de la perspectiva caballera, y el sistema de perspecrgolpe de vista, la forma y proporciones de los mismos. Tienen el inconveniente de ser más difíciles de realizar que los sistemas de medida, sobre todo si comportan el trazado de grcantidad de curvas, y que en ocasiones es imposible tomar medidas directas sobre el dibuAunque el objetivo de estos sistemas es representar los objetos como los vería un observador situado en una posición particular respecto al objeto, esto no se consigue totalmente, dado qla visión humana es binocular, por lo que a lo máximo que se ha llegado, concretamente, mediante la perspectiva cónica, es a representar los objetos como los vería un observador conun solo ojo. En el siguiente cuadro pueden apreciarse las características fundamentales de cada ude los sistemas de representación. Sistema Tipo Planos de proyección Sistema de proyección 
Diédrico De medida Dos Proyección cilíndrica ortogonal 
Planos acotados dida togonal 
De me 
Uno 
Proyección cilíndrica or 
Perspectiva 
axonométrica vo 
Representati 
Uno 
Proyección cilíndrica ortogonal 
Perspectiva caballera vo 
Representati 
Uno 
Proyección cilíndrica oblicua 
Perspectiva militar 
Representativo 
Uno 
Proyección cilíndrica oblicua 
Perspectiva de rana 
Representativo 
Uno 
Proyección cilíndrica oblicua 
Perspectiva cónica 
Representativo 
Uno 
Proyección central o cónica 
20
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
NORMALIZACIÓN 
INTRODUCCIÓN 
DE FINICIÓN Y CONCEPTO 
La palabra norma del latín "normun", significa etimológicamente: 
"Regla a seguir para llegar a un fin determinado" 
Este concepto fue más concretamente definido por el Comité Alemán de Normalización 
a serie de fenómenos" 
aís, al potenciar las relaciones e intercambios tecnológicos con otros países. 
en 1940, como: "Las reglas que unifican y ordenan lógicamente un La Normalización es una actividad colectiva orientada a establecer solución a problemasrepetitivos. La normalización tiene una influencia determinante, en el desarrollo industrial de un p OBJETIVOS Y VENTAJAS Los objetivos de la normalización, pueden concretarse en tres: 
La economía, ya que a través de la simplificación se reducen costos. 
La utilidad, al permitir la intercambiabilidad. 
La calidad, ya que permite garantizar la constitución y características de un 
Estos tres objetivos traen consigo una serie de ventajas, que podríamos concretar en las 
siguientes: 
Reducción del número de tipos de un determinado producto. En EE .UU. en un 
momento determinado, existían 49 tamaños de botellas de leche. Por acuerdo voluntario 
conomía del 25% en el nuevo precio de los envases y tapas de cierre. 
En defi 
determinado producto. 
de los fabricantes, se redujeron a 9 tipos con un sólo diámetro de boca, obteniéndose una e 
Simplificación de los diseños, al utilizarse en ellos, elementos ya normalizados. Reducción en los transportes, almacenamientos, embalajes, archivos, etc.. Con la correspondiente repercusión en la productividad. nitiva con la normalización se consigue: 
21
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
PRODUCIR MÁS Y MEJOR, A TRAVÉS DE LA REDUCCIÓN DE TIEMPOS Y 
OSTOS. 
C 
industrializados, ante la necesidad de producir más y mejor 
EVOLUCIÓN HISTÓRICA, NORMAS DIN E ISO 
ones 
pcia, se habían tipificado los tamaños de ladrillos y piedras, según unos módulos de 
ensiones previamente establecidos. Pero la normalización con base sistemática y científica 
ace a finales del siglo XIX, con la Revolución Industrial en los países altamente 
. Pero el impulso definitivo llegó 
on la primera Guerra Mundial (1914-1918). Ante la necesidad de abastecer a los ejércitos y 
N usschuss der Deutschen Industrie - Comité de Normalización de la 
dustria Alemana. 
DIN -que significaban Deustcher Industrie Normen (Normas de la Industria Alemana). 
Sus principios son paralelos a la humanidad. Basta recordar que ya en las civilizacicaldea y egidim 
n 
creparar los armamentos, fue necesario utilizar la industria privada, a la que se le exigía unas especificaciones de intercambiabilidad y ajustes precisos. 
NORMAS DIN Fue en este momento, concretamente el 22 de Diciembre de 1917, cuando los ingenieros alemanes Naubaus y Hellmich, constituyen el primer organismo dedicado a la normalización: 
ADI - Normen-AIn 
Este organismo comenzó a emitir normas bajo las siglas: 22
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO En 1926 el NA DNA - Deutsches Normen-Ausschuss - Comité de Norma que si bien siguió emitiendo normas bajos las siglas DIN, estas pasaron a significar "Das Ist 
DI cambio su denominación por: 
s Alemanas 
- Esto es norma 
Rápidamente comenzaron a surgir otros comités nacionales en los países 
dustrializados, así en el año 1918 se constituyó en Francia el AFNOR - Asociación Francesa 
n 1919 en Inglaterra se constituyó la organización privada BSI - British Standards Institution. 
ión de todos estos organismos nacionales de normalización, surgió la 
Londres en 1926 la: 
I ración of the National Standardization Associations - ISA 
sede en Ginebra, y dependiente de la ONU. 
Norm" Y más recientemente, en 1975, cambio su denominación por: DIN - Deutsches Institut für Normung - Instituto Alemán de Normalización 
inde Normalización. ENORMAS ISO Ante la aparic 
necesidad de coordinar los trabajos y experiencias de todos ellos, con este objetivo se fundó en 
nternacional Fede 
Tras la Segunda Guerra Mundial, este organismo fue sustituido en 1947, por la International Organization for Standardization - ISO - Organización Internacional para la Normalización. Con 
A esta organización se han ido adhiriendo los diferentes organismos nacionales dedicados a la 
Normalización y Certificación N+C. En la actualidad son 140 los países adheridos, sin 
distinción de situación geográfica, razas, sistemas de gobierno, etc. 
. 
El trabajo de ISO abarca todos los campos de la normalización, a excepción de la 
geniería eléctrica y electrónica que es responsabilidad del CEI (Comité Electrotécnico 
in 
Internacional). Como consecuencia de la colaboración Hispano-Aleman durante la Guerra Civil Española, y sobrn 
NORMAS UNE ESPAÑOLAS 
e todo durante la 2ª Guerra Mundial, en España se comenzaron a utilizar las 
ormas DIN alemanas, esta es la causa de que hasta hoy en los diferentes diseños curriculares 
23
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
spañoles, se haga mención a las normas DIN, en la última propuesta del Ministerio para el 
as 
El 11 de Diciembre de 1945 el CSIC (Centro Superior de Investigaciones Científicas), 
creo el Instituto de Racionalización y Normalización IRANOR, dependiente del patronat 
ola, las cuales eran concordantes con las prescripciones internacionales. 
a 
nales de normalización: 
O - Organización Internacional de Normalización. 
ETSI - Instituto Europeo de Normas de Telecomunicaciones 
OPANT - Comisión Panamericana de Normas Técnicas 
ebachillerato, desaparece la mención a dichas normas, y solo se hace referencia a las normUNE e ISO. 
o 
Juan de la Cierva con sede en Madrid. IRANOR comenzó a editar las primeras normas españolas bajo las siglas UNE - Una Norma Españ A partir de 1986 las actividades de normalización y certificación N+C, recaen en Españen la entidad privada AENOR (Asociación Española de Normalización). AENOR es miembro de los diferentes organismos internacio 
ISCEI - Comité Electrotécnico Internacional CEN - Comité Europeo de Normalización CENELEC - Comité Europeo de Normalización Electrotécnica 
C Las normas UNE se crean en Comisiones Técnicas de Nstas elaboran una norma, esta es sometida durante seis me ormalización - CTN. Una vez 
ses a la opinión pública. Una vez 
anscurrido este tiempo y analizadas las observaciones se procede a su redacción definitiva, 
con las posibles correcciones que se estimen, publicándose bajo las siglas UNE. Todas las 
normas son sometidas a revisiones periódicas con el fin de ser actualizadas. 
- Número de norma emitida por dicho comité, complementado cuando se trata de una 
et r 
Las normas se numeran siguiendo la clasificación decimal. El código que designa una norma está estructurado de la siguiente manera: A B C UNE 1 032 82 A - Comité Técnico de Normalización del que depende la norma. Brevisión R, una modificación M o un complemento C. C - Año de edición de la norma. 
CLASIFICACIÓN DE LAS NORMAS Independiente de la clasificación decimal de las nhacer otra clasificación de carácte ormas antes mencionada, se puede 
r más amplio, según el contenido y su ámbito de aplicación: 
Según su contenido, las normas pueden ser: 
Normas Fundamentales de Tipo General, a este tipo pertenecen las normas relativas a 
formatos, tipos de línea, rotulación, vistas, etc.. 
24
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Ncaracterística de los elementos mecánicos y su representación. Entre ellas se encuentran las normas sobre tolerancias, roscas, soldaduras, etc. Normas de Materiales, son aquellas que hacen refe 
ormas Fundamentales de Tipo Técnico, son aquellas que hacen referencia a la 
rencia a la calidad de los materiales, con 
ón de materiales, tanto metálicos, aceros, 
ronces, etc., como no metálicos, lubricantes, combustibles, etc.. 
s normas de construcción naval, máquinas 
erramientas, tuberías, etc.. 
-Unión 
egionales. Su ámbito suele ser continental, es el caso de las normas emitidas por el CEN, 
as y emitidas por los diferentes organismos nacionales de 
es de las normas Internacionales y 
e Empresa. Son las redactadas libremente por las empresas y que complementan a las 
onal de Técnica Aeroespacial), RENFE, IBERDROLA, CTNE, BAZAN, 
ERIA, etc.. 
especificación de su designación, propiedades, composición y ensayo. A este tipo pertenecerían las normas relativas a la designacib Normas de Dimensiones de piezas y mecanismos, especificando formas, dimensiones y tolerancias admisibles. A este tipo pertenecerían lahSegún su ámbito de aplicación, las normas pueden ser: Internacionales. A este grupo pertenecen las normas emitidas por ISO, CEI y UITInternacional de Telecomunicaciones. RCENELEC y ETSI. Nacionales. Son las redactad 
normalización, y en concordancia con las recomendacion 
regionales pertinentes. Es el caso de las normas DIN Alemanas, las UNE Españolas, etc.. Dnormas nacionales. En España algunas de las empresas que emiten sus propias normas son: INTA (Instituto NaciIB 
25
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO FORMATOS 
CONCEPTO 
Se llama formato a la hoja de papel en que se realiza un dibujo, cuya forma y 
imensiones en mm. están normalizados. En la norma UNE 1026-2 83 Parte 2, equivalente a la 
O 5457, se especifican las características de los formatos. 
d 
I S 
Aplicando estas 
DIMENSIONES 
Las dimensiones de los formatos responden a las reglas de doblado, semejanza y 
ión existente entre el lado de un 
adrado y su diagonal, es decir 
referencia. Según las cuales: 1- Un formato se obtiene por doblado transversal del inmediato superior. 2- La relación entre los lados de un formato es igual a la relaccu 
2/1. los lados homólogos de dos formatos sucesivos de la serie A. 3- Y finalmente para la obtención de los formatos se parte de un formato base de 1 m2. 
tres reglas, se determina las dimensiones del formato base llamado A0 
uyas dimensiones serían 1189 x 841 mm. 
o A0. 
obres, carpetas, archivadores, etc. dos series auxiliares B y C. 
dia geométrica de 
c El resto de formatos de la serie A, se obtendrán por doblados sucesivos del format La norma estable para s 
Las dimensiones de los formatos de la serie B, se obtienen como me 
Los de la serie C, se obtienen como media geométricas de los lados homólogos de los 
correspondientes de la serie A y B. 
Serie A Serie B Serie C 
A0 841 x 1189 B0 1000 x 1414 C0 917 x 1297 A1 594 x 841 B1 707 x 1000 C1 648 x 917 
B2 500 x 707 C2B4250 x 353C4 
A2 420 x 594 458 x 648 
A3 297 x 420 B3 353 x 500 C3 324 x 456 A4 210 X 297 229 x 324 
A5 148 x 210 B5 176 x 250 C5 162 x 229 
A6 48 B6 76 C6 2 
105 x 1 
125 x 1 
114 x 16 
A7 
74 x 105 
B7 
88 x 125 
C7 
81 x 114 
A8 
52 x 74 
B8 
62 x 88 
C8 
57 x 81 
A9 
37 x 52 
B9 
44 x 62 
10 
26 x 37 
10 
31 x 44 
A B 
26
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
27 
INICIO 
Excepcionalmente y para piezas alargadas, la norma contempla la utilización de 
formatos que denomi es y e pcio e o en m do por 2, 3, 4 ... 
y hasta 9 vec s dim del la orto ato 
na especial 
xce 
nales, que s 
btien 
ultiplican 
es la 
ensiones 
do c 
de un form 
. 
ORM 
S ALARG 
FORM TO ALARGADOS 
A 
S F ATO ADOS 
ESPECIALES 
A3 x 3 420 x 891 
A3 x 4 420 x 1189 
A 
A4 x 3 297 x 630 A4 x 4 297 x 841 A4 x 5 297 x 1051 A1 x 3 841 x 1783 A1 x 4 841 x 2378 2) A EXCEPCIONALES 
A0 x 3 1) 1189 x 1682 
A0 x 3 1189 x 2523 2) 
A 
A2 x 3 594 x 126 4 594 x 
A2 x 5 
594 x 2102 
A3 x 6 
420 x 1783 
A3 x 7 
420 x 2080 
icados em 
a la figura 1 ( 
1 
A2 x 1682 
A 
A3 x 5 420 x 1486 
A 
A4 x 6 297 x 1261 
A4 x 7 297 x 1471 
A4 x 8 297 x 1682 
A4 x 9 297 x 1892 
En la tabla UNI 936-937 se indican los formatos unif pleados en los dibujos 
técnicos de todas clases, calcos, reproducciones, etc. En ella se indican las medidas del 
recuadro y las mínimas de las hojas no recortadas. 
Los formatos normales en milímetros son los siguientes, con referencia tabla 1): 
Fig. 1. Tamaños unificados de las hojas para los dibujos técnicos
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Tabla 1 
Las tablas UNI ti A 
Se puede también disponer de formatos alargados, com ue ionan en la tabla, y 
obre los que no es neces extende 
Para los rollos de papel o tela para dibujar se han fijado las siguientes alturas en mm: se 
ecomiendan las indicada negrilla 0; 12 00; 88 0; 62 0; 330. 
28 
enen el formato 
4. 
o los q 
se menc 
ario 
rse. 
s en 
: 156 
30; 9 
0; 66 
5; 45 
027 
ablec 
orma de plegar los planos. Este se hará en zig- 
s 
r 
PLEGADO 
La norma UNE - 1 - 95, est e la f 
ag, tanto en sentido vertical como horizontal, hasta dejarlo reducido a las dimensiones de 
rc a que el cuadro de rotulación, siempre debe quedar 
en 
Formato de los dibujos 
Hojas recortadas Hojas sin recortar 
Indicaciones para 
la designación a b a1 
mínimo 
b1 
máximo 
A 0 841 1189 880 1230 
A 1 594 841 625 880 
A 2 420 594 450 625 
A 3 297 420 330 450 
A 4 21 330 
0 297 240 
A 5 148 210 165 240 
A 6 105 148 120 165 
za 
hivado. También se indica en esta norm 
la parte anterior y a la vista.
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
dibujo. Este recuadro deja unos márgenes en INDICACIONES EN LOS FORMATOS 
MÁRGENES: 
En los formatos se debe dibujar un 
ecuadro interior, que delimite la zona útil de 
el 
ormato, que la norma establece que no sea 
mm. para los formatos A0 y A1, y 
o inferior a 10 mm. para los formatos A2, A3 
o 
debe 
a 
siendo su dirección de 
ctura, la misma que el dibujo. En UNE - 1035 
osición que puede 
doptar el cuadro con sus dos zonas: la de 
e 
oc 
mí 
la posición de 0,5 mm. Estas marcas sirven para 
acilitar la reproducción y microfilmado. 
ados en los extremos de los ejes de simetría nimo de 0,5 mm. y sobrepasando el recuadro 
r 
finferior a 20ny A4. Si se prevé un plegado para archivadcon perforaciones en el papel, se debe definir un margen de archivado de una anchura mínima de 20 mm., en el lado opuesto al cuadro de rotulación. CUADRO DE ROTULACIÓN: Conocido también como cajetín, secolocar dentro de la zona de dibujo, y en lparte inferior derecha, le- 95, se establece la dispaidentificación, de anchura máxima 170 mm. y la de información suplementaria, que se debcolocar encima o a la izquierda de aquella. SEÑALES DE CENTRADO: Señales de centrado. Son unos trazos coldel formato, en los dos sentidos. De un grosor en 5 mm. Debe observarse una tolerancia enf 29
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO SEÑALES DE ORIENTACIÓN: 
Señales de orientación. Son dos flechas o triángulos equiláteros dibujados sobre las 
ñales de centrado, para indicar la posición de la hoja sobre el tablero. 
RADUACIÓN MÉTRICA DE REFERENCIA: 
Graduación métrica de referencia. Es una reglilla de 100 mm de longitud, dividida en 
LÍNEAS NORMALIZADAS 
En los dibujos técnicos se utilizan diferentes tipos de líneas, sus tipos y espesores, han 
- 
se 
G centímetros, que permitirá comprobar la reducción del original en casos de reproducción. sido normalizados en las diferentes normas. En esta página no atendremos a la norma UNE 1032-82, equivalente a la ISO 128-82. 
CLASES DE LÍNEAS 
e 
convenios elegidos deben estar indicados en otras 
rmas internacionales o deben citarse en una leyenda o apéndice en el dibujo de que se trate. 
En las siguientes figuras, puede apreciarse los diferentes tipos de líneas y sus 
Solo se utilizarán los tipos y espesores de líneas indicados en la tabla adjunta. En caso dutilizar otros tipos de líneas diferentes a los indicados, o se empleen en otras aplicaciones distintas a las indicadas en la tabla, losno 
aplicaciones. En el cuadro adjunto se concretan los diferentes tipos, su designación y aplicaciones concretas. 
30
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Línea Designación Aplicaciones generales 
Llena gruesa A1 Contornos vistos 
A2 
Aristas vistas Llena fina (recta o curva 
as 
ección 
s abatidas 
dibujo 
B1 Líneas ficticias vistB2 Líneas de cota B3 Líneas de proy 
B4 Líneas de referencia B5 Rayados B6 Contornos de seccione sobre la superficie delB7 Ejes cortos Llena fina a mano alzada (2) 
Llena fina (recta) con zigzag 
iales 
os, si estos límites 
D1 no son líneas a trazos y puntos 
C1 Límites de vistas o cortes parc o interrumpid 
Gruesa de trazos 
Fina de trazos F1 Contornos ocultos 
F2 Aristas ocultas 
E1 Contornos ocultos E2 Aristas ocultas 
Fina de trazos y puntos simetría 
G1 Ejes de revolución G2 Trazas de plano deG3 Trayectorias Fina de trazos y puntos, gruesa 
en los extremos y en los 
cambios de dirección 
H1 Trazas de pl o de corte 
an Gruesa de trazos y puntos 
J1 Indicación de líneas o superficies 
que son objeto de especificaciones 
particulares 
Fina de trazos y doble punto 
viles 
K1 Contornos de piezas adyacentes K2 Posiciones intermedias y extremos de piezas mó 
K3 Líneas de centros de gravedad K4 Contornos iniciales antes del conformado K5 Partes situadas delante de un plano de corte manera automatizada un mismo dibujo. 
(1) Este tipo de línea se utiliza particularmente para los dibujos ejecutados de una 
(2) Aunque haya disponibles dos variantes, sólo hay que utilizar un tipo de línea en 
Además de por su trazado, las 
ANCHURAS DE LAS LÍNEAS 
líneas se diferencian por su anchura o grosor. En los 
azados a lápiz, esta diferenciación se hace variando la presión del lápiz, o mediante la 
te: 
, no se aconseja 
línea de anchura 0,18. 
churas, que pueden parecer aleatorios, en realidad responden a la 
trutilización de lápices de diferentes durezas. En los trazados a tinta, la anchura de la línea deberá elegirse, en función de las dimensiones o del tipo de dibujo, entre la gama siguien 0,18 - 0,25 - 0,35 - 0,5 - 0,7 - 1 - 1,4 y 2 mm. Dada la dificultad encontrada en ciertos procedimientos de reproducciónla Estos valores de an 
31
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
nA3, es aproximadamente de 
ecesidad de ampliación y reducción de los planos, ya que la relación entre un formato A4 y un 
2. De esta forma al ampliar un formato A4 con líneas de espe0,5 a un formato A3, dichas líneas pasarían a ser de 5 x 
sor 
= 0,7 mm. La relación entre las anchuras de las líneas finas y gruesas en us Deben cond n mismo dibujo, no debe 
er inferior a 2. 
servarse la misma anchura de línea para las diferentes vistas de una pieza, 
ibujadas con la misma escala. 
En la figura siguiente se dan 6 tipos de líneas, las cuales se indican con un número 
obre ellas que representa su anchura en décimas de milímetros. 
on el fin de alcanzar la armonía del dibujo, se dan cuatro grupos de líneas 
ue toman los nombres de: líneas finas, medias, gruesas y muy gruesas 
s 
C 
Q 
32
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
El espaciado mínimo entre líneas paralela 
ESPACIAMIENTO ENTRE LAS LÍNEAS 
s (comprendida la representación de los 
yados) no debe nunca ser inferior a dos veces la anchura de la línea más gruesa. Se 
rarecomienda que este espacio no sea nunca inferior a 0,7 mm. En la representación de un dibujo, puede suceder que se superp 
ORDEN DE PRIORIDAD DE LAS LÍNEAS COINCIDENTES 
ongan diferentes tipos de 
neas, por ello la norma ha establecido un orden de preferencias a la hora de representarlas, 
Contornos y aristas vistos. 
2 - Contornos y aristas ocultos. 
e plano de simetría. 
ad. 
das o unidas deben coincidir, excepto en el 
aso de secciones delgadas negras. 
lídicho orden es el siguiente: 1 - 3 - Trazas de planos de corte. 4 - Ejes de revolución y trazas d 5 - Líneas de centros de graved 6 - Líneas de proyección Los contornos contiguos de piezas ensamblac Una línea de referencia sirve para indicar un elemento 
TERMINACIÓN DE LAS LÍNEAS DE REFERENCIA 
(línea de cota, objeto, contorno, 
c.). 
el contorno del objeto representado 
2 - En una flecha, si acaban en el contorno del objeto representado. 
1 2 3 
et Las líneas de referencia deben terminar: 1 - En un punto, si acaban en el interior d 3 - Sin punto ni flecha, si acaban en una línea de cota. 
33
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
ORIENTACIONES SOBRE LA UTILIZACIÓN DE LAS LÍNEAS 
1 - Las líneas de ejes de simetría, 
ir ligeramente del 
ntorno de la pieza y también las de 
n 
i las 
rcunferencias son muy pequeñas se 
se 
da claridad. 
media vista o un cuarto, 
varán en sus extremos, dos pequeños 
uy próximas, los trazos 
e dibujarán alternados. 
nua o de trazos, 
cabarán en trazo. 
continua ni a otra de 
azos. 
tienen que sobresalcocentro de circunferencias, pero no debecontinuar de una vista a otra. 2 - En las circunferencias, los ejes se han de cortar, y no cruzarse, scidibujarán líneas continuas finas. 3 - El eje de simetría puede omitiren piezas cuya simetría se perciba con to 4 - Los ejes de simetría, cuando representemoslletrazos paralelos. 5 - Cuando dos líneas de trazos sean paralelas y estén md 6 - Las líneas de trazos, tanto si acaban en una línea contia 7 - Una línea de trazos, no cortará, al cruzarse, a una líneatr 8 - Los arcos de trazos acabarán en los 
puntos de tangencia. 
ESCALAS 
Para el desarrollo de este tema se han tenido en cuenta las recomendaciones de la norma 
NE-EN ISO 5455:1996. 
U 
CONCEPTO La represent ación de objetos a su tamaño natural no es posible cuando éstos son muy 
randes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de 
s 
a problemática la resuelve la ESCALA, aplicando la ampliación o reducción 
ecesarias en cada caso para que los objetos queden claramente representados en el plano del 
gdimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de lomismos. Estndibujo. 
34
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
define la ESCALA como la relación entre la dimensión dibujada respecto de su 
dimensión real, esto es: 
INICIO 
Se 
E = dibujo / realidad Si el numerador de esta fracción es mayor que el denominador, se trata de una escal 
ducción en caso contrario. La escala 1:1 corresponde a un objeto 
ibujado a su tamaño real (escala natural). 
a de 
ampliación, y será de re 
d 
escala. 
ESCALA GRÁFICA 
Basado en el Teorema de Thales se utiliza un sencillo método gráfico para aplicar una 
Véase, por ejemplo, el caso para E 3:5 
s r y s formando un ángulo cualquiera. 
la 
r será 
le 
1º) Con origen en un punto O arbitrario se trazan dos recta 
2º) Sobre la recta r se sitúa el denominador de 
escala (5 en este caso) y sobre la recta s el numerador (3 en este caso). Los extremos de 
dichos segmentos son A y B. 3º) Cualquier dimensión real situada sobre convertida en la del dibujo mediante una simpparalela a AB. 
. 
recomienda el uso de ciertos valores ESCALAS NORMALIZADAS 
Aunque, en teoría, sea posible aplicar cualquier valor de escala, en la práctica se 
normalizados con objeto de facilitar la lectura de 
imensiones mediante el uso de reglas o escalímetros. 
Ampliación: 2:1, 5:1, 10:1, 20:1, 50:1 ... 
Reducción: 1:2, 1:5, 1:10, 1:20, 1:50 ... 
No obstante, en casos especiales (particularmente en construcción) se emplean ciertas 
d Estos valores son: escalas intermedias tales como: 1:25, 1:30, 1:40, etc... 35
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
EJEMPLO 1 EJEMPLOS PRÁCTICOS 
Se desea representar en un formato A3 la planta de un edificio de 60 x 30 metros. 
La escala más conveniente para este caso sería 1:200 que proporcionaría unas 
Se desea representar en un formato A4 una pieza de reloj de dimensiones 2 x 1 mm. 
La escala adecuada sería 10:1 
JEMPLO 3: 
Sobre una carta marina a E 1:50000 se mide una distancia de 7,5 cm entre dos islotes, 
eal hay entre ambos? 
on 50000 cm reales 
7,5 cm del dibujo serán X cm reales 
como resultado 375.000 cm, que equivalen a 
dimensiones de 40 x 20 cm, muy adecuadas al tamaño del formato. EJEMPLO 2: 
E 
¿qué distancia r Se resuelve con una sencilla regla de tres: si 1 cm del dibujo s X = 7,5 x 50000 / 1... y esto da 
3,75 Km 
USO D scción estrellada de 6 facetas o ca 
EL ESCALÍMETRO 
La forma más habitual del escalímetro es la de una regla de 30 cm de longitud, con 
e ras. Cada una de estas facetas va graduada con escalas 
iferentes, que habitualmente son: 
Estas escalas son válidas igualmente para valores que resulten de multiplicarlas o 
tilizable en planos a escala 1:30 ó 
:3000, etc. 
lano a E 1:250, se aplicará directamente la escala 1:250 del escalímetro y las 
dicaciones numéricas que en él se leen son los metros reales que representa el dibujo. 
:5000; se aplicará la escala 1:500 y habrá que multiplicar por 
n el 
o 
d 1:100, 1:200, 1:250, 1:300, 1:400, 1:500 dividirlas por 10, así por ejemplo, la escala 1:300 es u1 Ejemplos de utilización: 1º) Para un pin2º) En el caso de un plano a E 1 
10 la lectura del escalímetro. Por ejemplo, si una dimensión del plano posee 27 unidades eescalímetro, en realidad estamos midiendo 270 m. 
Por supuesto, la escala 1:100 es también la escala 1:1, que se emplea normalmente comregla graduada en cm. 36
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO OBTENCIÓN DE LAS VISTAS DE UN OBJETO 
poyecciones ortogonales GENERALIDADES 
Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo 
re 6 planos, dispuestos en forma de cubo. También se podría definir las vistas como, las 
r de un objeto, según las distintas direcciones desde donde se mire. 
sob 
Las reglas a seguir para la representación de las vistas de un objeto, se recogen en la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", equivalente a la norma ISO 128-82. DENOMINACIÓN DE LAS VISTAS Si situamos un observador según las seis direcciones indicadas por las flechas, 
btendríamos las seis vistas posibles de un objeto. 
stas reciben las siguientes denominaciones: 
Vista A: Vista de frente o alzado 
Vista B: Vista superior o planta 
Vista C: Vista derecha o lateral derecha 
o 
Estas vi 
Vista D: Vista izquierda o lateral izquierda 
Vista E: Vista inferior 
Vista F: Vista posterior 
POSICIONES RELATIVAS DE LAS VISTAS Para la disposición de las diferentes 
vistas sobre el papel, se pueden utilizar dos variantes 
e proyección ortogonal de la misma importancia: 
- El método de proyección del primer diedro, también denominado Europeo 
- El método de proyección del tercer diedro, también denominado Americano 
En ambos métodos, el objeto se supone dispuesto dentro de un cubo, sobre cuyas seis 
d 
(antiguamente, método E) (antiguamente, método A) caras, se realizarán las correspondientes proyecciones ortogonales del mismo. 37
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
tre 
de proyección el 
que se encuentra entre el observador y el objeto. 
