SlideShare una empresa de Scribd logo
ESTADISTICA APLICADA A LA ECOLOGÍA
La estadística nos ayuda a corroborar hipótesis dando un soporte matemático a observaciones realizadas. La
estadística es la ciencia de la probabilidad y por ello no es correcto realizar afirmaciones categóricas o
negaciones rotundas, sino que estas afirmaciones o rechazos hay que enmarcarlos siempre en un nivel de
significación, que no es más que encuadrarlo dentro de un margen de error que nosotros mismos nos estamos
fijando (generalmente entre el 1−5%).
Lo primero que debe considerarse al realizar un experimento que posteriormente llevará un tratamiento
estadístico es:
Plantear la hipótesis de trabajo que se quiere demostrar.
•
Definir bien las variables a estudiar.
•
Cómo recoger y recopilar los datos (TIPOS DE MUESTREO).
•
Elección del método estadístico más apropiado para demostrar la hipótesis de trabajo de la mejor
manera posible.
•
Es conveniente resaltar que el fin de los muestreos es extraer una muestra lo suficientemente representativa de
una población para que las conclusiones muestrales obtenidas puedan extrapolarse a nivel poblacional, de
ahí que sea de suma importancia la minuciosa elección y preparación en la recogida de datos.
TIPOS DE MUESTREO.
•
Estratificado: Las muestras se toman por capas o estratos de condiciones homogéneas (solana,
umbría,...). Es un muestreo muy utilizado en Ecología. Estos muestreos sirven para confirmar algún
tipo de distribución.
•
Al azar.
•
Contagiosa.
•
Regular (Sistemático): Se basa en la obtención al azar de una primera unidad a partir de la cual se
seleccionan las siguientes mediante algún criterio fijo repetido periodicamente (ej.− el transecto, muy
interesante en gradientes).
•
Aleatorio simple: Se basa en la toma al azar y de manera independiente de una muestra. Es eficaz
para zonas homogéneas.
•
TIPOS DE VARIABLES.
•
VARIABLES CUANTITATIVAS VARIABLES CUALITATIVAS
Se trata de variables medibles (altura, peso,...).
Pueden tomar valores enteros o con decimales.
Son variables de cualidad. Los datos que se toman son
el número de individuos que presentan dicha cualidad
(frecuencias de aparición) y por tanto números
enteros.
TRATAMIENTOS ESTADÍSTICOS TRATAMIENTOS ESTADÍSTICOS
de Pearson: Se denominan test de bondad de
ajuste, y buscan un modelo matemático (teórico)
sobre una distribución real.
t de Student: Se trata de un contraste para 1 o 2
muestras. Es un test en el que se comparan las medias
de Pearson: En variables cualitativas se usa como
un test de homogeneidad o de independendia. Se trata
de un estudio de proporciones (probabilidades de
encontrar una cualidad).
1
muestrales (m1=m2) o bien si la muestra es
representativa o no.
ANOVA (Analisys of variance): En este test se
contrastan más de dos muestras (m1=m2=m3). Se
aplica para estudios en los que se comparan medias.
CORRELACIÓN / Regresión: Se aplican en estudios
en los que se quieren relacionar variables, o bien para
ajustar un comportamiento poblacional a un modelo
matemático con fines predictivos.
ESTUDIO DE HOMOGENEIDAD (Dependencia o Independencia)
•
Ejemplo 1: Tomamos una muestra de una determinada especie vegetal en una vaguada que, por su situación,
presenta una ladera en solana y otra en umbría. Los resultados sobre 100 observaciones realizadas aparecen
resumidos en la tabla de frecuencias observadas. ¿Existe alguna preferencia de la especie por alguna de las
dos situaciones?.
Observadas Umbría (U) Solana (S) Totales
Presencia (+) 20 (a) 10 (b) 30 (T+)
Ausencia (−) 20 (c) 50 (d) 70 (T−)
Totales 40 (TU) 60 (TS) N = 100
El estudio se realiza en base a una variable cualitativa, ya que se está estudiando la cualidad de presencia en
solana o umbría, y la muestra no es más que un recuento de individuos que presentan la variable a estudiar.
Por tanto, lo que se pretende estudiar es si esta especie se distribuye de forma homogenea tanto en umbría
como en solana, o lo que es lo mismo si su presencia es independiente de la ladera de la vaguada en la que
estemos.
Para este tipo de estudios se usa el test de Pearson, aunque no hay que confundir esta aplicación con la
bondad de ajuste que se usa en variables cuantitativas.
Lo primero que hay que realizar es una tabla de frecuencias esperadas a partir de la tabla de frecuencias
observadas. Esta tabla es necesaria si queremos utilizar la fórmula general del estadístico de Pearson,
aunque no se usa para el test si utilizamos la fórmula simplificada para tablas de contingencia de 2x2 (ver
final de la página). La tabla de frecuencias esperadas nos ayuda a saber como sería la presencia teórica y
ver si existe una gran diferencia con lo observado.
•
Esperadas Umbría (U) Solana (S) Totales
Presencia (+) 12 18 30
Ausencia (−) 28 42 70
Totales 40 60 N = 100
Plantear las hipótesis de trabajo que queramos corroborar con el estudio.
•
H0 = homogeneidad o independencia.(dependiendo de los casos).
H1 = dependencia o no homogeneidad.
Obtener el cal. usando los datos de la tabla de contingencia de las fecuencias observadas mediante la
•
2
siguiente fórmula (únicamente válida para tablas de contingencia de 2x2
):
Comparar cal. con teórico para los niveles de significación escogidos, generalmente =0.01 y
=0.05.
•
Si cal. < teórico entonces se acepta H0. Esto significa que existe homogeneidad o
independencia para la cualidad estudiada.
•
teórico
0.05 3.84
0.01 6.63
En este caso concreto cal. > teórico con lo que se rechaza H0 para ambos niveles de significación. Esto
quiere decir que existe una dependencia significativa en la distribución de la especie vegetal entre umbría y
solana.
Ejemplo 2: Se hizo un tratamiento para eliminar la procesionaria en un pinar, y tras este tratamiento se quiere
comprobar cómo de efectivo es dicho tratamiento. Tras un muestreo en el que se anotaron los pinos enfermos
y los sanos dentro de los tratados y de los no tratados se obtuvieron los siguientes resultados:
Observadas Enfermos Sanos Totales
Tratados 40 (a) 110 (b) 150
No Tratados 52 (c) 98 (d) 150
Totales 92 208 N = 300
Esperadas Enfermos Sanos Totales
Tratados 46 104 150
No Tratados 46 104 150
Totales 92 208 N = 300
H0= La respuesta de los pinos ante la enfermedad es independiente al tratamiento.
teórico
0.05 3.84
3
0.01 6.63
En este caso concreto cal. < teórico con lo que se acepta H0 para ambos niveles de significación. Esto
quiere decir que el tratamiento no es significativamente eficaz.
Ejemplo 3: El rendimiento de una cosecha de cereal se considera bueno si es superior a 15 kg por area de
cultivo y malo si no llega a dicha cantidad. Se hacen 20 determinaciones en parcelas donde se ha sembrado
cereales de tipo A y 18 determinaciones en parcelas con cereales tipo B. ¿Son igualmente efectivos para el
cultivo los cereales A y B?.
Observadas Cereal A Cereal B Totales
Bueno 14 (a) 10 (b) 24
Malo 6 (c) 8 (d) 14
Totales 20 18 N = 38
Esperadas Cereal A Cereal B Totales
Bueno 12.63 11.37 24
Malo 7.37 6.63 14
Totales 20 18 N = 38
H0= Los cereales A y B tienen un rendimiento homogeneo.
H1= El rendimiento no es homogeneo.
cal. = 0.85
cal. << teórico para ambos niveles de significación, por lo que podemos aceptar H0 y afirmar que el
rendimiento de ambos cereales es significativamente homogeneo y, por tanto, igual de efectivo.
CONTRASTE PARA IGUALDAD O DIFERENCIA DE MEDIAS (Datos cuantitativos).
•
El método más tradicional para comparar dos medias es el Test de la t. Este estadístico sigue la distribución de
la t de Student. El análisis de la varianza (ANOVA) puede emplearse también para analizar las diferencias
entre las medias de dos grupos, sin embargo, es un método más general que permite las comparaciones entre
las medias de más de dos grupos.
Test de la t.
•
H0 = =. Las medias poblacionales son iguales.
Si tcal < tteórico entonces se acepta H0.
•
Ejemplo 1: Una especie vegetal que aparece en solana y umbría aparenta crecer de manera distinta en ambas
ubicaciones. Para ello tomamos muestras de la altura de dicha planta en centímetros. Los resultados obtenidos
para solana y umbria aparecen en la tabla.
Altura en Solana (cm) 39 36 35 37 40 39 40 38 35 39
Altura en Umbría (cm) 43 45 42 35 37 38 33 38 41 43
Calcular las medias (m) y las cuasivarianzas (S2) de ambos grupos separados por la variable ambiental.
•
4
;
;
Umbría: m1= 39.5 s12= 13.65 S12= 15.16
Solana: m2= 37.8 S22= 3.73
Comprobar que las varianzas poblacionales () son iguales. Esta comprobación se realiza mediante el test
F de Fisher−Snedecor.
•
H0 = Ê = Ò. Las varianzas poblacionales son iguales.
Si Fobs < Fteórico entonces se acepta H0.
En nuestro caso Fobs = 4.06 < Fteórico (para = 0.01) = 5.06, por lo que se acepta H0 y las varianzas
poblacionales son significativamente iguales.
Calcular el valor de tcal. En este punto, dependiendo de si las varianzas poblacionales son iguales o no, y
de si el tamaño muestral (n1+n2) es grande (>30) o pequeño, se aplican diferentes fórmulas para realizar el
Test de t.
•
(n1+n2)>30
•
En este caso no es necesario comprobar si Ê = Ò ya que aunque Ê " Ò se utiliza la misma fórmula
como solución aproximada.
(n1+n2)<30
•
Ê = Ò
•
Si n1=n2 entonces
•
Si n1"n2 entonces
•
5
siendo n1+n2 −2= grados de libertad.
En este caso el tamaño muestral es <30 , las varianzas poblacionales son iguales y n1=n2 luego:
Comparar tcal con tteórico para los niveles de significación designados y comprobar si las medias
poblacionales () son iguales (aceptación de H0).
•
g.l. tteórico
18
0.01 2.878
0.05 2.101
En este caso tcal =1.24 es menor que tteórico para ambos niveles de significación, por lo que se puede aceptar
H0 y decir que estadísticamente la especie vegetal parece crecer de igual forma en umbría y en solana.
Ejemplo 2: Un laboratorio de antropología física realizó un estudio sobre nutrición sometiendo a estudio dos
dietas diferentes indicadas para el sobrepeso. Así se tomaron datos sobre la reducción de peso en individuos
que siguieron la dieta A, y en individuos que siguieron la dieta B. A partir de los datos obtenidos se pretende
comprobar si ambas dietas son significativamente iguales en su efectividad o no.
DIETA Ind. muestreados (n) Media de la pérdida de peso
Varianza muestral
(s2)
Cuasivarianza (S2)
A 25 4.3 1.96 2.04
B 25 3.6 1.21 1.26
H0 = A = B . La media en la pérdida de peso en las poblaciones que siguieron las distintas dietas es la
misma.
2. Comprobar que las varianzas poblacionales () son iguales. Esta comprobación se realiza mediante el test
F de Fisher−Snedecor.
H0 = Ê = Ò. Las varianzas poblacionales son iguales.
Si Fobs < Fteórico entonces se acepta H0.
que es menor que Fteórico =2.27, por lo que se cumple que las varianzas poblacionales son
