SlideShare una empresa de Scribd logo
Diseño de Bio-reactores
Introducción
Fermentación e Ingeniería Metabólica
Cultivo Continuo Perfectamente
Agitado
Cultivo Continuo
Los bio-reactores operan en forma continua en
algunas industrias son:
– Producción de levaduras para panaderías
– Tratamiento de RILes
– Conversiones con enzimas (cuando la enzima
es barata).
– Producción de catabolitos y metabolitos
Cultivo Continuo
Existen diferentes modos de operar fermentadores
continuo:
• Quimostato (Perfectamente agitado, CSTR, RPA)
– Si el biorreactor está bien mezclado, la corriente de
producto que sale del bio-reactor posee la misma
composición que el líquido presente en el interior del
reactor.
• Flujo Pistón
– Hay un frente de reacción que avanza a lo largo del
reactor.
Características del Quimostato
Se le llamó Quimostato dado que la composición
química y biológica del medio se mantiene constante,
para ello se debe controlar:
• El volumen del líquido en el reactor se mantiene
constante, ajustando los flujos de entrada y salida al
mismo valor.
• El pH del medio mediante la adición de ácido o base.
Generalmente se adiciona ácido.
• El suministro continuo de O2 ( o aire), en el caso de
sistemas aeróbicos.
• Un nivel de agitación adecuado que garantice la
homogeneidad del sistema.
Características del Quimostato (cont..)
• La temperatura, para que se produzca el
crecimiento óptimo de los m.o. deseados ( y la
producción de producto deseado).
• El nivel de espuma.
• Un cultivo continuo puede durar días hasta
meses.
• El primer experimento se llevó a cabo en 1949
por Monod.
Los principales componentes de un
cultivo continuo son:
• Reactor de volumen constante
• Sistema de alimentación de medio y salida de
producto.
• Tanque estéril de medio (entrada y salida)
• Control de pH, T, OD (Oxígeno disuelto)
• Sistema de aireación y agitación.
Fig. 1 Típico Fermentador
Alimentación
Salida
Ventajas del cultivo continuo
- Se pueden producir grandes cantidades de producto.
- Incremento de la productividad
- Dependiendo del producto se pueden llegar a cientos de
metros cúbicos, sobretodo si el proceso es anaeróbico.
- Hay una constante salida de productos que se pueden
recuperar desde el sistema.
- Se puede minimizar lo que es represión catabólica por
medio de crecimiento bajo condiciones de carbono
limitantes.
Desventajas del cultivo continuo
- Hay peligro de contaminación
- Hay peligro de pérdida de estabilidad de la cepa,
sobretodo en recombinantes.
Cuando se utiliza:
1. Catabolitos directos producidos desde la fuente de
carbono
Muchos productos industriales son de este tipo.
Productos terminales de oxidación
Etanol* Ácido Láctico*
Ácido Acético Acido Cítrico
Metano Ácido Glutámica
Acetona Butanol
2. Enzimas y otros productos
Cuando se utiliza (cont..):
3.- Metabolitos secundarios
En cultivos batch hay productos tales como antibióticos y
toxinas, que no se encuentran relacionadas con el crecimiento, y
que frecuentemente no se producen hasta después que el
crecimiento ha cesado o ha sido restringido.
En cultivo continuo muchos metabolitos secundarios son
producidos en forma paralela con el crecimiento y con
velocidades mayores o iguales a las observadas en cultivo batch.
Cuando el crecimiento ha sido restringido las células son
capaces de iniciar las síntesis de producción de este tipo de
metabolitos. A su vez, el estudio de estos metabolitos sirve para
evaluar que sucede bajo condiciones de medioambiente
controlado.
Dimensionamiento del bio-reactor
El dimensionamiento de un biorreactor no sólo
implica el volumen del bioreactor, sino que la
potencia que se le debe entregar a los agitadores y
sopladores.
• Para determinar el volumen del bioreactor es
necesario plantear los balances de masa:
1. Balance de masa total o global
2. Balance de Biomasa, x
3. Balance de sustrato, s
4. Balance de producto de interés, p
Balance de masa global
Masa de Entrada – Masa de Salida = Acumulación de Masa
(1)dt
Vd
FF s
ssee
)( 
-
r
rr
0

dt
Vd sr
Fe y Fs: Flujos Volumétricos de
entrada y salida
so,xo y po: Concentración de
sustrato, biomasa y producto a la
entrada.
s,x y p: Concentración de
sustrato, biomasa y producto a la
salida y al interior del
fermentador o bioreactor.
Fe
so
xo
po
Fs
s
x
p
donde re y rs: Densidad de entrada y salida
Supuestos
-Las densidades se mantienen constantes: re = rs
- El sistema opera en estado estacionario, entonces
No hay acumulación.
Con esto
Fe = Fs = F (2)
BBalance de Biomasa
CCélulas entran – Células salen + Crecimiento celular – Muerte celular = Acumulación (3)
m :Velocidad de Crecimiento de los m.o [hr-1] a: Velocidad de muerte de los m.o [hr-1]
Supuestos:
- Alimentación estéril, xo =0
- Volumen constante, V = cte, entonces
- Estado estacionario, no hay acumulación.
-
Con esto
dt
dx
V
dt
dV
x
dt
Vxd
VxVxxFxF o 

