ÁLGEBRA BÁSICA 
PRIMER SEMESTRE
UNIDAD I 
TEORÍA DE CONJUNTOS 
LE. SARA INÉS DE LA LLATA
1.1 Notación y Representación de 
Conjuntos 
Cuando el hombre primitivo se agrupa en 
sociedades, necesita distinguir entre lo que le 
pertenece y lo que no es suyo y surge 
entonces un elemento matemático : 
COLECCIÓN O CONJUNTO DE OBJETOS
HISTORIA 
La Teoría de Conjuntos fue 
estudiada por el 
Matemático Alemán 
George Ferdinand 
Cantor (1845 – 1918) 
Otro matemático que 
contribuyó a la Teoría 
fue el Inglés John Venn 
(1834 – 1923) a quien 
se deben los diagramas 
que llevan su nombre.
HISTORIA 
La representación de los 
conjuntos de forma 
geométrica fue 
ampliada por Augustus 
de Morgan. 
En tanto que George 
Boole, introduce las 
operaciones de Unión, 
Intersección y 
Complemento de 
Conjuntos.
1.1.1 DEFINICIÓN 
• Conjunto: 
• Colección de objetos bien definida que se 
entiende se presentan juntos. Estos objetos 
se llaman miembros o elementos. 
• Colección de objetos, que tienen al menos 
una propiedad común, por la cual se dice que 
pertenecen a dicho conjunto específico.
Ejemplos 
• A) El conjunto de los 12 meses del año; B) 
Números pares menores que 10; C) Números de 
tres dígitos, no repetidos, que se pueden formar 
con los números 2, 6 y 7; D) Las letras del 
abecedario, E) Los alumnos del primer semestre 
de Bachillerato de UPAEP, F) Las partes del auto 
que forman un Bora. 
• Nótese que en algunos casos el conjunto 
consiste en objetos físicos reales, en otros los 
elementos son abstractos, es decir existen sólo 
como ideas.
1.1.2 NOTACIÓN: Expresión y 
Representación de Conjuntos 
Representación 
• Usaremos letras mayúsculas 
A, C, X, Z. 
• Incluiremos sus elementos 
dentro de llaves { } 
separados por comas. 
• El símbolo  significa “es 
elemento de”. 
• El símbolo  significa “no es 
elemento de” 
Expresión 
• A = {2,4,6,8} o A = {2,8,6,4} 
“Forma extensiva o 
enumerativa” 
• A = {x  x es un número par 
menor que 10} 
“Forma comprensiva” 
• A 
2 6 
4 
8 
• “Diagrama de Venn ”
¿CÓMO SE LEE LA FORMA COMPRENSIVA QUE 
DESCRIBE LA ENUMERATIVA, TAMBIÉN LLAMADA 
TABULAR? 
A = {xx es un número par menor que 10} 
“A es el conjunto formado por elementos x, tal 
que x es un número par menor que 10” 
B = {xx son números de tres dígitos diferentes, 
que pueden formarse con 2, 6 y 7} 
“B es el conjunto formado por elementos x, tal 
que x, son números de tres dígitos diferentes 
que pueden formarse con los números 2, 6 y 7”
PERMUTACIONES 
El Conjunto B esta formado por Permutaciones 
del número 267, es decir por aquellos números 
que usan los tres dígitos en diferente posición, 
por tanto también puede escribirse: 
B = {xx son permutaciones del número 267} 
“B es el conjunto formado por elementos x, tal 
que x, son todas las permutaciones del número 
267”
EJERCICIO DE COMPRENSIÓN 
a) K = {xx son permutaciones del número 1357} 
Escribirlo de forma enumerativa y cómo se lee. 
Calculamos el número de elementos mediante el 
factorial de los dígitos, es decir 4 y se escribe 
como: 4! = 1 x 2 x 3 x 4 = 24 
K = {1357, 1375, 1537, 1573, 1735, 1753, 3157, 3175, 
3517, 3571, 3715, 3751, 5137, 5173, 5317, 5371, 
5713, 5731, 7135, 7153, 7315, 7351, 7513, 7531}
Pertenencia 
• Cuando un elemento 
forma parte de un 
conjunto, éste se 
identifica mediante el 
símbolo . 
Ejemplo: 
A = {2,4,6,8} 
Por lo tanto 4  A 
Se lee 4 es elemento de 
A 
• Si un elemento no 
pertenece a un 
conjunto, éste se 
identifica mediante 
el símbolo . 
Ejemplo: 
A = {2,4,6,8} 
Por lo tanto 1  A 
1 no es elemento de A
USANDO LA PERTENENCIA TAMBIÉN PODEMOS 
LEER CONJUNTOS DE DIFERENTE MANERA 
Existen conjuntos de números que son múltiplos de 
otro, por ejemplo el conjunto de números múltiplos 
de 2 o pares, se denota de la siguiente manera: 
 
2 = {2, 4, 6, 8, 10, 12, 14, …} 
Sabiendo esto podemos reescribir el conjunto: 
A = {x  x es un número par menor que 10} como: 
 
A = {x  2  x < 10} 
“A es el conjunto de elementos x que pertenecen a los 
múltiplos de 2, tal que x es menor que 10”
EJERCICIO DE COMPRENSIÓN 
a) M = {xx son permutaciones de la palabra amor} 
Escribirlo de forma enumerativa y cómo se lee. 
 
b) 3 = { } 
 
c) 5 = { } Dibujar el 
Diagrama de Venn. 
d) “R es el conjunto de elementos x que pertenecen a 
los múltiplos de 3, tal que x es menor que 360” 
Escribirlo de forma enumerativa y comprensiva.