significativamente iguales.
3. Calcular el valor de tcal. En este caso (n1+n2 ) >30.
6
g.l. tteórico
48
0.01 2.57
0.05 1.64
No se cumple H0 para ambos niveles de significación, por lo que no se puede deducir si la diferencia en las
dietas es significativa o no.
Este tipo de solución suele darse cuando los datos no están bien tomados o son insuficientes. Por tanto lo más
lógico sería repetir las mediciones, y si estas volvieran a salir iguales, entonces habría que aumentar el tamaño
de muestra (generalmente al doble) y volver a tratar los datos estadísticamente.
B. Análisis de la Varianza (ANOVA).
Este test sirve para comparar las medias de más de dos muestras. Se usa para clasificar muestras en función de
una variable cuantitativa (altura, peso, ...).
Para poder realizar este test han de cumplirse varias premisas:
Las muestras deben ser recogidas al azar y provenir de poblaciones con distribución normal.
•
Las varianzas poblacionales han de ser homogéneas (iguales). Esto se comprueba mediante el test de la
Fmáxima que no tiene nada que ver con el estadístico F de Fisher−Snedecor.
•
H0 =Ñ=Ò=Ó=....=n
Si Fmáx<Fcrítica entonces se cumple H0 para los dados.
El test ANOVA se realiza mediante la F de Fisher−Snedecor, y la hipótesis nula que se contrasta es que las
muestras procedan de la misma población, por lo que las medias poblacionales extraidas de dichas muestras
han de ser iguales.
H0 = = = =...=n
H1 = alguna de las medias poblacionales es distinta.
Si Fcal < Fteórico entonces se acepta H0 para los niveles de significación () dados.
•
Ejemplo 1: Se tomaron muestras en tres regiones de la provincia de Guadalajara sobre la altura que
alcanzaban los ejemplares de una especie determinada de Quercus, en zonas abandonadas y no abandonadas
por el pastoreo de cabras y ovejas. Se pretende determinar si el comportamiento es el mismo. Los resultados
del muestreo aparecen reflejados en la tabla siguiente:
Región Ind. muestreados (ni) Altura media en metros (mi) Cuasivarianza (S2i)
I 104 4.99 4.19
7
II 102 4.63 5.75
III 69 4.53 5.15
Plantear las hipótesis de contraste.
•
Para este caso concreto serían H0 = Los Quercus de las tres regiones se comportan de igual forma, por lo que
sus medias poblacionales son iguales.
H0 = = =
Comprobar si las varianzas poblacionales son iguales (homogéneas).
•
H0 =Ñ=Ò=Ó
Si Fmáx<Fcrítica entonces se cumple H0 para los dados.
(p) Fmáx crítica
0.05 6.6
0.01 9.9
Como Fmáx= 1.37 < Fmáx crítica para ambos niveles de significación, entonces se acepta la hipótesis nula.
En el caso de que las varianzas poblacionales no fueran iguales, se podría continuar realizando el contraste
ANOVA aunque aclarando que el contraste no va a ser significativo por no cumplirse la segunda premisa.
Rellenar las tablas resumen con el fín de poder calcular Fcal. En este apartado, dependiendo de cómo se
den los datos en el problema, hay que completar 1 o 2 tablas. Si no se dan las medias ya calculadas hay que
rellenar dos tablas.
•
GRUPOS "xi "xi2 s2i ni
I
II
III
TOTALES N
Con los resultados de esta tabla se completa el cuadro siguiente.
Fuente de
variación
Suma de cuadrados
Grados de
libertad
Cuadrado medio Fcal.
ENTRE GRUPOS
A
nº de grupos − 1 = A / g.l
8
DENTRO GRUPOS
B **
nº indTot − nº
grupos
= B / g.l.
(**). Si usamos cuasivarianza muestral (S2) en la fórmula habría que poner (ni − 1).
Siendo:
En el caso concreto de este problema, sí nos dan calculadas las medias, por lo que sólo es necesario rellenar el
Cuadro 2.
Cuadro 2.
Fuente de
variación
Suma de
cuadrados
Grados de
libertad
Cuadrado medio Fcal.
ENTRE GRUPOS
275 x 0.039 =
10.776
A
3−1 = 2 = 10.776/2=5.39
DENTRO
GRUPOS
1403.32
B
275−3 = 272
= 1403.32/272=
= 5.16
Comparar Fcal con Fteórica y ver si se cumple la hipótesis nula.
•
(p) Fteórica
0.05 2.99
0.01 4.60
Fcal < Fteórica por lo que se cumple H0, y las medias poblacionales son significativamente iguales para
ambos niveles de significación.
Ejemplo 2: Se sospecha que las aguas de un lago están contaminadas por los compuestos fosforados
procedentes de una industria. Para tratar de verificar esta sospecha, se midieron los niveles de fósforo en
distintos puntos del lago, obteniéndose los siguientes valores:
Lago 1: 7.1 8.5 6.2 7.3 7.9
Después, se tomaron medidas de los niveles de fósforo en varios puntos de otros tres lagos, que no estaban
contaminados, obteniéndose:
9
Lago 2: 7.2 6.5 5.9 7.8
Lago 3: 5.6 7.1 6.3 6.7 6.5
Lago 4: 7.2 6.6 6.3 7.4
Los valores obtenidos en lago bajo sospecha parecen ser algo superiores a los obtenidos en los otros tres. ¿Es
suficientemente importante esta diferencia como para poder concluir que el nivel de fósforo en el lago 1 es
diferente que el que tienen los demás, y por tanto está contaminado?
GRUPOS "xi "xi2 s2i ni
Lago 1 37 7.4 276.8 0.60 5
Lago 2 27.4 6.85 189.74 0.5125 4
Lago 3 32.2 6.44 208.6 0.2464 5
Lago 4 27.5 6.875 189.85 0.1969 4
TOTALES 124.1 864.99 18
NOTA: En las calculadoras la
se representa como (xn) y la
como (xn−1).
2. Comprobar si las varianzas poblacionales son iguales (homogéneas).
H0 =Ñ=Ò=Ó=Ô
Como Fmáx<Fcrítica entonces se cumple H0 para los dados.
(p) Fmáx crítica
0.05 6.6
0.01 9.9
Fuente de
variación
Suma de
cuadrados
Grados de
libertad
Cuadrado medio Fcal.
ENTRE GRUPOS
0.1295x18= 2.332
A
4−1 = 3 = 0.7773
DENTRO
GRUPOS
7.0696
B
18−4 = 14 = 0.5050
10
(p) Fteórica
0.05 3.344
0.01 5.564
Fcal < Fteórica por lo que se cumple H0, y las medias poblacionales son significativamente iguales para los
niveles de significación dados, es decir, no hay suficiente evidencia estadística para concluir que el primer
lago tiene un nivel de contaminación diferente al que tienen el resto.
CORRELACIÓN / REGRESIÓN.
•
La correlación, como su propio nombre indica, es una medida del grado de relación (lineal) entre dos
variables.
La regresión es un modelo estadístico que sirve para predecir un comportamiento real de una población
mediante un modelo matemático (ecuación).
Antes de fabricar un modelo matemático, es necesario saber si existe una correlación entre variables, ya que si
son incorreladas no tiene mucho sentido tratar de ajustar su relación mediante una recta o una curva.
Ejemplo 1: Se ha medido la superficie en dm2 ocupada por Poa bulbosa (x) y especies anuales (y) en 5
cuadros de muestreo de 10 dm2 para comprobar si se asocian o no. Los resultados obtenidos aparecen en la
siguiente tabla:
nº Poa bulbosa (x) 9 2 2 1 6
nº plantas anuales (y) 1 7 8 10 4
Calcular el coeficiente de correlación (r).
•
Tabla 1. Resumen de valores de ambas variables.
nº de cuadro xi yi xy x2 y2
1 9 1 9 81 1
2 2 7 14 4 49
3 2 8 16 4 64
4 1 10 10 1 100
5 6 4 24 36 16
Sumas totales 20 30 73 126 230
11
H0 = no hay correlación a nivel poblacional entre las dos variables (variables incorreladas). = 0.
H1 = existe correlación entre las variables ( " 0).
Se acepta H0 si
. (rteórico realmente una tteórica de Student).
rteórica
0.05 0.878
0.01 0.959
Se rechaza H0 y por tanto existe suficiente evidencia estadística de que existe correlación entre variables y
que esta es negativa.
Ajustar las variables a una regresión. Aunque las regresiones pueden ser lineales (y=Bx+A), logarítmicas,
etc...en este tipo de aplicaciones la regresión a la que se ajustan las variables correlacionadas es una recta.
Se pueden obtener dos rectas diferentes según se tome a la variable x o a la variable y como independiente.
•
Recta de y sobre x (y/x):
•
Recta de x sobre y (x/y):
•
En este caso vamos a calcular la recta (y/x) utilizando los datos que aparecen reflejados en la tabla 1:
, y despejando queda:
Estime el número de plantas anuales que aparecerían si encontráramos 5 individuos de Poa bulbosa.
•
plantas anuales.
Estime el número de plantas anuales que aparecerían si encontráramos 2 individuos de Poa bulbosa.
•
12
¡¡¡OJO!!!, esta pregunta tiene trampa, ya que podemos pensar que la respuesta puede obtenerse del cuadro
de datos que nos dan como enunciado, y no es así. La respuesta ha de hallarse sustituyendo en la recta de
regresión obtenida.
Calcular la absorción de la varianza. Al error absoluto que se está cometiendo en el muestreo se le
denomina coeficiente de determinación(r2), que no es más que la cantidad de varianza entre los dos
grupos. La absorción de la varianza es el coeficiente de determinación expresado en tanto por ciento (%).
•
Absorción de la varianza.
Representar gráficamente si fuera necesario. Sustituyendo valores en las rectas de regresión, pueden
representarse ambas rectas. Si se representan ambas rectas sobre la misma gráfica, se puede tener una idea
visual del grado de correlación entre las variables. Dicho grado viene determinado por el ángulo () que se
forma entre las dos rectas, de modo que cuanto menor sea el ángulo, mayor será la correlación entre
variables.
•
x y
0 10.08
1 9.06
2 8.04
5 4.98
6 3.96
9.88 0
10 −0.12
13
TIPOS DE DISTRIBUCIÓN ESPACIAL.
•
La distribución espacial de los organismos puede ser estudiada a muchas escalas, desde la escala global o
planetaria, a la local.
Existen tres tipos posibles de patrones de distribución espacial (Pattern):
Distribución aleatoria. Los organismos se distribuyen al azar, y por tanto, la presencia de un
individuo no aumenta ni disminuye la probabilidad de encontrar otro. Este patrón se ajusta a
distribuciones como Binomial, Poisson y Normal.
•
Distribución contagiosa. Los organismos se distribuyen de tal forma que la presencia de un individuo
aumenta la probabilidad de encontrar otro. Este tipo de distribución es la más corriente en la
naturaleza, y puede estar propiciada por diversas causas:
•
Morfológicas
•
Ambientales
•
Infecciosas
•
Distribución regular. Los organismos se distribuyen de tal forma que la presencia de un individuo
disminuye la probabilidad de encontrar otro.
•
Con este tipo de estudio se pretende comprobar la distribución que sigue una determinada población
problema. La distribución puede observarse a diferentes escalas, y en ocasiones el tipo de distribución cambia
dependiendo de la escala escogida. En este tipo de estudios se trabaja con una única variable.
Para comprobar qué tipo de distribución sigue la población sometida a estudio, es necesario calcular el índice
de dispersión (I.D.).
Lo que realmente se pretende observar con el índice de dispersión es cómo están relacionados los
individuos y cuál es su nivel de concentración.
•
Además de calcular el I.D. es necesario comprobarlo estadísticamente (estimarlo) mediante una t de Student,
donde:
H0 = No hay evidencia estadística de que la distribución sea tal y como indica el Índice de dispersión.
Se cumple H0 si
En caso de no existir suficientes evidencias estadísticas para aceptar que la distribución sea contagiosa o