-- 
)(
am
0
dt
dx
0
dt
dV
00·0
)(


--  Vx
dt
dx
V
dt
dV
x
dt
Vxd
VxVxxFxF o am
Supuestos adicionales
- Tasa de muerte inferior a la de crecimiento, a<<m
Reordenando
0--  VxVxxF am
0- VxxF m
F x =μ x V
F=μ V
Dividiendo por V
F/V=μ
Luego
  

Se define:
Velocidad de Dilución, Volúmenes de reactor que pasan por hora [t-1]
D = F/V
Donde “D” es el inverso al tiempo de residencia, luego
F/V=D=μ
Entonces
D=μ
La velocidad de crecimiento se puede controlar según el
flujo de alimentación.
Balance de Nutriente limitante
Sustrato entran – Sustrato salen - Sustrato consumido crecimiento – Sustrato
utilizado mantención – Formación de producto = Acumulación
ms[g/g hr-1]: Coeficiente de mantención
yx/s [gr célula/gr sustrato] : Conversión (yield) de células referidas a nutriente consumido.
Yyp/s [gr producto /gr sustrato] : Conversión de producto producido referidos a nutriente
consumido.
qp [gr producto/gr célula hr-1] : Velocidad específica de formación de producto.
dt
Vsd
Y
Vxq
Vxm
Y
Vx
sFsF
sp
sp
s
sx
s
so
)(
//



--

--

m
pxpp mYq  m/
Supuestos:
Requerimientos para mantención es relativamente menor que los requerimientos en
crecimiento, m x << m x/ Yx/s
La formación de productos es bastante baja y se puede despreciar qP/Yp/s x << m x/ Yx/s
Estado estacionario,
-
0
)(


dt
ds
V
dt
dV
s
dt
Vsd
0
/


--
sx
s
so
Y
Vx
sFsF
m
dt
Vsd
Y
Vxq
Vxm
Y
Vx
sFsF
sp
sp
s
sx
s
so
)(
//



--

--

m
0
/


--
sx
s
so
Y
Vx
sFsF
m
sx
s
so
Y
x
ssD
/
)(*

-
m
)(/ ssYx osx -
0
/


--
sx
s
so
Y
x
s
V
F
s
V
F m
sx
s
so
Y
x
ss
V
F
/
)(

-
m
Dividiendo por V
Reagrupando
Reemplazando
Aplicando que D = m
Modelo de crecimiento
Modelo de Monod
Donde
Ks es la constate de saturación.
mmax: Velocidad Máxima de crecimiento de los m.o [hr-1]
Análogamente se puede plantear para sistemas continuos,
si m  D, entonces
Dc : Velocidad de dilución crítica. Es la velocidad máxima a la cual se puede operar, siempre se debe
trabajar bajo este valor. DC = mmax
En cultivo continuo la concentración de sustrato a la salida del fermentador es:
sKs
s

 max
m
m
sKs
sDc
D


*
DD
KD
s
C
s
-


Cinético Tipo Monod
0
0.2
0.4
0.6
0 5 10 15 20 25 30 35 40
Concentración de Sustrato, S [g/l]
velocidaddeCrecimiento,u[hr-1]
!! Ecuación muy importante
que siempre se olvida !!
Balance de Producto
Producto entran – Producto salen + Producto producido =
Acumulación
Supuesto que no hay consumo de producto
.
dt
Vpd
VxqpFpF po
)( 
- 
qp [gr producto/gr célula hora] : Velocidad específica de formación de producto.
mp [hr-1]: : Velocidad específica o Coeficiente de formación de producto debido a la
mantención.
Yp/x [gr producto /gr sustrato] : Rendimiento o Conversión de producto producido
referidos a biomasa.
Productividad
Tanto la productividad como el yield son parámetros clásicos para evaluar fermentaciones.
La productividad refleja la cantidad de biomasa que se produce por unidad de tiempo.
Productividad = D* x [ gr/lt hr]
El máximo de productividad se obtiene cuando
D = Dóptimo
)(/ ssYx osx - DD
KD
s
C
s
-