La diferencia estriba en que, mientras en el sistema Europeo, el objeto se encuentra enel observador y el plano de proyección, en el sistema Americano, es el plano 
SISTEMA EUROPEO SISTEMA AMERICANO Una vez realizadas las seis proyecciones ortogonales sobre las caras del cubo, y 
manteniendo fija, la cara de la proyección del alzado (A), se procede a obtener el desarrollo del 
ubo, que como puede apreciarse en las figuras, es diferente según el sistema utilizado. 
SISTEMA EUROPEO 
c 
SISTEMA AMERICANO 
El desarrollo del cubo de proylas seis vistas principales de un objeto, en sus posiciones relativas. ección, nos proporciona sobre un único plano de dibujo, 
38
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Con el objeto de identificar, en que sistema se ha representado el objeto, se debe añadir 
l símbolo que se puede apreciar en las figuras, y que representa el alzado y vista lateral 
INICIO 
e 
izquierda, de un cono truncado, en cada uno de los sistemas. S ISTEMA EUROPEO 
SISTEMA AMERICANO 
vista posterior, coincidiendo en anchuras. 
CORRESPONDENCIA ENTRE LAS VISTAS 
Como 
ntre las diferentes vistas. Así estarán relacionadas: 
a) El alzado, la planta, la vista inferior y la 
b) El alzado, la vista lateral derecha, la vista 
nta, la vista lateral izquierda, la 
te definida una pieza. Teniendo en 
ían 
e podría 
apreciarse en la 
a 
rre 
se puede observar en las figuras anteriores, existe una correspondencia obligada 
e 
lateral izquierda y la vista posterior, coincidiendo en alturas. c) La pla 
vista lateral derecha y la vista inferior, coincidiendo en profundidad. Habitualmente con tan solo tres vistas, el alzado, la planta y una vista lateral, queda perfectamencuenta las correspondencias anteriores, implicarque dadas dos cualquiera de las vistas, sobtener la tercera, como puede 
figura: También, de todo lo anterior, se deduce que las difearbitraria. Aunque las vistas aisladamente sean codefinirán la pieza. 
rentes vistas no pueden situarse de formctas, si no están correctamente situadas, no 
39
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
ELECCIÓN DE LAS VISTAS DE UN OBJETO, Y VISTAS ESPECIALES 
ELECCIÓN DEL ALZADO 
En la norma UNE 1-032-82 se especifica claramente que "La vista más característica del 
objeto to en 
u posición de trabajo, y en caso de que pueda ser utilizable en cualquier posición, se 
presentará en la posición de mecanizado o montaje. 
erficie del dibujo. 
2) Que el alzado elegido, presente el menor número posible de aristas ocultas. 
perfiles, lo más 
implificadas posibles. 
o 
lzado la vista A, ya que nos permitirá apreciar la inclinación del tabique a y la forma en L del 
debe elegirse como vista de frente o vista principal". Esta vista representará al obje 
s 
r e 
En ocasiones, el concepto anterior puede no ser suficiente para elegir el alzado de una pieza, en estos casos se tendrá en cuenta los principios siguientes: 1) Conseguir el mejor aprovechamiento de la sup 
3) Y que nos permita la obtención del resto de vistas, planta ys Siguiendo las especificaciones anteriores, en la pieza de la figura 1, adoptaremos comaelemento b, que son los elementos más significativos de la pieza. 
40
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
En ocasio umentar el número de 
istas necesarias 
a que sería sufi que la pieza quedase 
orrectam os representar una 
ista lateral. 
nes, una incorrecta elección del alzado, nos conducirá a a; es el caso de la pieza de la figura 2, donde el alzado correcto sería la vista A, ciente con esta vista y la representación de la planta, paraente definida; de elegir la vista B, además de la planta necesitaríam 
v 
y 
c 
v 
con una o dos vistas. Cuando sea indiferente la elecció 
ELECCIÓN DE LAS VISTAS NECESARIAS 
sentación de aristas ocultas. En general, y salvo en piezas muy complejas, 
astará con la representación del alzado planta y una vista lateral. En piezas simples bastará 
n de la vista de perfil, se optará por la 
ista lateral izquierda, que como es sabido se representa a la derecha del alzado. 
ser 
: 
Para la elección de las vistas de un objeto, seguiremos el criterio de que estas deben ser, las mínimas, suficientes y adecuadas, para que la pieza quede total y correctamente definida. Seguiremos igualmente criterios de simplicidad y claridad, eligiendo vistas en las que se eviten la repre 
b 
v Cuando una pieza pueda ser representada por su alzado y la planta o por el alzado y una vista de perfil, se optará por aquella solución que facilite la interpretación de la pieza, y de indiferente aquella que conlleve el menor número de aristas ocultas. En los casos de piezas representadas por una sola vista, esta suele estar complementadacon indicaciones especiales que permiten la total y correcta definición de la pieza 1) En piezas de revolución se incluye el símbolo del diámetro (figura 1). 2) En piezas prismáticas o troncopiramidales, se incluye el símbolo del cuadrado y/o la "cruz de San Andrés" (figura 2). 3) En piezas de espesor uniforme, basta con hacer dicha especificación en lugar bien visible (figura 3). 
41
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
VISTAS ESPECIALES 
Con el objeto de conseguir representaciones más claras y simplificadas, ahorrando a su 
vez tiempo de ejecución, pueden realizarse una serie de representaciones especiales de las 
os los casos más significativos: 
vistas de un objeto. A continuación detallam 
VISTAS DE PIEZAS SIMÉTRICAS 
En los casos de piezas con uno o varios ejes de simetría, puede representarse dicha pieza 
la pieza, 
geramente más allá de la traza del plano de simetría, en cuyo caso, no se indicarán los trazos 
aralelos en los extremos del eje (figura 3). 
mediante una fracción de su vista (figuras 1 y 2). La traza del plano de simetría que limita el contorno de la vista, se marca en cada uno de sus extremos con dos pequeños trazos finos paralelos, perpendiculares al eje. También se pueden prolongar las aristas de li 
p 
VISTAS CAMBIADAS DE POSICIÓN Cuando por motivos excepcionales, una vista no ocupe su posición según el madoptado, se indicará la dirección de observación mediante una flecha y una letra mflecha será de mayor tamaño que las de acotación y la letra mayor que las cifras de cota. En la vista cambiada de posición se indicará dicha letra, o bien la indicación de "Visto por .." (Figuras 4 y 5). étodo 
ayúscula; la 
42
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
En otras ocasiones, el prieza, que impide su correcta i 
VISTAS DE DETALLES 
Si un detalle de una pieza, no quedara bien definido mediante las vistas normales, podrá 
dibujarse un vista parcial de dicho detalle. En la vista de detalle, se indicará la letra mayúscula 
identificadora de la dirección desde la que se ve dicha vista, y se limitará mediante una línea 
ina a mano alzada. La visual que la originó se identificará mediante una flecha y una letra 
ayúscula como en el apartado anterior (figuras 6). 
oblema resulta ser las pequeñas dimensiones de un detalle de la 
p nterpretación y acotación. En este caso se podrá realizar una 
ista de detalle ampliada convenientemente. La zona ampliada, se identificará mediante un 
f 
m 
vcírculo de línea fina y una letra mayúscula; en la vista ampliada se indicará la letra de identificación y la escala utilizada (figuras 7). 
VISTAS LOCALES En elementos simétricos, se permite realizar vistas locales en lugar de una vista completa. Para la representación de estas vistas se seguirá el método del tercer diedro, independientemente del método general de representación adoptado. Estas vistas locales se dibujan con línea gruesa, y unidas a la vista principal por una línea fina de trazo y punto 
(figuras 8 y 9). 
43
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
VISTAS GIRADAS 
Tienen como objetivo, el evitar la representación de elementos de objetos, que en vista 
normal no aparecerían con su verdadera forma. Suele presentarse en piezas con nervios o 
razos que forman ángulos distintos de 90º respecto a las direcciones principales de los ejes. Se 
presentará una vista en posición real, y la otra eliminando el ángulo de inclinación del detalle 
iguras 10 y 11). 
b 
r e 
(f 
VISTAS DESARROLLADAS En piezas obtenidas por doblado o curvado, se hace necesario representar el contorno itivo de dicha pieza, antes de su conformación, para apreciar su forma y dimensiones antes del proceso de doblado. Dicha representación se realizará con línea fina de trazo y doble punto (figura 12). 
prim 
44
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
IN ICIO 
VISTAS AUXILIARES OBLICUAS 
En ocasiones se presentan elementos en piezas, que resultan oblicuos respecto a los 
lanos de proyección. Con el objeto de evitar la proyección deformada de esos elementos, se 
rocede a realizar su proyección sobre planos auxiliares oblicuos. Dicha proyección se limitará 
la zona oblicua, de esta forma dicho elemento quedará definido por una vista normal y 
ompleta y otra parcial (figuras 13). En ocasiones determinados elementos de una pieza 
esultan oblicuos respecto a todos los planos de proyección, en estos casos habrá de realizarse 
os cambios de planos, para obtener la verdadera magnitud de dicho elemento, estas vistas se 
enominan vistas auxiliares dobles. 
Si partes interiores de una pieza ocupan posiciones especiales oblicuas, respecto a los 
lanos de proyección, se podrá realizar un corte auxiliar oblicuo, que se proyectará paralelo al 
tan, 
p 
p 
a 
c 
r 
d 
d 
pp lano de corte y abatido. En este corte las partes exteriores vistas de la pieza no se represeny solo se dibuja el contorno del corte y las aristas que aparecen como consecuencia del mismo(figura 14). 
45
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
REPRESENTACIONES CONVENCIONALES 
Con el objeto de clarificar y simplificar las representaciones, se conviene realizar ciertos 
pos de representaciones que se alejan de las reglas por las que se rige el sistema. Aunque son 
uchos los casos posibles, los tres indicados, son suficientemente representativos de este tipo 
e convencionalismo (figuras 15, 16 y 17), en ellos se indican las vista reales y las preferibles. 
ti 
m 
d 
INTERSECCIONES FICTICIAS En ocasiones las intersecciones de superficies, no se producen de forma clara, es el caso de los redondeos, chaflanes, piezas obtenidas por doblado o intersecciones de cilindros de igual o distinto diámetro. En estos casos las líneas de intersección se representarán mediante una línea fina que no toque los contornos de las piezas. Los tres ejemplos siguientes muestran claramente la mecánica de este tipo de intersecciones (figuras 18, 19 y 20). 
46
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO CORTES, SECCIONES Y ROTURAS 
INTRODUCCIÓN 
En ocasiones, debido a la complejidad de los detalles internos de una pieza, su 
representación se hace confusa, con gran número de aristas ocultas, y la limitación de no poder 
acotar sobre dichas aristas. La solución a este problema son los cortes y secciones, que 
estudiaremos en este tema. 
También en ocasiones, la gran longitud de determinadas piezas, dificulta su 
representación a escala en un plano, para resolver dicho problema se hará uso de las roturas, 
artificio que nos permitirá añadir claridad y ahorrar espacio. 
Las reglas a seguir para la representación de los cortes, secciones y roturas, se recogen 
n la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", 
e 
equivalente a la norma ISO 128-82. 
GENERALIDADES SOBRE CORTES Y SECCIONES Un corte es el artificio mediante el cual, en la representación de una pieza, eliminamos parte de la misma, con objeto de clarificar y hacer más sencilla su representación y acot En principio el mecanismo es muy sencillo. Adoptado uno o varios planos deeliminaremos ficticiamente de la pieza, la parte más cercana al observador, como puede verseen las figuras. ación. 
corte, 
repr 
orte, s 
cont as para 
l raya 
Como puede verse en las figuras siguientes, las aristas interiores afectadas por el corte, esentarán con el mismo espesor que las aristas vistas, y la superficie afectada por el e representa con un rayado. inuación en este tema, veremos como se representa la marcha del corte, las normdo del mismo, etc.. 
se 
c 
A 
e 
47
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Se denomina sección a la intersección del plano de corte con la pieza (la superficie indicada de color rojo), como puede apreciarse cuando se representa una sección, a diferencia de un corte, no se representa el resto de la pieza que queda detrás de la misma. Siempre que sea posible, se preferirá representar la sección, ya que resulta más clara y sencilla su representación. 
48
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
mediante una línea fina, como la de los ejes, a mano alzauele utilizarse en trabajos por ordenador. LÍNEAS DE ROTURA EN LOS MATERIALES 
Cuando se trata de dibujar objetos largos y uniformes, se suelen representar 
terrumpidos por líneas de rotura. Las roturas ahorran espacio de representación, al suprimir 
artes constantes y regulares de las piezas, y limitar la representación, a las partes suficientes 
ara su definición y acotación. 
Las roturas, están normalizadas, y sus tipos son los siguientes: 
a) Las normas UNE definen solo dos tipos de roturas (figuras 1 y 2), la primera se indica 
da y ligeramente curvada, la segunda 
zada, que patentizarán los diámetros interior y exterior (figura 8). 
na línea de trazo y punto fina, como las líneas de los ejes (figura 9). 
in 
p 
p 
s b) En piezas en cuña y piramidales (figuras 3 y 4), se utiliza la misma línea fina y ligeramente curva. En estas piezas debe mantenerse la inclinación de las aristas de la pieza. 
c) En piezas de madera, la línea de rotura se indicará con una línea en zig-zag (figura 5). d) En piezas cilíndricas macizas, la línea de rotura de indicará mediante la característica lazada (figura 6). e) En piezas cónicas, la línea de rotura se indicará como en el caso anterior, mediante lazadas, si bien estas resultarán de diferente tamaño (figura 7). f) En piezas cilíndricas huecas (tubos), la línea de rotura se indicará mediante una doble 
la 
g) Cuando las piezas tengan una configuración uniforme, la rotura podrá indicarse con u 49
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INSecciones NLas líneas ocultas se pueden representar con líneas de trazos; pero es evidente que si las líneaocultas son demasiado numerosas o tienen una disposición comp 
ICIO 
o siempre son suficientes las tres o más vistas de una pieza para representarla completamente. 
s 
licada, pueden originar 
onfusión en el dibujo, en lugar de facilitar su comprensión. Se ha de considerar además que 
asta ahora no se ha tratado del acotado de los dibujos; si se tuviesen que acotar también 
uchas líneas ocultas, el dibujo sería inevitablemente confuso. 
or e to frecuentemente se añaden a las proyecciones del objeto una o más secciones o cortes, 
s permiten prescindir de alguna vista. 
ión que da la última tabla UNI 3971, «sección es la representación de la parte 
c 
h 
m 
P 
s 
que muchas veceSegún la definic 
del objeto que queda después de un corte ideal efectuado según uno o más planos 
(generalmente perpendiculares a un eje o pasando por un eje de la pieza)». Fig.S1 
Fig.S2 
Figs. S1-S2. Cada sección se ha efectuado según un solo plano. 
En la figura S1 se han colocado las dos secciones AA y BB en la disposición regular. En cambio, en la figura S2, 
se han dispuesto las secciones (por comodidad) de modo contrario a la regla general, en este caso se deben poner 
las flechas indicadas en la figura y la sección dibujada se ha de limitar rigurosamente a la parle cortada que se ve 
mirando en el sentido de la flecha. 
En la figura S1 se indica la manera de efectuar los cortes. En la figura S2 se indica una 
manera tolerada, aunque opuesta a las reglas normales, de disponer los cortes. 
50
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
51 
INICIO 
Las secciones se han de indicar en los planos por: Sección A-A, Sección B-B, etc. Se recuerda que todo plano de sección se ha de indicar con na línea del tipo F (UNI 396 
um 
8), en cuyos dos extremos (más gruesos) lleva dos letras 
a 
4) 
as los trazos o 
intersecciones de los planos y, cuando se crea conveniente, se señalarán con diferentes letras 
ma sculas y sucesivas los puntos de intersección de los planos de las secciones (figura S5). 
se ha hecho según 
on trazo más grueso. 
dos planos paralelos y se ha colocado en el 
sitiio de la planta ( vista por encima) de la 
que tiene el mismo contorno. Aquí también se 
han dibujado con líneas mas gruesas las 
trazas de las intersección de los planos 
cortantes. 
yúsculas iguales. Tanto si la sección de corte se efectúa según planos concurrentes (fig. S3) o paralelos (fig. So sucesivos (fig. S5), siempre se han de señalar con líneas más grues 
yú 
Fig. S3. La sección A 
Fig. S4. La sección AA se ha hecho según 
Ados planos concurrentes, formando un ángulo tal que la sección resulte lo mas representativa posible. La intersección de los dos planos cortantes se ha de marcar 
c
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Fig. S5. La sección A-B-C-D se ha hecho según varios p vos. Pero en el caso representado en la 
figura, la distancia oblicua correspondiente a BC no se h a 
de su proyección correspondiente a la planta, cuyo luga a 
sucesión de letras, dc las cuales la inicial y final te indic 
lanos sucesi 
a representado en su verdadera magnitud, sino en lr ocupa. La traza dc la sección se ha señalado por unan en el titulo: «Sección A-D». 
Las partes del dibujo que representan las correspondientes de la pieza separadas poel plano cortante se dibujan rayadas, según las normas que se exponen seguidamente. De estmanera, se ve a primera vista al examinar una sección qué partes han sido cortadas y qué artes, en cambio, están a la vista. 
p 
r 
a 
Esta regla general tiene, sin embargo, muchas excepciones, que son consecuencia de 
considerar que las secciones se efectúan y representan exclusivamente para facilitar la 
comprensión del dibujo, prescindiéndose, por lo tanto, en algunos casos de la regla general. 
Evidentemente estas excepciones han de limitarse a casos muy especiales. He aquí las normas 
más importantes: 
Fig. S6. Los nervios de las secciones longitudinales 
se representan sin cortar 
52
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
53 
longitudinalmente, se representan sin cortar. cciones de piezas de forma muy alargada. Como norma general: brazos de poleas (Fig. S7), los dientes de ruedas dentadas o , los roblones (Fig. S9) y los remaches, los pernos (Fig. S10), los árboles , las arandelas y en general todos Los elementos de con su dimensión mayor, cuando esta última está colocada ección, se han de representar sin cortar, o sea, en vista, aun en inales se 
representan sin cortar . 
Igualmente las chavetas y 
los árboles. 
Fig. S8. En las secciones, los dientes 
de las ruedas dentadas, cortados 
las se 
Fig. S8) 
ig. S11), los pasadores (Fig. S12) 
equeño espesor comparado 
aralelamente al plano de s 
sección. 
Fig. S7. Los brazos en sus secciones longitud 
Conviene evitar 
Los nervios (Fig. S6), loscremalleras ( 
(F 
p 
p 
la 
Fig. S10. Los pernos en la sección longitudinal se 
representan sin cortar. 
Fig. S9. En las secciones longitudinales los 
roblones se representan sin cortar.
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Las piezas simétricas pueden representasección o corte (Fig. S14). 
a mitad con la vista normal y la otra mitad e 
Fig. S11. En Las secciones, los árboles y los pasadores, cortados longitudinalmente, se representan sin cortar. Fig. S12. En las secciones, los pasadores, cortados longitudinalmente, se representan sin cortar. 
De la misma manera, las partes cilíndricas, cónicas o esféricas, aun siendo huecas, que no 
tengan interés especial para los fines del dibujo, se representan sin cortar, tal como se ven (Fig. 
S13). 
Fig. S13. En la 
icas, aun pr 
especial para el dibujo, se representan sin cortar 
rse un n 
En muchos casos puede resultar una representación más clara y ocupar menos espacio 
m 
n se limitará a representar la porción cortada por el plano secante, excluyendo por 
nto todas las partes que resulten vistas (Fig. S16). 
s secciones longitudinales, las piezas esentando cavidades, si no presentan interés 
cón 
e 
pleando secciones rebatidas sobre cl plano del dibujo, ya sea en el lugar del corte o cerca del plano de sección. En el primer caso no serán necesarias indicaciones auxiliares (Fig. S15), trazándose el contorno de la sección con una línea continua tipo B; en los demás casos la ecció 
s 
t a 54
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
ig. S14. Una pieza simétrica puede 
presentarse por una semivista y una 
misección 
Fig. S16. Una sección puede rebatirse 
cerca de la traza de la sección; debe 
F 
r e 
se 
Fig. S15. Una o más secciones de una pieza pueden rebatirse en el sitio del corte para obtener mayor claridad y ahorro de espacio. En este caso en las secciones se omite toda indicación; sus contornos se dibujan con un trazo fino tipo B UNI 3968. limitarse únicamente a la parte cortada por el plano (excluyendo por lo tanto todos los elementos en vista o no seccionados). 55
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
P 
INICIO 
Roturas 
uede darse el caso de que la sección se limite a una parte más o menos reducida de la pieza, 
como indica la figura R1; o sea, que se imagina una rotura de la pieza para poder ver lo que 
interesa del interior de la misma. En tal caso se dibujará la línea de rotura, o sea, la de 
separación entre vista y sección, con línea continua fina irregular tipo C UNI 3968 (Fig. R2). 
. 
Fig. R1. Cuando se necesiten varias secciones de una pieza pueden disponerse 
s correspondientes indicaciones 
omo se ve en la figura. 
con su 
c 
Fig. R2. Una pieza puede representarse parte en vista con una línea de rotura fina irregular 
de tipo C UNI 3968 y parte en sección. 
56
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Finalmente, en la tabla UNI 3977 se consignan las normas para la representación de piezas en 
algunos casos particulares, normas que han de considerarse como continuación de las 
precedentes. 
Ocurrirá tal vez que, al representar una pieza, si ésta está acoplada a otra pueda ser útil o 
necesario representar también las partes contiguas de esta última. Esto se hará con una línea 
continua fina B UNI 3968. 
Un ejemplo de este caso está representado en la figura R3. 
Fig. R3. Cuando se hayan de representar, además 
de la pieza, las partes contiguas de otra pieza 
acoplada a la primera, estas partes se dibujarán con 
línea continua fina; no han de ocultar la pieza, ni 
siquiera parcialmente, pero pueden en cambio 
quedar cubiertas por ella. Si se quiere rayar la 
pieza adyacente, el rayado deberá limitarse a una 
faja siguiendo el interior del contorno. 
gs. R4-90) se refieren a otros casos particulares de representación. 
ara mayor eficacia, las explicaciones necesarias se han reunido en las leyendas 
orrespondientes a cada figura. 
Fig. R4. Las secciones de espesor muy pequeño pueden 
ennegrecerse por completo. Se recomienda no abusar de esta 
concesión y limitarla a secciones verdaderamente pequeñas, 
porque las secciones en las que se abusa del ennegrecimiento 
tienen un aspecto fúnebre muy antiestético. 
Fig. R5. Cuando se recurre al ennegrecimiento de las secciones de 
Los rayados de las secciones tienen 
generalmente una inclinación de 45° respecto al 
eje principal o a las líneas de contorno. 
Las figuras siguientes (fi 
P 
c 
pequeño espesor se deja un finísimo espacio blanco para separar entre sí los diferentes elementos adyacentes de la pieza seccionada. 
Fig. R6 Fig. R7 
Figs. R6-R7. 
57
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
F a 
pi 
de 
L a 
pi 
La separación entre las líneas del rayado ha de ser 
lo más ancha posible, compatible con la claridad 
del dibujo y escogida en relación con el tamaño de 
la superficie que se ha de rayar. 
ig. R8. Para las partes contiguas pertenecientes ezas distintas o acopladas deben usarse rayados distinta inclinación o de diferente separación. os rayados de las diferentes partes de una mismeza han de tener siempre la misma inclinación. 
Fig. R9. Para partes de mucha extensión, puede limitarse el rayado a la zona contigua a su contorno. 
Fig. R10. Cuando se obtiene una sección mediante dos o más planos paralelos, el rayado dc las 
diferentes partes ha de tener la misma inclinación, 
pero se ha de evitar que los trazos coincidan. 
corresponda. Fig. R11. Cuando en el interior de una sección se 
hayan de poner inscripciones o Cotas, u otras 
rá interrumpirse el rayado donde 
indicaciones, debe 
58
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
es 
línea continua fina, tipo B UNI 3968. Esta 
norma constituye una innovación muy im-portante 
con respecto a las normas usadas 
anteriormente. 
Fig. R12. Las intersecciones de superficiempalmadas pueden representarse con una 
Fig. R13. Las superficies planas en vista, 
mirando las caras de un cuadrado, de una 
pirámide o de un plano efectuado en un 
os 
cuerpo cilíndrico pueden indicarse con dlíneas diagonales trazadas con línea continua fina B UNI 3968. 
Fig. R14. . Si en una sección se quiere 
representar una parte situada delante del plano 
de sección, se ha de usar la línea mixta fina tipo 
E UNI 3968. 
59
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Fig. R14 Fig. R15. 
Figs. R14-R15. Para ahorrar tiempo y espacio, el dibujo de una pieza simétrica puede 
limitarse a la mitad o a la cuarta parte de la vista completa. El eje o los ejes de simetría han 
de señalarse individualmente en ambos extremos con dos tracitos paralelos y 
erpendiculares al eje respectivo. 
p 
Fig. R16. Cuando para ahorrar tiempo y 
espacio, se quiere limitar la representación de 
u 
dc 
na pieza a las partes que bastan para efinirla, las líneas de rotura son del tipo ontinuo fino irregular (C UNI 3968). 
ndicaciones convencionales de los materiales en las secciones 
I 
as normas antiguas sobre este asunto, expuestas en la tabla UNIM 19, han sido sustituidas 
rm s entre la 
ha r 
u 
te 
t ficies que en el dibujo representan 
rayado. Una vez fijados convenientemente los 
terial cortado, es evidente que el rayado puede dar una 
cinta indicación del material de que está formada la pieza cortada. 
uando sea conveniente un detalle completo de los varios materiales de una pieza, se tiene que 
specificar en el dibujo con toda exactitud. Si se desea únicamente una especificación más o 
enos superficial, se recurre a la diferenciación del rayado. 
L 
por la tabla UNI 3972. Estas últimas nounificación italiana y las internacionales, conservar las normas antiguas podría ser caCuanto de dicha tabla interesa especialmenComo ya se ha dicho en otras ocasiones, secciones se han de rellenar por medio del diversos tipos de rayado, según el ma 
as, que han eliminado los desacuerdon impuesto cambios tan esenciales, que el queresa de graves errores. al delineante, se detalla en la siguiente tabla 4. das las super 
o 
su 
C 
e 
m 
60
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO Resumiendo, se pueden pues dar tres casos: 
a) El dibujo está ya provisto de todas las indicaciones suficientes para designar con 
precisión cada clase de material. En este caso se usa un tipo único de rayado inclinado de línea 
continua fina (tipo B UNI 3968). 
Esto es obligatorio en todos los dibujos de taller y generales. 
los 
c) En las secciones se quiere indicar con el rayado, siempre de modo sucinto, pero más 
preciso, la clase del material cortado, según las indicaciones de la columna 5a de la tabla. En 
este caso se usan los rayados indicados en la co rtes 
cortadas, según los colores indicados en la 4a co 
UNI 3972, además de indicar el nombre del col 
iente a cada indicación. Por esto, cuando se qu nes se 
aconseja consultar directamente la citada tabla. 
Finalmente, en dicha tabla se hallan algunas formas para casos particulares, que se han 
ecto a 
s ejes (R 6-7), sobre el ennegrecimiento de las pequeñas, secciones (R 4), sobre la 
b) En las secciones se quiere indicar sucintamente con el rayado la naturaleza de materiales (materiales metálicos, para juntas, plásticos, aislantes, etc.). En este caso se usarán los diferentes rayados (7 tipos distintos) indicados en la 2a columna de la tabla. 
lumna 3a o bien se recurre a colorear las palumna. Téngase presente que en la citada tabla or, se reproduce también el color correspon- era recurrir a la coloración de las seccio 
d 
i 
trascrito en las leyendas de las figuras precedentes. 
Entre ellas revisten particular importancia las relativas a la inclinación del rayado resp 
lo 
disposición del rayado de las partes contiguas (R 8) y en las secciones obtenidas con diferentes planos cortantes (R 10), sobre la interrupción del rayado en torno a las anotaciones, cotas y 
demás, puestas en las secciones (R 11), etc. 
61
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
62 
INICIO
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
GENERALIDADES, ELEMENTOS Y CLASIFICACIÓN DE LAS COTAS 
GENERALIDADES 
La acotación es el proceso de anotar, mediante líneas, cifras, signos y símbolos, las 
mediadas de un objeto, sobre un dibujo previo del mismo, siguiendo una serie de reglas y 
convencionalismos, establecidos mediante normas. 
La acotación es el trabajo más complejo del dibujo técnico, ya que para una correcta 
acotación de un dibujo, es necesario conocer, no solo las normas de acotación, sino también, el 
proceso de fabricación de la pieza, lo que implica un conocimiento de las máquinas-herramientas 
a utilizar para su mecanizado. Para una correcta acotación, también es necesario 
conocer la función adjudicada a cada dibujo, es decir si servirá para fabricar la pieza, para 
verificar las dimensiones de la misma una vez fabricada, etc.. 
Por todo ello, aquí daremos una serie de normas y reglas, pero será la práctica y la 
experiencia la que nos conduzca al ejercicio de una correcta acotación. 