regular, es conveniente comprobar si es aleatoria (aunque el I.D. no lo indicara) y a qué distribución
pertenece (binomial, Poisson, o Normal).
•
14
Si la muestra es muy grande o la variable es continua (altura, peso,..) generalmente hay que ajustar a
una distribución Normal.
•
Si la muestra es pequeña o la variable es discreta (números enteros), hay que ajustar a una distribución
Binomial, o a una Poisson.
•
Ejemplo 1: En el cuadro siguiente se ha anotado la cobertura de una especie vegetal muestreada en un
transecto, agrupandose las coberturas en diferentes clases. Comprobar que distribución espacial sigue la citada
especie.
CLASES
(grupos)
0 1 2 3
Frec. observadas
(oi)
8 12 3 3
Probabilidades de
clase** (p)
0.223 0.335 0.251 0.125
Frec. esperadas
(ei) = p x N
5.98 8.71 6.526 3.25 N = 26
** Las probabilidades de clase son valores tomados de las tablas de la distribución escogida. En este caso
están sacados de una distribución de Poisson con = 1.5 y = 0, 1, 2, 3.
Si las (ei) se parecen a las (oi) entonces intuitivamente se cumplirá la distribución de la que se han obtenido
los valores de p.
Para comprobar de forma estadística lo que intuitivamente podemos aventurar observando el cuadro, se usa un
Test de Bondad de Ajuste mediante un estimador que es de Pearson.
H0 = La distribución se ajusta a la distribución esperada.
Se cumple H0 si cal < teórica para los niveles de significación dados.
•
Los grados de libertad (g.l.) para las distribuciones de Poisson y Binomial son de k−2, y para una distribución
Normal son k−3, siendo k=nº de grupos.
g.l. teórico
2
0.01 9.21
0.05 5.99
Como cal < teórico para ambos niveles de significación, se acepta H0, lo que implica que existe
suficiente evidencia estadística para decir que la distribución de la muestra se ajusta a la distribución esperada,
en este caso una distribución de Poisson.
SISTEMATIZACIÓN (Tipificación de Biocenosis):
•
15
El término Biocenosis se define como el conjunto de organismos que conviven en una localidad determinada.
La Sistematización o tipificación es el reconocimiento de la mayor o menor coincidencia entre especies
referida a un carácter, o entre caracteres dentro de una especie,...
Se trabaja siempre con variables cualitativas. En este tipo de estudios se parte de un tamaño muestral grande
(N) que va siendo desglosado (simplificado). Aunque esto supone una pérdida de información al disminuir el
detalle, se van a destacar las características más importantes de dicha población.
Existen dos técnicas para realizar este tipo de estudio:
Clasificación: Se trata de dividir N de forma gerárquica, bien comenzando de mayor a menor
(clasificación divisiva) o bien de menor a mayor (clasificación aglomerativa), en esta última los
individuos observados se van fusionando en grupos progresivamente mayores. El conjunto inicial de
individuos se divide mediante criterios diversos (por ejemplo, presencia o ausencia de un atributo o
grupos de atributos).
•
Ordenación: Se trata de poner de manifiesto unas relaciones espaciales continuas entre individuos.
•
ORDENACIÓN: Método de Bray−Curtis (índice de disimilitud (D)).
D = 1− S
Valores de D más altos implican una menor similitud (mayor diferencia).
•
Valores de D más bajos implican una mayor similitud.
•
CLASIFICACIÓN
•
A.1. CLASIFICACIÓN DIVISIVA.
Ejemplo 1: Clasificación de 4 inventarios, 1, 2, 3, y 4, descritos por 4 especies (A, B, C y D).
grupos
especies
1 2 3 4
A + + + +
B − − + +
C − + − −
D + + + −
Mediante tablas de contingencia 2x2 de presencia o ausencia entre especies se obtiene una tabla resumen con
los cal para todas las especies:
A
A
+ − " cal A B C D "
+ 4 0 4 A 0 0 0 0 0
16
− 0 0 0 B 0 4.0 1.3 1.3 6.6
" 4 0 N C 0 1.3 4.0 0.4 5.7
cal = 0 D 0 1.3 0.4 4.0 5.7
El mayor " pertenece a la especie B, y por tanto es a partir de esta especie sobre la que comenzamos la
división (especie discriminante). Se puede separar entonces el inventario en dos grupos, uno con presencia
de B (B+) correspondiente a los grupos 3 y 4, y otro con ausencia de B (B−) correspondiente a los grupos 1 y
2.
Ahora es necesario calcular otras dos series de correspondientes a cada uno de los grupos a partir de las
siguientes tablas.
grupos
especies
1 2
grupos
especies
3 4
A + + A + +
C − + C − −
D + + D + −
Tabla 1. Grupos con ausencia de B. Tabla 2. Grupos con presencia de B.
A partir de la tabla 1 (B−), para los grupos 1 y 2, sacamos la siguiente especie discriminante:
•
A
C
+
−
"
cal
A
C
D
"
+
1
17
0
1
A
0
0
0
0
−
1
0
1
C
0
2
0
2
"
2
0
D
0
0
0
0
cal = 0
18
La siguiente especie discriminante para el grupo B− es la especie C.
Con las siguientes especies discriminantes se vuelven a calcular otras dos series de y así sucesivamente
hasta acabar con la clasificación divisiva.
Ausencia de la especie C (C−).
gr
esp
1
A
D
+ − " cal A D "
A + + 1 0 1 A 0 0 0
D + − 0 0 0 D 0 0 0
" 1 0
A/D cal = 0
Presencia de la especie C (C+).
gr
esp
2
A
D
+ − " cal A D "
A + + 1 0 1 A 0 0 0
D + − 0 0 0 D 0 0 0
" 1 0
A/D cal = 0
Al no existir una nueva especie discriminante ya no se puede continuar la clasificación divisiva para la
ausencia o presencia de la especie C.
A partir de la tabla 2 (B+) para los grupos 3 y 4 sacamos la siguiente especie discriminante:
•
A
C
+
−
"
cal
A
C
D
19
"
+
0
0
0
A
0
0
0
0
−
2
0
2
C
0
0
0
0
"
2
0
N
D
0
0
20
2
2
cal = 0
La siguiente especie discriminante para el grupo B+ es la especie D.
Presencia de la especie D (D+).
gr
esp
3
A
C
+ − " cal A C "
A + + 0 0 0 A 0 0 0
C − − 1 0 1 C 0 0 0
" 1 0 1
A/C cal = 0
Ausencia de la especie D (D−).
gr
esp
4
A
C
+ − " cal A C "
A + + 0 0 0 A 0 0 0
C − − 1 0 1 C 0 0 0
" 1 0 1
A/C cal = 0
Al no existir una nueva especie discriminante ya no se puede continuar la clasificación divisiva para la
ausencia o presencia de la especie D.
Los resultados de la clasificación divisiva se pueden presentar de forma gráfica (dendrograma) y así hacerse
una idea más clara y más general, ya que si la clasificación es excesivamente larga, puede perderse la visión
global y el propósito del estudio.
DENDROGRAMA DE CLASIFICACIÓN DIVISIVA
I: 1, 2, 3 y 4
(B+) (B−)
II1: 3 y 4 II2: 1 y 2
(D+) (D−) (C+) (C−)
III11: 3 III12: 4 III21: 2 III22: 1
3 4 2 1
21
A.2. CLASIFICACIÓN AGLOMERATIVA.
Ejemplo 1: Clasificación de 4 inventarios, 1, 2, 3, y 4, descritos por 4 especies (A, B, C y D).
grupos
especies
1 2 3 4
A + + + +
B − − + +
C − + − −
D + + + −
Nj ; Nk 2 3 3 2
A partir de la tabla anterior se realizan cálculos para obtener los índices de similitud de Jaccard (S) entre
grupos tomados dos a dos (j y k).
Generalmente se expresan como tanto por ciento (%).
S(%)
1 100
2 66.6 100
3 66.6 50 100
4 33.3 25 66.6 100
1 2 3 4
Índices de similitud de Jaccard en %.
Comenzando por los grupos que presentan mayor similitud se comienza a construir un diagrama para ver
gráficamente la clasificación aglomerativa (cuando dos grupos o parcelas se unen, funcionan como un único
grupo para unirse al siguiente). En ocasiones se pueden distinguir dos o más subgrupos, relativamente
distantes, en la clasificación, dependiendo del (S) al que se unan a otros grupos. Cuando ocurre esto se busca
la especie discriminante que, bien por su presencia o ausencia, produce la separación de ambos subgrupos.
La busqueda de la especie discriminante se realiza por una serie de ( una tabla de contingencia para cada
especie con su presencia y ausencia en los dos subgrupos considerados). La especie que posea el mayor es
la discriminante de un grupo frente a otro.
DIAGRAMA DE CLASIFICACIÓN AGLOMERATIVA
S(%)
93%
72%
51%
30%
64%
40
22
60
80
80%
1 5 2 6 3 4 7
ORDENACIÓN (Ordenación Bray−Curtis).
•
El algoritmo utilizado es el índice de disimilitud (D).
D = 1− S
Valores de D más altos implican una menor similitud (mayor diferencia).
•
Valores de D más bajos implican una mayor similitud.
•
Calcular para cada grupo su índice de disimilitud y colocar los datos en una tabla resumen (partiendo de la
tabla de índices de similitud de Jaccard).
•
D(%)
1 0
2 33.3 0
3 33.3 50 0
4 66.6 75 33.3 0
1 2 3 4
Índices de disimilitud (D) expresados en %.
Representar gráficamente en dos ejes los diferentes grupos según los siguientes criterios:
•
En un primer eje, que representa el 100% de disimilitud, se colocan en los extremos aquellos grupos
con un valor de D más elevado, esto es los grupos menos parecidos. De forma arbitraria, se van
colocando a derecha e izquierda del centro del eje los dos siguientes grupos con mayor D, y así
sucesivamente de tal forma que los grupos más similares (con menor D) queden colocados más
próximos junto al centro del eje. Para colocarlos de forma más precisa, se toman los dos siguientes
grupos más disimilares y se miran los índices de disimilitud con respecto a los grupos de los
extremos, se suman ambos valores de D y, mediante una regla de tres, se ajusta esa distancia a la que
se consideró como 100% en el eje.
•
En el segundo eje, se procede de igual forma que en el primero pero colocando en los extremos las
parcelas más similares (con valores de D bajos).
•
El tercer eje, presenta poca absorción de la varianza y es poco informativo, por lo que no es necesario
representarlo.
•
Eje
2
5%
menos
similares
!
95% más similares ! 5% 8% ! más similares
91%
Eje 1 83% ! menos
similares
78%
23
8%
DIVERSIDAD DE ESPECIES.
•
Para comparar diferentes comunidades o caracterizarlas, se suele evaluar la riqueza en especies, es decir, el
número de especies de cada comunidad. Este parámetro, sin embargo, no tiene en cuenta el número de
individuos de cada especie. El concepto amplio de diversidad que se emplea en Ecología se refiere a la
combinación de riqueza en especies y sus abundancias relativas.
La estimación de las abundancias relativas para el cálculo de la diversidad puede realizarse empleando
diversas variables (densidad, cobertura, biomasa, ...). En cualquier caso este tipo de estudios debe hacerse a
partir de un muestreo aleatorio, instantáneo y con el mismo tamaño muestral.
Hay varias técnicas para medir la diversidad a partir del conocimiento de la riqueza específica y de las
abundancias relativas:
Modelos de abundancia de especies.
•
Índices de diversidad.
•
ÍNDICE DE DIVERSIDAD DE Shannon−Wiener.
El índice de diversidad de Shannon−Wiener (H) se expresa en bits. Cuanto mayor sea el valor de H mayor
será la diversidad. Si se comparan varias comunidades, presentará mayor diversidad la que mayor número de
bits posea.
siendo
Ni = número de individuos de la especie i.
N = número total de individuos.
Con frecuencia no es posible operar en la calculadora con log2 por lo que es necesario realizar una
transformación:
Raúl López García
Estadística aplicada a la Ecología
12
11
24
25