Ejemplo 1
Se tiene un fermentador para producir biomasa. El volumen del reactor es de
0.5m3. El sistema está siendo operado de tal modo que el fermentador sólo se
produce el crecimiento de biomasa.
La concentración de sustrato en la alimentación es de 10 kg/m3.
Los parámetros cinéticos y de recuperación son:
Yx/s = 0.5 kg/kg Ks = 1.0 kg/m3
mmax = 0.12 hr-1 ms = 0.025 kg/kg hr
Asumiendo que la síntesis de producto es despreciable. Determine:
1. Concentración de biomasa a la salida del fermentador, si se sabe que la
conversión de sustrato en este fermentador es del 40%.
2. ¿ Es significativo el término de mantención y por qué?
Determinación de las condiciones de
máxima productividad
0
2
4
6
8
10
12
0 0.5 1
Tasa de Dilución
Biomasa/Productividad
0
5
10
15
20
25
Sustrato
Biomasa Productividad Sustrato
X,S, Productividad (P) en función de D
P = D * x
PRODUCTIVIDAD DE UN QUIMOSTATO
X,S, Productividad (P) en función de D
P = D * x
Las líneas rectas tienen que
tienen igual pendiente tienen
igual Productividad
X,S, Productividad en función del Tiempo
de Retención, t  1/D
PRODUCTIVIDAD DE UN QUIMOSTATO (cont..)
P = x / t
Punto A y Punto B
tienen igual
productividad
BA F
V
F
V
<
Si el Volumen es constante
BA tt <
FA > FB, pero xA < xB
 En B se tiene mayor concentración pero bajo flujo.
A es un punto Inestable dado que se encuentra muy cerca
de t critico, pequeñas variaciones en el tiempo pueden
producir variaciones en la concentración
Se tiene un punto óptimo en el
cual la productividad es
máxima, luego dicho punto
tiene la máxima pendiente
posible  es tangencial al la
curva de Biomasa, x y se puede
calcular despejando D, desde la
ecuación:
sc
0
)dadProductivi(

dD
d
  0

dD
xDd
Resolviendo se tiene:
Si se define:
s
oS
K
sK 

)1(max -

m

toptima
)1( 


o
optima
s
s
)1(
/




sxo
optima
Ys
x
Las coordenadas del punto
C
sc







-
o
Cóptima
SKs
Ks
DD 1
Concentraciones en las
condiciones óptimas:
Ejemplo 2
Se tiene un microorganismo que sigue una
cinética del tipo Monod, donde la velocidad
de crecimiento se describe como:
Con los siguientes parámetros
mmax = 0,7 hr-1 Ks = 5 g/l Y x/s = 0,65
El flujo de alimentación es de 500 l/hr con 85 g/l de sustrato.
Si se utilizan un fermentador que opera en forma continua y
perfectamente agitada,
1. ¿Qué tamaño debe se este reactor si opera en forma óptima?
2. ¿Cuál es la conversión de sustrato?
3. ¿Cuál es la concentración de biomasa a la salida?

Más contenido relacionado

La actualidad más candente

Potenciometría y acidez titulable
Potenciometría y acidez titulablePotenciometría y acidez titulable
Potenciometría y acidez titulable
Jose Luis Palomino
 
2.4 balance de masa en bioreactores
2.4 balance de masa en bioreactores2.4 balance de masa en bioreactores
2.4 balance de masa en bioreactores
Oficial Universidad Politecnica de Pachuca
 
Humedad y cenizas
Humedad y cenizasHumedad y cenizas
Humedad y cenizas
esmegonz
 
Problemario fenomenos transporte[1]
Problemario fenomenos transporte[1]Problemario fenomenos transporte[1]
Problemario fenomenos transporte[1]
Adolfo Quintero
 
Laboratorio de centrifugacion
Laboratorio de  centrifugacionLaboratorio de  centrifugacion
Laboratorio de centrifugacion
Mery Fernandez Romero
 
Factores fisicoquímicos que afectan el proceso de fermentacion.
Factores fisicoquímicos que afectan el proceso de fermentacion.Factores fisicoquímicos que afectan el proceso de fermentacion.
Factores fisicoquímicos que afectan el proceso de fermentacion.
dianastrada
 
lixivicion
lixivicionlixivicion
Ramirez navas --problemas-secado
Ramirez navas --problemas-secadoRamirez navas --problemas-secado
Ramirez navas --problemas-secado
Liz Centeno
 
Guia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactoresGuia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactores
Ricky Castillo
 
Balance de materia con reacción química
Balance de materia con reacción químicaBalance de materia con reacción química
Balance de materia con reacción química
SistemadeEstudiosMed
 
Determinaciòn de azúcares reductores por espectrofotometría (método dns)
Determinaciòn de azúcares reductores por espectrofotometría (método dns)Determinaciòn de azúcares reductores por espectrofotometría (método dns)
Determinaciòn de azúcares reductores por espectrofotometría (método dns)
Jhonás A. Vega
 
Practica 1 de analisis alimentos humedad y masa seca
Practica 1 de analisis alimentos humedad y masa secaPractica 1 de analisis alimentos humedad y masa seca
Practica 1 de analisis alimentos humedad y masa seca
YAZURAYDY
 
Cenizas
CenizasCenizas
Cenizas
Melina Flores
 
Desarrollo de inóculo
Desarrollo de inóculoDesarrollo de inóculo
Desarrollo de inóculo
Yeltsin Rodrigx
 
Cinetica de la destruccion termica
Cinetica de la destruccion termicaCinetica de la destruccion termica
Cinetica de la destruccion termica
UNFV
 
Balances de energia
Balances de energiaBalances de energia
Balances de energia
gerardito8
 