PRINCIPIOS GENERALES DE ACOTACIÓN 
Con carácter general se puede considerar que el dibujo de una pieza o mecanismo, está 
correctamente acotado, cuando las indicaciones de cotas utilizadas sean las mínimas, 
suficientes y adecuadas, para permitir la fabricación de la misma. Esto se traduce en los 
siguientes principios generales: 
1. Una cota solo se indicará una sola vez en un dibujo, salvo que sea indispensable 
repetirla. 
2. No debe omitirse ninguna cota. 
3. Las cotas se colocarán sobre las vistas que representen más claramente los elementos 
correspondientes. 
4. Todas las cotas de un dibujo se expresarán en las mismas unidades, en caso de utilizar 
otra unidad, se expresará claramente, a continuación de la cota. 
5. No se acotarán las dimensiones de aquellas formas, que resulten del proceso de 
fabricación. 
6. Las cotas se situarán por el exterior de la pieza. Se admitirá el situarlas en el interior, 
siempre que no se pierda claridad en el dibujo. 
7. No se acotará sobre aristas ocultas, salvo que con ello se eviten vistas adicionales, o se 
aclare sensiblemente el dibujo. Esto siempre puede evitarse utilizando secciones. 
8. Las cotas se distribuirán, teniendo en cuenta criterios de orden, claridad y estética. 
9. Las cotas relacionadas. Como el diámetro y profundidad de un agujero, se indicarán 
sobre la misma vista. 
10. Debe evitarse, la necesidad de obtener cotas por suma o diferencia de otras, ya que 
puede implicar errores en la fabricación. 
1. Debe acotarse atendiendo el proceso de mecanizado de la pieza, evita esfuerzos en la 
interpretación del plano a la vez que se maquina. 
1 
63
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
ELEMENTOS QUE INTERVIENEN EN LA ACOTACIÓN 
s y 
Todas las líneas que intervienen en la acotación, se realizarán con el espesor más fino de la 
Líneas de cota: Son líneas paralelas a la 
mero que indica la 
m gnitud. Se sitúa centrada en la línea de cota. 
rá situarse en medio de la línea de cota, 
n 
serán terminadas en sus extremos por un símbolo, 
que podrá ser una punta de flecha, un pequeño 
o o 
En el proceso de acotación de un dibujo, además de la cifra de cota, intervienen líneasímbolos, que variarán según las características de la pieza y elemento a acotar. serie utilizada. Los elementos básicos que intervienen en la acotación son: superficie de la pieza objeto de medición. Cifras de cota: Es un nú 
aPod 
interrumpiendo esta, o sobre la misma, pero en umismo dibujo se seguirá un solo criterio. Símbolo de final de cota: Las líneas de cota 
traz 
blicuo a 45º o un pequeño círculo. 
Líneas 
acotar, de las líneas de cota. Deben sobresalir ligeramente de las líneas de cota, 
oxim 
ect 
Líneas de referencia de cota: Sirven para indicar un valor 
na 
rt si 
este no quedase bien definido, se dibujará horizontal, o sin línea de apoyo para el texto. 
auxiliares de cota: Son líneas que parten del dibujo de forma perpendicular a la superficie a y limitan la longitud 
aprresp 
adamente en 2 mm. Excepcionalmente, como veremos posteriormente, pueden dibujarse a 60º o a las líneas de cota. 
dimensional, o una nota explicativa en los dibujos, mediante ulínea que une el texto a la pieza. Las líneas de referencia, terminarán: 
En flecha, las que acaben en un contorno de la pieza. 
En un punto, las que acaben en el interior de la pieza. 
Sin flecha ni punto, cuando acaben en otra línea. 
La pa 
e de la línea de referencia donde se rotula el texto, se dibujará paralela al elemento a acotar, 
64
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Símbolos: En ocasiones, a la cifra de cota 
le acompaña un símbolo indicativo de 
ticas formales de la pieza, que 
ieza. Los 
símbolos más usuales son: 
caracterís 
simplifican su acotación, y en ocasiones permiten reducir el número de vistas necesarias, para definir la p 
fabricación o verificación de las piezas, y pueden deducirse de otras cotas. En función de su importancia, las cotas se pueden Cotas no funcionales (NF): Son aquellas que sirvpara la total definición de la pieza, pero no son esenciales para que la pieza cumpla su función. Cotas de dimensión (d): Son las que indicagujeros, ancho de la pieza, etc.). posición de los elementos de la pieza. 
CLASIFICACIÓN DE LAS COTAS 
Existen diferentes criterios para clasificar las cotas de un dibujo, aquí veremos dos 
clasificaciones que considero básicas, e idóneas para quienes se inician en el dibujo técnico. 
clasificar en: 
Cotas funcionales (F): Son aquellas cotas 
esenciales, para que la pieza pueda cumplir su 
función. 
en 
Cotas auxiliares (AUX): También se les suele llamar 
"de forma". Son las cotas que dan las medidas totales, 
exteriores e interiores, de una pieza. Se indican entre 
paréntesis. Estas cotas no son necesarias para la 
En función de su cometido en el plano, las cotas se 
pueden clasificar en: 
an el 
tamaño de los elementos del dibujo (diámetros de 
Cotas de situación (s): Son las que concretan la 
65
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
ACOTADO DE LOS D 
Escala de representación 
En el dibujo técnico, las piezas representadas mediante las proyecciones ortogonales no se 
pueden reproducir siempre en tamaño natural. Debe pu 
escala de representación, es decir, la relación entre las d el dibujo y 
las dimensiones reales de la pieza. Así, por ejemplo, si una arista de la pieza de 500 mm de 
longitud mide en el dibujo 200 mm, la escala de representación es de 200 : 500 = 1: 2,5. 
Cuando la representación tiene dimensiones mayores que la pieza, se dice que se ha usado 
una escala de ampliación; si la representación tiene las mismas dimensiones que la pieza, la 
escala es al natural; finalmente, si la representación tiene menores dimensiones que la pieza, se 
dice que la escala es de reducción. 
La reciente tabla UNI 3967 indica las escalas admitidas para los dibujos técnicos. En ella se 
indican 5 escalas de ampliación desde 50: 1 hasta 2:1; la escala al natural 1: 1; y 25 escalas de 
reducción de 1: 2 a 1: 10000000. En la pequeña tabla que sigue se indican las escalas de 
pleo más corriente en el dibujo mecánico, que no se separan mucho de la escala al natural 
abla 5). 
La escala 1 : 2, no es aconsejable, a pesar de estar admitida, porque causa fácilmente 
rrores de interpretación de las dimensiones; por esto se ha excluido de la tabla anterior. 
La indicación de la escala se ha de consignar en todo dibujo en el cajetín de la rotulación. 
En la figura A-1 se representa una de las vistas de una pieza en 5 escalas diferentes, con el 
empleo de las líneas adecuadas, con el fin de evidenciar claramente los diferentes aspectos de 
un dibujo, según la escala adoptada. 
Puede ser necesario el empleo de más de una escala para la ejecución de un dibujo cuando 
se haya de dibujar, por ejemplo, algunos detalles a escala distinta de la principal general. En 
este caso, las indicaciones de las varias escalas empleadas para los detalles deben consignarse 
junto a los dibujos respectivos; la escala principal general debe, como siempre, indicarse en el 
cajetín de la rotulación, donde, en caracteres más pequeños, pueden añadirse las de los detalles. 
Hay reglas especiales, de muy cómodo empleo en la ejecución de dibujos a diferentes 
escalas. Las medidas transportadas utilizando dichas escalas, es decir, leyendo sobre dichas 
graduaciones las dimensiones reales, resultan ya transportadas a la escala deseada. Así, por 
ejemplo, leyendo 1 cm en la escala 2 : 1, se lee una longitud de 2 cm para la magnitud corres-pondiente 
a 1 cm representado en la escala 2 : 1. 
Tales graduaciones se encuentran frecuentemente reunidas de 6 en 6 sobre reglas en forma 
de prisma triangular, llamadas escalímetros. 
En el caso de que un dibujo, por cualquier motivo, no esté dibujado a escala, en el cajetín 
de la rotulación se escribirá sin escala 
IBUJOS es indicarse siempre con claridad laimensiones de la pieza en 
em 
(t 
e 
. 
66
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
A-1. Aquí se ve una de las vistas de la misma pieza, en cinco escalas diferentes. 
67
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INIC 
IO Acotaciones de los dibujos 
Se ha dicho en los párrafos anteriores que los dibujos generalmente se hacen a escala; pero 
de este hecho no se ha de deducir la posibilidad de tomar directamente del dibujo las medidas 
que han de tener las distintas partes de la pieza. Todo dibujo técnico ha de ser completo y ha de 
contener las indicaciones de todas las medidas necesarias para la construcción o la recepción 
de la pieza. Estas indicaciones las proporciona la acotación del dibujo. 
Para que la lectura de las cotas se pueda hacer con facilidad y sin ninguna duda, es 
necesario indicar las acotaciones siguiendo exactamente toda una serie de normas establecidas 
en las tablas UNI 3973, 3974 y 3975, nueve en total. Estas tablas contienen las normas sobre 
acotación de los dibujos en proyección ortogonal. Para la acotación en axonometría no existen 
hasta ahora normas unificadas. 
En las leyendas de las figuras que siguen se han trascrito todas las normas de acotación 
(Figs. A2_19). 
A-2. Todas las cosas se escriben sobre una línea 
de medida que por lo regular se apoya con las 
dos flechas de sus extremos en las líneas de 
referencia. Las líneas de medida y las líneas dc 
referencia se trazan Con línea continua fina, tipo 
B UNE 3968. Las líneas de referencia han de 
alargarse un poco sobrepasando las puntas dc 
las flechas de las líneas de medida. 
A-3. La forma unificada de las flechas es la indicada en la figura. 
A-4. El tamaño de las flechas ha de ser proporcionado a la 
anchura de las líneas del dibujo. 
68
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
A-5. Los ejes de simetría y las líneas de contorno no 
omendable. 
an 
progresivamente mas alejadas, 
a fin de evitar que se crucen 
las líneas de medida con las de 
referencia. 
Las líneas de medida se han 
de trazar siempre paralelas a la 
que se trate de medir; 
general han de ser 
perpendiculares a las respectivas 
de referencia; sólo en algún 
caso excepcional se puede recurrir 
referencia auxiliares 
inclinadas, como se ve en esta 
se pueden utilizar como líneas de medida en caso alguno; pero pueden servir de líneas de referencia. 
A-6. Las líneas de referencia y de medida no han de cruzarse, en lo posible con otras líneas del dibujo. Por esto la disposición indicada en la figura no se puede considerar como rec 
A-7. Las líneas de medida paralelas deben disponerse equidistantes entre sí y de las líneas de contorno de las piezas. Las cotas menores hde colocarse más cerca de la pieza y las mayores 
A-8. dirección como norma líneas a líneas de figura. 
69
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
más allá de su punto de intersección. 
A-10. En las acotaciones dc vistas o secciones dibujadas 
sólo hasta un eje de simetría, las líneas de medida sólo se 
han de alargar un poco después del eje de simetría; por lo 
tanto no se han de dibujar com letas ni ponerles la segunda 
flecha terminal. 
A-11 
Figs. A-11_12. En piezas de gran tamaño y simétricas res 
líneas de medida, se acepta que se dispongan estas líneas 
A11; y en el caso de ser muy numerosas, pueden también dibujarse incompletas y dispuestas 
alternadas, como se ve en la Fig. A12. 
A-9. Cuando dos líneas del contorno sean concurrentes deberán prolongarse un poco 
p 
A-12 pecto a una perpendicular a las de medida tal como indica la Fig. 
70
M 
aterial elaborado por el docente Julio C. López. (material de ayuda en clase) aestro Técnico egresado de INET ICIO M 
71 
IN 
A-13 _ 14_ 15. Aquí se v 
Tanto las líneas de medida, como las flechas de los extremos han de estar siempre 
A-17. Evítese en lo posible disponer las líneas 
de medida en una zona comprendida entre la 
vertical y una recta que forme con la misma un 
ángulo de unos 30°, como indica la figura. 
A-13 
A-14 
A-15 
e la manera de acotar cuerdas, arcos y ángulos 
A-16. fuera de las zonas cortadas.
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
A-18. Las líneas de los radios de arcos tienen 
dirección radial y llevan una sola flecha 
terminal (a), que se apoya en el arco; cuando 
el centro del arco cae fuera de los límites de 
la representación y la línea de medida ha de 
indicar la posición del centro, puede ser 
quebrada (b); si no ha de indicar la posición 
del centro puede ser interrumpida (c); cuando 
hay escasez de sitio, se coloca la cifra fuera 
(d). 
A-19. Por lo regular, las flechas de 
Sistemas de acotación 
Las reglas generales de acotación que se han de observar son las siguientes: 
n 
o 
a o sustracción. 
h) Cada dimensión se ha de consignar una sola vez y en una sola proyección. 
c) Las cotas se han de colocar en la proyección en la que el elemento representado resulte más 
evidente, para fines constructivos y funcionales. 
Es evidente que no se puede dar un criterio general para fijar las cotas que se deberán escoger 
para determinar completamente las dimensio 
escogidas satisfaciendo las normas generales den 
de varias consideraciones. 
De las diferentes selecciones de cotas que pu 
diferentes sistemas de acotación. 
La selección de las dimensiones que se han de consignar en un dibujo, depende esencialmente 
del uso que deba hacerse del mismo; pueden en efecto referirse a la función que la pieza haya 
de cumplir, o bien a su proceso de fabricación, o aun al control de la misma. 
Los sistemas de acotación usados en el dibujo mecánico pueden sustancialmente reducirse a 
cinco (UNI 3974): 
los 
extremos se colocan entre las líneas de referensuficiarias flechas terminales hayan de ser ontiguas, pueden sustituirse por puntos bien arcados. 
cia; sólo cuando el espacio sea ente, se colocan en el exterior. Cuando 
in 
v 
c 
m 
a) Han de consignarse directamente todas las dimensiones necesarias para la determinaciócompleta del objeto para su fabricación, su definición funcional y su verificación, evitandener que obtenerlas por sum 
t 
nes de la pieza representada en un dibujo; las pueden, evidentemente, ser diferentes y dependen efectuarse, derivan precisamente los 
e 
72
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
encia puede estar situado asos, se han de dibujar todas las flechas alej 
a) Acotación en serie (o en cadena). Cada 
ias 
su 
portancia constructiva o de control, 
tengan que lomarse como elementos de 
referencia. 
Es también evidente que, con este sistema, 
los errores constructivos se suman y por 
consiguiente se acumulan. 
b) Acotación en paralelo. Todas las cotas 
de la misma dirección tienen el mismo 
origen de referencia (A-22_23). 
Es evidente que se ha de usar este sistema 
cuando haya un elemento que, por su 
importancia constructiva o de trazado, pueda 
tomarse como referencia para todos los 
demás. 
Con este sistema no se acumulan los errores 
cota 
Independiente de las otras. Está 
, la 
representadas en el dibujo se efectúan con 
máquinas o instrumentos de traslación 
Es evidente que puede darse el caso de que, 
ejemplo, para el exterior de la pieza), 
a 
en un extremo de la pieza o en medio. En ambos 
ándose del origen, como se ve en la figura A-24. 
elemento está acotado con respecto al elemento contiguo, corno aparece en lasfiguras A-20_21. Es evidente que este sistema de acotado seha de usar en el caso de que las distancentre elementos contiguos tengan importancia predominante y por tanto no haya elementos que, por su función o por im A-20 Sistema de acotación en serie. 
constructivos, por ser cadaA-21. Aquí se presentan dos ejemplos de acotación en 
especialmente indicado cuando el trazadoejecución o el control de las piezas 
serie 
progresiva. 
además de la referencia principal (por 
convenga escoger otra referencia (por ejemplo, para el interior): es natural que lposición de la segunda referencia deberá quedar bien determinada respecto a la 
primera. A-22. Sistema de acotación en paralelo: todas las cotas tienen un solo orden de referencia 
c) Acotación progresiva. Se fija un origen de cota 0 (cero) correspondiente al elementode referencia; las diferentes cotas se disponen sobre una línea única de medida. Se trata sólo 
evidentemente de una variación gráfica del método paralelo. El elemento de refer 
c 
73
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
74 
ICIO 
IN ediante un 
punto. 
en 
las cotas 
entes 
as cotas aisladas de la pieza se 
ema son las 
del que se 
A-24. Acotación progresiva e trata sólo de una variación gráfica del sistema de acotaciónen paralelo. Para evitar confusionessistema en Serie, las cotas han de estar puestencima de las correspondientes líneas de re- ferencia y escritas perpendiculares a la línmedida. 
Pueden sustituirse las flechas por puntos (fig. A-25). El origen ha de indicarse siempre exclusivamente m 
Para evitar confusiones con el sistema serie o errores de interpretación, 
de referencia en el sistema progresivo hande ponerse encima de las correspondilíneas de referencia y escribirse en sentido perpendicular a la línea de medida. Las otr 
colocan en la forma normal. Las ventajas que ofrece este sistmismas del sistema en paralelo deriva; pero es de ejecución y lectura más fácil. 
en luga 
A-23. Tres ejemplos de acotación en paralelo. En los dos 
rimeros se toman como elementos de referencia para 
¡odas las cotas uno o dos planos que, en este caso, se 
consideran de importancia fundamental: en el tercer 
ejemplo las cotas se refieren al eje del agujero. 
con el 
as 
ea de 
A-25. Eje 
progresiv 
r d 
p 
mplo de acotación a: se han puesto puntos flechas. 
e
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
d) Acotación combinada. Combinando los 
sistemas precedentes, tenemos la acotación 
combinada, que permite satisfacer todas las 
exigencias constructivas (A-26). 
e) Acotación según coordenadas. En algún caso puede ser útil reunir las cotas en una hoja 
aparte, en vez de consignarlas en el dibujo. 
La figura A-27 presenta un ejemplo de este sistema que, normalmente, es de muy rara 
aplicación, pero que puede ser de mucha importancia para piezas fabricadas mediante 
máquinas que trabajen por el método de las coorden s 
de fresadoras, etcétera). 
A-27. La figura reproduce un ejemplo de acotación 
por coordenadas, método que puede ser precioso en 
el caso de piezas para cuya fabricación se empleen 
máquinas que trabajan según coordenadas car-tesianas, 
como por ejemplo, las mandriladoras, 
A-26 
parte 
. Ejemplo de acotación combinada, en serie y parte en paralelo. 
adas (máquinas de mandrilar, algunos tipo 
algunas fresadoras modernas para matrices, etcétera. 
75
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Normas especiales de acotación 
n las figuras A-28_31 se indican las acotaciones correctas en algunos ejemplos particulares. 
lo de acotación dc un agujero cuando su 
ón está estrechamente relacionada con dos planos de 
referencia. 
Fig. A-30. Ejemplo 
dc acotación 
progresiva, en la 
que se toma como 
elemento de 
referencia un tope 
de la pieza. 
plo de acotación 
ento de referencia el 
ayor 
E 
Fig. A-28. Ejempposici 
ig. A-29. Ejemprogresiva, siendo elemagujero de diámetro m 
F 
76
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
éngase presente que, cuando en un dibujo se hayan de trazar líneas para p cisar el trabajo, 
stas (exceptuadas las que indican el estado de las superficies, de que se tra rá más adelante), 
deberán satisfacer las reglas siguientes: 
a) si terminan en el interior del contorno, su extremo será un punto ); 
b) si terminan en el mismo contorno, deberán terminar con una flec ). 
Sobre las cotas y su colocación se han publicado las tablas UNI 3974, q 
sistemas de acotación y dan todas las normas que deberán seguirse en la colocación de las 
líneas de medida, y la tabla UNI 3975, que indica todas las normas que deb 
uando se trate de la colocación de las cotas. 
Fig. A-32. Cuando en un dibujo haya líneas para 
precisar el trabajo, si terminan dentro del contorno 
deben tener por extremo un punto, si terminan en el 
mismo contorno, su extremo será una flecha. 
Fig. A-31. Ejemplo de acotación correcta de una plantilla. 
T 
re 
ta 
(fig. A-32 
ha (fig. A-32ue indican los erán seguirse 
é 
c 
77
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Las cotas se han de escribir con caracteres bien visibles, en sentido paralelo a las 
orrespondientes líneas de medida (Fig. A-33), encima de las mismas, con una ligera 
eparación, y en cuanto sea posible hacia su mitad; las cifras que componen una cota no deben 
unca estar atravesadas o separadas por ninguna línea del dibujo. 
Fig. A-33. Aquí se ve cómo se han de escribir las cotas, según 
la reciente tabla UNI 3975 
En las figuras A-34_57 se ilustran numerosos ejemplos típicos de acotación. En las 
orrespondientes leyendas se señalan, para cada caso, los puntos en que ha de fijar su atención 
l dibuja 
Como ya se ha dicho, las presentes normas son válidas únicamente para las 
s en escorzo. 
ha 
dida 
ejemplo, las correspondientes a las partes 
exteriores de las correspondientes a las 
interiores. En cuanto a las piezas aco-pladas, 
conviene tener separadas las 
líneas de medida de cada pieza, como 
indica la figura. 
INICIO 
c 
s 
n 
c 
e 
nte. 
representaciones de piezas en proyección ortogonal; por con siguiente, sólo podrán acotarse las dimensiones que en la pieza resulten paralelas al plano del dibujo, quedando excluidas, pues, las correspondientes a partes vista 
Fig. A-34. Como criterio general, sede procurar agrupar las líneas de mede un modo lógico, separando, por 
78
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
las líneas de medida correspondientes a los diámetros 
pueden colocarse fuera, paralelamente a uno de los ejes 
principales. 
e 
ángulos dc 30° o 45° con los ejes de simetría, Con tal que los 
diámetros que se hayan de acotar en esta forma no sean más de dos. 
Fig. A-35. Cuando se hayan de acotar círculos en Planta, 
Fig. A-36. La acotación de círculos en planta puede hacerstambién mediante líneas que pasen por el centro formando 
Fig. A-37. Acotación de una pieza que tiene partes con ejes concurrentes. En este caso 
conviene tomar como referencia el punto de concurrencia, orientando las cotas como indica 
sta figura. 
ICIO 
e 
IN 
79
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
80 
Fig. A-38. Disposición correcta de las líneas de 
medida y cotas inclinadas. Se ha de evitar colocar 
tanto líneas de medida como cotas, dentro del 
30°, rayado en la figura. 
Fig. A-39 
Fig. A-40. Si no hay espacio suficiente para escribir las cotas sobre la línea de medida, 
ueden dichas cotas escribirse sobre la prolongación de la línea de medida, fuera de la flecha 
. siempre que se pueda, a la derecha. 
sector de unos 
. Las cotas de los ángulos se han de escribir como indica la figura. 
p 
y
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Fig. A-41. Cuando las cotas son muy numerosas y no hay 
espacio suficiente para escribirlas todas, alineadas, sobre 
la línea de medida, una parte de las mismas puede 
escribirse separada, con un corto trazo de referencia. 
Fig. A-42. Las cotas de las partes de la pieza 
que, por algún motivo, no estén dibujadas a 
escala, deben subrayarse de modo bien visible. 
En este ejemplo no están a escala la cota 10 y el 
iámetro 40. 
Fig. A-43. Las cotas de los diámetros deben ir 
ecedidas del signo Ø, a menos que se 
deduzca del dibujo, con toda evidencia, que se 
trate de diámetros. 
Fig. A-44. En esta figura no hoy lugar a duda; por lo que no es 
indispensable anteponer el signo Ø a las cotas de los diámetros. 
d 
siempre pr 
81
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
-45. Una prolongación de sección 
cuadrada debe indicarse en el dibujo con las 
diagonales y su cota ha de ir precedida 
obligatoriamente del signo . 
Fig. A-46. Las cotas de los radios deben ir precedidas de la letra R. 
Fig. A-47. Véase la manera de acotar, en 
general, los achaflanados 
Fig. A-48. La indicación del 
achaflanado puede simplificarse como 
indica la figura, cuando el chaflan es 
Fig. A 
de 45° 
82
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
ig. A-49. Las cotas de los radios o 
iámetros de las superficies esféricas deben 
precedidas de la palabra esfera, como se 
e en la figura. 
Fig. A-50. La figura representa una 
parte de una manija con dos ejemplos de 
indicación del diámetro de superficies 
esféricas. 
ig. A-51. En la figura se ve un sistema simplificado para acotar elementos equidistantes. Se 
nota la distancia entre ejes contiguos, el número de intervalos y la distancia total entre los ejes 
extremos, con una sola línea de medida y una sola acotación. 
implificada para 
acotar elementos colocados regularmente. 
F 
d 
ir 
v 
F 
a 
Fig. A-52. Otra anotación s 
83
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Fig. A-53. Las acotaciones 
simplificadas podrían 
resultar ambiguas cuando 
originasen una confusión 
entre el valor del paso (o 
distancia entre ejes) y el 
número de pasos; por 
ejemplo, si hay 18 pasos de 15 mm cada uno. En este caso, para evitar la confusión se ha de 
acotar además uno de los pasos, como indica la figura. 
Fig. A ra indica cómo pueden usarse 
anotaciones de llamada para simplificar la 
acotación, cuando en el dibujo hay elementos 
ig. A-55. Los perfiles laminados que tienen un símbolo unificado pueden acotarse indicando 
l simbolo, seguido de las medidas que caracterizan las dimensiones de la sección del perfil, 
eparadas entre sí por el signo X, a continuación un guión y finalmente la longitud L. La 
desiguales (L), de 5 x 75 x 9 mm, largo de 1270 
-54. La figu 
repetidos, dispuestos con regularidad o no. 
F 
e 
s 
f igura representa un perfil de ángulo de ladosmm. 
84
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Fig. A-56. El sistema de 
aco 
en la figura anterior puede 
apl 
construcciones efectuadas con 
perfiles acoplados. en este caso 
el s a 
y se coloca segán la posición 
como indica la figura. 
Fig. A-57. Las estructuras metálicas 
reticuladas representadas 
esquemáticamente pueden acotarse 
s 
tación de perfiles indicado ícarse también a ímbolo del perfil se duplicdel perfil correspondiente, 
sencillamente indicando encima de cada segmento que represente un elemento, la distancia entre los nudode sus extremos. 
85
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
A, CALIDAD Y FORMA DE LAS SUPERFICIES 
DE LAS PIEZAS 
Aspereza superficial de una pieza mecánica 
De cada superficie de una pieza representada en un dibujo técnico puede ser necesario 
indicar su calidad, sea por lo que afecta al grado de acabado c zado a 
que se ha sometido la pieza, sea teniendo en cuenta los n 
superficiales (niquelado, cromado, etc.) que eventualmente hay 
Desde el punto de vista del grado de acabado, el elemento deración es 
la aspereza de la superficie. Hasta 1957, faltaba en la unificac 
aspereza de las superficies; en octubre de 1957 se publicó un cuaderno único (UNI 3963) 
conteniendo 6 tablas UNIPREA, que a título experimental, u 
dad con las normas ISO. 
A continuación se indica lo que de dichas normas puede inte 
Se considera superficie de un objeto el lugar geométrico de los puntos que separan los 
pertenecientes al objeto de los exteriores al mismo. Se ha de considerar la superficie real, que 
es la resultante de la fabricación y coincide prácticamente con la obtenida por medio de un 
instrumento moderno de medida microgeométrica (con punta esférica de 0,001 mm), y la 
superficie técnica, definida convencionalmente como la superficie obtenida con los 
strumentos antes indicados con explorador terminado por una punta esférica de 25 mm de 
adio, superficie que difiere en más o en menos de la superficie ideal representada en el 
ibujo. 
normal a la superficie ideal de la pieza, se 
uperficie, perfil que puede ser real, técnico 
Fig. A-58. Definiciones de los perfiles real, 
técnico o ideal de una superficie, según las 
normas UNI sobre la aspereza. 
as diferencias entre la superficie técnica y la ideal constituyen las diferencias de forma, que, 
or lo que se refiere a la aspereza de la superficie, no se toman en consideración. 
l Conjunto de las diferencias entre la superficie real y la técnica constituye la aspereza, que 
uede tener una orientación cuando los surcos correspondientes tienen una dirección 
redominante y un paso, cuando los surcos tienen carácter periódico. 
l paso se define corno la distancia media entre las Crestas preponderantes, distancia medida 
obre un plano del perfil normal a la orientación. 
NORMAS SOBRE LA NATURALEZ 
orrespondiente al mecaniuevos tratamientos térmicos oa de sufrir. que se toma en consiión italiana una definición de lanifican este asunto de conformi- resar al dibujante. 
in 
r 
d 
Cortando la pieza con un plano de relieve, obtiene, como línea de intersección, el perfil de la so ideal, según sea la superficie cortada (Fig. A-58). 
L 
p 
E 
p 
p 
E 
s 
86
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
Establecido el tramo de referencia, o sea, la longitud del sector del perfil técnico sobre el que 
túa la observación de la aspereza. se calcula la línea inedia del perfil, que es la línea de 
determinar el grado de 
aspereza de una superficie, según las últimas 
la línea media, o sea, la distancia del perfil real a la línea media, 
me 
untos de la superficie (excluyendo los puntos en los que haya irregularidades 
acc 
Grados de aspereza 
Los grados de aspereza se han de indicar en el 
dibujo únicamente cuando sea indispensable, 
porque el control de la aspereza representa un 
aumento considerable del coste de producción. 