Más contenido relacionado

La actualidad más candente

Diapositivas unidad 3 y 4
Diapositivas unidad 3 y 4Diapositivas unidad 3 y 4
Diapositivas unidad 3 y 4
Mimi_G01
 
Curso Estadistica Descriptiva[1]
Curso Estadistica Descriptiva[1]Curso Estadistica Descriptiva[1]
Curso Estadistica Descriptiva[1]yiesbore
 
B Ioestadistica Conceptos Basicos
B Ioestadistica Conceptos BasicosB Ioestadistica Conceptos Basicos
B Ioestadistica Conceptos Basicoscentroperalvillo
 
Cuales son los elementos fundamentales de la estadística
Cuales son los elementos fundamentales de la estadísticaCuales son los elementos fundamentales de la estadística
Cuales son los elementos fundamentales de la estadísticaFlor Isabel Salazar Vazquez
 
Diapositivas estadistica
Diapositivas estadisticaDiapositivas estadistica
Diapositivas estadisticalissethperez
 
Estadistica y probabilidades
Estadistica y probabilidadesEstadistica y probabilidades
Estadistica y probabilidadeselsariverafrias2
 
Definiciones y ejemplos de conceptos Estadisticos
Definiciones y ejemplos de conceptos EstadisticosDefiniciones y ejemplos de conceptos Estadisticos
Definiciones y ejemplos de conceptos Estadisticos
Roy Marcano
 
Estadistica cuarto medio
Estadistica cuarto medioEstadistica cuarto medio
Estadistica cuarto mediositayanis
 
Fundamentos de estadística descriptiva aprendices
Fundamentos de estadística descriptiva   aprendicesFundamentos de estadística descriptiva   aprendices
Fundamentos de estadística descriptiva aprendicesAndres Salazar
 
Conceptos estadistica basica
Conceptos estadistica basicaConceptos estadistica basica
Conceptos estadistica basicadamarys_guillen
 
Diapositiva terminos basicos de estadistica
Diapositiva terminos basicos de estadisticaDiapositiva terminos basicos de estadistica
Diapositiva terminos basicos de estadisticaRaquelMasters
 
Guia estudio 03.pptxestadistica
Guia estudio 03.pptxestadisticaGuia estudio 03.pptxestadistica
Guia estudio 03.pptxestadisticacienciascontables
 
Presentacion terminos basicos de la estadistica
Presentacion terminos basicos de la estadisticaPresentacion terminos basicos de la estadistica
Presentacion terminos basicos de la estadisticaisrajrl
 
Estadística en la aplicación de recursos humanos
Estadística en la aplicación de recursos humanosEstadística en la aplicación de recursos humanos
Estadística en la aplicación de recursos humanos
Myleidy Leon
 
Distribución de frecuencias
Distribución de frecuenciasDistribución de frecuencias
Distribución de frecuencias
Rogelio Lilly
 
Estadistica grado 11
Estadistica grado 11Estadistica grado 11
Estadistica grado 11
Antonio Botero
 
Diapositivas estadistica.
Diapositivas estadistica.Diapositivas estadistica.
Diapositivas estadistica.lissethperez
 

La actualidad más candente (20)

Diapositivas unidad 3 y 4
Diapositivas unidad 3 y 4Diapositivas unidad 3 y 4
Diapositivas unidad 3 y 4
 
Curso Estadistica Descriptiva[1]
Curso Estadistica Descriptiva[1]Curso Estadistica Descriptiva[1]
Curso Estadistica Descriptiva[1]
 
B Ioestadistica Conceptos Basicos
B Ioestadistica Conceptos BasicosB Ioestadistica Conceptos Basicos
B Ioestadistica Conceptos Basicos
 
Cuales son los elementos fundamentales de la estadística
Cuales son los elementos fundamentales de la estadísticaCuales son los elementos fundamentales de la estadística
Cuales son los elementos fundamentales de la estadística
 
Estadistica descriptiva
Estadistica descriptivaEstadistica descriptiva
Estadistica descriptiva
 
Diapositivas estadistica
Diapositivas estadisticaDiapositivas estadistica
Diapositivas estadistica
 
Estadística
EstadísticaEstadística
Estadística
 
Estadistica y probabilidades
Estadistica y probabilidadesEstadistica y probabilidades
Estadistica y probabilidades
 
Definiciones y ejemplos de conceptos Estadisticos
Definiciones y ejemplos de conceptos EstadisticosDefiniciones y ejemplos de conceptos Estadisticos
Definiciones y ejemplos de conceptos Estadisticos
 
Estadística Básica
Estadística BásicaEstadística Básica
Estadística Básica
 
Estadistica cuarto medio
Estadistica cuarto medioEstadistica cuarto medio
Estadistica cuarto medio
 
Fundamentos de estadística descriptiva aprendices
Fundamentos de estadística descriptiva   aprendicesFundamentos de estadística descriptiva   aprendices
Fundamentos de estadística descriptiva aprendices
 
Conceptos estadistica basica
Conceptos estadistica basicaConceptos estadistica basica
Conceptos estadistica basica
 
Diapositiva terminos basicos de estadistica
Diapositiva terminos basicos de estadisticaDiapositiva terminos basicos de estadistica
Diapositiva terminos basicos de estadistica
 
Guia estudio 03.pptxestadistica
Guia estudio 03.pptxestadisticaGuia estudio 03.pptxestadistica
Guia estudio 03.pptxestadistica
 
Presentacion terminos basicos de la estadistica
Presentacion terminos basicos de la estadisticaPresentacion terminos basicos de la estadistica
Presentacion terminos basicos de la estadistica
 
Estadística en la aplicación de recursos humanos
Estadística en la aplicación de recursos humanosEstadística en la aplicación de recursos humanos
Estadística en la aplicación de recursos humanos
 
Distribución de frecuencias
Distribución de frecuenciasDistribución de frecuencias
Distribución de frecuencias
 
Estadistica grado 11
Estadistica grado 11Estadistica grado 11
Estadistica grado 11
 
Diapositivas estadistica.
Diapositivas estadistica.Diapositivas estadistica.
Diapositivas estadistica.
 