Manual del ingeniero químico Perry [tomos 1-6]
Manual del ingeniero químico   Perry [tomos 1-6]Manual del ingeniero químico   Perry [tomos 1-6]
Manual del ingeniero químico Perry [tomos 1-6]
Jose Rocha
 
Practica 2
Practica 2Practica 2
Practica 2
UNFV
 
Determinacion de biomasa
Determinacion de biomasaDeterminacion de biomasa
Determinacion de biomasa
yuricomartinez
 
Biorreactores con agitado neumatico y mecanico
Biorreactores con agitado neumatico y mecanicoBiorreactores con agitado neumatico y mecanico
Biorreactores con agitado neumatico y mecanico
CaRito Yambay
 

La actualidad más candente (20)

Potenciometría y acidez titulable
Potenciometría y acidez titulablePotenciometría y acidez titulable
Potenciometría y acidez titulable
 
2.4 balance de masa en bioreactores
2.4 balance de masa en bioreactores2.4 balance de masa en bioreactores
2.4 balance de masa en bioreactores
 
Humedad y cenizas
Humedad y cenizasHumedad y cenizas
Humedad y cenizas
 
Problemario fenomenos transporte[1]
Problemario fenomenos transporte[1]Problemario fenomenos transporte[1]
Problemario fenomenos transporte[1]
 
Laboratorio de centrifugacion
Laboratorio de  centrifugacionLaboratorio de  centrifugacion
Laboratorio de centrifugacion
 
Factores fisicoquímicos que afectan el proceso de fermentacion.
Factores fisicoquímicos que afectan el proceso de fermentacion.Factores fisicoquímicos que afectan el proceso de fermentacion.
Factores fisicoquímicos que afectan el proceso de fermentacion.
 
lixivicion
lixivicionlixivicion
lixivicion
 
Ramirez navas --problemas-secado
Ramirez navas --problemas-secadoRamirez navas --problemas-secado
Ramirez navas --problemas-secado
 
Guia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactoresGuia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactores
 
Balance de materia con reacción química
Balance de materia con reacción químicaBalance de materia con reacción química
Balance de materia con reacción química
 
Determinaciòn de azúcares reductores por espectrofotometría (método dns)
Determinaciòn de azúcares reductores por espectrofotometría (método dns)Determinaciòn de azúcares reductores por espectrofotometría (método dns)
Determinaciòn de azúcares reductores por espectrofotometría (método dns)
 
Practica 1 de analisis alimentos humedad y masa seca
Practica 1 de analisis alimentos humedad y masa secaPractica 1 de analisis alimentos humedad y masa seca
Practica 1 de analisis alimentos humedad y masa seca
 
Cenizas
CenizasCenizas
Cenizas
 
Desarrollo de inóculo
Desarrollo de inóculoDesarrollo de inóculo
Desarrollo de inóculo
 
Cinetica de la destruccion termica
Cinetica de la destruccion termicaCinetica de la destruccion termica
Cinetica de la destruccion termica
 
Balances de energia
Balances de energiaBalances de energia
Balances de energia
 
Manual del ingeniero químico Perry [tomos 1-6]
Manual del ingeniero químico   Perry [tomos 1-6]Manual del ingeniero químico   Perry [tomos 1-6]
Manual del ingeniero químico Perry [tomos 1-6]
 
Practica 2
Practica 2Practica 2
Practica 2
 
Determinacion de biomasa
Determinacion de biomasaDeterminacion de biomasa
Determinacion de biomasa
 
Biorreactores con agitado neumatico y mecanico
Biorreactores con agitado neumatico y mecanicoBiorreactores con agitado neumatico y mecanico
Biorreactores con agitado neumatico y mecanico
 

Similar a 86151954 quimiostato

C_1_cultivo_batch.pdf
C_1_cultivo_batch.pdfC_1_cultivo_batch.pdf
C_1_cultivo_batch.pdf
SauloDeTarzo1
 
Biorreactores iv
Biorreactores  ivBiorreactores  iv
Biorreactores iv
Juan Viloche
 
Reactor continuo especificaciones operativas
Reactor continuo especificaciones  operativasReactor continuo especificaciones  operativas
Reactor continuo especificaciones operativas
EDUARDOALVARADO984129
 
Fotobioreactor para cultivo micro algas
Fotobioreactor para cultivo micro algasFotobioreactor para cultivo micro algas
Fotobioreactor para cultivo micro algas
Reinhardt Acuña Torres
 
Bioreactores aspectos generales
Bioreactores aspectos generalesBioreactores aspectos generales
Bioreactores aspectos generales
William
 
Balances y ecuaciones biohreactor
Balances y ecuaciones biohreactorBalances y ecuaciones biohreactor
Balances y ecuaciones biohreactor
Hugo Roque
 
Ut2 balance de_materia
Ut2 balance de_materiaUt2 balance de_materia
Ut2 balance de_materia
jessleoni02
 