Cuando sea necesario indicar el grado de 
aspereza, se recomienda usar los grados 
siguientes: 
e se indican 
- 0.10 1 10 
- 0,12 1,2 12 
- 
0,040 0,40 4 - 
0,050 0.50 5 - 
0,060 0.60 6 - 
0,080 0,80 8 - 
se efec 
compensación del perfil real, paralela al perfil técnico (Fig. A-59) 
Fig. A-59. Esquema para 
unificaciones publicadas. 
Esta línea (cuya determinación se puede hacer por métodos que caen fuera de los limites del presente texto) divide el perfil real de modo que el área total de las superficies llenas de material (cuadriculadas) sobre ella, resulte igual al área total de las superficies libres de material debajo de la misma (rayadas); en cada punto del perfil real se considera la diferencia “y” respecto a 
dida perpendicularmente a ésta. 
Como medida de aspereza se toma la amplitud Ra del valor medio de los valores absolutos de las diferencias (es decir, prescindiendo de su signo). Se podría decir más sencillamente que Ra se puede definir, refiriéndose a la figura A- 59, del modo siguiente: Ra = (suma de las áreas de las partes cuadriculadas + suma de las áreas de las partes rayadas) dividida por la longitud del tramo de referencia. Ra se expresa en micras. Como grado de aspereza de una superficie se toma el valor máximo de Ra, deducido de varios p 
identales, como rayas, corrosiones, etcétera). 
- 0,16 1,6 - - 0,20 2 - 0,025 0,25 2.5 - 0,030 0.30 3 
Como longitud del tramo de referencia, se toma valores diversos según el grado de aspereza que se prevé que tenga la superficie; estos valores no han de ser inferiores a los qu 
a continuación: Para Ra de 0 a 0.3; L = 0.25 mm Para Ra de 0,3 a 3; L = 0.80 mm 
Para Ra de 3 o más; L = 2.50 mm 87
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
88 
INICIO 
A título informativo se transcriben algunas 
aplicaciones corrientes, con la indicación del 
grado de aspereza recomendado (tabla 7). 
En el capítulo VI se indicarán los 
valores medios de las asperezas 
corresp 
nes de 
otros 
(indica 
factor 25 x 10 o 
sea, po 
perficies desde el punto de vista del 
cabado, el UNI había fijado (UNIM 36) 
nos símbolos gráficos, reproducidos en la 
tabla siguiente, junto con las explic 
orrespondientes; estos signos se emplean 
gno 
r 4 triángulos adyacentes no está 
cluido entre los de la UNIM 36; pero su 
so está muy extendido, como complemento 
e los otros signos (tabla 8). 
ondientes a las diferentes calidades de trabajo y se transcribirá una tabla con la indicación de las asperezas que se obtienen con varias clases de mecanizado. El grado de aspereza ya se ha tomado en consideración en las unificacio 
Estados: las diferentes normas anglosajonas, que difieren muy poco entre sí 
das en las siglas AA; CLA; RMS), expresan el grado de aspereza en micropulgadas, que se pueden convertir en -3 
Ra multiplicándolas por el 
niendo 40 RMS (o AA o CLA) = 1 Ra. Para indicar las calidades de las 
su 
a 
u 
aciones 
c 
todavía y se aceptan transitoriamente, habiéndose establecido para algunos de ellos, precisamente para los formados por pequeños triángulos adyacentes, la equivalencia con la Ra. Se ha de hacer notar que el siformado po 
in 
u 
d
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
n las figuras A-60-65 se ven algunos ejemplos de designación según las normas transitorias. 
normas que se han de seguir, que no se detallan 
Fig. A-60. Cuando todas las superficies de 
una pieza hayan de presentar el mismo grado 
de acabado, el símbolo puede colocarse 
arte en el dibujo en vez de sobre las 
diferentes superficies. 
Fig. A-62. Cuando todas las superficies 
presenten el mismo grado de acabado, 
exceptuadas algunas, se indica sobre estas 
últimas el signo especial de acabado; se 
indica además aparte el signo general y 
entre paréntesis el signo correspondiente a 
las superficies con acabado especial. 
En el ejemplo todas las superficies están 
desbastadas, menos dos que están 
cepilladas. 
Fig. A-63. Cuando la pieza tiene pocas 
superficies, conviene en cambio 
consignar los signos de mecanizado 
sobre todas las superficies. 
Fig. A-64. indica cómo se colocan los 
signos de mecanizado sobre la 
proyección principal o sobre una vista 
lateral. 
E 
En las correspondientes leyendas se indican lasen el texto. 
ap 
89
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO Fig. A-65. Se indica con un solo signo 
que la pieza se ha de alisar en toda su 
superficie y después se ha de cromar. 
90
Material elaborado por el docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 91 
INICIO 
Fig. A-66. Este dibujo es un ejemplo de la forma de indicar la clase de trabajo de las 
superficies de una pieza, cuyas diferentes superficies se han de mecanizar con diferentes 
rados de acabado. 
g
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Chaflanes y redon 
En varias ocasiones se ha llamado la atención sobre e 
excepto en casos de necesidad absoluta, no deben: 
a) presentar cambios bruscos de sección, porque en ellos se forman secciones en las 
que se producen fácilmente rebabas y roturas; 
b) presentar exteriormente aristas vivas porque se estropean fácilmente y pueden, 
además, causar heridas en el caso de golpes. 
Por esto se efectúan chaflanes y redondeados, que se han de indicar en los dibujos. 
Las indicaciones de los chaflanes y redondeados están también unificadas (tabla UNI 148). 
Recientemente. en la tabla UNI 3975 se han introducido variaciones en la representación de los 
chaflanes redondeados. 
La representación normalizada de los chaflanes y redondeados en los dibujos está indicada en 
las figuras A 46-48, en las figuras A 67-70. 
Fig. A 68. La indicación de los chaflanes de 45° (más 
corrientes) esta simplificada, diferenciándose de la de 
chaflanes de otros ángulos (en la figura, 60°) 
Fig. A 67. Indicación de chaflán a 45° y de 
acuerdo con radio de curvatura de 5 mm. 
Fig. A 69. Ejemplo de indicación de chaflanes y redondeados. 
deados l hecho de que las piezas mecánicas, 
92
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
93 
INICIO 
A 70 
Fig. A 70. Otro 
ejemplo de indicación 
de chaflanes y 
redondeados. 
Con frecuencia se graba sobre la superficie exterior de piezas cilíndricas el moleteado, 
ya sea para adornar dichas superficies, ya sea para, si son parte de piezas como tornillos, 
m nijas, etc., facilitar las operaciones de atornillar o de asir, haciendo áspera la superficie que 
se coge e impidiendo así el resbalamiento. 
Los moleteados se hacen ordinariamente en el torno o en máquina automática, con una 
herramienta apropiada llamada moleta. 
Moleteado a 
Fig. A 69 
A 71 A 72 A 73 
Fig. A 70-71. Representación convencional de 
leteados paralelos (70) y en equis (71) 
Fig. A 72-73. Véase como se representan 
convencionalmente dos piezas que tienen 
los mo
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
superficies moleteadas de alguna extensión. 
IN 
ICIO En pretenden qe no por trazos como prescribe el UNI, sino por trazos que se van aproximando a mes reglas de proyección solamente al moe las hélices que forman el mo). 
Los pasos unificados de moleteado son los siguientes: Paralelo X 
0.5 0.8 1 1.5 0.5 0.8 1 1.5 2 
Nota. Aquí es necesario advertir que algunos textos y algunos profesores de diue el moleteado paralelo normal se represent 
bujo 
paralelos equidistantes, 
dida que se acercan al 
ea por dos 
da 
leteado paralelo normal (donde 
oleteado produciría 
Conicidad e inclinaciones 
En el dibujo de una pieza de forma cónica o troncocónica, se ha de indicar el grado de 
conicidad. Esto ocurre, por ejemplo, en los conos de sujeción, puntas de torno y otras 
máquinas herramientas, para extremos cónicos de árboles, pasadores, etc., para escariadores, 
llaves de grifos, etc. 
Muchas veces se tendrá que indicar también en los dibujos las inclinaciones de planos 
respecto a otro plano considerado como de referencia (por ejemplo, en las chavetas, bancadas 
gnar tales indicaciones en los dibujos está unificado. 
can dos maneras de designar la conicidad; la primera se usa 
para conicidades pequeñas, o sea, para pequeños 
randes conicidades. 
) las conicidades pequeñas o moderadas se indican con (Fig. A 74): 
conicidad 1: k 
Fig. A 74. Las conicidades moderadas se 
indican con el cociente 1 : k, donde k es la 
longitud, medida sobre el eje del cono, a lo 
largo de la cual el diámetro experimenta una 
variación igual a 1.Se deducen del exámen de 
la figura las relaciones geométricas y 
trigonométricas: 
tg α/2 = d / 2l 
borde, según las reglas de proyección. Esta teoría se ha de considerar errón 
razones: en primer lugar, porque la representación del moleteado es convencional y unificay por lo tanto no puede variarse según criterios particulares; en segundo ligar, porque no se ve el motivo para aplicar la 
la aplicación, aun a ojo, de las reglas de proyección sería sencillísima) y no al moleteadoinclinado o cruzado (donde la proyección dna serie de sinusoides de trazado dificilísim 
u 
de máquinas, etc.). El modo de consiEn la tabla UNI 157 se indi 
ángulos de los conos, y la segunda para 
g 
a 
1 : k = d : 1 
94
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Con esto se entiende que (Fig. A 75) sobre la longitud k, medida sobre el eje del cono, el 
diámetro experimenta una variación igual a l (tomando naturalmente la misma unidad de 
medida que la de k). 
Fig. A 75. Tanto en el caso de un 
cono, como de un tronco de cono, del 
examen de la Sección del cono, se 
pueden deducir las relaciones entre 
dimensiones y conicidad: 
1 : k = (D — d) : l 
tg α/2 = (D — d 
Es evidente que la conicidad será tanto mayor cuanto menor sea k, o sea, que la 
onicidad y k son inversamente proporcionales. 
En relación con esta definición se puede establecer (Fig. A 74) la proporción: 
: k = d : 1 
En el c 
= 1,6 
) : 2l 
c 
1 
aso representado en la figura, se tiene 50 1 : k = 50 : 80, o sea, K = 80 
ara calcular el ángulo a del cono (Fig. A 74). se tiene, evidentemente: 
a d 
la conicidad es 1: 1,6. 
P 
tg 2 = 2l En el caso representado en la figura, se tiene, sustituyendo los valores: a d 50 tg 2 = 2l = 160 = 0,312 Y en la tabla de líneas trigonométricas se halla: 
2 
= 17 
a 
° 20’ 
95
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
En el caso de tratarse de un tronco de cono, no hay evidentem iferencias esenciales. 
La proporción inicial será (fig. A 75): 
ente d 
1 
: k = (D — d) : l 
l de la cual se deduce k = D - d Siendo a / 2 la semiabertura del cono (Fig. A 75), se tiene evidentemente, con las anotaciones de la figura: 1 100 l k = α = = tg P (D – d) 
2 
onociendo k se puede deducir inmediatamente el porcentaje de conicidad p %, 
signific 
la figura 
l k 
C 
ándose con esta locución que, sobre la longitud 100, medida a lo largo del eje del cono, el diámetro del cono experimenta una variación p (Fig. A 76). Con las anotaciones de se tiene también: 
; p : 100 = (D – d) : l P tg 2 = 200 
De donde se deduce: D - d 100 p = 100 = 
Fig. A 76. Se entiende por porcentaje de conic p que experimenta el 
diámetro sobre la longitud 100. 
Por lo tanto: 
p : 100 = (D – d) : l p = 100 k 
idad la variación 
; o sea 
Por tanto, para averiguar el porcentaje de conicidad bastará multiplicar por 100 el 
o inverso de k. 
α 
numer 
96
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO En la figura Fig. A 77se ve un ejemplo de como se indica la conicidad de un tronco de 
ono. 
ig. A 77. Ejemplo de designación 
pieza 
roncocónica 
b) Para las grandes conicidades, en cambio, se indica solamente el ángulo de abertura 
a (Fig. A 
8). 
tabla UNI 157 de que hemos hablado hay varios ejemplos para orientación, de 
plicación de varios grados de conicidad, de los cuales entresacamos los expuestos a 
c 
F 
de Conicidad de una 
t 
del cono (60°, 90°, etcétera). 
Para piezas de sección cuadrada, en vez de conicidad, se habla de convergenci 
7 
En la 
a 
continuación (tabla 9): 
97
Material elaborado por el docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 
98 
INICIO 
Fig. A 78. En las piezas de sección cuadrada (o poligonal), se emplea la palabra 
convergencia, en lugar de conicidad.. 
En esta tabla UNI eden usarse 
as definiciones de conicidad y convergencia se aplican también, siempre que sea posible, a la 
ig. A 79. Ejemplo de designación de 
onicidad Fig. A 80. Ejemplo de designación de la 
una cara de una plaquita 
En las figuras Fig. A 79-85 se ven algunos ejemplos d dicación de conicidad e 
clinaciones. 
n estas figuras se puede ver también la aplicación de las otras reglas y disposiciones sobre 
cotaci de 
se indican además otras varias conicidades, que puexcepcionalmente en casos de absoluta necesidad. Están también expuestas las conicidades empleadas exclusivamente para el calado de herramientas (conos Morse, conos métricos, etcétera). 
L 
inclinación de una superficie plana con respecto a otra. 
F 
c 
e in 
in 
Ea 
ones, sobre chaflanes y redondeados, sobre rayados de las secciones y sobre signostrabajo.
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO 
Fig. A 81. Ejemplo de designación de la 
inclinación de una superficie plana. 
Las figuras A 79, 83, 84 y 85 se refieren a piezas de forma realmente cónica: las figuras A 
80 y 81 a piezas que tienen una superficie plana con una inclinación dada respecto a otras 
uperficies planas de referencia. 
Fig. A 82. Dibujo de una brida con indicación de la conicidad. 
s 
99
Material elaborado por el docente Julio C. López. (mMaestro Técnico egresado de INET 
aterial de ayuda en clase) 
100 
ICIO 
IN 
Fig. A 84. Ejemplo de 
acotación de una pieza 
cónica. 
ocación 
de los signos de trabajo, en 
relación con la funcionalidad 
de la pieza, que no es otra que 
rectificada. 
cuadrada se ha indicado, 
según las normas, en la forma 
prescrita en la Fig. A 45. 
Fig. A 85. Punta de torno. 
Esta punta se compone, 
oca 
conicidad (1:20); la otra 
con una conicidad de 60°. 
ica de 60° no está acotada, ya que no es necesario, por estar perfectamente 
Obsérvese la col 
una llave de grifo. La parte cónica es la única que se ha de ajustar con precisión al correspondiente asiento cónico hueco, por lo que está 
El vástago de sección 
entre otras, de dos partes cónicas, una de p 
Nótese que la longitud de la parte cón 
determinada.
Material elaborado por el docente Julio C. López. (material de ayuda en clase) 
Maestro Técnico egresado de INET 
INICIO Fuentes consultadas: EL DIBUJO TÉCNICO MECANICO – ING. S. L. STRANEO y PROF. R. CONSORTI WWW.DIBUJOTECNICO.COM U.T.U. – UNIVERSIDAD DEL TRABAJO DEL URUGUAY – MATERIAL DIDACTICO 
101

4217500 dibujo-tecnico

  • 1.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INDICE TITULO PAGINA INTRODUCCIÓN HISTÓRICA 2 CLASIFICACIÓN DE LOS TIPOS DE DIBUJOS TÉCNICOS 4 GEOMETRÍA PLANA - POLÍGONOS REGULARES Consideraciones generales. 6 Construcción de polígonos regulares dada la circunferencia circunscrita. 7 Construcción de polígonos regulares dados el lado del convexo, el lado del estrellado o la distancia entre caras. 13 GEOMETRÍA DESCRIPTIVA SISTEMAS DE REPRESENTACIÓN 19 NORMALIZACIÓN 21 Evolución histórica, normas DIN e ISO 22 Normas UNE españolas. 23 Clasificación de las normas. 24 FORMATOS NORMALIZADOS 26 LÍNEAS NORMALIZADAS 30 ESCALAS 34 REPRESENTACIÓN NORMALIZADA DE CUERPOS Obtención de las vistas de un objeto. 37 Elección de las vistas de un objeto, y vistas especiales. 40 Cortes, secciones y roturas. 47 LÍNEAS DE ROTURA EN LOS MATERIALES 49 Secciones 50 Roturas 56 Indicaciones convencionales de los materiales en las secciones 60 ACOTACIÓN Generalidades, elementos y clasificación de las cotas. 63 ACOTADO DE LOS DIBUJOS 66 Acotaciones de los dibujos 68 Normas especiales de acotación 76 NORMAS SOBRE LA NATURALEZA, CALIDAD Y FORMA DE LAS SUPERFICIES DE LAS PIEZAS 86 Grados de aspereza 87 Chaflanes y redondeados 92 Moleteado 93 Conicidad e inclinaciones 94 Fuentes consultadas: 1
  • 2.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO INTRODUCCIÓN HISTÓRICA INTRODUCCIÓN Desde sus orígenes, el hombre ha tratado de comunicarse mediante grafismos o dibujos. Las primeras representaciones que conocemos son las pinturas rupestres, en ellas no solo se intentaban representar la realidad que le rodeaba, animales, astros, al propio ser humano, etc., sino también sensaciones, como la alegría de las danzas, o la tensión de las cacerías. A lo largo de la historia, esta ansia de comunicarse mediante dibujos, ha evolucionado, dando lugar por un lado al dibujo artístico y por otro al dibujo técnico. Mientras el primero intenta comunicar ideas y sensaciones, basándose en la sugerencia y estimulando la imaginación del espectador, el dibujo técnico, tiene como fin, la representación de los objetos lo más exactamente posible, en forma y dimensiones. Hoy en día, se está produciendo una confluencia entre los objetivos del dibujo artístico y técnico. Esto es consecuencia de la utilización de los ordenadores en el dibujo técnico, con ellos se obtienen recreaciones virtuales en 3D, que si bien representan los objetos en verdadera magnitud y forma, también conllevan una fuerte carga de sugerencia para el espectador. Imagen generada con Autocad EL DIBUJO TÉCNICO EN LA ANTIGÜEDAD La primera manifestación del dibujo técnico, data del año 2450 antes de Cristo, en un dibujo de construcción que aparece esculpido en la estatua del rey sumerio Gudea, llamada El arquitecto, y que se encuentra en el museo del Louvre de París. En dicha escultura, de forma esquemática, se representan los planos de un edificio. Del año 1650 A.C. data el papiro de Ahmes. Este escriba egipcio, redactó, en un papiro de 33 por 548 cm., una exposición de contenido geométrico dividida en cinco partes que abarcan: la aritmética, la esteorotomía, la geometría y el cálculo de pirámides. En este papiro se llega a dar valor aproximado al numero p. En el año 600 A.C., encontramos a Tales, filósofo griego nacido en Mileto. Fue el fundador de la filosofía griega, y está considerado como uno de los Siete Sabios de Grecia. Tenía conocimientos en todas las ciencias, pero llegó a ser famoso por sus conocimientos de 2
  • 3.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET astronomía, después de predecir el eclipse de sol que ocurrió el 28 de mayo del 585 A.C.. Se dice de él que introdujo la geometría en Grecia, ciencia que aprendió en Egipto. Sus conocimientos, le sirvieron para descubrir importantes propiedades geométricas. Tales no dejó escritos; el conocimiento que se tiene de él, procede de lo que se cuenta en la metafísica de Aristóteles. Del mismo siglo que Tales, es Pitágoras, filósofo griego, cuyas doctrinas influyeron en Platón. Nacido en la isla de Samos, Pitágoras fue instruido en las enseñanzas de los primeros filósofos jonios, Tales de Mileto, Anaximandro y Anaxímedes. Fundó un movimiento con propósitos religiosos, políticos y filosóficos, conocido como pitagorismo. A dicha escuela se le atribuye el estudio y trazado de los tres primeros poliedros regulares: tetraedro, hexaedro y octaedro. Pero quizás su contribución más conocida en el campo de la geometría es el teorema de la hipotenusa, conocido como teorema de Pitágoras, que establece que "en un triángulo rectángulo, el cuadrado de la hipotenusa, es igual a la suma de los cuadrados de los catetos". En el año 300 A.C., encontramos a Euclides, matemático griego. Su obra principal "Elementos de geometría", es un extenso tratado de matemáticas en 13 volúmenes sobre materias tales como: geometría plana, magnitudes inconmensurables y geometría del espacio. Probablemente estudio en Atenas con discípulos de Platón. Enseñó geometría en Alejandría, y allí fundó una escuela de matemáticas. Arquímedes (287-212 A.C.), notable matemático e inventor griego, que escribió importantes obras sobre geometría plana y del espacio, aritmética y mecánica. Nació en Siracusa, Sicilia, y se educó en Alejandría, Egipto. Inventó formas de medir el área de figuras curvas, así como la superficie y el volumen de sólidos limitados por superficies curvas. Demostró que el volumen de una esfera es dos tercios del volumen del cilindro que la circunscribe. También elaboró un método para calcular una aproximación del valor de pi (p), la proporción entre el diámetro y la circunferencia de un circulo, y estableció que este número estaba en 3 10/70 y 3 10/71. Apolonio de Perga, matemático griego, llamado el "Gran Geómetra", que vivió durante los últimos años del siglo III y principios del siglo II A.C. Nació en Perga, Panfilia (hoy Turquía). Su mayor aportación a la geometría fue el estudio de las curvas cónicas, que reflejó en su Tratado de las cónicas, que en un principio estaba compuesto por ocho libros. EL DIBUJO TÉCNICO EN LA ERA MODERNA Es durante el Renacimiento, cuando las representaciones técnicas, adquieren una verdadera madurez, son el caso de los trabajos del arquitecto Brunelleschi, los dibujos de Leonardo de Vinci, y tantos otros. Pero no es, hasta bien entrado el siglo XVIII, cuando se produce un significativo avance en las representaciones técnicas. Uno de los grandes avances, se debe al matemático francés Gaspard Monge (1746- 1818). Nació en Beaune y estudió en las escuelas de Beaune y Lyón, y en la escuela militar de Mézieres. A los 16 años fue nombrado profesor de física en Lyón, cargo que ejerció hasta 1765. Tres años más tarde fue profesor de matemáticas y en 1771 profesor de física en Mézieres. Contribuyó a fundar la Escuela Politécnica en 1794, en la que dio clases de geometría descriptiva durante más de diez años. Es considerado el inventor de la geometría descriptiva. La geometría descriptiva es la que nos permite representar sobre una superficie bidimensional, las superficies tridimensionales de los objetos. Hoy en día existen diferentes sistemas de representación, que sirven a este fin, como la perspectiva cónica, el sistema de 3
  • 4.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET planos acotados, etc. pero quizás el más importante es el sistema diédrico, que fue desarrollado por Monge en su primera publicación en el año 1799. Finalmente cave mencionar al francés Jean Víctor Poncelet (1788-1867). A él se debe a introducción en la geometría del concepto de infinito, que ya había sido incluido en matemáticas. En la geometría de Poncelet, dos rectas, o se cortan o se cruzan, pero no pueden ser paralelas, ya que se cortarían en el infinito. El desarrollo de esta nueva geometría, que él denominó proyectiva, lo plasmó en su obra "Traité des propietés projectivas des figures" en 1822. La última gran aportación al dibujo técnico, que lo ha definido, tal y como hoy lo conocemos, ha sido la normalización. Podemos definirla como "el conjunto de reglas y preceptos aplicables al diseño y fabricación de ciertos productos". Si bien, ya las civilizaciones caldea y egipcia utilizaron este concepto para la fabricación de ladrillos y piedras, sometidos a unas dimensiones preestablecidas, es a finales del siglo XIX en plena Revolución Industrial, cuando se empezó a aplicar el concepto de norma, en la representación de planos y la fabricación de piezas. Pero fue durante la 1ª Guerra Mundial, ante la necesidad de abastecer a los ejércitos, y reparar los armamentos, cuando la normalización adquiere su impulso definitivo, con la creación en Alemania en 1917, del Comité Alemán de Normalización. CLASIFICACIÓN DE LOS TIPOS DE DIBUJOS TÉCNICOS Veremos en este apartado la clasificación de los distintos tipos de dibujos técnicos según la norma DIN 199 La norma DIN 199 clasifica los dibujos técnicos atendiendo a los siguientes criterios: - Objetivo del dibujo - Forma de confección del dibujo. - Contenido. - Destino. Clasificación de los dibujos según su objetivo: - Croquis: Representación a mano alzada respetando las proporciones de los objetos. - Dibujo: Representación a escala con todos los datos necesarios para definir el objeto. - Plano: Representación de los objetos en relación con su posición o la función que cumplen. - Gráficos, Diagramas y Ábacos: Representación gráfica de medidas, valores, de procesos de trabajo, etc. Mediante líneas o superficies. Sustituyen de forma clara y resumida a tablas numéricas, resultados de ensayos, procesos matemáticos, físicos, etc. 4
  • 5.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Clasificación de los dibujos según la forma de confección: - Dibujo a lápiz: Cualquiera de los dibujos anteriores realizados a lápiz. - Dibujo a tinta: Ídem, pero ejecutado a tinta. - Original: El dibujo realizado por primera vez y, en general, sobre papel traslúcido. - Reproducción: Copia de un dibujo original, obtenida por cualquier procedimiento. Constituyen los dibujos utilizados en la práctica diaria, pues los originales son normalmente conservados y archivados cuidadosamente, tomándose además las medidas de seguridad convenientes. Clasificación de los dibujos según su contenido: - Dibujo general o de conjunto: Representación de una máquina, instrumento, etc., en su totalidad. - Dibujo de despiece: Representación detallada e individual de cada uno de los elementos y piezas no normalizadas que constituyen un conjunto. - Dibujo de grupo: Representación de dos o más piezas, formando un subconjunto o unidad de construcción. - Dibujo de taller o complementario: Representación complementaria de un dibujo, con indicación de detalles auxiliares para simplificar representaciones repetidas. - Dibujo esquemático o esquema: Representación simbólica de los elementos de una máquina o instalación. Clasificación de los dibujos según su destino: - Dibujo de taller o de fabricación: Representación destinada a la fabricación de una pieza, conteniendo todos los datos necesarios para dicha fabricación. - Dibujo de mecanización: Representación de una pieza con los datos necesarios para efectuar ciertas operaciones del proceso de fabricación. Se utilizan en fabricaciones complejas, sustituyendo a los anteriores. - Dibujo de montaje: Representación que proporciona los datos necesarios para el montaje de los distintos subconjuntos y conjuntos que constituyen una máquina, instrumento, dispositivo, etc. - Dibujo de clases: Representación de objetos que sólo se diferencian en las dimensiones. - Dibujo de ofertas, de pedido, de recepción: Representaciones destinadas a las funciones mencionadas. 5
  • 6.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO CONSIDERACIONES GENERALES Un polígono se considera regular cuando tiene todos sus lados y ángulos iguales, y por tanto puede ser inscrito y circunscrito en una circunferencia. El centro de dicha circunferencia se denomina centro del polígono, y equidista de los vértices y lados del mismo. Se denomina ángulo central de un polígono regular el que tiene como vértice el centro del polígono, y sus lados pasan por dos vértices consecutivos. Su valor en grados resulta de dividir 360º entre el número de lados del polígono (ver figura). Se denomina ángulo interior, al formado por dos lados consecutivos. Su valor es igual a 180º, menos el valor del ángulo central correspondiente. Si unimos todos los vértices del polígono, de forma consecutiva, dando una sola vuelta a la circunferencia, el polígono obtenido se denomina convexo. Si la unión de los vértices se realiza, de forma que el polígono cierra después de dar varias vueltas a la circunferencia, se denomina estrellado. Se denomina falso estrellado aquel que resulta de construir varios polígonos convexos o estrellados iguales, girados un mismo ángulo, es el caso del falso estrellado del hexágono, compuesto por dos triángulos girados entre sí 60º. Para averiguar si un polígono tiene construcción de estrellados, y como unir los vértices, buscaremos los números enteros, menores que la mitad del número de lados del polígono, y de ellos los que sean primos respeto a dicho número de lados. Por ejemplo: para el octógono (8 lados), los números menores que la mitad de sus lados son el 3, el 2 y el 1, y de ellos, primos respecto a 8 solo tendremos el 3, por lo tanto podremos afirmar que el octógono tiene un único estrellado, que se obtendrá uniendo los vértices de 3 en 3 (ver figura). En un polígono regular convexo, se denomina apotema a la distancia del centro del polígono al punto medio de cada lado (ver figura). En un polígono regular convexo, se denomina perímetro a la suma de la longitud de todos sus lados. El área de un polígono regular convexo, es igual al producto del semiperímetro por la apotema. 6
  • 7.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO CONSTRUCCIONES DE POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA La construcción de polígonos inscritos en una circunferencia dada, se basa en la división de dicha circunferencia en un número partes iguales. En ocasiones, el trazado pasa por la obtención de la cuerda correspondiente a cada uno de esos arcos, es decir el lado del polígono, y otras ocasiones pasa por la obtención del ángulo central del polígono correspondiente. Cuando en una construcción obtenemos el lado del polígono, y hemos de llevarlo sucesivas veces a lo largo de la circunferencia, se aconseja no llevar todos los lados sucesivamente en un solo sentido de la circunferencia, sino, que partiendo de un vértice se lleve la mitad de los lados en una dirección y la otra mitad en sentido contrario, con objeto de minimizar los errores de construcción, inherentes al instrumental o al procedimiento. TRIÁNGULO, HEXÁGONO Y DODECÁGONO (construcción exacta) eterminarán, Comenzaremos trazando dos diámetros perpendiculares entre sí, que nos dsobre la circunferencia dada, los puntos A-B y 1-4 respectivamente. A continuación, con centro en 1 y 4 trazaremos dos arcos, de radio igual al de la circunferencia dada, que nos determinarán, sobre ella, los puntos 2, 6, 3 y 5. Por último con centro en B trazaremos un arco del mismo radio, que nos determinará el punto C sobre la circunferencia dada. Uniendo los puntos 2, 4 y 6, obtendremos el triángulo inscrito. Uniendo los puntos 1, 2, 3, 4, 5 y 6, obtendremos el hexágono inscrito. Y uniendo los puntos 3 y C, obtendremos el lado del dodecágono inscrito; para su total construcción solo tendríamos que llevar este lado, 12 veces sobre la circunferencia. De los tres polígonos, solo el dodecágono admite la construcción de estrellados, concretamente del estrellado de 5. El hexágono admite la construcción de un falso estrellado, formado por dos triángulos girados entre sí 60º. NOTA: Todas las construcciones de este ejercicio se realizan con una misma abertura del compás, igual al radio de la circunferencia dada. 7
  • 8.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET CUADRADO Y OCTÓGONO (construcción exacta) Comenzaremos trazando dos diámetros perpendiculares entre sí, que nos determinarán, sobre la circunferencia dada, los puntos 1-5 y 3-7 respectivamente. A continuación, trazaremos las bisectrices de los cuatro ángulos de 90º, formados por la diagonales trazadas, dichas bisectrices nos determinarán sobre la circunferencia los puntos 2, 4, 6 y 8. Uniendo los puntos 1, 3, 5 y 7, obtendremos el cuadrado inscrito. Y uniendo los puntos 1, 2, 3, 4, 5, 6, 7 y 8, obtendremos el octógono inscrito. El cuadrado no admite estrellados. El octógono sí, concretamente el estrellado de 3. El octógono también admite la construcción de un falso estrellado, compuesto por dos cuadrados girados entre sí 45º. NOTA: De esta construcción podemos deducir, la forma de construir un polígono de doble número de lados que uno dado. Solo tendremos que trazar las bisectrices de los ángulos centrales del polígono dado, y estas nos determinarán, sobre la circunferencia circunscrita, los vértices necesarios para la construcción. PENTÁGONO Y DECÁGONO (construcción exacta) Comenzaremos trazando dos diámetros perpendiculares entre sí, que nos determinarán sobre la circunferencia dada los puntos A- B y 1-C respectivamente. Con el mismo radio de la circunferencia dada trazaremos un arco de centro en A, que nos determinará los puntos D y E sobre la circunferencia, uniendo dichos puntos obtendremos el punto F, punto medio del radio A-O Con centro en F trazaremos un arco de radio F-1, que determinará el punto G sobre la diagonal A-B. La distancia 1-G es el lado de pentágono inscrito, mientras que la distancia O- G es el lado del decágono inscrito. Para la construcción del pentágono y el decágono, solo resta llevar dichos lados, 5 y 10 8