Similar a Estadistica ecologia(3)

Trabajo hipotesis
Trabajo hipotesisTrabajo hipotesis
Trabajo hipotesishoteles1
 
Trabajo estadistica
Trabajo estadisticaTrabajo estadistica
Trabajo estadisticahoteles1
 
DISTRIBUCIONES MUESTRALES (1).pptx
DISTRIBUCIONES MUESTRALES (1).pptxDISTRIBUCIONES MUESTRALES (1).pptx
DISTRIBUCIONES MUESTRALES (1).pptx
DanielDavidMantillaQ
 
Seminario viii
Seminario viiiSeminario viii
Seminario viii
claudiagarciar96
 
Planteamiento de Hipótesis para dos poblaciones (WORD)
Planteamiento de Hipótesis para dos poblaciones (WORD)Planteamiento de Hipótesis para dos poblaciones (WORD)
Planteamiento de Hipótesis para dos poblaciones (WORD)HOTELES2
 
Trabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodosTrabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodos
jimmynter
 
pruebas no paraemtricas
pruebas no paraemtricas pruebas no paraemtricas
pruebas no paraemtricas
jimmynter
 
Análisis funcional
Análisis funcionalAnálisis funcional
Análisis funcional
Verónica Taipe
 
Trabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodosTrabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodos
jimmynter
 
Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)
Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)
Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)HOTELES2
 
Estadistica descriptiva
Estadistica descriptivaEstadistica descriptiva
Estadistica descriptivajennypao39
 
82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...
82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...
82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...Ekthor Daniel R G
 
GRUPO D (1).pptx
GRUPO D (1).pptxGRUPO D (1).pptx
GRUPO D (1).pptx
Nicki Nicole
 
Pruebas de Hipótesis
Pruebas de HipótesisPruebas de Hipótesis
Pruebas de Hipótesis
Eduardo Lucena Montoya
 
Planteamiento de hipótesis en más de dos poblaciones
Planteamiento de hipótesis en más de dos poblacionesPlanteamiento de hipótesis en más de dos poblaciones
Planteamiento de hipótesis en más de dos poblacionesguest91e7e85
 
GRUPO 4 - Tstudent 1 (5).pptx
GRUPO 4 - Tstudent 1 (5).pptxGRUPO 4 - Tstudent 1 (5).pptx
GRUPO 4 - Tstudent 1 (5).pptx
JimenaDoSa
 
Experimentos con un solo factor
Experimentos con un solo factorExperimentos con un solo factor
Experimentos con un solo factor
Jhon Erik Hurtado Tarrillo
 
Pruebas no parametricas
Pruebas no parametricasPruebas no parametricas
Pruebas no parametricas
Patricia Avalos
 
Estadistica descriptiva 2
Estadistica descriptiva 2 Estadistica descriptiva 2
Estadistica descriptiva 2 Paula Diaz
 

Similar a Estadistica ecologia(3) (20)

Trabajo hipotesis
Trabajo hipotesisTrabajo hipotesis
Trabajo hipotesis
 
Trabajo estadistica
Trabajo estadisticaTrabajo estadistica
Trabajo estadistica
 
DISTRIBUCIONES MUESTRALES (1).pptx
DISTRIBUCIONES MUESTRALES (1).pptxDISTRIBUCIONES MUESTRALES (1).pptx
DISTRIBUCIONES MUESTRALES (1).pptx
 
Seminario viii
Seminario viiiSeminario viii
Seminario viii
 
Planteamiento de Hipótesis para dos poblaciones (WORD)
Planteamiento de Hipótesis para dos poblaciones (WORD)Planteamiento de Hipótesis para dos poblaciones (WORD)
Planteamiento de Hipótesis para dos poblaciones (WORD)
 
Trabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodosTrabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodos
 
pruebas no paraemtricas
pruebas no paraemtricas pruebas no paraemtricas
pruebas no paraemtricas
 
Análisis funcional
Análisis funcionalAnálisis funcional
Análisis funcional
 
Trabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodosTrabajo de pruebas no paraemtricas 6 metodos
Trabajo de pruebas no paraemtricas 6 metodos
 
Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)
Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)
Planteamiento de Hipótesis de dos poblaciones para proporción (POWER POINT)
 
Estadistica descriptiva
Estadistica descriptivaEstadistica descriptiva
Estadistica descriptiva
 
82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...
82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...
82253086 unidad-iv-pruebas-de-hipotesis-con-dos-muestras-y-varias-muestras-de...
 
GRUPO D (1).pptx
GRUPO D (1).pptxGRUPO D (1).pptx
GRUPO D (1).pptx
 
Pruebas de Hipótesis
Pruebas de HipótesisPruebas de Hipótesis
Pruebas de Hipótesis
 
Analisis de varianza_2012
Analisis de varianza_2012Analisis de varianza_2012
Analisis de varianza_2012
 
Planteamiento de hipótesis en más de dos poblaciones
Planteamiento de hipótesis en más de dos poblacionesPlanteamiento de hipótesis en más de dos poblaciones
Planteamiento de hipótesis en más de dos poblaciones
 
GRUPO 4 - Tstudent 1 (5).pptx
GRUPO 4 - Tstudent 1 (5).pptxGRUPO 4 - Tstudent 1 (5).pptx
GRUPO 4 - Tstudent 1 (5).pptx
 
Experimentos con un solo factor
Experimentos con un solo factorExperimentos con un solo factor
Experimentos con un solo factor
 
Pruebas no parametricas
Pruebas no parametricasPruebas no parametricas
Pruebas no parametricas
 
Estadistica descriptiva 2
Estadistica descriptiva 2 Estadistica descriptiva 2
Estadistica descriptiva 2
 

Más de Manuel Huertas Chávez

Tesis posgrado 2013 tm ce ed 3127 c1 - cueto cordero
Tesis posgrado  2013  tm ce ed 3127 c1 - cueto corderoTesis posgrado  2013  tm ce ed 3127 c1 - cueto cordero
Tesis posgrado 2013 tm ce ed 3127 c1 - cueto cordero
Manuel Huertas Chávez
 
monografia-completa-de-tecnicas-de-estudio-pdf
monografia-completa-de-tecnicas-de-estudio-pdfmonografia-completa-de-tecnicas-de-estudio-pdf
monografia-completa-de-tecnicas-de-estudio-pdf
Manuel Huertas Chávez
 
Diseño de una clase invertida, seis pasos para realizar una clase invertida ...
Diseño de una clase invertida, seis pasos para realizar una clase invertida  ...Diseño de una clase invertida, seis pasos para realizar una clase invertida  ...
Diseño de una clase invertida, seis pasos para realizar una clase invertida ...
Manuel Huertas Chávez
 
Pei domingo savio 2015 documento de trabajo
Pei  domingo savio 2015 documento de trabajoPei  domingo savio 2015 documento de trabajo
Pei domingo savio 2015 documento de trabajo
Manuel Huertas Chávez
 
Otp cta 2010
Otp cta 2010Otp cta 2010
Rutas del aprendizaje cta
Rutas del aprendizaje ctaRutas del aprendizaje cta
Rutas del aprendizaje cta
Manuel Huertas Chávez
 
Documentos secundaria-ciencia, tecnología y ambiente-vii
Documentos secundaria-ciencia, tecnología y ambiente-viiDocumentos secundaria-ciencia, tecnología y ambiente-vii
Documentos secundaria-ciencia, tecnología y ambiente-vii
Manuel Huertas Chávez
 
Documentos secundaria-ciencia, tecnología y ambiente-vi
Documentos secundaria-ciencia, tecnología y ambiente-viDocumentos secundaria-ciencia, tecnología y ambiente-vi
Documentos secundaria-ciencia, tecnología y ambiente-vi
Manuel Huertas Chávez
 
Un fotógrafo retrata la vida de los vagabundos EEUU
Un fotógrafo retrata la vida de los vagabundos EEUUUn fotógrafo retrata la vida de los vagabundos EEUU
Un fotógrafo retrata la vida de los vagabundos EEUU
Manuel Huertas Chávez
 
Malla curricular del programa de inclusión digital
Malla curricular del programa de inclusión digitalMalla curricular del programa de inclusión digital
Malla curricular del programa de inclusión digital
Manuel Huertas Chávez
 

Más de Manuel Huertas Chávez (10)

Tesis posgrado 2013 tm ce ed 3127 c1 - cueto cordero
Tesis posgrado  2013  tm ce ed 3127 c1 - cueto corderoTesis posgrado  2013  tm ce ed 3127 c1 - cueto cordero
Tesis posgrado 2013 tm ce ed 3127 c1 - cueto cordero
 
monografia-completa-de-tecnicas-de-estudio-pdf
monografia-completa-de-tecnicas-de-estudio-pdfmonografia-completa-de-tecnicas-de-estudio-pdf
monografia-completa-de-tecnicas-de-estudio-pdf
 
Diseño de una clase invertida, seis pasos para realizar una clase invertida ...
Diseño de una clase invertida, seis pasos para realizar una clase invertida  ...Diseño de una clase invertida, seis pasos para realizar una clase invertida  ...
Diseño de una clase invertida, seis pasos para realizar una clase invertida ...
 
Pei domingo savio 2015 documento de trabajo
Pei  domingo savio 2015 documento de trabajoPei  domingo savio 2015 documento de trabajo
Pei domingo savio 2015 documento de trabajo
 
Otp cta 2010
Otp cta 2010Otp cta 2010
Otp cta 2010
 
Rutas del aprendizaje cta
Rutas del aprendizaje ctaRutas del aprendizaje cta
Rutas del aprendizaje cta
 
Documentos secundaria-ciencia, tecnología y ambiente-vii
Documentos secundaria-ciencia, tecnología y ambiente-viiDocumentos secundaria-ciencia, tecnología y ambiente-vii
Documentos secundaria-ciencia, tecnología y ambiente-vii
 
Documentos secundaria-ciencia, tecnología y ambiente-vi
Documentos secundaria-ciencia, tecnología y ambiente-viDocumentos secundaria-ciencia, tecnología y ambiente-vi
Documentos secundaria-ciencia, tecnología y ambiente-vi
 
Un fotógrafo retrata la vida de los vagabundos EEUU
Un fotógrafo retrata la vida de los vagabundos EEUUUn fotógrafo retrata la vida de los vagabundos EEUU
Un fotógrafo retrata la vida de los vagabundos EEUU
 
Malla curricular del programa de inclusión digital
Malla curricular del programa de inclusión digitalMalla curricular del programa de inclusión digital
Malla curricular del programa de inclusión digital
 

Último

Contexto de TransMoni
Contexto de TransMoniContexto de TransMoni
Contexto de TransMoni
CIFOR-ICRAF
 
Trabajo de sostenibilidad sobre “Billesabritas”
Trabajo de sostenibilidad sobre “Billesabritas”Trabajo de sostenibilidad sobre “Billesabritas”
Trabajo de sostenibilidad sobre “Billesabritas”
008ff23
 
Lecciones para el monitoreo transparente Experiencias de la Amazonía peruana
Lecciones para el monitoreo transparente Experiencias de la Amazonía peruanaLecciones para el monitoreo transparente Experiencias de la Amazonía peruana
Lecciones para el monitoreo transparente Experiencias de la Amazonía peruana
CIFOR-ICRAF
 
Manejo y Tratamiento de Neumonia en el Peru
Manejo y Tratamiento de Neumonia en el PeruManejo y Tratamiento de Neumonia en el Peru
Manejo y Tratamiento de Neumonia en el Peru
medicoocupacionalpiu
 
Equipo2fitopresentaciónproyectofinal.pdf
Equipo2fitopresentaciónproyectofinal.pdfEquipo2fitopresentaciónproyectofinal.pdf
Equipo2fitopresentaciónproyectofinal.pdf
anabelmejia0204
 
1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx
1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx
1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx
ORFILESVSQUEZBURGOS
 