DISEÑO DE REACTORES BIOLÓGICOS
DISEÑO DE REACTORES BIOLÓGICOSDISEÑO DE REACTORES BIOLÓGICOS
DISEÑO DE REACTORES BIOLÓGICOS
Héctor Rey
 
Biogas
Biogas Biogas
Biogas
Pilar Roman
 
Diseño de Bioprocesos y sistemas de Gestión de Calidad
Diseño de Bioprocesos y sistemas de Gestión de CalidadDiseño de Bioprocesos y sistemas de Gestión de Calidad
Diseño de Bioprocesos y sistemas de Gestión de Calidad
YonerAlitoSalasPasto1
 
Presentación Tecnología MSABP
Presentación Tecnología MSABPPresentación Tecnología MSABP
Presentación Tecnología MSABP
Jose E Garde
 
Biorreactores1.pdf
Biorreactores1.pdfBiorreactores1.pdf
Biorreactores1.pdf
YamilaMayhua
 
Cursos de Biorremediación capítulo v
Cursos de Biorremediación capítulo vCursos de Biorremediación capítulo v
Cursos de Biorremediación capítulo v
Mijail Kirochka
 
Bioreactores -Sistemas de Cultivo.pdf
Bioreactores -Sistemas de Cultivo.pdfBioreactores -Sistemas de Cultivo.pdf
Bioreactores -Sistemas de Cultivo.pdf
ssuser9f8af1
 
Sistemas de cultivo celular
Sistemas de cultivo celularSistemas de cultivo celular
Sistemas de cultivo celular
Itaietzi Olivar
 
CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)
CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)
CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)
Botica Farma Premium
 
Resumen tesisi analisiis sistemas fermentativos
Resumen tesisi analisiis sistemas fermentativosResumen tesisi analisiis sistemas fermentativos
Resumen tesisi analisiis sistemas fermentativos
Percy Pacheco
 
2 Análisis de sistemas en agricultura
2 Análisis de sistemas en agricultura2 Análisis de sistemas en agricultura
2 Análisis de sistemas en agricultura
CIP-PSE
 
LODOS ACTIVADOS.pptx(Autosaved).pdf
LODOS ACTIVADOS.pptx(Autosaved).pdfLODOS ACTIVADOS.pptx(Autosaved).pdf
LODOS ACTIVADOS.pptx(Autosaved).pdf
Kellysalazar25
 
biodigestores ppt.pdf
biodigestores ppt.pdfbiodigestores ppt.pdf
biodigestores ppt.pdf
JorvichOlanoTrujillo
 

Similar a 86151954 quimiostato (20)

C_1_cultivo_batch.pdf
C_1_cultivo_batch.pdfC_1_cultivo_batch.pdf
C_1_cultivo_batch.pdf
 
Biorreactores iv
Biorreactores  ivBiorreactores  iv
Biorreactores iv
 
Reactor continuo especificaciones operativas
Reactor continuo especificaciones  operativasReactor continuo especificaciones  operativas
Reactor continuo especificaciones operativas
 
Fotobioreactor para cultivo micro algas
Fotobioreactor para cultivo micro algasFotobioreactor para cultivo micro algas
Fotobioreactor para cultivo micro algas
 
Bioreactores aspectos generales
Bioreactores aspectos generalesBioreactores aspectos generales
Bioreactores aspectos generales
 
Balances y ecuaciones biohreactor
Balances y ecuaciones biohreactorBalances y ecuaciones biohreactor
Balances y ecuaciones biohreactor
 
Ut2 balance de_materia
Ut2 balance de_materiaUt2 balance de_materia
Ut2 balance de_materia
 
DISEÑO DE REACTORES BIOLÓGICOS
DISEÑO DE REACTORES BIOLÓGICOSDISEÑO DE REACTORES BIOLÓGICOS
DISEÑO DE REACTORES BIOLÓGICOS
 
Biogas
Biogas Biogas
Biogas
 
Diseño de Bioprocesos y sistemas de Gestión de Calidad
Diseño de Bioprocesos y sistemas de Gestión de CalidadDiseño de Bioprocesos y sistemas de Gestión de Calidad
Diseño de Bioprocesos y sistemas de Gestión de Calidad
 
Presentación Tecnología MSABP
Presentación Tecnología MSABPPresentación Tecnología MSABP
Presentación Tecnología MSABP
 
Biorreactores1.pdf
Biorreactores1.pdfBiorreactores1.pdf
Biorreactores1.pdf
 
Cursos de Biorremediación capítulo v
Cursos de Biorremediación capítulo vCursos de Biorremediación capítulo v
Cursos de Biorremediación capítulo v
 
Bioreactores -Sistemas de Cultivo.pdf
Bioreactores -Sistemas de Cultivo.pdfBioreactores -Sistemas de Cultivo.pdf
Bioreactores -Sistemas de Cultivo.pdf
 
Sistemas de cultivo celular
Sistemas de cultivo celularSistemas de cultivo celular
Sistemas de cultivo celular
 
CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)
CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)
CLASE #2-PROCESO DE FERMENTACION (BIOTECNOLOGIA FARMACEUTICA)
 