  • 9.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET veces respectivamente, a lo largo de la circunferencia. El pentágono tiene estrellado de 2. El decágono tiene estrellado de 3, y un falso estrellado, formado por dos pentágonos estrellados girados entre sí 36º. HEPTÁGONO (construcción aproximada) Comenzaremos trazando una diagonal de la circunferencia dada, que nos determinará sobre ella puntos A y B. A continuación, con centro en A, trazaremos el arco de radio A-O, que nos determinará, sobre la circunferencia, los puntos 1 y C, uniendo dichos puntos obtendremos el punto D, punto medio del radio A-O. En 1-D habremos obtenido el lado del heptágono inscrito. Solo resta llevar dicho lado, 7 veces sobre la circunferencia, para obtener el heptágono buscado. Como se indicaba al principio de este tema, partiendo del punto 1, se ha llevado dicho lado, tres veces en cada sentido de la circunferencia, para minimizar los errores de construcción. El heptágono tiene estrellado de 3 y de 2. NOTA: Como puede apreciarse en la construcción, el lado del heptágono inscrito en una circunferencia, es igual a la mitad del lado del triángulo inscrito. 9
  • 10.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET ENEÁGONO (construcción aproximada) Comenzaremos trazando dos diámetros perpendiculares, que nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-C respectivamente. Con centro en A, trazaremos un arco de radio A-O, que nos determinará, sla circunferencia dada, el punto D. Con centro en B y radio B-D, trazaremos un arco de circunferencia, que nos determinará el punto E, sobre la prolongación de la diagonal 1-C. Por último con centro en E y radio E-B=E-A, trazaremos un arco de circunferencia que nos determinará el punto F sobre la diagonal C-1. En 1-F habremos obtenido el lado del eneágono inscrito en la circunferencia. Procediendo como en el caso del heptágono, llevaremos dicho lado, 9 veces sobre la circunferencia, para obtener el heptágono buscado. El eneágono tiene estrellado de 4 y de 2. También presenta un falso estrellado, formado por 3 triángulos girados entre sí 40º. obre DECÁGONO (construcción exacta) Comenzaremos trazando dos diámetros perpendiculares, que nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-6 respectivamente. Con centro A, y radio A-O, trazaremos un arco que nos determinará los puntos C y D sobre la circunferencia, uniendo dichos puntos, obtendremos el punto E, punto medio del radio A-O. A continuación trazaremos la circunferencia de centro en E y radio E- O. Trazamos la recta 1-E, la cual intercepta a la circunferencia anterior en el punto F, siendo la distancia 1-F, el lado del decágono inscrito. 10
  • 11.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Procediendo con en el caso del heptágono, llevaremos dicho lado, 10 veces sobre la circunferencia, para obtener el decágono buscado. El decágono como se indicó anteriormente presenta estrellado de 3, y un falso estrellado, formado por dos pentágonos estrellados, girados entre sí 36º. PENTADECÁGONO (construcción exacta) Esta construcción se basa en la obtención del ángulo de 24º, correspondiente al ángulo interior del pentadecágono. Dicho ángulo lo obtendremos por diferencia del ángulo de 60º, ángulo interior del hexágono inscrito, y el ángulo de 36º, ángulo interior del decágono inscrito. Comenzaremos con las construcciones necesarias para la obtención del lado del decágono (las del ejercicio anterior), hasta la obtención del punto H de la figura. A continuación, con centro en C trazaremos un arco de radio C-H, que nos determinará sobre la circunferencia el punto 1. de nuevo con centro en C, trazaremos un arco de radio C-O, que nos determinará el punto 2 sobre la circunferencia. Como puede apreciarse en la figura, el ángulo CO1 corresponde al ángulo interior del decágono, de 36º, y el ángulo CO2 corresponde al ángulo interior del hexágono, de 60º, luego de su diferencia obtendremos el ángulo 1O2 de 24º, ángulo interior del pentadecágono buscado, siendo el segmento 1-2 el lado del polígono. Solo resta llevar, por el procedimiento ya explicado, dicho lado, 15 veces sobre la circunferencia dada. El pentadecágono presenta estrellado de 7, 6, 4 y 2, así como tres falsos estrellados, compuesto por: tres pentágonos convexos, tres pentágonos estrellados y 5 triángulos, girados entre sí, en todos los casos, 24º. 11
  • 12.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET PROCEDIMIENTO GENERAL (construcción aproximada) Este procedimiento se utilizará solo cuando el polígono buscado no tenga una construcción articular, ni pueda obtenerse como múltiplo de otro, dado que este procedimiento lleva herente una gran imprecisión. Comenzaremos con el trazado del diámetro A-B, que dividiremos, mediante el Teorema de ales en tantas partes iguales como lados tenga el polígono que deseamos trazar, en nuestro aso 11. Con centro en A y B trazaremos dos arcos de radio A-B, los cuales se interceptarán en los untos C y D. Uniendo dichos puntos con las divisiones alternadas del diámetro A-B, btendremos sobre la circunferencia, los puntos P, Q, R, .. etc., vértices del polígono. ualmente se procedería con el punto D, uniéndolo con los puntos 2, 4, etc., y obteniendo así l resto de los vértices del polígono. Solo restaría unir dichos puntos para obtener el polígono buscado. p i n T c p o I g e 12
  • 13.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO CONVEXO, EL LADO DEL ESTRELLADO O LA DISTANCIEXO, DISTANCI CONSTRUCCIONES DE POLÍGONOS REGULARES DADO EL LADO DEL A ENTRE CARAS nerencia de radio A-B. Uniremos el PENTÁGONO DADO EL LADO DEL CONVEXO (construcción exacta) Dividiendo el lado del pentágono en media y extrema razón, obtendremos la diagonal del pentágono buscado, solo restará construirlo por simple triangulación. Comenzaremos trazando la perpendicular en el extremo 2 del lado, con centro en 2 trazaremos un arco de radio 1-2, que nos determinará sobre la A-2, que nos determinará su punto medio B. A continuación, con centro en B, trazaremos la circu f a, interceptará a la circunferencia anterior s perpendicular anterior el punto A, ytrazaremos la mediatriz del segmento punto 1 con el punto B, la prolongación de esta recten el punto C, siendo 1-C el lado del estrellado, o diagonal del pentágono buscado. Por triangulación obtendremos los vértices restanteobteniendo así el pentágono buscado. PENTÁGONO DADO EL LADO DEL ESTRELLADO (construcción exacta) oe p , que uniremos convenientemente, Operaremos como en el caso anterior, teniendo en la media razón del lado delrellado, el lado del convexo. Como en el caso anterior, trazaremos lrpendicular en el extremo A del ladosobre dicha perpendicular, y trazaremos mediatriz del segmento A-B, que nos determinará punto medio C. A continuación, con centro en C trazaremos una circunferencia de radio A-C. Uniendo epunto 1 con el punto C, esta recta deter b st a e , con centro en A, trazaremos un arco de radio A-1, que determinará el punto B, la l minará sobre la circunferencia anterior el punto 5, endo el segmento 1-5, el lado del convexo del pentágono buscado. si 13
  • 14.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET buscado. Solo resta construir dicha circunferencia circunscrita, y obtener los vértices restantes del octógono, que convenientemente unidos, nos d 14 s restantes, y uniéndolos convenientemente. Completaremos el trazado por triangulación, obteniendo así los vértice Solo resta construir dicha circunferencia circunscrita, y obtener los vért HEPTÁGONO DADO EL LADO DEL CONVEXO (co S hep med perp A con ue interceptará a la perpendicular trazada en el l con centro en 1 y radio 1- D, trazamos un arco de circunferencia que en el punto O, centro de la circunferencia circunscrita. ices restantes del inarán el polígono buscado. nstrucción aproximada) iendo el segmento 1-2 el lado del tágono, comenzaremos trazando la iatriz de dicho lado, y trazaremos la endicular en su extremo 2. continuación, en el extremo 1 struiremos el ángulo de 30º, qextremo 2, en el punto D, la distancia 1-D, esel radio de la circunferencia circunscrita aheptágono buscado, interceptará a la mediatriz del lado 1-2 heptágono, que convenientemente unidos, nos determ OCTÓGONO DADO EL LADO DEL ONVEXO (construcción exacta) Siendo el segmento 1-2 el lado dectógono, comenzaremos trazando unuadrado de lado igual al lado del octógono ado. A continuación, trazaremos la mediatriz del ado 1-2, y una diagonal del cuadrado onstruido anteriormente, ambas rectas se circunferencia intercepta a la mediatriz del lado 1-2, en el punto O, centro de la circunferencia circunscrita al octógono terminarán el polígono buscado. C l o c d l c cortan en el punto C, centro del cuadrado. Con centro en C trazaremos la circunferencia circunscrita a dicho cuadrado, dicha e
  • 15.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Dado el lado 1-2 del eneágono, construiremos un triángulo equilátero con A continuación, trazaremos la mediatriz dlado A-2, de dicho triángulo, que centro de la circunferenc ENEÁGONO DADO EL LADO DEL CONVEXO (construcción aproximada) dicho lado, hallando el tercer vértice en A. el pasará por el vértice 1, y la mediatriz del lado 1-2, que pasará por A. Con centro en A y radio A-B, trazaremos un arco, que determinará sobre la mediatriz anterior el punto O, que será el ia circunscrita al eágono buscado. ncia em en Solo resta trazar dicha circunferecircunscrita, y determinar sobre ella los ente unidos nos determinarán el eneágono (construcción exacta) Dividiendo el lado del decágono enmedia y extrema razón, obtendremosradio de la circ Comenzaremos trazando la perpendicular en el extremo 2 del lado vértices restantes del polígono, que convenientbuscado. DECÁGONO DADO EL LADO DEL CONVEXO 2, que nos determinará su punto mediB, y con centro en B trazaremos el unferencia circunscrita al polígono. , con centro en 2 trazaremos un arco de radio 1-2, que nos determinará sobre la perpendicular anterior el punto A, azaremos la mediatriz del segmento A-o la ircunferencia de radio B-A. f tinuación, trazaremos la mediatriz del lado 1-2, inará sobre la mediatriz anterior, el punto O, n tr prolongación obtendremos el punto C sobre la circunla circunferencia circunscrita al polígono. A cony con centro en 1 un arco de radio 1-C, que determcentro de la circunferencia circunscrita. Solo resta trazar dicha circunferencia circunscrita, restantes del polígono, que convenientemente unidos c Uniendo el punto 1 con el B, en su erencia anterior, siendo 1-C, el radio de y determinar sobre ella los vértices os determinarán el decágono buscado. 15
  • 16.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Dividiendo el lado del decágono en media y extrema razón, obtendremos el rapolígono y el lado del convexo. trazaremos un arco de radio 2-A, que nos DECÁGONO DADO EL LADO DEL ESTRELLADO (construcción exacta) dio de la circunferencia circunscrita al Comenzaremos trazando la perpendicular el extremo 2 del lado, con centro en 2 eterminará sobre la perpendicular anterior l punto B, trazaremos la mediatriz del unto A continuación, uniremos A con C, io d m x ue no unferencia circu estantes del polígono, que convenienteme 16 en d e segmento B-2, que nos determinará su pmedio C, y con centro en C trazaremos lacircunferencia de radio C-B. determinando el punto D, sobre la circunferencia anterior, siendo A-D el radcon centro en A, y radio A-D, determinareresultando en 1-2 el lado del decágono convetrazaremos dos arcos, de radio igual R, qcircunferencia circunscrita al polígono. Solo resta trazar dicha circr HEXÁGONO DADA LA DISTANCIA ENTRE CARAS (construcción exacta) Comenzaremos trazando dos rectas par Con vértice en 1, construiremos un ángulo de 30º, e la circunferencia circunscrita. Trazando un arco os sobre el lado del estrellado dado el punto 1, o correspondiente. Con centro en 1 y 2 s determinarán en O, el centro de la nscrita, y determinar sobre ella los vértices nte unidos nos determinarán el decágono buscado. determinará el punto 6 sobre la recta r. En los segmentos 3-4 y 1-6 alelas, r y s, y trazaremos una perpendicular a ambas rectas, que nos determinará los puntos 1 y 3. e nos determinará sobre la recta s el punto 4, por icho punto trazaremos una perpendicular que nos , habremos obtenido el lado del exágono buscado, la obtención de los dos vértices stantes, se hará por simple triangulación. r qu d h r e Solo nos resta unir todos los vértices, para obteneel hexágono buscado.
  • 17.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET OCTÓGONO DADA LA DISTANCIA ENTRE CARAS (co Con centro en los cuatro vértices del cuadrado nstrucción exacta) Dada la distancia entre caras d, con dicha istancia construiremos un cuadrado de vértices A, , C y D, mediante el trazado de sus diagonales btendremos su centro en O. nterior, trazaremos arcos de radio igual a la mitad e la diagonal del cuadrado, arcos que pasarán por Solo nos resta unir todos los vértices, para d B o a dO, y que nos determinarán sobre los lados delcuadrado, los puntos 1, 2, 3, ... y 8, vértices del polígono. obtener el octógono buscado. CONSTR Comenzaremos por la construcción de udecágono in UCCIÓN POR SEMEJANZA DE UN construcción de un decágono, el procedimiento es aplicable a cualquier otro polígono. n scrito en una circunferencia ualquiera, por el procedimiento ya visto en el ma anterior, obteniendo en este caso, uno de rolongación del lado 1'-2', llevaremos la s p emos dicha circunferencia con centro en O, no el a te POLÍGONO REGULAR DADO EL LADO DEL CONVEXO Aunque en este caso, se trata de la c tesus lados en 1'-2'. A partir del vértice 1', y sobre la plongitud del lado del decágono buscado, obteniendo el punto G. Prolongaremos loradios O-1' y O-2'. Por G trazaremos una rolongación del radio O-2', el punto 2, siendo en el punto 1, otro vértice del polígo polígono buscado. circunscrita, los vértices restantes del rminarán el decágono buscado. paralela al radio O-1', que determinará sobre laeste uno de los vértices del polígono buscado, y resultando la distancia O-2, el radio de la circunferencia circunscrita a dicho polígono. Trazarque interceptará a la prolongación del radio O-1' buscado, obteniendo en la cuerda 1-2 el lado d Solo resta determinar sobre la circunferencipolígono, que convenientemente unidos nos de 17
  • 18.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET CONSTRUCCIÓN POR SEMEJANZA DE UN POLÍGONO REGULAR DADO EL LADO DELESTRELLADO Como en caso anterior, aunque se trconstrucción de un decágono, el p construyendo un decágono inscrito en una ata de la rocedimiento es aplicable a cualquier otro polígono. Procederemos, como en el caso anterior, circunferencia cualquiera, por el procedimiento ya visto en el tema anterior, obteniendo en este ón del lado 1'-4', llevaremos la ngitud del lado del estrellado dado, y os dicha circunferencia con centro en O, que interceptará a la prolongación del radio en el punto 1, otro vértice del polígono buscado, obteniendo en la cuerda 1-4 el lado del ia e caso, uno de los lados del estrellado en 1'-4'. A partir del vértice 1', y sobre la prolongaciloobteniendo el punto G. Prolongaremos los radios O-1' y O-4'. Por G trazaremos una paralela al radio O-1', que determinará sobre la prolongación del radio O-4', el punto 4, siendo este uno de los vértices del polígono buscado, circunscrita, los vértices restantes del terminarán el decágono buscado. resultando la distancia O-4, el radio de la circunferencia circunscrita a dicho polígono. TrazaremO-1' estrellado buscado. Solo resta determinar sobre la circunferencpolígono, que convenientemente unidos nos d 18
  • 19.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO SISTEMAS DE REPRESENTACIÓN dcir, que si bien a partir d GENERALIDADES Todos los sistemas de representación, tienen como objetivo representar sobre una superficie bidimensional, como es una hoja de papel, los objetos que son tridimensionales en el o. Con este objetivo, se han ideado a lo largo de la historia diferentes sistemas de resentación. Pero todos ellos cumplen una condición fundamental, la reversibilidad, es e e un objeto tridimensional, los diferentes sistemas permiten una epresentación bidimensional de dicho objeto, de igual forma, dada la representación los Todos los sistemas, se basan en la proyección de los objetos sobre un plano, que se ctantes. o, espaci rep rbidimensional, el sistema debe permitir obtener la posición en el espacio de cada uno de elementos de dicho objeto. denomina plano del cuadro o de proyección, mediante los denominados rayos proyeEl número de planos de proyección utilizados, la situación relativa de estos respecto al objetasí como la dirección de los rayos proyectantes, son las características que diferencian a losdistintos sistemas de representación. SISTEMAS DE PROYE En todos los sistemas de representación, la proyección de los objetos sobre el plano cuadro o de proyección, se realiza mediante los rayos proyectantes, estos son líneas imaginarias, que pasando por los vértices o puntos del objeto, proporcionan en su intersección con el plano del cuadro, la proyección de dicho vértice o punto. impropio, todos los rayos serán paralel CCIÓN del Si el origen de los rayos proyectantes es un punto del infinito, lo que se denomina punto os entre sí, dando lugar a la que se denomina, royección cilíndrica. Si dichos rayos resultan perpendiculares al plano de proyección e la proyección central o ónica. pestaremos ante la proyección cilíndrica ortogonal, en el caso de resultar oblicuos respecto a dicho plano, estaremos ante la proyección cilíndrica oblicua. Si el origen de los rayos es un punto propio, estaremos antc 19 Proyección cilíndrica ortogonal Proyección cilíndrica oblicua Proyección central o cónica
  • 20.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO TIPOS Y CARACTERÍSTICAS Los diferentes sistemas de representación, podemos dividirlos en dos grandes grupos: los as de medida y los sistemas representativos. Los sistemas de medida, son el sistema diédrico y el sistema de planos acotados. Se osición de los objetos del dibujo. El conveniente de estos sistemas es, que no se puede apreciar de un solo golpe de vista, la forma a tiva cónica o central. Se caracterizan por epresentar los objetos mediante una única proyección, pudiéndose apreciar en ella, de un solo an jo. ue nos sistem caracterizan por la posibilidad de poder realizar mediciones directamente sobre el dibujo, para obtener de forma sencilla y rápida, las dimensiones y piny proporciones de los objetos representados. Los sistemas representativos, son el sistema de perspectiva axonométrica, el sistemde perspectiva caballera, el sistema de perspectiva militar y de rana, variantes de la perspectiva caballera, y el sistema de perspecrgolpe de vista, la forma y proporciones de los mismos. Tienen el inconveniente de ser más difíciles de realizar que los sistemas de medida, sobre todo si comportan el trazado de grcantidad de curvas, y que en ocasiones es imposible tomar medidas directas sobre el dibuAunque el objetivo de estos sistemas es representar los objetos como los vería un observador situado en una posición particular respecto al objeto, esto no se consigue totalmente, dado qla visión humana es binocular, por lo que a lo máximo que se ha llegado, concretamente, mediante la perspectiva cónica, es a representar los objetos como los vería un observador conun solo ojo. En el siguiente cuadro pueden apreciarse las características fundamentales de cada ude los sistemas de representación. Sistema Tipo Planos de proyección Sistema de proyección Diédrico De medida Dos Proyección cilíndrica ortogonal Planos acotados dida togonal De me Uno Proyección cilíndrica or Perspectiva axonométrica vo Representati Uno Proyección cilíndrica ortogonal Perspectiva caballera vo Representati Uno Proyección cilíndrica oblicua Perspectiva militar Representativo Uno Proyección cilíndrica oblicua Perspectiva de rana Representativo Uno Proyección cilíndrica oblicua Perspectiva cónica Representativo Uno Proyección central o cónica 20
  • 21.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO NORMALIZACIÓN INTRODUCCIÓN DE FINICIÓN Y CONCEPTO La palabra norma del latín "normun", significa etimológicamente: "Regla a seguir para llegar a un fin determinado" Este concepto fue más concretamente definido por el Comité Alemán de Normalización a serie de fenómenos" aís, al potenciar las relaciones e intercambios tecnológicos con otros países. en 1940, como: "Las reglas que unifican y ordenan lógicamente un La Normalización es una actividad colectiva orientada a establecer solución a problemasrepetitivos. La normalización tiene una influencia determinante, en el desarrollo industrial de un p OBJETIVOS Y VENTAJAS Los objetivos de la normalización, pueden concretarse en tres: La economía, ya que a través de la simplificación se reducen costos. La utilidad, al permitir la intercambiabilidad. La calidad, ya que permite garantizar la constitución y características de un Estos tres objetivos traen consigo una serie de ventajas, que podríamos concretar en las siguientes: Reducción del número de tipos de un determinado producto. En EE .UU. en un momento determinado, existían 49 tamaños de botellas de leche. Por acuerdo voluntario conomía del 25% en el nuevo precio de los envases y tapas de cierre. En defi determinado producto. de los fabricantes, se redujeron a 9 tipos con un sólo diámetro de boca, obteniéndose una e Simplificación de los diseños, al utilizarse en ellos, elementos ya normalizados. Reducción en los transportes, almacenamientos, embalajes, archivos, etc.. Con la correspondiente repercusión en la productividad. nitiva con la normalización se consigue: 21
  • 22.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO PRODUCIR MÁS Y MEJOR, A TRAVÉS DE LA REDUCCIÓN DE TIEMPOS Y OSTOS. C industrializados, ante la necesidad de producir más y mejor EVOLUCIÓN HISTÓRICA, NORMAS DIN E ISO ones pcia, se habían tipificado los tamaños de ladrillos y piedras, según unos módulos de ensiones previamente establecidos. Pero la normalización con base sistemática y científica ace a finales del siglo XIX, con la Revolución Industrial en los países altamente . Pero el impulso definitivo llegó on la primera Guerra Mundial (1914-1918). Ante la necesidad de abastecer a los ejércitos y N usschuss der Deutschen Industrie - Comité de Normalización de la dustria Alemana. DIN -que significaban Deustcher Industrie Normen (Normas de la Industria Alemana). Sus principios son paralelos a la humanidad. Basta recordar que ya en las civilizacicaldea y egidim n creparar los armamentos, fue necesario utilizar la industria privada, a la que se le exigía unas especificaciones de intercambiabilidad y ajustes precisos. NORMAS DIN Fue en este momento, concretamente el 22 de Diciembre de 1917, cuando los ingenieros alemanes Naubaus y Hellmich, constituyen el primer organismo dedicado a la normalización: ADI - Normen-AIn Este organismo comenzó a emitir normas bajo las siglas: 22
  • 23.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO En 1926 el NA DNA - Deutsches Normen-Ausschuss - Comité de Norma que si bien siguió emitiendo normas bajos las siglas DIN, estas pasaron a significar "Das Ist DI cambio su denominación por: s Alemanas - Esto es norma Rápidamente comenzaron a surgir otros comités nacionales en los países dustrializados, así en el año 1918 se constituyó en Francia el AFNOR - Asociación Francesa n 1919 en Inglaterra se constituyó la organización privada BSI - British Standards Institution. ión de todos estos organismos nacionales de normalización, surgió la Londres en 1926 la: I ración of the National Standardization Associations - ISA sede en Ginebra, y dependiente de la ONU. Norm" Y más recientemente, en 1975, cambio su denominación por: DIN - Deutsches Institut für Normung - Instituto Alemán de Normalización inde Normalización. ENORMAS ISO Ante la aparic necesidad de coordinar los trabajos y experiencias de todos ellos, con este objetivo se fundó en nternacional Fede Tras la Segunda Guerra Mundial, este organismo fue sustituido en 1947, por la International Organization for Standardization - ISO - Organización Internacional para la Normalización. Con A esta organización se han ido adhiriendo los diferentes organismos nacionales dedicados a la Normalización y Certificación N+C. En la actualidad son 140 los países adheridos, sin distinción de situación geográfica, razas, sistemas de gobierno, etc. . El trabajo de ISO abarca todos los campos de la normalización, a excepción de la geniería eléctrica y electrónica que es responsabilidad del CEI (Comité Electrotécnico in Internacional). Como consecuencia de la colaboración Hispano-Aleman durante la Guerra Civil Española, y sobrn NORMAS UNE ESPAÑOLAS e todo durante la 2ª Guerra Mundial, en España se comenzaron a utilizar las ormas DIN alemanas, esta es la causa de que hasta hoy en los diferentes diseños curriculares 23
  • 24.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO spañoles, se haga mención a las normas DIN, en la última propuesta del Ministerio para el as El 11 de Diciembre de 1945 el CSIC (Centro Superior de Investigaciones Científicas), creo el Instituto de Racionalización y Normalización IRANOR, dependiente del patronat ola, las cuales eran concordantes con las prescripciones internacionales. a nales de normalización: O - Organización Internacional de Normalización. ETSI - Instituto Europeo de Normas de Telecomunicaciones OPANT - Comisión Panamericana de Normas Técnicas ebachillerato, desaparece la mención a dichas normas, y solo se hace referencia a las normUNE e ISO. o Juan de la Cierva con sede en Madrid. IRANOR comenzó a editar las primeras normas españolas bajo las siglas UNE - Una Norma Españ A partir de 1986 las actividades de normalización y certificación N+C, recaen en Españen la entidad privada AENOR (Asociación Española de Normalización). AENOR es miembro de los diferentes organismos internacio ISCEI - Comité Electrotécnico Internacional CEN - Comité Europeo de Normalización CENELEC - Comité Europeo de Normalización Electrotécnica C Las normas UNE se crean en Comisiones Técnicas de Nstas elaboran una norma, esta es sometida durante seis me ormalización - CTN. Una vez ses a la opinión pública. Una vez anscurrido este tiempo y analizadas las observaciones se procede a su redacción definitiva, con las posibles correcciones que se estimen, publicándose bajo las siglas UNE. Todas las normas son sometidas a revisiones periódicas con el fin de ser actualizadas. - Número de norma emitida por dicho comité, complementado cuando se trata de una et r Las normas se numeran siguiendo la clasificación decimal. El código que designa una norma está estructurado de la siguiente manera: A B C UNE 1 032 82 A - Comité Técnico de Normalización del que depende la norma. Brevisión R, una modificación M o un complemento C. C - Año de edición de la norma. CLASIFICACIÓN DE LAS NORMAS Independiente de la clasificación decimal de las nhacer otra clasificación de carácte ormas antes mencionada, se puede r más amplio, según el contenido y su ámbito de aplicación: Según su contenido, las normas pueden ser: Normas Fundamentales de Tipo General, a este tipo pertenecen las normas relativas a formatos, tipos de línea, rotulación, vistas, etc.. 24
  • 25.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Ncaracterística de los elementos mecánicos y su representación. Entre ellas se encuentran las normas sobre tolerancias, roscas, soldaduras, etc. Normas de Materiales, son aquellas que hacen refe ormas Fundamentales de Tipo Técnico, son aquellas que hacen referencia a la rencia a la calidad de los materiales, con ón de materiales, tanto metálicos, aceros, ronces, etc., como no metálicos, lubricantes, combustibles, etc.. s normas de construcción naval, máquinas erramientas, tuberías, etc.. -Unión egionales. Su ámbito suele ser continental, es el caso de las normas emitidas por el CEN, as y emitidas por los diferentes organismos nacionales de es de las normas Internacionales y e Empresa. Son las redactadas libremente por las empresas y que complementan a las onal de Técnica Aeroespacial), RENFE, IBERDROLA, CTNE, BAZAN, ERIA, etc.. especificación de su designación, propiedades, composición y ensayo. A este tipo pertenecerían las normas relativas a la designacib Normas de Dimensiones de piezas y mecanismos, especificando formas, dimensiones y tolerancias admisibles. A este tipo pertenecerían lahSegún su ámbito de aplicación, las normas pueden ser: Internacionales. A este grupo pertenecen las normas emitidas por ISO, CEI y UITInternacional de Telecomunicaciones. RCENELEC y ETSI. Nacionales. Son las redactad normalización, y en concordancia con las recomendacion regionales pertinentes. Es el caso de las normas DIN Alemanas, las UNE Españolas, etc.. Dnormas nacionales. En España algunas de las empresas que emiten sus propias normas son: INTA (Instituto NaciIB 25
  • 26.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO FORMATOS CONCEPTO Se llama formato a la hoja de papel en que se realiza un dibujo, cuya forma y imensiones en mm. están normalizados. En la norma UNE 1026-2 83 Parte 2, equivalente a la O 5457, se especifican las características de los formatos. d I S Aplicando estas DIMENSIONES Las dimensiones de los formatos responden a las reglas de doblado, semejanza y ión existente entre el lado de un adrado y su diagonal, es decir referencia. Según las cuales: 1- Un formato se obtiene por doblado transversal del inmediato superior. 2- La relación entre los lados de un formato es igual a la relaccu 2/1. los lados homólogos de dos formatos sucesivos de la serie A. 3- Y finalmente para la obtención de los formatos se parte de un formato base de 1 m2. tres reglas, se determina las dimensiones del formato base llamado A0 uyas dimensiones serían 1189 x 841 mm. o A0. obres, carpetas, archivadores, etc. dos series auxiliares B y C. dia geométrica de c El resto de formatos de la serie A, se obtendrán por doblados sucesivos del format La norma estable para s Las dimensiones de los formatos de la serie B, se obtienen como me Los de la serie C, se obtienen como media geométricas de los lados homólogos de los correspondientes de la serie A y B. Serie A Serie B Serie C A0 841 x 1189 B0 1000 x 1414 C0 917 x 1297 A1 594 x 841 B1 707 x 1000 C1 648 x 917 B2 500 x 707 C2B4250 x 353C4 A2 420 x 594 458 x 648 A3 297 x 420 B3 353 x 500 C3 324 x 456 A4 210 X 297 229 x 324 A5 148 x 210 B5 176 x 250 C5 162 x 229 A6 48 B6 76 C6 2 105 x 1 125 x 1 114 x 16 A7 74 x 105 B7 88 x 125 C7 81 x 114 A8 52 x 74 B8 62 x 88 C8 57 x 81 A9 37 x 52 B9 44 x 62 10 26 x 37 10 31 x 44 A B 26
  • 27.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 27 INICIO Excepcionalmente y para piezas alargadas, la norma contempla la utilización de formatos que denomi es y e pcio e o en m do por 2, 3, 4 ... y hasta 9 vec s dim del la orto ato na especial xce nales, que s btien ultiplican es la ensiones do c de un form . ORM S ALARG FORM TO ALARGADOS A S F ATO ADOS ESPECIALES A3 x 3 420 x 891 A3 x 4 420 x 1189 A A4 x 3 297 x 630 A4 x 4 297 x 841 A4 x 5 297 x 1051 A1 x 3 841 x 1783 A1 x 4 841 x 2378 2) A EXCEPCIONALES A0 x 3 1) 1189 x 1682 A0 x 3 1189 x 2523 2) A A2 x 3 594 x 126 4 594 x A2 x 5 594 x 2102 A3 x 6 420 x 1783 A3 x 7 420 x 2080 icados em a la figura 1 ( 1 A2 x 1682 A A3 x 5 420 x 1486 A A4 x 6 297 x 1261 A4 x 7 297 x 1471 A4 x 8 297 x 1682 A4 x 9 297 x 1892 En la tabla UNI 936-937 se indican los formatos unif pleados en los dibujos técnicos de todas clases, calcos, reproducciones, etc. En ella se indican las medidas del recuadro y las mínimas de las hojas no recortadas. Los formatos normales en milímetros son los siguientes, con referencia tabla 1): Fig. 1. Tamaños unificados de las hojas para los dibujos técnicos
  • 28.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Tabla 1 Las tablas UNI ti A Se puede también disponer de formatos alargados, com ue ionan en la tabla, y obre los que no es neces extende Para los rollos de papel o tela para dibujar se han fijado las siguientes alturas en mm: se ecomiendan las indicada negrilla 0; 12 00; 88 0; 62 0; 330. 28 enen el formato 4. o los q se menc ario rse. s en : 156 30; 9 0; 66 5; 45 027 ablec orma de plegar los planos. Este se hará en zig- s r PLEGADO La norma UNE - 1 - 95, est e la f ag, tanto en sentido vertical como horizontal, hasta dejarlo reducido a las dimensiones de rc a que el cuadro de rotulación, siempre debe quedar en Formato de los dibujos Hojas recortadas Hojas sin recortar Indicaciones para la designación a b a1 mínimo b1 máximo A 0 841 1189 880 1230 A 1 594 841 625 880 A 2 420 594 450 625 A 3 297 420 330 450 A 4 21 330 0 297 240 A 5 148 210 165 240 A 6 105 148 120 165 za hivado. También se indica en esta norm la parte anterior y a la vista.