Departamento de San Martin moyobamba.pdf
Departamento de San Martin moyobamba.pdfDepartamento de San Martin moyobamba.pdf
Departamento de San Martin moyobamba.pdf
MariaCr10
 
manejo de residuos solidos para niños descripcion
manejo de residuos solidos para niños descripcionmanejo de residuos solidos para niños descripcion
manejo de residuos solidos para niños descripcion
yesi873464
 
CONTROL QUIMICO DE MALEZAS O ARVENSES.pptx
CONTROL QUIMICO DE MALEZAS O ARVENSES.pptxCONTROL QUIMICO DE MALEZAS O ARVENSES.pptx
CONTROL QUIMICO DE MALEZAS O ARVENSES.pptx
DAYANA VASQUEZ
 
DIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESV
DIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESVDIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESV
DIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESV
AudreyMatiz1
 
Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...
Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...
Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...
CIFOR-ICRAF
 
La Agricultura de conservación como herramienta para paliar la degradación de...
La Agricultura de conservación como herramienta para paliar la degradación de...La Agricultura de conservación como herramienta para paliar la degradación de...
La Agricultura de conservación como herramienta para paliar la degradación de...
Universidad Popular Carmen de Michelena
 
Guía de campo Ecoturismo con Lupa Aysén.pdf
Guía de campo Ecoturismo con Lupa Aysén.pdfGuía de campo Ecoturismo con Lupa Aysén.pdf
Guía de campo Ecoturismo con Lupa Aysén.pdf
danitarb
 
Respuestas fisiológicas de las macroalgas al cambio climático.
Respuestas fisiológicas de las macroalgas al cambio climático.Respuestas fisiológicas de las macroalgas al cambio climático.
Respuestas fisiológicas de las macroalgas al cambio climático.
dlhc140904
 
PRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgj
PRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgjPRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgj
PRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgj
AlexVegaArbayza
 
Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion y ...
Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion  y ...Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion  y ...
Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion y ...
JavierGonzaloLpezMor
 
MACCCHU PICHU la importancia en el antiguo.pdf
MACCCHU PICHU la importancia en el antiguo.pdfMACCCHU PICHU la importancia en el antiguo.pdf
MACCCHU PICHU la importancia en el antiguo.pdf
JaynerDGGiraldo
 
Avances de Perú con relación al marco de transparencia del Acuerdo de París
Avances de Perú con relación al marco de transparencia del Acuerdo de ParísAvances de Perú con relación al marco de transparencia del Acuerdo de París
Avances de Perú con relación al marco de transparencia del Acuerdo de París
CIFOR-ICRAF
 
LA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbh
LA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbhLA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbh
LA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbh
veronicacayunao28
 
Perú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptx
Perú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptxPerú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptx
Perú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptx
dennisvictorHuayapa
 

Último (20)

Contexto de TransMoni
Contexto de TransMoniContexto de TransMoni
Contexto de TransMoni
 
Trabajo de sostenibilidad sobre “Billesabritas”
Trabajo de sostenibilidad sobre “Billesabritas”Trabajo de sostenibilidad sobre “Billesabritas”
Trabajo de sostenibilidad sobre “Billesabritas”
 
Lecciones para el monitoreo transparente Experiencias de la Amazonía peruana
Lecciones para el monitoreo transparente Experiencias de la Amazonía peruanaLecciones para el monitoreo transparente Experiencias de la Amazonía peruana
Lecciones para el monitoreo transparente Experiencias de la Amazonía peruana
 
Manejo y Tratamiento de Neumonia en el Peru
Manejo y Tratamiento de Neumonia en el PeruManejo y Tratamiento de Neumonia en el Peru
Manejo y Tratamiento de Neumonia en el Peru
 
Equipo2fitopresentaciónproyectofinal.pdf
Equipo2fitopresentaciónproyectofinal.pdfEquipo2fitopresentaciónproyectofinal.pdf
Equipo2fitopresentaciónproyectofinal.pdf
 
1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx
1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx
1 FICHA CYT COMPOSICIONDE LOS SERES VIVO.docx
 
Departamento de San Martin moyobamba.pdf
Departamento de San Martin moyobamba.pdfDepartamento de San Martin moyobamba.pdf
Departamento de San Martin moyobamba.pdf
 
manejo de residuos solidos para niños descripcion
manejo de residuos solidos para niños descripcionmanejo de residuos solidos para niños descripcion
manejo de residuos solidos para niños descripcion
 
CONTROL QUIMICO DE MALEZAS O ARVENSES.pptx
CONTROL QUIMICO DE MALEZAS O ARVENSES.pptxCONTROL QUIMICO DE MALEZAS O ARVENSES.pptx
CONTROL QUIMICO DE MALEZAS O ARVENSES.pptx
 
DIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESV
DIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESVDIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESV
DIAPOSITIVAS DEL RIÑON DEL CERDO Y AVESV
 
Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...
Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...
Mejorando la estimación de emisiones GEI conversión bosque degradado a planta...
 
La Agricultura de conservación como herramienta para paliar la degradación de...
La Agricultura de conservación como herramienta para paliar la degradación de...La Agricultura de conservación como herramienta para paliar la degradación de...
La Agricultura de conservación como herramienta para paliar la degradación de...
 
Guía de campo Ecoturismo con Lupa Aysén.pdf
Guía de campo Ecoturismo con Lupa Aysén.pdfGuía de campo Ecoturismo con Lupa Aysén.pdf
Guía de campo Ecoturismo con Lupa Aysén.pdf
 
Respuestas fisiológicas de las macroalgas al cambio climático.
Respuestas fisiológicas de las macroalgas al cambio climático.Respuestas fisiológicas de las macroalgas al cambio climático.
Respuestas fisiológicas de las macroalgas al cambio climático.
 
PRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgj
PRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgjPRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgj
PRESENTACIÓN TEMA 4 (1).pptjfghjfghjghjhjhtgj
 
Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion y ...
Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion  y ...Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion  y ...
Silabus ECONOMIA-I intoduccion bsica de economia par incial de l pofesion y ...
 
MACCCHU PICHU la importancia en el antiguo.pdf
MACCCHU PICHU la importancia en el antiguo.pdfMACCCHU PICHU la importancia en el antiguo.pdf
MACCCHU PICHU la importancia en el antiguo.pdf
 
Avances de Perú con relación al marco de transparencia del Acuerdo de París
Avances de Perú con relación al marco de transparencia del Acuerdo de ParísAvances de Perú con relación al marco de transparencia del Acuerdo de París
Avances de Perú con relación al marco de transparencia del Acuerdo de París
 
LA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbh
LA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbhLA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbh
LA FOTOSÍNTESIS 6 Año.pptxgfdfhjhnnvgggbh
 
Perú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptx
Perú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptxPerú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptx
Perú. las 11 ecorregiones, Antonio Brack Egg, ppt.pptx
 

Estadistica ecologia(3)