Conjuntos 1

  • 1.
  • 2.
    UNIDAD I TEORÍADE CONJUNTOS LE. SARA INÉS DE LA LLATA
  • 3.
    1.1 Notación yRepresentación de Conjuntos Cuando el hombre primitivo se agrupa en sociedades, necesita distinguir entre lo que le pertenece y lo que no es suyo y surge entonces un elemento matemático : COLECCIÓN O CONJUNTO DE OBJETOS
  • 4.
    HISTORIA La Teoríade Conjuntos fue estudiada por el Matemático Alemán George Ferdinand Cantor (1845 – 1918) Otro matemático que contribuyó a la Teoría fue el Inglés John Venn (1834 – 1923) a quien se deben los diagramas que llevan su nombre.
  • 5.
    HISTORIA La representaciónde los conjuntos de forma geométrica fue ampliada por Augustus de Morgan. En tanto que George Boole, introduce las operaciones de Unión, Intersección y Complemento de Conjuntos.
  • 6.
    1.1.1 DEFINICIÓN •Conjunto: • Colección de objetos bien definida que se entiende se presentan juntos. Estos objetos se llaman miembros o elementos. • Colección de objetos, que tienen al menos una propiedad común, por la cual se dice que pertenecen a dicho conjunto específico.
  • 7.
    Ejemplos • A)El conjunto de los 12 meses del año; B) Números pares menores que 10; C) Números de tres dígitos, no repetidos, que se pueden formar con los números 2, 6 y 7; D) Las letras del abecedario, E) Los alumnos del primer semestre de Bachillerato de UPAEP, F) Las partes del auto que forman un Bora. • Nótese que en algunos casos el conjunto consiste en objetos físicos reales, en otros los elementos son abstractos, es decir existen sólo como ideas.
  • 8.
    1.1.2 NOTACIÓN: Expresióny Representación de Conjuntos Representación • Usaremos letras mayúsculas A, C, X, Z. • Incluiremos sus elementos dentro de llaves { } separados por comas. • El símbolo  significa “es elemento de”. • El símbolo  significa “no es elemento de” Expresión • A = {2,4,6,8} o A = {2,8,6,4} “Forma extensiva o enumerativa” • A = {x  x es un número par menor que 10} “Forma comprensiva” • A 2 6 4 8 • “Diagrama de Venn ”
  • 9.
    ¿CÓMO SE LEELA FORMA COMPRENSIVA QUE DESCRIBE LA ENUMERATIVA, TAMBIÉN LLAMADA TABULAR? A = {xx es un número par menor que 10} “A es el conjunto formado por elementos x, tal que x es un número par menor que 10” B = {xx son números de tres dígitos diferentes, que pueden formarse con 2, 6 y 7} “B es el conjunto formado por elementos x, tal que x, son números de tres dígitos diferentes que pueden formarse con los números 2, 6 y 7”
  • 10.
    PERMUTACIONES El ConjuntoB esta formado por Permutaciones del número 267, es decir por aquellos números que usan los tres dígitos en diferente posición, por tanto también puede escribirse: B = {xx son permutaciones del número 267} “B es el conjunto formado por elementos x, tal que x, son todas las permutaciones del número 267”
  • 11.
    EJERCICIO DE COMPRENSIÓN a) K = {xx son permutaciones del número 1357} Escribirlo de forma enumerativa y cómo se lee. Calculamos el número de elementos mediante el factorial de los dígitos, es decir 4 y se escribe como: 4! = 1 x 2 x 3 x 4 = 24 K = {1357, 1375, 1537, 1573, 1735, 1753, 3157, 3175, 3517, 3571, 3715, 3751, 5137, 5173, 5317, 5371, 5713, 5731, 7135, 7153, 7315, 7351, 7513, 7531}
  • 12.
    Pertenencia • Cuandoun elemento forma parte de un conjunto, éste se identifica mediante el símbolo . Ejemplo: A = {2,4,6,8} Por lo tanto 4  A Se lee 4 es elemento de A • Si un elemento no pertenece a un conjunto, éste se identifica mediante el símbolo . Ejemplo: A = {2,4,6,8} Por lo tanto 1  A 1 no es elemento de A
  • 13.
    USANDO LA PERTENENCIATAMBIÉN PODEMOS LEER CONJUNTOS DE DIFERENTE MANERA Existen conjuntos de números que son múltiplos de otro, por ejemplo el conjunto de números múltiplos de 2 o pares, se denota de la siguiente manera:  2 = {2, 4, 6, 8, 10, 12, 14, …} Sabiendo esto podemos reescribir el conjunto: A = {x  x es un número par menor que 10} como:  A = {x  2  x < 10} “A es el conjunto de elementos x que pertenecen a los múltiplos de 2, tal que x es menor que 10”
  • 14.
    EJERCICIO DE COMPRENSIÓN a) M = {xx son permutaciones de la palabra amor} Escribirlo de forma enumerativa y cómo se lee.  b) 3 = { }  c) 5 = { } Dibujar el Diagrama de Venn. d) “R es el conjunto de elementos x que pertenecen a los múltiplos de 3, tal que x es menor que 360” Escribirlo de forma enumerativa y comprensiva.