  • 29.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO dibujo. Este recuadro deja unos márgenes en INDICACIONES EN LOS FORMATOS MÁRGENES: En los formatos se debe dibujar un ecuadro interior, que delimite la zona útil de el ormato, que la norma establece que no sea mm. para los formatos A0 y A1, y o inferior a 10 mm. para los formatos A2, A3 o debe a siendo su dirección de ctura, la misma que el dibujo. En UNE - 1035 osición que puede doptar el cuadro con sus dos zonas: la de e oc mí la posición de 0,5 mm. Estas marcas sirven para acilitar la reproducción y microfilmado. ados en los extremos de los ejes de simetría nimo de 0,5 mm. y sobrepasando el recuadro r finferior a 20ny A4. Si se prevé un plegado para archivadcon perforaciones en el papel, se debe definir un margen de archivado de una anchura mínima de 20 mm., en el lado opuesto al cuadro de rotulación. CUADRO DE ROTULACIÓN: Conocido también como cajetín, secolocar dentro de la zona de dibujo, y en lparte inferior derecha, le- 95, se establece la dispaidentificación, de anchura máxima 170 mm. y la de información suplementaria, que se debcolocar encima o a la izquierda de aquella. SEÑALES DE CENTRADO: Señales de centrado. Son unos trazos coldel formato, en los dos sentidos. De un grosor en 5 mm. Debe observarse una tolerancia enf 29
  • 30.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO SEÑALES DE ORIENTACIÓN: Señales de orientación. Son dos flechas o triángulos equiláteros dibujados sobre las ñales de centrado, para indicar la posición de la hoja sobre el tablero. RADUACIÓN MÉTRICA DE REFERENCIA: Graduación métrica de referencia. Es una reglilla de 100 mm de longitud, dividida en LÍNEAS NORMALIZADAS En los dibujos técnicos se utilizan diferentes tipos de líneas, sus tipos y espesores, han - se G centímetros, que permitirá comprobar la reducción del original en casos de reproducción. sido normalizados en las diferentes normas. En esta página no atendremos a la norma UNE 1032-82, equivalente a la ISO 128-82. CLASES DE LÍNEAS e convenios elegidos deben estar indicados en otras rmas internacionales o deben citarse en una leyenda o apéndice en el dibujo de que se trate. En las siguientes figuras, puede apreciarse los diferentes tipos de líneas y sus Solo se utilizarán los tipos y espesores de líneas indicados en la tabla adjunta. En caso dutilizar otros tipos de líneas diferentes a los indicados, o se empleen en otras aplicaciones distintas a las indicadas en la tabla, losno aplicaciones. En el cuadro adjunto se concretan los diferentes tipos, su designación y aplicaciones concretas. 30
  • 31.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Línea Designación Aplicaciones generales Llena gruesa A1 Contornos vistos A2 Aristas vistas Llena fina (recta o curva as ección s abatidas dibujo B1 Líneas ficticias vistB2 Líneas de cota B3 Líneas de proy B4 Líneas de referencia B5 Rayados B6 Contornos de seccione sobre la superficie delB7 Ejes cortos Llena fina a mano alzada (2) Llena fina (recta) con zigzag iales os, si estos límites D1 no son líneas a trazos y puntos C1 Límites de vistas o cortes parc o interrumpid Gruesa de trazos Fina de trazos F1 Contornos ocultos F2 Aristas ocultas E1 Contornos ocultos E2 Aristas ocultas Fina de trazos y puntos simetría G1 Ejes de revolución G2 Trazas de plano deG3 Trayectorias Fina de trazos y puntos, gruesa en los extremos y en los cambios de dirección H1 Trazas de pl o de corte an Gruesa de trazos y puntos J1 Indicación de líneas o superficies que son objeto de especificaciones particulares Fina de trazos y doble punto viles K1 Contornos de piezas adyacentes K2 Posiciones intermedias y extremos de piezas mó K3 Líneas de centros de gravedad K4 Contornos iniciales antes del conformado K5 Partes situadas delante de un plano de corte manera automatizada un mismo dibujo. (1) Este tipo de línea se utiliza particularmente para los dibujos ejecutados de una (2) Aunque haya disponibles dos variantes, sólo hay que utilizar un tipo de línea en Además de por su trazado, las ANCHURAS DE LAS LÍNEAS líneas se diferencian por su anchura o grosor. En los azados a lápiz, esta diferenciación se hace variando la presión del lápiz, o mediante la te: , no se aconseja línea de anchura 0,18. churas, que pueden parecer aleatorios, en realidad responden a la trutilización de lápices de diferentes durezas. En los trazados a tinta, la anchura de la línea deberá elegirse, en función de las dimensiones o del tipo de dibujo, entre la gama siguien 0,18 - 0,25 - 0,35 - 0,5 - 0,7 - 1 - 1,4 y 2 mm. Dada la dificultad encontrada en ciertos procedimientos de reproducciónla Estos valores de an 31
  • 32.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET nA3, es aproximadamente de ecesidad de ampliación y reducción de los planos, ya que la relación entre un formato A4 y un 2. De esta forma al ampliar un formato A4 con líneas de espe0,5 a un formato A3, dichas líneas pasarían a ser de 5 x sor = 0,7 mm. La relación entre las anchuras de las líneas finas y gruesas en us Deben cond n mismo dibujo, no debe er inferior a 2. servarse la misma anchura de línea para las diferentes vistas de una pieza, ibujadas con la misma escala. En la figura siguiente se dan 6 tipos de líneas, las cuales se indican con un número obre ellas que representa su anchura en décimas de milímetros. on el fin de alcanzar la armonía del dibujo, se dan cuatro grupos de líneas ue toman los nombres de: líneas finas, medias, gruesas y muy gruesas s C Q 32
  • 33.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET El espaciado mínimo entre líneas paralela ESPACIAMIENTO ENTRE LAS LÍNEAS s (comprendida la representación de los yados) no debe nunca ser inferior a dos veces la anchura de la línea más gruesa. Se rarecomienda que este espacio no sea nunca inferior a 0,7 mm. En la representación de un dibujo, puede suceder que se superp ORDEN DE PRIORIDAD DE LAS LÍNEAS COINCIDENTES ongan diferentes tipos de neas, por ello la norma ha establecido un orden de preferencias a la hora de representarlas, Contornos y aristas vistos. 2 - Contornos y aristas ocultos. e plano de simetría. ad. das o unidas deben coincidir, excepto en el aso de secciones delgadas negras. lídicho orden es el siguiente: 1 - 3 - Trazas de planos de corte. 4 - Ejes de revolución y trazas d 5 - Líneas de centros de graved 6 - Líneas de proyección Los contornos contiguos de piezas ensamblac Una línea de referencia sirve para indicar un elemento TERMINACIÓN DE LAS LÍNEAS DE REFERENCIA (línea de cota, objeto, contorno, c.). el contorno del objeto representado 2 - En una flecha, si acaban en el contorno del objeto representado. 1 2 3 et Las líneas de referencia deben terminar: 1 - En un punto, si acaban en el interior d 3 - Sin punto ni flecha, si acaban en una línea de cota. 33
  • 34.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO ORIENTACIONES SOBRE LA UTILIZACIÓN DE LAS LÍNEAS 1 - Las líneas de ejes de simetría, ir ligeramente del ntorno de la pieza y también las de n i las rcunferencias son muy pequeñas se se da claridad. media vista o un cuarto, varán en sus extremos, dos pequeños uy próximas, los trazos e dibujarán alternados. nua o de trazos, cabarán en trazo. continua ni a otra de azos. tienen que sobresalcocentro de circunferencias, pero no debecontinuar de una vista a otra. 2 - En las circunferencias, los ejes se han de cortar, y no cruzarse, scidibujarán líneas continuas finas. 3 - El eje de simetría puede omitiren piezas cuya simetría se perciba con to 4 - Los ejes de simetría, cuando representemoslletrazos paralelos. 5 - Cuando dos líneas de trazos sean paralelas y estén md 6 - Las líneas de trazos, tanto si acaban en una línea contia 7 - Una línea de trazos, no cortará, al cruzarse, a una líneatr 8 - Los arcos de trazos acabarán en los puntos de tangencia. ESCALAS Para el desarrollo de este tema se han tenido en cuenta las recomendaciones de la norma NE-EN ISO 5455:1996. U CONCEPTO La represent ación de objetos a su tamaño natural no es posible cuando éstos son muy randes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de s a problemática la resuelve la ESCALA, aplicando la ampliación o reducción ecesarias en cada caso para que los objetos queden claramente representados en el plano del gdimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de lomismos. Estndibujo. 34
  • 35.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET define la ESCALA como la relación entre la dimensión dibujada respecto de su dimensión real, esto es: INICIO Se E = dibujo / realidad Si el numerador de esta fracción es mayor que el denominador, se trata de una escal ducción en caso contrario. La escala 1:1 corresponde a un objeto ibujado a su tamaño real (escala natural). a de ampliación, y será de re d escala. ESCALA GRÁFICA Basado en el Teorema de Thales se utiliza un sencillo método gráfico para aplicar una Véase, por ejemplo, el caso para E 3:5 s r y s formando un ángulo cualquiera. la r será le 1º) Con origen en un punto O arbitrario se trazan dos recta 2º) Sobre la recta r se sitúa el denominador de escala (5 en este caso) y sobre la recta s el numerador (3 en este caso). Los extremos de dichos segmentos son A y B. 3º) Cualquier dimensión real situada sobre convertida en la del dibujo mediante una simpparalela a AB. . recomienda el uso de ciertos valores ESCALAS NORMALIZADAS Aunque, en teoría, sea posible aplicar cualquier valor de escala, en la práctica se normalizados con objeto de facilitar la lectura de imensiones mediante el uso de reglas o escalímetros. Ampliación: 2:1, 5:1, 10:1, 20:1, 50:1 ... Reducción: 1:2, 1:5, 1:10, 1:20, 1:50 ... No obstante, en casos especiales (particularmente en construcción) se emplean ciertas d Estos valores son: escalas intermedias tales como: 1:25, 1:30, 1:40, etc... 35
  • 36.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET EJEMPLO 1 EJEMPLOS PRÁCTICOS Se desea representar en un formato A3 la planta de un edificio de 60 x 30 metros. La escala más conveniente para este caso sería 1:200 que proporcionaría unas Se desea representar en un formato A4 una pieza de reloj de dimensiones 2 x 1 mm. La escala adecuada sería 10:1 JEMPLO 3: Sobre una carta marina a E 1:50000 se mide una distancia de 7,5 cm entre dos islotes, eal hay entre ambos? on 50000 cm reales 7,5 cm del dibujo serán X cm reales como resultado 375.000 cm, que equivalen a dimensiones de 40 x 20 cm, muy adecuadas al tamaño del formato. EJEMPLO 2: E ¿qué distancia r Se resuelve con una sencilla regla de tres: si 1 cm del dibujo s X = 7,5 x 50000 / 1... y esto da 3,75 Km USO D scción estrellada de 6 facetas o ca EL ESCALÍMETRO La forma más habitual del escalímetro es la de una regla de 30 cm de longitud, con e ras. Cada una de estas facetas va graduada con escalas iferentes, que habitualmente son: Estas escalas son válidas igualmente para valores que resulten de multiplicarlas o tilizable en planos a escala 1:30 ó :3000, etc. lano a E 1:250, se aplicará directamente la escala 1:250 del escalímetro y las dicaciones numéricas que en él se leen son los metros reales que representa el dibujo. :5000; se aplicará la escala 1:500 y habrá que multiplicar por n el o d 1:100, 1:200, 1:250, 1:300, 1:400, 1:500 dividirlas por 10, así por ejemplo, la escala 1:300 es u1 Ejemplos de utilización: 1º) Para un pin2º) En el caso de un plano a E 1 10 la lectura del escalímetro. Por ejemplo, si una dimensión del plano posee 27 unidades eescalímetro, en realidad estamos midiendo 270 m. Por supuesto, la escala 1:100 es también la escala 1:1, que se emplea normalmente comregla graduada en cm. 36
  • 37.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO OBTENCIÓN DE LAS VISTAS DE UN OBJETO poyecciones ortogonales GENERALIDADES Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo re 6 planos, dispuestos en forma de cubo. También se podría definir las vistas como, las r de un objeto, según las distintas direcciones desde donde se mire. sob Las reglas a seguir para la representación de las vistas de un objeto, se recogen en la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", equivalente a la norma ISO 128-82. DENOMINACIÓN DE LAS VISTAS Si situamos un observador según las seis direcciones indicadas por las flechas, btendríamos las seis vistas posibles de un objeto. stas reciben las siguientes denominaciones: Vista A: Vista de frente o alzado Vista B: Vista superior o planta Vista C: Vista derecha o lateral derecha o Estas vi Vista D: Vista izquierda o lateral izquierda Vista E: Vista inferior Vista F: Vista posterior POSICIONES RELATIVAS DE LAS VISTAS Para la disposición de las diferentes vistas sobre el papel, se pueden utilizar dos variantes e proyección ortogonal de la misma importancia: - El método de proyección del primer diedro, también denominado Europeo - El método de proyección del tercer diedro, también denominado Americano En ambos métodos, el objeto se supone dispuesto dentro de un cubo, sobre cuyas seis d (antiguamente, método E) (antiguamente, método A) caras, se realizarán las correspondientes proyecciones ortogonales del mismo. 37
  • 38.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO tre de proyección el que se encuentra entre el observador y el objeto. La diferencia estriba en que, mientras en el sistema Europeo, el objeto se encuentra enel observador y el plano de proyección, en el sistema Americano, es el plano SISTEMA EUROPEO SISTEMA AMERICANO Una vez realizadas las seis proyecciones ortogonales sobre las caras del cubo, y manteniendo fija, la cara de la proyección del alzado (A), se procede a obtener el desarrollo del ubo, que como puede apreciarse en las figuras, es diferente según el sistema utilizado. SISTEMA EUROPEO c SISTEMA AMERICANO El desarrollo del cubo de proylas seis vistas principales de un objeto, en sus posiciones relativas. ección, nos proporciona sobre un único plano de dibujo, 38
  • 39.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Con el objeto de identificar, en que sistema se ha representado el objeto, se debe añadir l símbolo que se puede apreciar en las figuras, y que representa el alzado y vista lateral INICIO e izquierda, de un cono truncado, en cada uno de los sistemas. S ISTEMA EUROPEO SISTEMA AMERICANO vista posterior, coincidiendo en anchuras. CORRESPONDENCIA ENTRE LAS VISTAS Como ntre las diferentes vistas. Así estarán relacionadas: a) El alzado, la planta, la vista inferior y la b) El alzado, la vista lateral derecha, la vista nta, la vista lateral izquierda, la te definida una pieza. Teniendo en ían e podría apreciarse en la a rre se puede observar en las figuras anteriores, existe una correspondencia obligada e lateral izquierda y la vista posterior, coincidiendo en alturas. c) La pla vista lateral derecha y la vista inferior, coincidiendo en profundidad. Habitualmente con tan solo tres vistas, el alzado, la planta y una vista lateral, queda perfectamencuenta las correspondencias anteriores, implicarque dadas dos cualquiera de las vistas, sobtener la tercera, como puede figura: También, de todo lo anterior, se deduce que las difearbitraria. Aunque las vistas aisladamente sean codefinirán la pieza. rentes vistas no pueden situarse de formctas, si no están correctamente situadas, no 39
  • 40.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO ELECCIÓN DE LAS VISTAS DE UN OBJETO, Y VISTAS ESPECIALES ELECCIÓN DEL ALZADO En la norma UNE 1-032-82 se especifica claramente que "La vista más característica del objeto to en u posición de trabajo, y en caso de que pueda ser utilizable en cualquier posición, se presentará en la posición de mecanizado o montaje. erficie del dibujo. 2) Que el alzado elegido, presente el menor número posible de aristas ocultas. perfiles, lo más implificadas posibles. o lzado la vista A, ya que nos permitirá apreciar la inclinación del tabique a y la forma en L del debe elegirse como vista de frente o vista principal". Esta vista representará al obje s r e En ocasiones, el concepto anterior puede no ser suficiente para elegir el alzado de una pieza, en estos casos se tendrá en cuenta los principios siguientes: 1) Conseguir el mejor aprovechamiento de la sup 3) Y que nos permita la obtención del resto de vistas, planta ys Siguiendo las especificaciones anteriores, en la pieza de la figura 1, adoptaremos comaelemento b, que son los elementos más significativos de la pieza. 40
  • 41.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO En ocasio umentar el número de istas necesarias a que sería sufi que la pieza quedase orrectam os representar una ista lateral. nes, una incorrecta elección del alzado, nos conducirá a a; es el caso de la pieza de la figura 2, donde el alzado correcto sería la vista A, ciente con esta vista y la representación de la planta, paraente definida; de elegir la vista B, además de la planta necesitaríam v y c v con una o dos vistas. Cuando sea indiferente la elecció ELECCIÓN DE LAS VISTAS NECESARIAS sentación de aristas ocultas. En general, y salvo en piezas muy complejas, astará con la representación del alzado planta y una vista lateral. En piezas simples bastará n de la vista de perfil, se optará por la ista lateral izquierda, que como es sabido se representa a la derecha del alzado. ser : Para la elección de las vistas de un objeto, seguiremos el criterio de que estas deben ser, las mínimas, suficientes y adecuadas, para que la pieza quede total y correctamente definida. Seguiremos igualmente criterios de simplicidad y claridad, eligiendo vistas en las que se eviten la repre b v Cuando una pieza pueda ser representada por su alzado y la planta o por el alzado y una vista de perfil, se optará por aquella solución que facilite la interpretación de la pieza, y de indiferente aquella que conlleve el menor número de aristas ocultas. En los casos de piezas representadas por una sola vista, esta suele estar complementadacon indicaciones especiales que permiten la total y correcta definición de la pieza 1) En piezas de revolución se incluye el símbolo del diámetro (figura 1). 2) En piezas prismáticas o troncopiramidales, se incluye el símbolo del cuadrado y/o la "cruz de San Andrés" (figura 2). 3) En piezas de espesor uniforme, basta con hacer dicha especificación en lugar bien visible (figura 3). 41
  • 42.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO VISTAS ESPECIALES Con el objeto de conseguir representaciones más claras y simplificadas, ahorrando a su vez tiempo de ejecución, pueden realizarse una serie de representaciones especiales de las os los casos más significativos: vistas de un objeto. A continuación detallam VISTAS DE PIEZAS SIMÉTRICAS En los casos de piezas con uno o varios ejes de simetría, puede representarse dicha pieza la pieza, geramente más allá de la traza del plano de simetría, en cuyo caso, no se indicarán los trazos aralelos en los extremos del eje (figura 3). mediante una fracción de su vista (figuras 1 y 2). La traza del plano de simetría que limita el contorno de la vista, se marca en cada uno de sus extremos con dos pequeños trazos finos paralelos, perpendiculares al eje. También se pueden prolongar las aristas de li p VISTAS CAMBIADAS DE POSICIÓN Cuando por motivos excepcionales, una vista no ocupe su posición según el madoptado, se indicará la dirección de observación mediante una flecha y una letra mflecha será de mayor tamaño que las de acotación y la letra mayor que las cifras de cota. En la vista cambiada de posición se indicará dicha letra, o bien la indicación de "Visto por .." (Figuras 4 y 5). étodo ayúscula; la 42
  • 43.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO En otras ocasiones, el prieza, que impide su correcta i VISTAS DE DETALLES Si un detalle de una pieza, no quedara bien definido mediante las vistas normales, podrá dibujarse un vista parcial de dicho detalle. En la vista de detalle, se indicará la letra mayúscula identificadora de la dirección desde la que se ve dicha vista, y se limitará mediante una línea ina a mano alzada. La visual que la originó se identificará mediante una flecha y una letra ayúscula como en el apartado anterior (figuras 6). oblema resulta ser las pequeñas dimensiones de un detalle de la p nterpretación y acotación. En este caso se podrá realizar una ista de detalle ampliada convenientemente. La zona ampliada, se identificará mediante un f m vcírculo de línea fina y una letra mayúscula; en la vista ampliada se indicará la letra de identificación y la escala utilizada (figuras 7). VISTAS LOCALES En elementos simétricos, se permite realizar vistas locales en lugar de una vista completa. Para la representación de estas vistas se seguirá el método del tercer diedro, independientemente del método general de representación adoptado. Estas vistas locales se dibujan con línea gruesa, y unidas a la vista principal por una línea fina de trazo y punto (figuras 8 y 9). 43
  • 44.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO VISTAS GIRADAS Tienen como objetivo, el evitar la representación de elementos de objetos, que en vista normal no aparecerían con su verdadera forma. Suele presentarse en piezas con nervios o razos que forman ángulos distintos de 90º respecto a las direcciones principales de los ejes. Se presentará una vista en posición real, y la otra eliminando el ángulo de inclinación del detalle iguras 10 y 11). b r e (f VISTAS DESARROLLADAS En piezas obtenidas por doblado o curvado, se hace necesario representar el contorno itivo de dicha pieza, antes de su conformación, para apreciar su forma y dimensiones antes del proceso de doblado. Dicha representación se realizará con línea fina de trazo y doble punto (figura 12). prim 44
  • 45.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET IN ICIO VISTAS AUXILIARES OBLICUAS En ocasiones se presentan elementos en piezas, que resultan oblicuos respecto a los lanos de proyección. Con el objeto de evitar la proyección deformada de esos elementos, se rocede a realizar su proyección sobre planos auxiliares oblicuos. Dicha proyección se limitará la zona oblicua, de esta forma dicho elemento quedará definido por una vista normal y ompleta y otra parcial (figuras 13). En ocasiones determinados elementos de una pieza esultan oblicuos respecto a todos los planos de proyección, en estos casos habrá de realizarse os cambios de planos, para obtener la verdadera magnitud de dicho elemento, estas vistas se enominan vistas auxiliares dobles. Si partes interiores de una pieza ocupan posiciones especiales oblicuas, respecto a los lanos de proyección, se podrá realizar un corte auxiliar oblicuo, que se proyectará paralelo al tan, p p a c r d d pp lano de corte y abatido. En este corte las partes exteriores vistas de la pieza no se represeny solo se dibuja el contorno del corte y las aristas que aparecen como consecuencia del mismo(figura 14). 45
  • 46.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO REPRESENTACIONES CONVENCIONALES Con el objeto de clarificar y simplificar las representaciones, se conviene realizar ciertos pos de representaciones que se alejan de las reglas por las que se rige el sistema. Aunque son uchos los casos posibles, los tres indicados, son suficientemente representativos de este tipo e convencionalismo (figuras 15, 16 y 17), en ellos se indican las vista reales y las preferibles. ti m d INTERSECCIONES FICTICIAS En ocasiones las intersecciones de superficies, no se producen de forma clara, es el caso de los redondeos, chaflanes, piezas obtenidas por doblado o intersecciones de cilindros de igual o distinto diámetro. En estos casos las líneas de intersección se representarán mediante una línea fina que no toque los contornos de las piezas. Los tres ejemplos siguientes muestran claramente la mecánica de este tipo de intersecciones (figuras 18, 19 y 20). 46
  • 47.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO CORTES, SECCIONES Y ROTURAS INTRODUCCIÓN En ocasiones, debido a la complejidad de los detalles internos de una pieza, su representación se hace confusa, con gran número de aristas ocultas, y la limitación de no poder acotar sobre dichas aristas. La solución a este problema son los cortes y secciones, que estudiaremos en este tema. También en ocasiones, la gran longitud de determinadas piezas, dificulta su representación a escala en un plano, para resolver dicho problema se hará uso de las roturas, artificio que nos permitirá añadir claridad y ahorrar espacio. Las reglas a seguir para la representación de los cortes, secciones y roturas, se recogen n la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", e equivalente a la norma ISO 128-82. GENERALIDADES SOBRE CORTES Y SECCIONES Un corte es el artificio mediante el cual, en la representación de una pieza, eliminamos parte de la misma, con objeto de clarificar y hacer más sencilla su representación y acot En principio el mecanismo es muy sencillo. Adoptado uno o varios planos deeliminaremos ficticiamente de la pieza, la parte más cercana al observador, como puede verseen las figuras. ación. corte, repr orte, s cont as para l raya Como puede verse en las figuras siguientes, las aristas interiores afectadas por el corte, esentarán con el mismo espesor que las aristas vistas, y la superficie afectada por el e representa con un rayado. inuación en este tema, veremos como se representa la marcha del corte, las normdo del mismo, etc.. se c A e 47
  • 48.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Se denomina sección a la intersección del plano de corte con la pieza (la superficie indicada de color rojo), como puede apreciarse cuando se representa una sección, a diferencia de un corte, no se representa el resto de la pieza que queda detrás de la misma. Siempre que sea posible, se preferirá representar la sección, ya que resulta más clara y sencilla su representación. 48
  • 49.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO mediante una línea fina, como la de los ejes, a mano alzauele utilizarse en trabajos por ordenador. LÍNEAS DE ROTURA EN LOS MATERIALES Cuando se trata de dibujar objetos largos y uniformes, se suelen representar terrumpidos por líneas de rotura. Las roturas ahorran espacio de representación, al suprimir artes constantes y regulares de las piezas, y limitar la representación, a las partes suficientes ara su definición y acotación. Las roturas, están normalizadas, y sus tipos son los siguientes: a) Las normas UNE definen solo dos tipos de roturas (figuras 1 y 2), la primera se indica da y ligeramente curvada, la segunda zada, que patentizarán los diámetros interior y exterior (figura 8). na línea de trazo y punto fina, como las líneas de los ejes (figura 9). in p p s b) En piezas en cuña y piramidales (figuras 3 y 4), se utiliza la misma línea fina y ligeramente curva. En estas piezas debe mantenerse la inclinación de las aristas de la pieza. c) En piezas de madera, la línea de rotura se indicará con una línea en zig-zag (figura 5). d) En piezas cilíndricas macizas, la línea de rotura de indicará mediante la característica lazada (figura 6). e) En piezas cónicas, la línea de rotura se indicará como en el caso anterior, mediante lazadas, si bien estas resultarán de diferente tamaño (figura 7). f) En piezas cilíndricas huecas (tubos), la línea de rotura se indicará mediante una doble la g) Cuando las piezas tengan una configuración uniforme, la rotura podrá indicarse con u 49
  • 50.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INSecciones NLas líneas ocultas se pueden representar con líneas de trazos; pero es evidente que si las líneaocultas son demasiado numerosas o tienen una disposición comp ICIO o siempre son suficientes las tres o más vistas de una pieza para representarla completamente. s licada, pueden originar onfusión en el dibujo, en lugar de facilitar su comprensión. Se ha de considerar además que asta ahora no se ha tratado del acotado de los dibujos; si se tuviesen que acotar también uchas líneas ocultas, el dibujo sería inevitablemente confuso. or e to frecuentemente se añaden a las proyecciones del objeto una o más secciones o cortes, s permiten prescindir de alguna vista. ión que da la última tabla UNI 3971, «sección es la representación de la parte c h m P s que muchas veceSegún la definic del objeto que queda después de un corte ideal efectuado según uno o más planos (generalmente perpendiculares a un eje o pasando por un eje de la pieza)». Fig.S1 Fig.S2 Figs. S1-S2. Cada sección se ha efectuado según un solo plano. En la figura S1 se han colocado las dos secciones AA y BB en la disposición regular. En cambio, en la figura S2, se han dispuesto las secciones (por comodidad) de modo contrario a la regla general, en este caso se deben poner las flechas indicadas en la figura y la sección dibujada se ha de limitar rigurosamente a la parle cortada que se ve mirando en el sentido de la flecha. En la figura S1 se indica la manera de efectuar los cortes. En la figura S2 se indica una manera tolerada, aunque opuesta a las reglas normales, de disponer los cortes. 50
  • 51.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 51 INICIO Las secciones se han de indicar en los planos por: Sección A-A, Sección B-B, etc. Se recuerda que todo plano de sección se ha de indicar con na línea del tipo F (UNI 396 um 8), en cuyos dos extremos (más gruesos) lleva dos letras a 4) as los trazos o intersecciones de los planos y, cuando se crea conveniente, se señalarán con diferentes letras ma sculas y sucesivas los puntos de intersección de los planos de las secciones (figura S5). se ha hecho según on trazo más grueso. dos planos paralelos y se ha colocado en el sitiio de la planta ( vista por encima) de la que tiene el mismo contorno. Aquí también se han dibujado con líneas mas gruesas las trazas de las intersección de los planos cortantes. yúsculas iguales. Tanto si la sección de corte se efectúa según planos concurrentes (fig. S3) o paralelos (fig. So sucesivos (fig. S5), siempre se han de señalar con líneas más grues yú Fig. S3. La sección A Fig. S4. La sección AA se ha hecho según Ados planos concurrentes, formando un ángulo tal que la sección resulte lo mas representativa posible. La intersección de los dos planos cortantes se ha de marcar c
  • 52.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. S5. La sección A-B-C-D se ha hecho según varios p vos. Pero en el caso representado en la figura, la distancia oblicua correspondiente a BC no se h a de su proyección correspondiente a la planta, cuyo luga a sucesión de letras, dc las cuales la inicial y final te indic lanos sucesi a representado en su verdadera magnitud, sino en lr ocupa. La traza dc la sección se ha señalado por unan en el titulo: «Sección A-D». Las partes del dibujo que representan las correspondientes de la pieza separadas poel plano cortante se dibujan rayadas, según las normas que se exponen seguidamente. De estmanera, se ve a primera vista al examinar una sección qué partes han sido cortadas y qué artes, en cambio, están a la vista. p r a Esta regla general tiene, sin embargo, muchas excepciones, que son consecuencia de considerar que las secciones se efectúan y representan exclusivamente para facilitar la comprensión del dibujo, prescindiéndose, por lo tanto, en algunos casos de la regla general. Evidentemente estas excepciones han de limitarse a casos muy especiales. He aquí las normas más importantes: Fig. S6. Los nervios de las secciones longitudinales se representan sin cortar 52
  • 53.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 53 longitudinalmente, se representan sin cortar. cciones de piezas de forma muy alargada. Como norma general: brazos de poleas (Fig. S7), los dientes de ruedas dentadas o , los roblones (Fig. S9) y los remaches, los pernos (Fig. S10), los árboles , las arandelas y en general todos Los elementos de con su dimensión mayor, cuando esta última está colocada ección, se han de representar sin cortar, o sea, en vista, aun en inales se representan sin cortar . Igualmente las chavetas y los árboles. Fig. S8. En las secciones, los dientes de las ruedas dentadas, cortados las se Fig. S8) ig. S11), los pasadores (Fig. S12) equeño espesor comparado aralelamente al plano de s sección. Fig. S7. Los brazos en sus secciones longitud Conviene evitar Los nervios (Fig. S6), loscremalleras ( (F p p la Fig. S10. Los pernos en la sección longitudinal se representan sin cortar. Fig. S9. En las secciones longitudinales los roblones se representan sin cortar.