  • 1. ESTADISTICA APLICADA A LA ECOLOGÍA La estadística nos ayuda a corroborar hipótesis dando un soporte matemático a observaciones realizadas. La estadística es la ciencia de la probabilidad y por ello no es correcto realizar afirmaciones categóricas o negaciones rotundas, sino que estas afirmaciones o rechazos hay que enmarcarlos siempre en un nivel de significación, que no es más que encuadrarlo dentro de un margen de error que nosotros mismos nos estamos fijando (generalmente entre el 1−5%). Lo primero que debe considerarse al realizar un experimento que posteriormente llevará un tratamiento estadístico es: Plantear la hipótesis de trabajo que se quiere demostrar. • Definir bien las variables a estudiar. • Cómo recoger y recopilar los datos (TIPOS DE MUESTREO). • Elección del método estadístico más apropiado para demostrar la hipótesis de trabajo de la mejor manera posible. • Es conveniente resaltar que el fin de los muestreos es extraer una muestra lo suficientemente representativa de una población para que las conclusiones muestrales obtenidas puedan extrapolarse a nivel poblacional, de ahí que sea de suma importancia la minuciosa elección y preparación en la recogida de datos. TIPOS DE MUESTREO. • Estratificado: Las muestras se toman por capas o estratos de condiciones homogéneas (solana, umbría,...). Es un muestreo muy utilizado en Ecología. Estos muestreos sirven para confirmar algún tipo de distribución. • Al azar. • Contagiosa. • Regular (Sistemático): Se basa en la obtención al azar de una primera unidad a partir de la cual se seleccionan las siguientes mediante algún criterio fijo repetido periodicamente (ej.− el transecto, muy interesante en gradientes). • Aleatorio simple: Se basa en la toma al azar y de manera independiente de una muestra. Es eficaz para zonas homogéneas. • TIPOS DE VARIABLES. • VARIABLES CUANTITATIVAS VARIABLES CUALITATIVAS Se trata de variables medibles (altura, peso,...). Pueden tomar valores enteros o con decimales. Son variables de cualidad. Los datos que se toman son el número de individuos que presentan dicha cualidad (frecuencias de aparición) y por tanto números enteros. TRATAMIENTOS ESTADÍSTICOS TRATAMIENTOS ESTADÍSTICOS de Pearson: Se denominan test de bondad de ajuste, y buscan un modelo matemático (teórico) sobre una distribución real. t de Student: Se trata de un contraste para 1 o 2 muestras. Es un test en el que se comparan las medias de Pearson: En variables cualitativas se usa como un test de homogeneidad o de independendia. Se trata de un estudio de proporciones (probabilidades de encontrar una cualidad). 1
  • 2. muestrales (m1=m2) o bien si la muestra es representativa o no. ANOVA (Analisys of variance): En este test se contrastan más de dos muestras (m1=m2=m3). Se aplica para estudios en los que se comparan medias. CORRELACIÓN / Regresión: Se aplican en estudios en los que se quieren relacionar variables, o bien para ajustar un comportamiento poblacional a un modelo matemático con fines predictivos. ESTUDIO DE HOMOGENEIDAD (Dependencia o Independencia) • Ejemplo 1: Tomamos una muestra de una determinada especie vegetal en una vaguada que, por su situación, presenta una ladera en solana y otra en umbría. Los resultados sobre 100 observaciones realizadas aparecen resumidos en la tabla de frecuencias observadas. ¿Existe alguna preferencia de la especie por alguna de las dos situaciones?. Observadas Umbría (U) Solana (S) Totales Presencia (+) 20 (a) 10 (b) 30 (T+) Ausencia (−) 20 (c) 50 (d) 70 (T−) Totales 40 (TU) 60 (TS) N = 100 El estudio se realiza en base a una variable cualitativa, ya que se está estudiando la cualidad de presencia en solana o umbría, y la muestra no es más que un recuento de individuos que presentan la variable a estudiar. Por tanto, lo que se pretende estudiar es si esta especie se distribuye de forma homogenea tanto en umbría como en solana, o lo que es lo mismo si su presencia es independiente de la ladera de la vaguada en la que estemos. Para este tipo de estudios se usa el test de Pearson, aunque no hay que confundir esta aplicación con la bondad de ajuste que se usa en variables cuantitativas. Lo primero que hay que realizar es una tabla de frecuencias esperadas a partir de la tabla de frecuencias observadas. Esta tabla es necesaria si queremos utilizar la fórmula general del estadístico de Pearson, aunque no se usa para el test si utilizamos la fórmula simplificada para tablas de contingencia de 2x2 (ver final de la página). La tabla de frecuencias esperadas nos ayuda a saber como sería la presencia teórica y ver si existe una gran diferencia con lo observado. • Esperadas Umbría (U) Solana (S) Totales Presencia (+) 12 18 30 Ausencia (−) 28 42 70 Totales 40 60 N = 100 Plantear las hipótesis de trabajo que queramos corroborar con el estudio. • H0 = homogeneidad o independencia.(dependiendo de los casos). H1 = dependencia o no homogeneidad. Obtener el cal. usando los datos de la tabla de contingencia de las fecuencias observadas mediante la • 2
  • 3. siguiente fórmula (únicamente válida para tablas de contingencia de 2x2 ): Comparar cal. con teórico para los niveles de significación escogidos, generalmente =0.01 y =0.05. • Si cal. < teórico entonces se acepta H0. Esto significa que existe homogeneidad o independencia para la cualidad estudiada. • teórico 0.05 3.84 0.01 6.63 En este caso concreto cal. > teórico con lo que se rechaza H0 para ambos niveles de significación. Esto quiere decir que existe una dependencia significativa en la distribución de la especie vegetal entre umbría y solana. Ejemplo 2: Se hizo un tratamiento para eliminar la procesionaria en un pinar, y tras este tratamiento se quiere comprobar cómo de efectivo es dicho tratamiento. Tras un muestreo en el que se anotaron los pinos enfermos y los sanos dentro de los tratados y de los no tratados se obtuvieron los siguientes resultados: Observadas Enfermos Sanos Totales Tratados 40 (a) 110 (b) 150 No Tratados 52 (c) 98 (d) 150 Totales 92 208 N = 300 Esperadas Enfermos Sanos Totales Tratados 46 104 150 No Tratados 46 104 150 Totales 92 208 N = 300 H0= La respuesta de los pinos ante la enfermedad es independiente al tratamiento. teórico 0.05 3.84 3
  • 4. 0.01 6.63 En este caso concreto cal. < teórico con lo que se acepta H0 para ambos niveles de significación. Esto quiere decir que el tratamiento no es significativamente eficaz. Ejemplo 3: El rendimiento de una cosecha de cereal se considera bueno si es superior a 15 kg por area de cultivo y malo si no llega a dicha cantidad. Se hacen 20 determinaciones en parcelas donde se ha sembrado cereales de tipo A y 18 determinaciones en parcelas con cereales tipo B. ¿Son igualmente efectivos para el cultivo los cereales A y B?. Observadas Cereal A Cereal B Totales Bueno 14 (a) 10 (b) 24 Malo 6 (c) 8 (d) 14 Totales 20 18 N = 38 Esperadas Cereal A Cereal B Totales Bueno 12.63 11.37 24 Malo 7.37 6.63 14 Totales 20 18 N = 38 H0= Los cereales A y B tienen un rendimiento homogeneo. H1= El rendimiento no es homogeneo. cal. = 0.85 cal. << teórico para ambos niveles de significación, por lo que podemos aceptar H0 y afirmar que el rendimiento de ambos cereales es significativamente homogeneo y, por tanto, igual de efectivo. CONTRASTE PARA IGUALDAD O DIFERENCIA DE MEDIAS (Datos cuantitativos). • El método más tradicional para comparar dos medias es el Test de la t. Este estadístico sigue la distribución de la t de Student. El análisis de la varianza (ANOVA) puede emplearse también para analizar las diferencias entre las medias de dos grupos, sin embargo, es un método más general que permite las comparaciones entre las medias de más de dos grupos. Test de la t. • H0 = =. Las medias poblacionales son iguales. Si tcal < tteórico entonces se acepta H0. • Ejemplo 1: Una especie vegetal que aparece en solana y umbría aparenta crecer de manera distinta en ambas ubicaciones. Para ello tomamos muestras de la altura de dicha planta en centímetros. Los resultados obtenidos para solana y umbria aparecen en la tabla. Altura en Solana (cm) 39 36 35 37 40 39 40 38 35 39 Altura en Umbría (cm) 43 45 42 35 37 38 33 38 41 43 Calcular las medias (m) y las cuasivarianzas (S2) de ambos grupos separados por la variable ambiental. • 4
  • 5. ; ; Umbría: m1= 39.5 s12= 13.65 S12= 15.16 Solana: m2= 37.8 S22= 3.73 Comprobar que las varianzas poblacionales () son iguales. Esta comprobación se realiza mediante el test F de Fisher−Snedecor. • H0 = Ê = Ò. Las varianzas poblacionales son iguales. Si Fobs < Fteórico entonces se acepta H0. En nuestro caso Fobs = 4.06 < Fteórico (para = 0.01) = 5.06, por lo que se acepta H0 y las varianzas poblacionales son significativamente iguales. Calcular el valor de tcal. En este punto, dependiendo de si las varianzas poblacionales son iguales o no, y de si el tamaño muestral (n1+n2) es grande (>30) o pequeño, se aplican diferentes fórmulas para realizar el Test de t. • (n1+n2)>30 • En este caso no es necesario comprobar si Ê = Ò ya que aunque Ê " Ò se utiliza la misma fórmula como solución aproximada. (n1+n2)<30 • Ê = Ò • Si n1=n2 entonces • Si n1"n2 entonces • 5
  • 6. siendo n1+n2 −2= grados de libertad. En este caso el tamaño muestral es <30 , las varianzas poblacionales son iguales y n1=n2 luego: Comparar tcal con tteórico para los niveles de significación designados y comprobar si las medias poblacionales () son iguales (aceptación de H0). • g.l. tteórico 18 0.01 2.878 0.05 2.101 En este caso tcal =1.24 es menor que tteórico para ambos niveles de significación, por lo que se puede aceptar H0 y decir que estadísticamente la especie vegetal parece crecer de igual forma en umbría y en solana. Ejemplo 2: Un laboratorio de antropología física realizó un estudio sobre nutrición sometiendo a estudio dos dietas diferentes indicadas para el sobrepeso. Así se tomaron datos sobre la reducción de peso en individuos que siguieron la dieta A, y en individuos que siguieron la dieta B. A partir de los datos obtenidos se pretende comprobar si ambas dietas son significativamente iguales en su efectividad o no. DIETA Ind. muestreados (n) Media de la pérdida de peso Varianza muestral (s2) Cuasivarianza (S2) A 25 4.3 1.96 2.04 B 25 3.6 1.21 1.26 H0 = A = B . La media en la pérdida de peso en las poblaciones que siguieron las distintas dietas es la misma. 2. Comprobar que las varianzas poblacionales () son iguales. Esta comprobación se realiza mediante el test F de Fisher−Snedecor. H0 = Ê = Ò. Las varianzas poblacionales son iguales. Si Fobs < Fteórico entonces se acepta H0. que es menor que Fteórico =2.27, por lo que se cumple que las varianzas poblacionales son significativamente iguales. 3. Calcular el valor de tcal. En este caso (n1+n2 ) >30. 6
  • 7. g.l. tteórico 48 0.01 2.57 0.05 1.64 No se cumple H0 para ambos niveles de significación, por lo que no se puede deducir si la diferencia en las dietas es significativa o no. Este tipo de solución suele darse cuando los datos no están bien tomados o son insuficientes. Por tanto lo más lógico sería repetir las mediciones, y si estas volvieran a salir iguales, entonces habría que aumentar el tamaño de muestra (generalmente al doble) y volver a tratar los datos estadísticamente. B. Análisis de la Varianza (ANOVA). Este test sirve para comparar las medias de más de dos muestras. Se usa para clasificar muestras en función de una variable cuantitativa (altura, peso, ...). Para poder realizar este test han de cumplirse varias premisas: Las muestras deben ser recogidas al azar y provenir de poblaciones con distribución normal. • Las varianzas poblacionales han de ser homogéneas (iguales). Esto se comprueba mediante el test de la Fmáxima que no tiene nada que ver con el estadístico F de Fisher−Snedecor. • H0 =Ñ=Ò=Ó=....=n Si Fmáx<Fcrítica entonces se cumple H0 para los dados. El test ANOVA se realiza mediante la F de Fisher−Snedecor, y la hipótesis nula que se contrasta es que las muestras procedan de la misma población, por lo que las medias poblacionales extraidas de dichas muestras han de ser iguales. H0 = = = =...=n H1 = alguna de las medias poblacionales es distinta. Si Fcal < Fteórico entonces se acepta H0 para los niveles de significación () dados. • Ejemplo 1: Se tomaron muestras en tres regiones de la provincia de Guadalajara sobre la altura que alcanzaban los ejemplares de una especie determinada de Quercus, en zonas abandonadas y no abandonadas por el pastoreo de cabras y ovejas. Se pretende determinar si el comportamiento es el mismo. Los resultados del muestreo aparecen reflejados en la tabla siguiente: Región Ind. muestreados (ni) Altura media en metros (mi) Cuasivarianza (S2i) I 104 4.99 4.19 7