Resumen tesisi analisiis sistemas fermentativos
Resumen tesisi analisiis sistemas fermentativosResumen tesisi analisiis sistemas fermentativos
Resumen tesisi analisiis sistemas fermentativos
 
2 Análisis de sistemas en agricultura
2 Análisis de sistemas en agricultura2 Análisis de sistemas en agricultura
2 Análisis de sistemas en agricultura
 
LODOS ACTIVADOS.pptx(Autosaved).pdf
LODOS ACTIVADOS.pptx(Autosaved).pdfLODOS ACTIVADOS.pptx(Autosaved).pdf
LODOS ACTIVADOS.pptx(Autosaved).pdf
 
biodigestores ppt.pdf
biodigestores ppt.pdfbiodigestores ppt.pdf
biodigestores ppt.pdf
 

Último

Camus, Albert - El Extranjero.pdf
Camus, Albert -        El Extranjero.pdfCamus, Albert -        El Extranjero.pdf
Camus, Albert - El Extranjero.pdf
AlexDeLonghi
 
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT   en el Aula Ccesa007.pdfDocentes y el uso de chatGPT   en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
Demetrio Ccesa Rayme
 
Presentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdfPresentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdf
H4RV3YH3RN4ND3Z
 
Examen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdfExamen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdf
20minutos
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
ssusera6697f
 
efemérides del mes de junio 2024 (1).pptx
efemérides del mes de junio 2024 (1).pptxefemérides del mes de junio 2024 (1).pptx
efemérides del mes de junio 2024 (1).pptx
acgtz913
 
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdfGuia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Demetrio Ccesa Rayme
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
josseanlo1581
 
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptxSEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
Osiris Urbano
 
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJELA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
jecgjv
 
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdfDosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
KarenRuano6
 
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
Inteligencia Artificial para Docentes  HIA  Ccesa007.pdfInteligencia Artificial para Docentes  HIA  Ccesa007.pdf
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
Demetrio Ccesa Rayme
 
Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1
MauricioSnchez83
 
Todo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdfTodo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdf
La Paradoja educativa
 
el pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdfel pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdf
almitamtz00
 
Sesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdfSesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdf
https://gramadal.wordpress.com/
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
https://gramadal.wordpress.com/
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
GiselaBerrios3
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Unidad de Espiritualidad Eudista
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
100078171
 

Último (20)

Camus, Albert - El Extranjero.pdf
Camus, Albert -        El Extranjero.pdfCamus, Albert -        El Extranjero.pdf
Camus, Albert - El Extranjero.pdf
 
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT   en el Aula Ccesa007.pdfDocentes y el uso de chatGPT   en el Aula Ccesa007.pdf
Docentes y el uso de chatGPT en el Aula Ccesa007.pdf
 
Presentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdfPresentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdf
 
Examen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdfExamen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdf
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
 
efemérides del mes de junio 2024 (1).pptx
efemérides del mes de junio 2024 (1).pptxefemérides del mes de junio 2024 (1).pptx
efemérides del mes de junio 2024 (1).pptx
 
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdfGuia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
 
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptxSEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
 
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJELA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
 
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdfDosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
 
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
Inteligencia Artificial para Docentes  HIA  Ccesa007.pdfInteligencia Artificial para Docentes  HIA  Ccesa007.pdf
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
 
Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1
 
Todo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdfTodo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdf
 
el pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdfel pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdf
 
Sesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdfSesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdf
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
 