  • 54.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Las piezas simétricas pueden representasección o corte (Fig. S14). a mitad con la vista normal y la otra mitad e Fig. S11. En Las secciones, los árboles y los pasadores, cortados longitudinalmente, se representan sin cortar. Fig. S12. En las secciones, los pasadores, cortados longitudinalmente, se representan sin cortar. De la misma manera, las partes cilíndricas, cónicas o esféricas, aun siendo huecas, que no tengan interés especial para los fines del dibujo, se representan sin cortar, tal como se ven (Fig. S13). Fig. S13. En la icas, aun pr especial para el dibujo, se representan sin cortar rse un n En muchos casos puede resultar una representación más clara y ocupar menos espacio m n se limitará a representar la porción cortada por el plano secante, excluyendo por nto todas las partes que resulten vistas (Fig. S16). s secciones longitudinales, las piezas esentando cavidades, si no presentan interés cón e pleando secciones rebatidas sobre cl plano del dibujo, ya sea en el lugar del corte o cerca del plano de sección. En el primer caso no serán necesarias indicaciones auxiliares (Fig. S15), trazándose el contorno de la sección con una línea continua tipo B; en los demás casos la ecció s t a 54
  • 55.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO ig. S14. Una pieza simétrica puede presentarse por una semivista y una misección Fig. S16. Una sección puede rebatirse cerca de la traza de la sección; debe F r e se Fig. S15. Una o más secciones de una pieza pueden rebatirse en el sitio del corte para obtener mayor claridad y ahorro de espacio. En este caso en las secciones se omite toda indicación; sus contornos se dibujan con un trazo fino tipo B UNI 3968. limitarse únicamente a la parte cortada por el plano (excluyendo por lo tanto todos los elementos en vista o no seccionados). 55
  • 56.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET P INICIO Roturas uede darse el caso de que la sección se limite a una parte más o menos reducida de la pieza, como indica la figura R1; o sea, que se imagina una rotura de la pieza para poder ver lo que interesa del interior de la misma. En tal caso se dibujará la línea de rotura, o sea, la de separación entre vista y sección, con línea continua fina irregular tipo C UNI 3968 (Fig. R2). . Fig. R1. Cuando se necesiten varias secciones de una pieza pueden disponerse s correspondientes indicaciones omo se ve en la figura. con su c Fig. R2. Una pieza puede representarse parte en vista con una línea de rotura fina irregular de tipo C UNI 3968 y parte en sección. 56
  • 57.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Finalmente, en la tabla UNI 3977 se consignan las normas para la representación de piezas en algunos casos particulares, normas que han de considerarse como continuación de las precedentes. Ocurrirá tal vez que, al representar una pieza, si ésta está acoplada a otra pueda ser útil o necesario representar también las partes contiguas de esta última. Esto se hará con una línea continua fina B UNI 3968. Un ejemplo de este caso está representado en la figura R3. Fig. R3. Cuando se hayan de representar, además de la pieza, las partes contiguas de otra pieza acoplada a la primera, estas partes se dibujarán con línea continua fina; no han de ocultar la pieza, ni siquiera parcialmente, pero pueden en cambio quedar cubiertas por ella. Si se quiere rayar la pieza adyacente, el rayado deberá limitarse a una faja siguiendo el interior del contorno. gs. R4-90) se refieren a otros casos particulares de representación. ara mayor eficacia, las explicaciones necesarias se han reunido en las leyendas orrespondientes a cada figura. Fig. R4. Las secciones de espesor muy pequeño pueden ennegrecerse por completo. Se recomienda no abusar de esta concesión y limitarla a secciones verdaderamente pequeñas, porque las secciones en las que se abusa del ennegrecimiento tienen un aspecto fúnebre muy antiestético. Fig. R5. Cuando se recurre al ennegrecimiento de las secciones de Los rayados de las secciones tienen generalmente una inclinación de 45° respecto al eje principal o a las líneas de contorno. Las figuras siguientes (fi P c pequeño espesor se deja un finísimo espacio blanco para separar entre sí los diferentes elementos adyacentes de la pieza seccionada. Fig. R6 Fig. R7 Figs. R6-R7. 57
  • 58.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO F a pi de L a pi La separación entre las líneas del rayado ha de ser lo más ancha posible, compatible con la claridad del dibujo y escogida en relación con el tamaño de la superficie que se ha de rayar. ig. R8. Para las partes contiguas pertenecientes ezas distintas o acopladas deben usarse rayados distinta inclinación o de diferente separación. os rayados de las diferentes partes de una mismeza han de tener siempre la misma inclinación. Fig. R9. Para partes de mucha extensión, puede limitarse el rayado a la zona contigua a su contorno. Fig. R10. Cuando se obtiene una sección mediante dos o más planos paralelos, el rayado dc las diferentes partes ha de tener la misma inclinación, pero se ha de evitar que los trazos coincidan. corresponda. Fig. R11. Cuando en el interior de una sección se hayan de poner inscripciones o Cotas, u otras rá interrumpirse el rayado donde indicaciones, debe 58
  • 59.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO es línea continua fina, tipo B UNI 3968. Esta norma constituye una innovación muy im-portante con respecto a las normas usadas anteriormente. Fig. R12. Las intersecciones de superficiempalmadas pueden representarse con una Fig. R13. Las superficies planas en vista, mirando las caras de un cuadrado, de una pirámide o de un plano efectuado en un os cuerpo cilíndrico pueden indicarse con dlíneas diagonales trazadas con línea continua fina B UNI 3968. Fig. R14. . Si en una sección se quiere representar una parte situada delante del plano de sección, se ha de usar la línea mixta fina tipo E UNI 3968. 59
  • 60.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. R14 Fig. R15. Figs. R14-R15. Para ahorrar tiempo y espacio, el dibujo de una pieza simétrica puede limitarse a la mitad o a la cuarta parte de la vista completa. El eje o los ejes de simetría han de señalarse individualmente en ambos extremos con dos tracitos paralelos y erpendiculares al eje respectivo. p Fig. R16. Cuando para ahorrar tiempo y espacio, se quiere limitar la representación de u dc na pieza a las partes que bastan para efinirla, las líneas de rotura son del tipo ontinuo fino irregular (C UNI 3968). ndicaciones convencionales de los materiales en las secciones I as normas antiguas sobre este asunto, expuestas en la tabla UNIM 19, han sido sustituidas rm s entre la ha r u te t ficies que en el dibujo representan rayado. Una vez fijados convenientemente los terial cortado, es evidente que el rayado puede dar una cinta indicación del material de que está formada la pieza cortada. uando sea conveniente un detalle completo de los varios materiales de una pieza, se tiene que specificar en el dibujo con toda exactitud. Si se desea únicamente una especificación más o enos superficial, se recurre a la diferenciación del rayado. L por la tabla UNI 3972. Estas últimas nounificación italiana y las internacionales, conservar las normas antiguas podría ser caCuanto de dicha tabla interesa especialmenComo ya se ha dicho en otras ocasiones, secciones se han de rellenar por medio del diversos tipos de rayado, según el ma as, que han eliminado los desacuerdon impuesto cambios tan esenciales, que el queresa de graves errores. al delineante, se detalla en la siguiente tabla 4. das las super o su C e m 60
  • 61.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Resumiendo, se pueden pues dar tres casos: a) El dibujo está ya provisto de todas las indicaciones suficientes para designar con precisión cada clase de material. En este caso se usa un tipo único de rayado inclinado de línea continua fina (tipo B UNI 3968). Esto es obligatorio en todos los dibujos de taller y generales. los c) En las secciones se quiere indicar con el rayado, siempre de modo sucinto, pero más preciso, la clase del material cortado, según las indicaciones de la columna 5a de la tabla. En este caso se usan los rayados indicados en la co rtes cortadas, según los colores indicados en la 4a co UNI 3972, además de indicar el nombre del col iente a cada indicación. Por esto, cuando se qu nes se aconseja consultar directamente la citada tabla. Finalmente, en dicha tabla se hallan algunas formas para casos particulares, que se han ecto a s ejes (R 6-7), sobre el ennegrecimiento de las pequeñas, secciones (R 4), sobre la b) En las secciones se quiere indicar sucintamente con el rayado la naturaleza de materiales (materiales metálicos, para juntas, plásticos, aislantes, etc.). En este caso se usarán los diferentes rayados (7 tipos distintos) indicados en la 2a columna de la tabla. lumna 3a o bien se recurre a colorear las palumna. Téngase presente que en la citada tabla or, se reproduce también el color correspon- era recurrir a la coloración de las seccio d i trascrito en las leyendas de las figuras precedentes. Entre ellas revisten particular importancia las relativas a la inclinación del rayado resp lo disposición del rayado de las partes contiguas (R 8) y en las secciones obtenidas con diferentes planos cortantes (R 10), sobre la interrupción del rayado en torno a las anotaciones, cotas y demás, puestas en las secciones (R 11), etc. 61
  • 62.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 62 INICIO
  • 63.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO GENERALIDADES, ELEMENTOS Y CLASIFICACIÓN DE LAS COTAS GENERALIDADES La acotación es el proceso de anotar, mediante líneas, cifras, signos y símbolos, las mediadas de un objeto, sobre un dibujo previo del mismo, siguiendo una serie de reglas y convencionalismos, establecidos mediante normas. La acotación es el trabajo más complejo del dibujo técnico, ya que para una correcta acotación de un dibujo, es necesario conocer, no solo las normas de acotación, sino también, el proceso de fabricación de la pieza, lo que implica un conocimiento de las máquinas-herramientas a utilizar para su mecanizado. Para una correcta acotación, también es necesario conocer la función adjudicada a cada dibujo, es decir si servirá para fabricar la pieza, para verificar las dimensiones de la misma una vez fabricada, etc.. Por todo ello, aquí daremos una serie de normas y reglas, pero será la práctica y la experiencia la que nos conduzca al ejercicio de una correcta acotación. PRINCIPIOS GENERALES DE ACOTACIÓN Con carácter general se puede considerar que el dibujo de una pieza o mecanismo, está correctamente acotado, cuando las indicaciones de cotas utilizadas sean las mínimas, suficientes y adecuadas, para permitir la fabricación de la misma. Esto se traduce en los siguientes principios generales: 1. Una cota solo se indicará una sola vez en un dibujo, salvo que sea indispensable repetirla. 2. No debe omitirse ninguna cota. 3. Las cotas se colocarán sobre las vistas que representen más claramente los elementos correspondientes. 4. Todas las cotas de un dibujo se expresarán en las mismas unidades, en caso de utilizar otra unidad, se expresará claramente, a continuación de la cota. 5. No se acotarán las dimensiones de aquellas formas, que resulten del proceso de fabricación. 6. Las cotas se situarán por el exterior de la pieza. Se admitirá el situarlas en el interior, siempre que no se pierda claridad en el dibujo. 7. No se acotará sobre aristas ocultas, salvo que con ello se eviten vistas adicionales, o se aclare sensiblemente el dibujo. Esto siempre puede evitarse utilizando secciones. 8. Las cotas se distribuirán, teniendo en cuenta criterios de orden, claridad y estética. 9. Las cotas relacionadas. Como el diámetro y profundidad de un agujero, se indicarán sobre la misma vista. 10. Debe evitarse, la necesidad de obtener cotas por suma o diferencia de otras, ya que puede implicar errores en la fabricación. 1. Debe acotarse atendiendo el proceso de mecanizado de la pieza, evita esfuerzos en la interpretación del plano a la vez que se maquina. 1 63
  • 64.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO ELEMENTOS QUE INTERVIENEN EN LA ACOTACIÓN s y Todas las líneas que intervienen en la acotación, se realizarán con el espesor más fino de la Líneas de cota: Son líneas paralelas a la mero que indica la m gnitud. Se sitúa centrada en la línea de cota. rá situarse en medio de la línea de cota, n serán terminadas en sus extremos por un símbolo, que podrá ser una punta de flecha, un pequeño o o En el proceso de acotación de un dibujo, además de la cifra de cota, intervienen líneasímbolos, que variarán según las características de la pieza y elemento a acotar. serie utilizada. Los elementos básicos que intervienen en la acotación son: superficie de la pieza objeto de medición. Cifras de cota: Es un nú aPod interrumpiendo esta, o sobre la misma, pero en umismo dibujo se seguirá un solo criterio. Símbolo de final de cota: Las líneas de cota traz blicuo a 45º o un pequeño círculo. Líneas acotar, de las líneas de cota. Deben sobresalir ligeramente de las líneas de cota, oxim ect Líneas de referencia de cota: Sirven para indicar un valor na rt si este no quedase bien definido, se dibujará horizontal, o sin línea de apoyo para el texto. auxiliares de cota: Son líneas que parten del dibujo de forma perpendicular a la superficie a y limitan la longitud aprresp adamente en 2 mm. Excepcionalmente, como veremos posteriormente, pueden dibujarse a 60º o a las líneas de cota. dimensional, o una nota explicativa en los dibujos, mediante ulínea que une el texto a la pieza. Las líneas de referencia, terminarán: En flecha, las que acaben en un contorno de la pieza. En un punto, las que acaben en el interior de la pieza. Sin flecha ni punto, cuando acaben en otra línea. La pa e de la línea de referencia donde se rotula el texto, se dibujará paralela al elemento a acotar, 64
  • 65.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Símbolos: En ocasiones, a la cifra de cota le acompaña un símbolo indicativo de ticas formales de la pieza, que ieza. Los símbolos más usuales son: caracterís simplifican su acotación, y en ocasiones permiten reducir el número de vistas necesarias, para definir la p fabricación o verificación de las piezas, y pueden deducirse de otras cotas. En función de su importancia, las cotas se pueden Cotas no funcionales (NF): Son aquellas que sirvpara la total definición de la pieza, pero no son esenciales para que la pieza cumpla su función. Cotas de dimensión (d): Son las que indicagujeros, ancho de la pieza, etc.). posición de los elementos de la pieza. CLASIFICACIÓN DE LAS COTAS Existen diferentes criterios para clasificar las cotas de un dibujo, aquí veremos dos clasificaciones que considero básicas, e idóneas para quienes se inician en el dibujo técnico. clasificar en: Cotas funcionales (F): Son aquellas cotas esenciales, para que la pieza pueda cumplir su función. en Cotas auxiliares (AUX): También se les suele llamar "de forma". Son las cotas que dan las medidas totales, exteriores e interiores, de una pieza. Se indican entre paréntesis. Estas cotas no son necesarias para la En función de su cometido en el plano, las cotas se pueden clasificar en: an el tamaño de los elementos del dibujo (diámetros de Cotas de situación (s): Son las que concretan la 65
  • 66.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO ACOTADO DE LOS D Escala de representación En el dibujo técnico, las piezas representadas mediante las proyecciones ortogonales no se pueden reproducir siempre en tamaño natural. Debe pu escala de representación, es decir, la relación entre las d el dibujo y las dimensiones reales de la pieza. Así, por ejemplo, si una arista de la pieza de 500 mm de longitud mide en el dibujo 200 mm, la escala de representación es de 200 : 500 = 1: 2,5. Cuando la representación tiene dimensiones mayores que la pieza, se dice que se ha usado una escala de ampliación; si la representación tiene las mismas dimensiones que la pieza, la escala es al natural; finalmente, si la representación tiene menores dimensiones que la pieza, se dice que la escala es de reducción. La reciente tabla UNI 3967 indica las escalas admitidas para los dibujos técnicos. En ella se indican 5 escalas de ampliación desde 50: 1 hasta 2:1; la escala al natural 1: 1; y 25 escalas de reducción de 1: 2 a 1: 10000000. En la pequeña tabla que sigue se indican las escalas de pleo más corriente en el dibujo mecánico, que no se separan mucho de la escala al natural abla 5). La escala 1 : 2, no es aconsejable, a pesar de estar admitida, porque causa fácilmente rrores de interpretación de las dimensiones; por esto se ha excluido de la tabla anterior. La indicación de la escala se ha de consignar en todo dibujo en el cajetín de la rotulación. En la figura A-1 se representa una de las vistas de una pieza en 5 escalas diferentes, con el empleo de las líneas adecuadas, con el fin de evidenciar claramente los diferentes aspectos de un dibujo, según la escala adoptada. Puede ser necesario el empleo de más de una escala para la ejecución de un dibujo cuando se haya de dibujar, por ejemplo, algunos detalles a escala distinta de la principal general. En este caso, las indicaciones de las varias escalas empleadas para los detalles deben consignarse junto a los dibujos respectivos; la escala principal general debe, como siempre, indicarse en el cajetín de la rotulación, donde, en caracteres más pequeños, pueden añadirse las de los detalles. Hay reglas especiales, de muy cómodo empleo en la ejecución de dibujos a diferentes escalas. Las medidas transportadas utilizando dichas escalas, es decir, leyendo sobre dichas graduaciones las dimensiones reales, resultan ya transportadas a la escala deseada. Así, por ejemplo, leyendo 1 cm en la escala 2 : 1, se lee una longitud de 2 cm para la magnitud corres-pondiente a 1 cm representado en la escala 2 : 1. Tales graduaciones se encuentran frecuentemente reunidas de 6 en 6 sobre reglas en forma de prisma triangular, llamadas escalímetros. En el caso de que un dibujo, por cualquier motivo, no esté dibujado a escala, en el cajetín de la rotulación se escribirá sin escala IBUJOS es indicarse siempre con claridad laimensiones de la pieza en em (t e . 66
  • 67.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO A-1. Aquí se ve una de las vistas de la misma pieza, en cinco escalas diferentes. 67
  • 68.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INIC IO Acotaciones de los dibujos Se ha dicho en los párrafos anteriores que los dibujos generalmente se hacen a escala; pero de este hecho no se ha de deducir la posibilidad de tomar directamente del dibujo las medidas que han de tener las distintas partes de la pieza. Todo dibujo técnico ha de ser completo y ha de contener las indicaciones de todas las medidas necesarias para la construcción o la recepción de la pieza. Estas indicaciones las proporciona la acotación del dibujo. Para que la lectura de las cotas se pueda hacer con facilidad y sin ninguna duda, es necesario indicar las acotaciones siguiendo exactamente toda una serie de normas establecidas en las tablas UNI 3973, 3974 y 3975, nueve en total. Estas tablas contienen las normas sobre acotación de los dibujos en proyección ortogonal. Para la acotación en axonometría no existen hasta ahora normas unificadas. En las leyendas de las figuras que siguen se han trascrito todas las normas de acotación (Figs. A2_19). A-2. Todas las cosas se escriben sobre una línea de medida que por lo regular se apoya con las dos flechas de sus extremos en las líneas de referencia. Las líneas de medida y las líneas dc referencia se trazan Con línea continua fina, tipo B UNE 3968. Las líneas de referencia han de alargarse un poco sobrepasando las puntas dc las flechas de las líneas de medida. A-3. La forma unificada de las flechas es la indicada en la figura. A-4. El tamaño de las flechas ha de ser proporcionado a la anchura de las líneas del dibujo. 68
  • 69.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO A-5. Los ejes de simetría y las líneas de contorno no omendable. an progresivamente mas alejadas, a fin de evitar que se crucen las líneas de medida con las de referencia. Las líneas de medida se han de trazar siempre paralelas a la que se trate de medir; general han de ser perpendiculares a las respectivas de referencia; sólo en algún caso excepcional se puede recurrir referencia auxiliares inclinadas, como se ve en esta se pueden utilizar como líneas de medida en caso alguno; pero pueden servir de líneas de referencia. A-6. Las líneas de referencia y de medida no han de cruzarse, en lo posible con otras líneas del dibujo. Por esto la disposición indicada en la figura no se puede considerar como rec A-7. Las líneas de medida paralelas deben disponerse equidistantes entre sí y de las líneas de contorno de las piezas. Las cotas menores hde colocarse más cerca de la pieza y las mayores A-8. dirección como norma líneas a líneas de figura. 69
  • 70.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO más allá de su punto de intersección. A-10. En las acotaciones dc vistas o secciones dibujadas sólo hasta un eje de simetría, las líneas de medida sólo se han de alargar un poco después del eje de simetría; por lo tanto no se han de dibujar com letas ni ponerles la segunda flecha terminal. A-11 Figs. A-11_12. En piezas de gran tamaño y simétricas res líneas de medida, se acepta que se dispongan estas líneas A11; y en el caso de ser muy numerosas, pueden también dibujarse incompletas y dispuestas alternadas, como se ve en la Fig. A12. A-9. Cuando dos líneas del contorno sean concurrentes deberán prolongarse un poco p A-12 pecto a una perpendicular a las de medida tal como indica la Fig. 70
  • 71.
    M aterial elaboradopor el docente Julio C. López. (material de ayuda en clase) aestro Técnico egresado de INET ICIO M 71 IN A-13 _ 14_ 15. Aquí se v Tanto las líneas de medida, como las flechas de los extremos han de estar siempre A-17. Evítese en lo posible disponer las líneas de medida en una zona comprendida entre la vertical y una recta que forme con la misma un ángulo de unos 30°, como indica la figura. A-13 A-14 A-15 e la manera de acotar cuerdas, arcos y ángulos A-16. fuera de las zonas cortadas.
