DEBER # 05 
NOMBRE: RUBÍ PARRA 
SEMESTRE: QUINTO “A” 
TEMA: PROBLEMAS DE MAXIMIZACIÓN POR EL MÉTODO SIMPLEX 
FECHA: 27 DE OCTUBRE DEL 2014 
REALIZAR 2 EJERCICIOS DE MAXIMIZACIÓN 
1. 
Maximizar Z= 3x + 2y 
sujeto a: 2x + y 18 
2x + 3y 42 
3x + y 24 
x 0 , y 0 
MAXIMIZAR: 3 X1 + 2 X2 + 0 X3 + 0 X4 + 0 X5 
2 X1 + 1 X2 + 1 X3 = 18 
2 X1 + 3 X2 + 1 X4 = 42 
3 X1 + 1 X2 + 1 X5 = 24 
X1, X2, X3, X4, X5 ≥ 0 
3 2 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P3 0 18 2 1 1 0 0 
P4 0 42 2 3 0 1 0 
P5 0 24 3 1 0 0 1 
Z 0 -3 -2 0 0 0 
3 2 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P3 0 6 0 1 3 0 -2 
P4 0 12 0 0 -7 1 4 
P1 3 6 1 0 -1 0 1 
Z 18 0 -2 -3 0 3
3 2 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P3 0 2 0 1 / 3 1 0 -2 / 3 
P4 0 26 0 7 / 3 0 1 -2 / 3 
P1 3 8 1 1 / 3 0 0 1 / 3 
Z 24 0 -1 0 0 1 
3 2 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P2 2 12 0 1 -0.5 0.5 0 
P5 0 3 0 0 -1.75 0.25 1 
P1 3 3 1 0 0.75 -0.25 0 
Z 33 0 0 1.25 0.25 0 
La solución óptima es Z = 33 
X1 = 3 
X2 = 12
La solución óptima es Z = 41 
X1 = 2 
X2 = 5 
2. 
MAXIMIZAR: 8 X1 + 5 X2 
1 X1 + 0 X2 ≤ 3 
1 X1 + 1 X2 ≤ 7 
3 X1 + 1 X2 ≤ 11 
X1, X2 ≥ 0 
MAXIMIZAR: 8 X1 + 5 X2 + 0 X3 + 0 X4 + 0 X5 
1 X1 + 1 X3 = 3 
1 X1 + 1 X2 + 1 X4 = 7 
3 X1 + 1 X2 + 1 X5 = 11 
X1, X2, X3, X4, X5 ≥ 0 
8 5 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P3 0 3 1 0 1 0 0 
P4 0 7 1 1 0 1 0 
P5 0 11 3 1 0 0 1 
Z 0 -8 -5 0 0 0 
8 5 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P1 8 3 1 0 1 0 0 
P4 0 2 0 0 2 1 -1 
P5 0 2 0 1 -3 0 1 
Z 24 0 -5 8 0 0 
8 5 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P1 8 3 1 0 1 0 0 
P4 0 2 0 0 2 1 -1 
P2 5 2 0 1 -3 0 1 
Z 34 0 0 -7 0 5 
8 5 0 0 0 
Base Cb P0 P1 P2 P3 P4 P5 
P1 8 2 1 0 0 -0.5 0.5 
P3 0 1 0 0 1 0.5 -0.5 
P2 5 5 0 1 0 1.5 -0.5 
Z 41 0 0 0 3.5 1.5

Deber # 5

  • 1.
    DEBER # 05 NOMBRE: RUBÍ PARRA SEMESTRE: QUINTO “A” TEMA: PROBLEMAS DE MAXIMIZACIÓN POR EL MÉTODO SIMPLEX FECHA: 27 DE OCTUBRE DEL 2014 REALIZAR 2 EJERCICIOS DE MAXIMIZACIÓN 1. Maximizar Z= 3x + 2y sujeto a: 2x + y 18 2x + 3y 42 3x + y 24 x 0 , y 0 MAXIMIZAR: 3 X1 + 2 X2 + 0 X3 + 0 X4 + 0 X5 2 X1 + 1 X2 + 1 X3 = 18 2 X1 + 3 X2 + 1 X4 = 42 3 X1 + 1 X2 + 1 X5 = 24 X1, X2, X3, X4, X5 ≥ 0 3 2 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P3 0 18 2 1 1 0 0 P4 0 42 2 3 0 1 0 P5 0 24 3 1 0 0 1 Z 0 -3 -2 0 0 0 3 2 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P3 0 6 0 1 3 0 -2 P4 0 12 0 0 -7 1 4 P1 3 6 1 0 -1 0 1 Z 18 0 -2 -3 0 3
  • 2.
    3 2 00 0 Base Cb P0 P1 P2 P3 P4 P5 P3 0 2 0 1 / 3 1 0 -2 / 3 P4 0 26 0 7 / 3 0 1 -2 / 3 P1 3 8 1 1 / 3 0 0 1 / 3 Z 24 0 -1 0 0 1 3 2 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P2 2 12 0 1 -0.5 0.5 0 P5 0 3 0 0 -1.75 0.25 1 P1 3 3 1 0 0.75 -0.25 0 Z 33 0 0 1.25 0.25 0 La solución óptima es Z = 33 X1 = 3 X2 = 12
  • 3.
    La solución óptimaes Z = 41 X1 = 2 X2 = 5 2. MAXIMIZAR: 8 X1 + 5 X2 1 X1 + 0 X2 ≤ 3 1 X1 + 1 X2 ≤ 7 3 X1 + 1 X2 ≤ 11 X1, X2 ≥ 0 MAXIMIZAR: 8 X1 + 5 X2 + 0 X3 + 0 X4 + 0 X5 1 X1 + 1 X3 = 3 1 X1 + 1 X2 + 1 X4 = 7 3 X1 + 1 X2 + 1 X5 = 11 X1, X2, X3, X4, X5 ≥ 0 8 5 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P3 0 3 1 0 1 0 0 P4 0 7 1 1 0 1 0 P5 0 11 3 1 0 0 1 Z 0 -8 -5 0 0 0 8 5 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P1 8 3 1 0 1 0 0 P4 0 2 0 0 2 1 -1 P5 0 2 0 1 -3 0 1 Z 24 0 -5 8 0 0 8 5 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P1 8 3 1 0 1 0 0 P4 0 2 0 0 2 1 -1 P2 5 2 0 1 -3 0 1 Z 34 0 0 -7 0 5 8 5 0 0 0 Base Cb P0 P1 P2 P3 P4 P5 P1 8 2 1 0 0 -0.5 0.5 P3 0 1 0 0 1 0.5 -0.5 P2 5 5 0 1 0 1.5 -0.5 Z 41 0 0 0 3.5 1.5