86151954 quimiostato

  • 3. Cultivo Continuo Los bio-reactores operan en forma continua en algunas industrias son: – Producción de levaduras para panaderías – Tratamiento de RILes – Conversiones con enzimas (cuando la enzima es barata). – Producción de catabolitos y metabolitos
  • 4. Cultivo Continuo Existen diferentes modos de operar fermentadores continuo: • Quimostato (Perfectamente agitado, CSTR, RPA) – Si el biorreactor está bien mezclado, la corriente de producto que sale del bio-reactor posee la misma composición que el líquido presente en el interior del reactor. • Flujo Pistón – Hay un frente de reacción que avanza a lo largo del reactor.
  • 5. Características del Quimostato Se le llamó Quimostato dado que la composición química y biológica del medio se mantiene constante, para ello se debe controlar: • El volumen del líquido en el reactor se mantiene constante, ajustando los flujos de entrada y salida al mismo valor. • El pH del medio mediante la adición de ácido o base. Generalmente se adiciona ácido. • El suministro continuo de O2 ( o aire), en el caso de sistemas aeróbicos. • Un nivel de agitación adecuado que garantice la homogeneidad del sistema.
  • 6. Características del Quimostato (cont..) • La temperatura, para que se produzca el crecimiento óptimo de los m.o. deseados ( y la producción de producto deseado). • El nivel de espuma. • Un cultivo continuo puede durar días hasta meses. • El primer experimento se llevó a cabo en 1949 por Monod.
  • 7.
  • 8. Los principales componentes de un cultivo continuo son: • Reactor de volumen constante • Sistema de alimentación de medio y salida de producto. • Tanque estéril de medio (entrada y salida) • Control de pH, T, OD (Oxígeno disuelto) • Sistema de aireación y agitación.
  • 9. Fig. 1 Típico Fermentador Alimentación Salida
  • 10. Ventajas del cultivo continuo - Se pueden producir grandes cantidades de producto. - Incremento de la productividad - Dependiendo del producto se pueden llegar a cientos de metros cúbicos, sobretodo si el proceso es anaeróbico. - Hay una constante salida de productos que se pueden recuperar desde el sistema. - Se puede minimizar lo que es represión catabólica por medio de crecimiento bajo condiciones de carbono limitantes.
  • 11. Desventajas del cultivo continuo - Hay peligro de contaminación - Hay peligro de pérdida de estabilidad de la cepa, sobretodo en recombinantes.
  • 12. Cuando se utiliza: 1. Catabolitos directos producidos desde la fuente de carbono Muchos productos industriales son de este tipo. Productos terminales de oxidación Etanol* Ácido Láctico* Ácido Acético Acido Cítrico Metano Ácido Glutámica Acetona Butanol 2. Enzimas y otros productos
  • 13. Cuando se utiliza (cont..): 3.- Metabolitos secundarios En cultivos batch hay productos tales como antibióticos y toxinas, que no se encuentran relacionadas con el crecimiento, y que frecuentemente no se producen hasta después que el crecimiento ha cesado o ha sido restringido. En cultivo continuo muchos metabolitos secundarios son producidos en forma paralela con el crecimiento y con velocidades mayores o iguales a las observadas en cultivo batch. Cuando el crecimiento ha sido restringido las células son capaces de iniciar las síntesis de producción de este tipo de metabolitos. A su vez, el estudio de estos metabolitos sirve para evaluar que sucede bajo condiciones de medioambiente controlado.
  • 14. Dimensionamiento del bio-reactor El dimensionamiento de un biorreactor no sólo implica el volumen del bioreactor, sino que la potencia que se le debe entregar a los agitadores y sopladores. • Para determinar el volumen del bioreactor es necesario plantear los balances de masa: 1. Balance de masa total o global 2. Balance de Biomasa, x 3. Balance de sustrato, s 4. Balance de producto de interés, p
  • 15. Balance de masa global Masa de Entrada – Masa de Salida = Acumulación de Masa (1)dt Vd FF s ssee )(  - r rr 0  dt Vd sr Fe y Fs: Flujos Volumétricos de entrada y salida so,xo y po: Concentración de sustrato, biomasa y producto a la entrada. s,x y p: Concentración de sustrato, biomasa y producto a la salida y al interior del fermentador o bioreactor. Fe so xo po Fs s x p donde re y rs: Densidad de entrada y salida Supuestos -Las densidades se mantienen constantes: re = rs - El sistema opera en estado estacionario, entonces No hay acumulación. Con esto Fe = Fs = F (2)
  • 16. BBalance de Biomasa CCélulas entran – Células salen + Crecimiento celular – Muerte celular = Acumulación (3) m :Velocidad de Crecimiento de los m.o [hr-1] a: Velocidad de muerte de los m.o [hr-1] Supuestos: - Alimentación estéril, xo =0 - Volumen constante, V = cte, entonces - Estado estacionario, no hay acumulación. - Con esto dt dx V dt dV x dt Vxd VxVxxFxF o   --  )( am 0 dt dx 0 dt dV 00·0 )(   --  Vx dt dx V dt dV x dt Vxd VxVxxFxF o am
  • 17. Supuestos adicionales - Tasa de muerte inferior a la de crecimiento, a<<m Reordenando 0--  VxVxxF am 0- VxxF m F x =μ x V F=μ V Dividiendo por V F/V=μ Luego    
  • 18. Se define: Velocidad de Dilución, Volúmenes de reactor que pasan por hora [t-1] D = F/V Donde “D” es el inverso al tiempo de residencia, luego F/V=D=μ Entonces D=μ La velocidad de crecimiento se puede controlar según el flujo de alimentación.