  • 72.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO A-18. Las líneas de los radios de arcos tienen dirección radial y llevan una sola flecha terminal (a), que se apoya en el arco; cuando el centro del arco cae fuera de los límites de la representación y la línea de medida ha de indicar la posición del centro, puede ser quebrada (b); si no ha de indicar la posición del centro puede ser interrumpida (c); cuando hay escasez de sitio, se coloca la cifra fuera (d). A-19. Por lo regular, las flechas de Sistemas de acotación Las reglas generales de acotación que se han de observar son las siguientes: n o a o sustracción. h) Cada dimensión se ha de consignar una sola vez y en una sola proyección. c) Las cotas se han de colocar en la proyección en la que el elemento representado resulte más evidente, para fines constructivos y funcionales. Es evidente que no se puede dar un criterio general para fijar las cotas que se deberán escoger para determinar completamente las dimensio escogidas satisfaciendo las normas generales den de varias consideraciones. De las diferentes selecciones de cotas que pu diferentes sistemas de acotación. La selección de las dimensiones que se han de consignar en un dibujo, depende esencialmente del uso que deba hacerse del mismo; pueden en efecto referirse a la función que la pieza haya de cumplir, o bien a su proceso de fabricación, o aun al control de la misma. Los sistemas de acotación usados en el dibujo mecánico pueden sustancialmente reducirse a cinco (UNI 3974): los extremos se colocan entre las líneas de referensuficiarias flechas terminales hayan de ser ontiguas, pueden sustituirse por puntos bien arcados. cia; sólo cuando el espacio sea ente, se colocan en el exterior. Cuando in v c m a) Han de consignarse directamente todas las dimensiones necesarias para la determinaciócompleta del objeto para su fabricación, su definición funcional y su verificación, evitandener que obtenerlas por sum t nes de la pieza representada en un dibujo; las pueden, evidentemente, ser diferentes y dependen efectuarse, derivan precisamente los e 72
  • 73.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO encia puede estar situado asos, se han de dibujar todas las flechas alej a) Acotación en serie (o en cadena). Cada ias su portancia constructiva o de control, tengan que lomarse como elementos de referencia. Es también evidente que, con este sistema, los errores constructivos se suman y por consiguiente se acumulan. b) Acotación en paralelo. Todas las cotas de la misma dirección tienen el mismo origen de referencia (A-22_23). Es evidente que se ha de usar este sistema cuando haya un elemento que, por su importancia constructiva o de trazado, pueda tomarse como referencia para todos los demás. Con este sistema no se acumulan los errores cota Independiente de las otras. Está , la representadas en el dibujo se efectúan con máquinas o instrumentos de traslación Es evidente que puede darse el caso de que, ejemplo, para el exterior de la pieza), a en un extremo de la pieza o en medio. En ambos ándose del origen, como se ve en la figura A-24. elemento está acotado con respecto al elemento contiguo, corno aparece en lasfiguras A-20_21. Es evidente que este sistema de acotado seha de usar en el caso de que las distancentre elementos contiguos tengan importancia predominante y por tanto no haya elementos que, por su función o por im A-20 Sistema de acotación en serie. constructivos, por ser cadaA-21. Aquí se presentan dos ejemplos de acotación en especialmente indicado cuando el trazadoejecución o el control de las piezas serie progresiva. además de la referencia principal (por convenga escoger otra referencia (por ejemplo, para el interior): es natural que lposición de la segunda referencia deberá quedar bien determinada respecto a la primera. A-22. Sistema de acotación en paralelo: todas las cotas tienen un solo orden de referencia c) Acotación progresiva. Se fija un origen de cota 0 (cero) correspondiente al elementode referencia; las diferentes cotas se disponen sobre una línea única de medida. Se trata sólo evidentemente de una variación gráfica del método paralelo. El elemento de refer c 73
  • 74.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 74 ICIO IN ediante un punto. en las cotas entes as cotas aisladas de la pieza se ema son las del que se A-24. Acotación progresiva e trata sólo de una variación gráfica del sistema de acotaciónen paralelo. Para evitar confusionessistema en Serie, las cotas han de estar puestencima de las correspondientes líneas de re- ferencia y escritas perpendiculares a la línmedida. Pueden sustituirse las flechas por puntos (fig. A-25). El origen ha de indicarse siempre exclusivamente m Para evitar confusiones con el sistema serie o errores de interpretación, de referencia en el sistema progresivo hande ponerse encima de las correspondilíneas de referencia y escribirse en sentido perpendicular a la línea de medida. Las otr colocan en la forma normal. Las ventajas que ofrece este sistmismas del sistema en paralelo deriva; pero es de ejecución y lectura más fácil. en luga A-23. Tres ejemplos de acotación en paralelo. En los dos rimeros se toman como elementos de referencia para ¡odas las cotas uno o dos planos que, en este caso, se consideran de importancia fundamental: en el tercer ejemplo las cotas se refieren al eje del agujero. con el as ea de A-25. Eje progresiv r d p mplo de acotación a: se han puesto puntos flechas. e
  • 75.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO d) Acotación combinada. Combinando los sistemas precedentes, tenemos la acotación combinada, que permite satisfacer todas las exigencias constructivas (A-26). e) Acotación según coordenadas. En algún caso puede ser útil reunir las cotas en una hoja aparte, en vez de consignarlas en el dibujo. La figura A-27 presenta un ejemplo de este sistema que, normalmente, es de muy rara aplicación, pero que puede ser de mucha importancia para piezas fabricadas mediante máquinas que trabajen por el método de las coorden s de fresadoras, etcétera). A-27. La figura reproduce un ejemplo de acotación por coordenadas, método que puede ser precioso en el caso de piezas para cuya fabricación se empleen máquinas que trabajan según coordenadas car-tesianas, como por ejemplo, las mandriladoras, A-26 parte . Ejemplo de acotación combinada, en serie y parte en paralelo. adas (máquinas de mandrilar, algunos tipo algunas fresadoras modernas para matrices, etcétera. 75
  • 76.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Normas especiales de acotación n las figuras A-28_31 se indican las acotaciones correctas en algunos ejemplos particulares. lo de acotación dc un agujero cuando su ón está estrechamente relacionada con dos planos de referencia. Fig. A-30. Ejemplo dc acotación progresiva, en la que se toma como elemento de referencia un tope de la pieza. plo de acotación ento de referencia el ayor E Fig. A-28. Ejempposici ig. A-29. Ejemprogresiva, siendo elemagujero de diámetro m F 76
  • 77.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO éngase presente que, cuando en un dibujo se hayan de trazar líneas para p cisar el trabajo, stas (exceptuadas las que indican el estado de las superficies, de que se tra rá más adelante), deberán satisfacer las reglas siguientes: a) si terminan en el interior del contorno, su extremo será un punto ); b) si terminan en el mismo contorno, deberán terminar con una flec ). Sobre las cotas y su colocación se han publicado las tablas UNI 3974, q sistemas de acotación y dan todas las normas que deberán seguirse en la colocación de las líneas de medida, y la tabla UNI 3975, que indica todas las normas que deb uando se trate de la colocación de las cotas. Fig. A-32. Cuando en un dibujo haya líneas para precisar el trabajo, si terminan dentro del contorno deben tener por extremo un punto, si terminan en el mismo contorno, su extremo será una flecha. Fig. A-31. Ejemplo de acotación correcta de una plantilla. T re ta (fig. A-32 ha (fig. A-32ue indican los erán seguirse é c 77
  • 78.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Las cotas se han de escribir con caracteres bien visibles, en sentido paralelo a las orrespondientes líneas de medida (Fig. A-33), encima de las mismas, con una ligera eparación, y en cuanto sea posible hacia su mitad; las cifras que componen una cota no deben unca estar atravesadas o separadas por ninguna línea del dibujo. Fig. A-33. Aquí se ve cómo se han de escribir las cotas, según la reciente tabla UNI 3975 En las figuras A-34_57 se ilustran numerosos ejemplos típicos de acotación. En las orrespondientes leyendas se señalan, para cada caso, los puntos en que ha de fijar su atención l dibuja Como ya se ha dicho, las presentes normas son válidas únicamente para las s en escorzo. ha dida ejemplo, las correspondientes a las partes exteriores de las correspondientes a las interiores. En cuanto a las piezas aco-pladas, conviene tener separadas las líneas de medida de cada pieza, como indica la figura. INICIO c s n c e nte. representaciones de piezas en proyección ortogonal; por con siguiente, sólo podrán acotarse las dimensiones que en la pieza resulten paralelas al plano del dibujo, quedando excluidas, pues, las correspondientes a partes vista Fig. A-34. Como criterio general, sede procurar agrupar las líneas de mede un modo lógico, separando, por 78
  • 79.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET las líneas de medida correspondientes a los diámetros pueden colocarse fuera, paralelamente a uno de los ejes principales. e ángulos dc 30° o 45° con los ejes de simetría, Con tal que los diámetros que se hayan de acotar en esta forma no sean más de dos. Fig. A-35. Cuando se hayan de acotar círculos en Planta, Fig. A-36. La acotación de círculos en planta puede hacerstambién mediante líneas que pasen por el centro formando Fig. A-37. Acotación de una pieza que tiene partes con ejes concurrentes. En este caso conviene tomar como referencia el punto de concurrencia, orientando las cotas como indica sta figura. ICIO e IN 79
  • 80.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 80 Fig. A-38. Disposición correcta de las líneas de medida y cotas inclinadas. Se ha de evitar colocar tanto líneas de medida como cotas, dentro del 30°, rayado en la figura. Fig. A-39 Fig. A-40. Si no hay espacio suficiente para escribir las cotas sobre la línea de medida, ueden dichas cotas escribirse sobre la prolongación de la línea de medida, fuera de la flecha . siempre que se pueda, a la derecha. sector de unos . Las cotas de los ángulos se han de escribir como indica la figura. p y
  • 81.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. A-41. Cuando las cotas son muy numerosas y no hay espacio suficiente para escribirlas todas, alineadas, sobre la línea de medida, una parte de las mismas puede escribirse separada, con un corto trazo de referencia. Fig. A-42. Las cotas de las partes de la pieza que, por algún motivo, no estén dibujadas a escala, deben subrayarse de modo bien visible. En este ejemplo no están a escala la cota 10 y el iámetro 40. Fig. A-43. Las cotas de los diámetros deben ir ecedidas del signo Ø, a menos que se deduzca del dibujo, con toda evidencia, que se trate de diámetros. Fig. A-44. En esta figura no hoy lugar a duda; por lo que no es indispensable anteponer el signo Ø a las cotas de los diámetros. d siempre pr 81
  • 82.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO -45. Una prolongación de sección cuadrada debe indicarse en el dibujo con las diagonales y su cota ha de ir precedida obligatoriamente del signo . Fig. A-46. Las cotas de los radios deben ir precedidas de la letra R. Fig. A-47. Véase la manera de acotar, en general, los achaflanados Fig. A-48. La indicación del achaflanado puede simplificarse como indica la figura, cuando el chaflan es Fig. A de 45° 82
  • 83.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO ig. A-49. Las cotas de los radios o iámetros de las superficies esféricas deben precedidas de la palabra esfera, como se e en la figura. Fig. A-50. La figura representa una parte de una manija con dos ejemplos de indicación del diámetro de superficies esféricas. ig. A-51. En la figura se ve un sistema simplificado para acotar elementos equidistantes. Se nota la distancia entre ejes contiguos, el número de intervalos y la distancia total entre los ejes extremos, con una sola línea de medida y una sola acotación. implificada para acotar elementos colocados regularmente. F d ir v F a Fig. A-52. Otra anotación s 83
  • 84.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. A-53. Las acotaciones simplificadas podrían resultar ambiguas cuando originasen una confusión entre el valor del paso (o distancia entre ejes) y el número de pasos; por ejemplo, si hay 18 pasos de 15 mm cada uno. En este caso, para evitar la confusión se ha de acotar además uno de los pasos, como indica la figura. Fig. A ra indica cómo pueden usarse anotaciones de llamada para simplificar la acotación, cuando en el dibujo hay elementos ig. A-55. Los perfiles laminados que tienen un símbolo unificado pueden acotarse indicando l simbolo, seguido de las medidas que caracterizan las dimensiones de la sección del perfil, eparadas entre sí por el signo X, a continuación un guión y finalmente la longitud L. La desiguales (L), de 5 x 75 x 9 mm, largo de 1270 -54. La figu repetidos, dispuestos con regularidad o no. F e s f igura representa un perfil de ángulo de ladosmm. 84
  • 85.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. A-56. El sistema de aco en la figura anterior puede apl construcciones efectuadas con perfiles acoplados. en este caso el s a y se coloca segán la posición como indica la figura. Fig. A-57. Las estructuras metálicas reticuladas representadas esquemáticamente pueden acotarse s tación de perfiles indicado ícarse también a ímbolo del perfil se duplicdel perfil correspondiente, sencillamente indicando encima de cada segmento que represente un elemento, la distancia entre los nudode sus extremos. 85
  • 86.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO A, CALIDAD Y FORMA DE LAS SUPERFICIES DE LAS PIEZAS Aspereza superficial de una pieza mecánica De cada superficie de una pieza representada en un dibujo técnico puede ser necesario indicar su calidad, sea por lo que afecta al grado de acabado c zado a que se ha sometido la pieza, sea teniendo en cuenta los n superficiales (niquelado, cromado, etc.) que eventualmente hay Desde el punto de vista del grado de acabado, el elemento deración es la aspereza de la superficie. Hasta 1957, faltaba en la unificac aspereza de las superficies; en octubre de 1957 se publicó un cuaderno único (UNI 3963) conteniendo 6 tablas UNIPREA, que a título experimental, u dad con las normas ISO. A continuación se indica lo que de dichas normas puede inte Se considera superficie de un objeto el lugar geométrico de los puntos que separan los pertenecientes al objeto de los exteriores al mismo. Se ha de considerar la superficie real, que es la resultante de la fabricación y coincide prácticamente con la obtenida por medio de un instrumento moderno de medida microgeométrica (con punta esférica de 0,001 mm), y la superficie técnica, definida convencionalmente como la superficie obtenida con los strumentos antes indicados con explorador terminado por una punta esférica de 25 mm de adio, superficie que difiere en más o en menos de la superficie ideal representada en el ibujo. normal a la superficie ideal de la pieza, se uperficie, perfil que puede ser real, técnico Fig. A-58. Definiciones de los perfiles real, técnico o ideal de una superficie, según las normas UNI sobre la aspereza. as diferencias entre la superficie técnica y la ideal constituyen las diferencias de forma, que, or lo que se refiere a la aspereza de la superficie, no se toman en consideración. l Conjunto de las diferencias entre la superficie real y la técnica constituye la aspereza, que uede tener una orientación cuando los surcos correspondientes tienen una dirección redominante y un paso, cuando los surcos tienen carácter periódico. l paso se define corno la distancia media entre las Crestas preponderantes, distancia medida obre un plano del perfil normal a la orientación. NORMAS SOBRE LA NATURALEZ orrespondiente al mecaniuevos tratamientos térmicos oa de sufrir. que se toma en consiión italiana una definición de lanifican este asunto de conformi- resar al dibujante. in r d Cortando la pieza con un plano de relieve, obtiene, como línea de intersección, el perfil de la so ideal, según sea la superficie cortada (Fig. A-58). L p E p p E s 86
  • 87.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET Establecido el tramo de referencia, o sea, la longitud del sector del perfil técnico sobre el que túa la observación de la aspereza. se calcula la línea inedia del perfil, que es la línea de determinar el grado de aspereza de una superficie, según las últimas la línea media, o sea, la distancia del perfil real a la línea media, me untos de la superficie (excluyendo los puntos en los que haya irregularidades acc Grados de aspereza Los grados de aspereza se han de indicar en el dibujo únicamente cuando sea indispensable, porque el control de la aspereza representa un aumento considerable del coste de producción. Cuando sea necesario indicar el grado de aspereza, se recomienda usar los grados siguientes: e se indican - 0.10 1 10 - 0,12 1,2 12 - 0,040 0,40 4 - 0,050 0.50 5 - 0,060 0.60 6 - 0,080 0,80 8 - se efec compensación del perfil real, paralela al perfil técnico (Fig. A-59) Fig. A-59. Esquema para unificaciones publicadas. Esta línea (cuya determinación se puede hacer por métodos que caen fuera de los limites del presente texto) divide el perfil real de modo que el área total de las superficies llenas de material (cuadriculadas) sobre ella, resulte igual al área total de las superficies libres de material debajo de la misma (rayadas); en cada punto del perfil real se considera la diferencia “y” respecto a dida perpendicularmente a ésta. Como medida de aspereza se toma la amplitud Ra del valor medio de los valores absolutos de las diferencias (es decir, prescindiendo de su signo). Se podría decir más sencillamente que Ra se puede definir, refiriéndose a la figura A- 59, del modo siguiente: Ra = (suma de las áreas de las partes cuadriculadas + suma de las áreas de las partes rayadas) dividida por la longitud del tramo de referencia. Ra se expresa en micras. Como grado de aspereza de una superficie se toma el valor máximo de Ra, deducido de varios p identales, como rayas, corrosiones, etcétera). - 0,16 1,6 - - 0,20 2 - 0,025 0,25 2.5 - 0,030 0.30 3 Como longitud del tramo de referencia, se toma valores diversos según el grado de aspereza que se prevé que tenga la superficie; estos valores no han de ser inferiores a los qu a continuación: Para Ra de 0 a 0.3; L = 0.25 mm Para Ra de 0,3 a 3; L = 0.80 mm Para Ra de 3 o más; L = 2.50 mm 87
  • 88.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 88 INICIO A título informativo se transcriben algunas aplicaciones corrientes, con la indicación del grado de aspereza recomendado (tabla 7). En el capítulo VI se indicarán los valores medios de las asperezas corresp nes de otros (indica factor 25 x 10 o sea, po perficies desde el punto de vista del cabado, el UNI había fijado (UNIM 36) nos símbolos gráficos, reproducidos en la tabla siguiente, junto con las explic orrespondientes; estos signos se emplean gno r 4 triángulos adyacentes no está cluido entre los de la UNIM 36; pero su so está muy extendido, como complemento e los otros signos (tabla 8). ondientes a las diferentes calidades de trabajo y se transcribirá una tabla con la indicación de las asperezas que se obtienen con varias clases de mecanizado. El grado de aspereza ya se ha tomado en consideración en las unificacio Estados: las diferentes normas anglosajonas, que difieren muy poco entre sí das en las siglas AA; CLA; RMS), expresan el grado de aspereza en micropulgadas, que se pueden convertir en -3 Ra multiplicándolas por el niendo 40 RMS (o AA o CLA) = 1 Ra. Para indicar las calidades de las su a u aciones c todavía y se aceptan transitoriamente, habiéndose establecido para algunos de ellos, precisamente para los formados por pequeños triángulos adyacentes, la equivalencia con la Ra. Se ha de hacer notar que el siformado po in u d
  • 89.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO n las figuras A-60-65 se ven algunos ejemplos de designación según las normas transitorias. normas que se han de seguir, que no se detallan Fig. A-60. Cuando todas las superficies de una pieza hayan de presentar el mismo grado de acabado, el símbolo puede colocarse arte en el dibujo en vez de sobre las diferentes superficies. Fig. A-62. Cuando todas las superficies presenten el mismo grado de acabado, exceptuadas algunas, se indica sobre estas últimas el signo especial de acabado; se indica además aparte el signo general y entre paréntesis el signo correspondiente a las superficies con acabado especial. En el ejemplo todas las superficies están desbastadas, menos dos que están cepilladas. Fig. A-63. Cuando la pieza tiene pocas superficies, conviene en cambio consignar los signos de mecanizado sobre todas las superficies. Fig. A-64. indica cómo se colocan los signos de mecanizado sobre la proyección principal o sobre una vista lateral. E En las correspondientes leyendas se indican lasen el texto. ap 89
  • 90.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. A-65. Se indica con un solo signo que la pieza se ha de alisar en toda su superficie y después se ha de cromar. 90
  • 91.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 91 INICIO Fig. A-66. Este dibujo es un ejemplo de la forma de indicar la clase de trabajo de las superficies de una pieza, cuyas diferentes superficies se han de mecanizar con diferentes rados de acabado. g
  • 92.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Chaflanes y redon En varias ocasiones se ha llamado la atención sobre e excepto en casos de necesidad absoluta, no deben: a) presentar cambios bruscos de sección, porque en ellos se forman secciones en las que se producen fácilmente rebabas y roturas; b) presentar exteriormente aristas vivas porque se estropean fácilmente y pueden, además, causar heridas en el caso de golpes. Por esto se efectúan chaflanes y redondeados, que se han de indicar en los dibujos. Las indicaciones de los chaflanes y redondeados están también unificadas (tabla UNI 148). Recientemente. en la tabla UNI 3975 se han introducido variaciones en la representación de los chaflanes redondeados. La representación normalizada de los chaflanes y redondeados en los dibujos está indicada en las figuras A 46-48, en las figuras A 67-70. Fig. A 68. La indicación de los chaflanes de 45° (más corrientes) esta simplificada, diferenciándose de la de chaflanes de otros ángulos (en la figura, 60°) Fig. A 67. Indicación de chaflán a 45° y de acuerdo con radio de curvatura de 5 mm. Fig. A 69. Ejemplo de indicación de chaflanes y redondeados. deados l hecho de que las piezas mecánicas, 92
  • 93.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 93 INICIO A 70 Fig. A 70. Otro ejemplo de indicación de chaflanes y redondeados. Con frecuencia se graba sobre la superficie exterior de piezas cilíndricas el moleteado, ya sea para adornar dichas superficies, ya sea para, si son parte de piezas como tornillos, m nijas, etc., facilitar las operaciones de atornillar o de asir, haciendo áspera la superficie que se coge e impidiendo así el resbalamiento. Los moleteados se hacen ordinariamente en el torno o en máquina automática, con una herramienta apropiada llamada moleta. Moleteado a Fig. A 69 A 71 A 72 A 73 Fig. A 70-71. Representación convencional de leteados paralelos (70) y en equis (71) Fig. A 72-73. Véase como se representan convencionalmente dos piezas que tienen los mo
  • 94.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET superficies moleteadas de alguna extensión. IN ICIO En pretenden qe no por trazos como prescribe el UNI, sino por trazos que se van aproximando a mes reglas de proyección solamente al moe las hélices que forman el mo). Los pasos unificados de moleteado son los siguientes: Paralelo X 0.5 0.8 1 1.5 0.5 0.8 1 1.5 2 Nota. Aquí es necesario advertir que algunos textos y algunos profesores de diue el moleteado paralelo normal se represent bujo paralelos equidistantes, dida que se acercan al ea por dos da leteado paralelo normal (donde oleteado produciría Conicidad e inclinaciones En el dibujo de una pieza de forma cónica o troncocónica, se ha de indicar el grado de conicidad. Esto ocurre, por ejemplo, en los conos de sujeción, puntas de torno y otras máquinas herramientas, para extremos cónicos de árboles, pasadores, etc., para escariadores, llaves de grifos, etc. Muchas veces se tendrá que indicar también en los dibujos las inclinaciones de planos respecto a otro plano considerado como de referencia (por ejemplo, en las chavetas, bancadas gnar tales indicaciones en los dibujos está unificado. can dos maneras de designar la conicidad; la primera se usa para conicidades pequeñas, o sea, para pequeños randes conicidades. ) las conicidades pequeñas o moderadas se indican con (Fig. A 74): conicidad 1: k Fig. A 74. Las conicidades moderadas se indican con el cociente 1 : k, donde k es la longitud, medida sobre el eje del cono, a lo largo de la cual el diámetro experimenta una variación igual a 1.Se deducen del exámen de la figura las relaciones geométricas y trigonométricas: tg α/2 = d / 2l borde, según las reglas de proyección. Esta teoría se ha de considerar errón razones: en primer lugar, porque la representación del moleteado es convencional y unificay por lo tanto no puede variarse según criterios particulares; en segundo ligar, porque no se ve el motivo para aplicar la la aplicación, aun a ojo, de las reglas de proyección sería sencillísima) y no al moleteadoinclinado o cruzado (donde la proyección dna serie de sinusoides de trazado dificilísim u de máquinas, etc.). El modo de consiEn la tabla UNI 157 se indi ángulos de los conos, y la segunda para g a 1 : k = d : 1 94
  • 95.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Con esto se entiende que (Fig. A 75) sobre la longitud k, medida sobre el eje del cono, el diámetro experimenta una variación igual a l (tomando naturalmente la misma unidad de medida que la de k). Fig. A 75. Tanto en el caso de un cono, como de un tronco de cono, del examen de la Sección del cono, se pueden deducir las relaciones entre dimensiones y conicidad: 1 : k = (D — d) : l tg α/2 = (D — d Es evidente que la conicidad será tanto mayor cuanto menor sea k, o sea, que la onicidad y k son inversamente proporcionales. En relación con esta definición se puede establecer (Fig. A 74) la proporción: : k = d : 1 En el c = 1,6 ) : 2l c 1 aso representado en la figura, se tiene 50 1 : k = 50 : 80, o sea, K = 80 ara calcular el ángulo a del cono (Fig. A 74). se tiene, evidentemente: a d la conicidad es 1: 1,6. P tg 2 = 2l En el caso representado en la figura, se tiene, sustituyendo los valores: a d 50 tg 2 = 2l = 160 = 0,312 Y en la tabla de líneas trigonométricas se halla: 2 = 17 a ° 20’ 95
  • 96.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO En el caso de tratarse de un tronco de cono, no hay evidentem iferencias esenciales. La proporción inicial será (fig. A 75): ente d 1 : k = (D — d) : l l de la cual se deduce k = D - d Siendo a / 2 la semiabertura del cono (Fig. A 75), se tiene evidentemente, con las anotaciones de la figura: 1 100 l k = α = = tg P (D – d) 2 onociendo k se puede deducir inmediatamente el porcentaje de conicidad p %, signific la figura l k C ándose con esta locución que, sobre la longitud 100, medida a lo largo del eje del cono, el diámetro del cono experimenta una variación p (Fig. A 76). Con las anotaciones de se tiene también: ; p : 100 = (D – d) : l P tg 2 = 200 De donde se deduce: D - d 100 p = 100 = Fig. A 76. Se entiende por porcentaje de conic p que experimenta el diámetro sobre la longitud 100. Por lo tanto: p : 100 = (D – d) : l p = 100 k idad la variación ; o sea Por tanto, para averiguar el porcentaje de conicidad bastará multiplicar por 100 el o inverso de k. α numer 96
  • 97.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO En la figura Fig. A 77se ve un ejemplo de como se indica la conicidad de un tronco de ono. ig. A 77. Ejemplo de designación pieza roncocónica b) Para las grandes conicidades, en cambio, se indica solamente el ángulo de abertura a (Fig. A 8). tabla UNI 157 de que hemos hablado hay varios ejemplos para orientación, de plicación de varios grados de conicidad, de los cuales entresacamos los expuestos a c F de Conicidad de una t del cono (60°, 90°, etcétera). Para piezas de sección cuadrada, en vez de conicidad, se habla de convergenci 7 En la a continuación (tabla 9): 97
  • 98.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET 98 INICIO Fig. A 78. En las piezas de sección cuadrada (o poligonal), se emplea la palabra convergencia, en lugar de conicidad.. En esta tabla UNI eden usarse as definiciones de conicidad y convergencia se aplican también, siempre que sea posible, a la ig. A 79. Ejemplo de designación de onicidad Fig. A 80. Ejemplo de designación de la una cara de una plaquita En las figuras Fig. A 79-85 se ven algunos ejemplos d dicación de conicidad e clinaciones. n estas figuras se puede ver también la aplicación de las otras reglas y disposiciones sobre cotaci de se indican además otras varias conicidades, que puexcepcionalmente en casos de absoluta necesidad. Están también expuestas las conicidades empleadas exclusivamente para el calado de herramientas (conos Morse, conos métricos, etcétera). L inclinación de una superficie plana con respecto a otra. F c e in in Ea ones, sobre chaflanes y redondeados, sobre rayados de las secciones y sobre signostrabajo.
  • 99.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fig. A 81. Ejemplo de designación de la inclinación de una superficie plana. Las figuras A 79, 83, 84 y 85 se refieren a piezas de forma realmente cónica: las figuras A 80 y 81 a piezas que tienen una superficie plana con una inclinación dada respecto a otras uperficies planas de referencia. Fig. A 82. Dibujo de una brida con indicación de la conicidad. s 99
  • 100.
    Material elaborado porel docente Julio C. López. (mMaestro Técnico egresado de INET aterial de ayuda en clase) 100 ICIO IN Fig. A 84. Ejemplo de acotación de una pieza cónica. ocación de los signos de trabajo, en relación con la funcionalidad de la pieza, que no es otra que rectificada. cuadrada se ha indicado, según las normas, en la forma prescrita en la Fig. A 45. Fig. A 85. Punta de torno. Esta punta se compone, oca conicidad (1:20); la otra con una conicidad de 60°. ica de 60° no está acotada, ya que no es necesario, por estar perfectamente Obsérvese la col una llave de grifo. La parte cónica es la única que se ha de ajustar con precisión al correspondiente asiento cónico hueco, por lo que está El vástago de sección entre otras, de dos partes cónicas, una de p Nótese que la longitud de la parte cón determinada.
  • 101.
    Material elaborado porel docente Julio C. López. (material de ayuda en clase) Maestro Técnico egresado de INET INICIO Fuentes consultadas: EL DIBUJO TÉCNICO MECANICO – ING. S. L. STRANEO y PROF. R. CONSORTI WWW.DIBUJOTECNICO.COM U.T.U. – UNIVERSIDAD DEL TRABAJO DEL URUGUAY – MATERIAL DIDACTICO 101