  • 19. Balance de Nutriente limitante Sustrato entran – Sustrato salen - Sustrato consumido crecimiento – Sustrato utilizado mantención – Formación de producto = Acumulación ms[g/g hr-1]: Coeficiente de mantención yx/s [gr célula/gr sustrato] : Conversión (yield) de células referidas a nutriente consumido. Yyp/s [gr producto /gr sustrato] : Conversión de producto producido referidos a nutriente consumido. qp [gr producto/gr célula hr-1] : Velocidad específica de formación de producto. dt Vsd Y Vxq Vxm Y Vx sFsF sp sp s sx s so )( //    --  --  m pxpp mYq  m/
  • 20. Supuestos: Requerimientos para mantención es relativamente menor que los requerimientos en crecimiento, m x << m x/ Yx/s La formación de productos es bastante baja y se puede despreciar qP/Yp/s x << m x/ Yx/s Estado estacionario, - 0 )(   dt ds V dt dV s dt Vsd 0 /   -- sx s so Y Vx sFsF m dt Vsd Y Vxq Vxm Y Vx sFsF sp sp s sx s so )( //    --  --  m
  • 21. 0 /   -- sx s so Y Vx sFsF m sx s so Y x ssD / )(*  - m )(/ ssYx osx - 0 /   -- sx s so Y x s V F s V F m sx s so Y x ss V F / )(  - m Dividiendo por V Reagrupando Reemplazando Aplicando que D = m
  • 22. Modelo de crecimiento Modelo de Monod Donde Ks es la constate de saturación. mmax: Velocidad Máxima de crecimiento de los m.o [hr-1] Análogamente se puede plantear para sistemas continuos, si m  D, entonces Dc : Velocidad de dilución crítica. Es la velocidad máxima a la cual se puede operar, siempre se debe trabajar bajo este valor. DC = mmax En cultivo continuo la concentración de sustrato a la salida del fermentador es: sKs s   max m m sKs sDc D   * DD KD s C s -   Cinético Tipo Monod 0 0.2 0.4 0.6 0 5 10 15 20 25 30 35 40 Concentración de Sustrato, S [g/l] velocidaddeCrecimiento,u[hr-1] !! Ecuación muy importante que siempre se olvida !!
  • 23. Balance de Producto Producto entran – Producto salen + Producto producido = Acumulación Supuesto que no hay consumo de producto . dt Vpd VxqpFpF po )(  -  qp [gr producto/gr célula hora] : Velocidad específica de formación de producto. mp [hr-1]: : Velocidad específica o Coeficiente de formación de producto debido a la mantención. Yp/x [gr producto /gr sustrato] : Rendimiento o Conversión de producto producido referidos a biomasa.
  • 24. Productividad Tanto la productividad como el yield son parámetros clásicos para evaluar fermentaciones. La productividad refleja la cantidad de biomasa que se produce por unidad de tiempo. Productividad = D* x [ gr/lt hr] El máximo de productividad se obtiene cuando D = Dóptimo
  • 25. )(/ ssYx osx - DD KD s C s -  
  • 26. Ejemplo 1 Se tiene un fermentador para producir biomasa. El volumen del reactor es de 0.5m3. El sistema está siendo operado de tal modo que el fermentador sólo se produce el crecimiento de biomasa. La concentración de sustrato en la alimentación es de 10 kg/m3. Los parámetros cinéticos y de recuperación son: Yx/s = 0.5 kg/kg Ks = 1.0 kg/m3 mmax = 0.12 hr-1 ms = 0.025 kg/kg hr Asumiendo que la síntesis de producto es despreciable. Determine: 1. Concentración de biomasa a la salida del fermentador, si se sabe que la conversión de sustrato en este fermentador es del 40%. 2. ¿ Es significativo el término de mantención y por qué?
  • 27. Determinación de las condiciones de máxima productividad
  • 28. 0 2 4 6 8 10 12 0 0.5 1 Tasa de Dilución Biomasa/Productividad 0 5 10 15 20 25 Sustrato Biomasa Productividad Sustrato X,S, Productividad (P) en función de D P = D * x PRODUCTIVIDAD DE UN QUIMOSTATO
  • 29. X,S, Productividad (P) en función de D P = D * x Las líneas rectas tienen que tienen igual pendiente tienen igual Productividad X,S, Productividad en función del Tiempo de Retención, t  1/D PRODUCTIVIDAD DE UN QUIMOSTATO (cont..) P = x / t
  • 30. Punto A y Punto B tienen igual productividad BA F V F V < Si el Volumen es constante BA tt < FA > FB, pero xA < xB  En B se tiene mayor concentración pero bajo flujo. A es un punto Inestable dado que se encuentra muy cerca de t critico, pequeñas variaciones en el tiempo pueden producir variaciones en la concentración
  • 31. Se tiene un punto óptimo en el cual la productividad es máxima, luego dicho punto tiene la máxima pendiente posible  es tangencial al la curva de Biomasa, x y se puede calcular despejando D, desde la ecuación: sc 0 )dadProductivi(  dD d   0  dD xDd Resolviendo se tiene:
  • 32. Si se define: s oS K sK   )1(max -  m  toptima )1(    o optima s s )1( /     sxo optima Ys x Las coordenadas del punto C sc        - o Cóptima SKs Ks DD 1 Concentraciones en las condiciones óptimas:
  • 33. Ejemplo 2 Se tiene un microorganismo que sigue una cinética del tipo Monod, donde la velocidad de crecimiento se describe como: Con los siguientes parámetros mmax = 0,7 hr-1 Ks = 5 g/l Y x/s = 0,65 El flujo de alimentación es de 500 l/hr con 85 g/l de sustrato. Si se utilizan un fermentador que opera en forma continua y perfectamente agitada, 1. ¿Qué tamaño debe se este reactor si opera en forma óptima? 2. ¿Cuál es la conversión de sustrato? 3. ¿Cuál es la concentración de biomasa a la salida?