  • 8. II 102 4.63 5.75 III 69 4.53 5.15 Plantear las hipótesis de contraste. • Para este caso concreto serían H0 = Los Quercus de las tres regiones se comportan de igual forma, por lo que sus medias poblacionales son iguales. H0 = = = Comprobar si las varianzas poblacionales son iguales (homogéneas). • H0 =Ñ=Ò=Ó Si Fmáx<Fcrítica entonces se cumple H0 para los dados. (p) Fmáx crítica 0.05 6.6 0.01 9.9 Como Fmáx= 1.37 < Fmáx crítica para ambos niveles de significación, entonces se acepta la hipótesis nula. En el caso de que las varianzas poblacionales no fueran iguales, se podría continuar realizando el contraste ANOVA aunque aclarando que el contraste no va a ser significativo por no cumplirse la segunda premisa. Rellenar las tablas resumen con el fín de poder calcular Fcal. En este apartado, dependiendo de cómo se den los datos en el problema, hay que completar 1 o 2 tablas. Si no se dan las medias ya calculadas hay que rellenar dos tablas. • GRUPOS "xi "xi2 s2i ni I II III TOTALES N Con los resultados de esta tabla se completa el cuadro siguiente. Fuente de variación Suma de cuadrados Grados de libertad Cuadrado medio Fcal. ENTRE GRUPOS A nº de grupos − 1 = A / g.l 8
  • 9. DENTRO GRUPOS B ** nº indTot − nº grupos = B / g.l. (**). Si usamos cuasivarianza muestral (S2) en la fórmula habría que poner (ni − 1). Siendo: En el caso concreto de este problema, sí nos dan calculadas las medias, por lo que sólo es necesario rellenar el Cuadro 2. Cuadro 2. Fuente de variación Suma de cuadrados Grados de libertad Cuadrado medio Fcal. ENTRE GRUPOS 275 x 0.039 = 10.776 A 3−1 = 2 = 10.776/2=5.39 DENTRO GRUPOS 1403.32 B 275−3 = 272 = 1403.32/272= = 5.16 Comparar Fcal con Fteórica y ver si se cumple la hipótesis nula. • (p) Fteórica 0.05 2.99 0.01 4.60 Fcal < Fteórica por lo que se cumple H0, y las medias poblacionales son significativamente iguales para ambos niveles de significación. Ejemplo 2: Se sospecha que las aguas de un lago están contaminadas por los compuestos fosforados procedentes de una industria. Para tratar de verificar esta sospecha, se midieron los niveles de fósforo en distintos puntos del lago, obteniéndose los siguientes valores: Lago 1: 7.1 8.5 6.2 7.3 7.9 Después, se tomaron medidas de los niveles de fósforo en varios puntos de otros tres lagos, que no estaban contaminados, obteniéndose: 9
  • 10. Lago 2: 7.2 6.5 5.9 7.8 Lago 3: 5.6 7.1 6.3 6.7 6.5 Lago 4: 7.2 6.6 6.3 7.4 Los valores obtenidos en lago bajo sospecha parecen ser algo superiores a los obtenidos en los otros tres. ¿Es suficientemente importante esta diferencia como para poder concluir que el nivel de fósforo en el lago 1 es diferente que el que tienen los demás, y por tanto está contaminado? GRUPOS "xi "xi2 s2i ni Lago 1 37 7.4 276.8 0.60 5 Lago 2 27.4 6.85 189.74 0.5125 4 Lago 3 32.2 6.44 208.6 0.2464 5 Lago 4 27.5 6.875 189.85 0.1969 4 TOTALES 124.1 864.99 18 NOTA: En las calculadoras la se representa como (xn) y la como (xn−1). 2. Comprobar si las varianzas poblacionales son iguales (homogéneas). H0 =Ñ=Ò=Ó=Ô Como Fmáx<Fcrítica entonces se cumple H0 para los dados. (p) Fmáx crítica 0.05 6.6 0.01 9.9 Fuente de variación Suma de cuadrados Grados de libertad Cuadrado medio Fcal. ENTRE GRUPOS 0.1295x18= 2.332 A 4−1 = 3 = 0.7773 DENTRO GRUPOS 7.0696 B 18−4 = 14 = 0.5050 10
  • 11. (p) Fteórica 0.05 3.344 0.01 5.564 Fcal < Fteórica por lo que se cumple H0, y las medias poblacionales son significativamente iguales para los niveles de significación dados, es decir, no hay suficiente evidencia estadística para concluir que el primer lago tiene un nivel de contaminación diferente al que tienen el resto. CORRELACIÓN / REGRESIÓN. • La correlación, como su propio nombre indica, es una medida del grado de relación (lineal) entre dos variables. La regresión es un modelo estadístico que sirve para predecir un comportamiento real de una población mediante un modelo matemático (ecuación). Antes de fabricar un modelo matemático, es necesario saber si existe una correlación entre variables, ya que si son incorreladas no tiene mucho sentido tratar de ajustar su relación mediante una recta o una curva. Ejemplo 1: Se ha medido la superficie en dm2 ocupada por Poa bulbosa (x) y especies anuales (y) en 5 cuadros de muestreo de 10 dm2 para comprobar si se asocian o no. Los resultados obtenidos aparecen en la siguiente tabla: nº Poa bulbosa (x) 9 2 2 1 6 nº plantas anuales (y) 1 7 8 10 4 Calcular el coeficiente de correlación (r). • Tabla 1. Resumen de valores de ambas variables. nº de cuadro xi yi xy x2 y2 1 9 1 9 81 1 2 2 7 14 4 49 3 2 8 16 4 64 4 1 10 10 1 100 5 6 4 24 36 16 Sumas totales 20 30 73 126 230 11
  • 12. H0 = no hay correlación a nivel poblacional entre las dos variables (variables incorreladas). = 0. H1 = existe correlación entre las variables ( " 0). Se acepta H0 si . (rteórico realmente una tteórica de Student). rteórica 0.05 0.878 0.01 0.959 Se rechaza H0 y por tanto existe suficiente evidencia estadística de que existe correlación entre variables y que esta es negativa. Ajustar las variables a una regresión. Aunque las regresiones pueden ser lineales (y=Bx+A), logarítmicas, etc...en este tipo de aplicaciones la regresión a la que se ajustan las variables correlacionadas es una recta. Se pueden obtener dos rectas diferentes según se tome a la variable x o a la variable y como independiente. • Recta de y sobre x (y/x): • Recta de x sobre y (x/y): • En este caso vamos a calcular la recta (y/x) utilizando los datos que aparecen reflejados en la tabla 1: , y despejando queda: Estime el número de plantas anuales que aparecerían si encontráramos 5 individuos de Poa bulbosa. • plantas anuales. Estime el número de plantas anuales que aparecerían si encontráramos 2 individuos de Poa bulbosa. • 12
  • 13. ¡¡¡OJO!!!, esta pregunta tiene trampa, ya que podemos pensar que la respuesta puede obtenerse del cuadro de datos que nos dan como enunciado, y no es así. La respuesta ha de hallarse sustituyendo en la recta de regresión obtenida. Calcular la absorción de la varianza. Al error absoluto que se está cometiendo en el muestreo se le denomina coeficiente de determinación(r2), que no es más que la cantidad de varianza entre los dos grupos. La absorción de la varianza es el coeficiente de determinación expresado en tanto por ciento (%). • Absorción de la varianza. Representar gráficamente si fuera necesario. Sustituyendo valores en las rectas de regresión, pueden representarse ambas rectas. Si se representan ambas rectas sobre la misma gráfica, se puede tener una idea visual del grado de correlación entre las variables. Dicho grado viene determinado por el ángulo () que se forma entre las dos rectas, de modo que cuanto menor sea el ángulo, mayor será la correlación entre variables. • x y 0 10.08 1 9.06 2 8.04 5 4.98 6 3.96 9.88 0 10 −0.12 13
  • 14. TIPOS DE DISTRIBUCIÓN ESPACIAL. • La distribución espacial de los organismos puede ser estudiada a muchas escalas, desde la escala global o planetaria, a la local. Existen tres tipos posibles de patrones de distribución espacial (Pattern): Distribución aleatoria. Los organismos se distribuyen al azar, y por tanto, la presencia de un individuo no aumenta ni disminuye la probabilidad de encontrar otro. Este patrón se ajusta a distribuciones como Binomial, Poisson y Normal. • Distribución contagiosa. Los organismos se distribuyen de tal forma que la presencia de un individuo aumenta la probabilidad de encontrar otro. Este tipo de distribución es la más corriente en la naturaleza, y puede estar propiciada por diversas causas: • Morfológicas • Ambientales • Infecciosas • Distribución regular. Los organismos se distribuyen de tal forma que la presencia de un individuo disminuye la probabilidad de encontrar otro. • Con este tipo de estudio se pretende comprobar la distribución que sigue una determinada población problema. La distribución puede observarse a diferentes escalas, y en ocasiones el tipo de distribución cambia dependiendo de la escala escogida. En este tipo de estudios se trabaja con una única variable. Para comprobar qué tipo de distribución sigue la población sometida a estudio, es necesario calcular el índice de dispersión (I.D.). Lo que realmente se pretende observar con el índice de dispersión es cómo están relacionados los individuos y cuál es su nivel de concentración. • Además de calcular el I.D. es necesario comprobarlo estadísticamente (estimarlo) mediante una t de Student, donde: H0 = No hay evidencia estadística de que la distribución sea tal y como indica el Índice de dispersión. Se cumple H0 si En caso de no existir suficientes evidencias estadísticas para aceptar que la distribución sea contagiosa o regular, es conveniente comprobar si es aleatoria (aunque el I.D. no lo indicara) y a qué distribución pertenece (binomial, Poisson, o Normal). • 14
  • 15. Si la muestra es muy grande o la variable es continua (altura, peso,..) generalmente hay que ajustar a una distribución Normal. • Si la muestra es pequeña o la variable es discreta (números enteros), hay que ajustar a una distribución Binomial, o a una Poisson. • Ejemplo 1: En el cuadro siguiente se ha anotado la cobertura de una especie vegetal muestreada en un transecto, agrupandose las coberturas en diferentes clases. Comprobar que distribución espacial sigue la citada especie. CLASES (grupos) 0 1 2 3 Frec. observadas (oi) 8 12 3 3 Probabilidades de clase** (p) 0.223 0.335 0.251 0.125 Frec. esperadas (ei) = p x N 5.98 8.71 6.526 3.25 N = 26 ** Las probabilidades de clase son valores tomados de las tablas de la distribución escogida. En este caso están sacados de una distribución de Poisson con = 1.5 y = 0, 1, 2, 3. Si las (ei) se parecen a las (oi) entonces intuitivamente se cumplirá la distribución de la que se han obtenido los valores de p. Para comprobar de forma estadística lo que intuitivamente podemos aventurar observando el cuadro, se usa un Test de Bondad de Ajuste mediante un estimador que es de Pearson. H0 = La distribución se ajusta a la distribución esperada. Se cumple H0 si cal < teórica para los niveles de significación dados. • Los grados de libertad (g.l.) para las distribuciones de Poisson y Binomial son de k−2, y para una distribución Normal son k−3, siendo k=nº de grupos. g.l. teórico 2 0.01 9.21 0.05 5.99 Como cal < teórico para ambos niveles de significación, se acepta H0, lo que implica que existe suficiente evidencia estadística para decir que la distribución de la muestra se ajusta a la distribución esperada, en este caso una distribución de Poisson. SISTEMATIZACIÓN (Tipificación de Biocenosis): • 15
  • 16. El término Biocenosis se define como el conjunto de organismos que conviven en una localidad determinada. La Sistematización o tipificación es el reconocimiento de la mayor o menor coincidencia entre especies referida a un carácter, o entre caracteres dentro de una especie,... Se trabaja siempre con variables cualitativas. En este tipo de estudios se parte de un tamaño muestral grande (N) que va siendo desglosado (simplificado). Aunque esto supone una pérdida de información al disminuir el detalle, se van a destacar las características más importantes de dicha población. Existen dos técnicas para realizar este tipo de estudio: Clasificación: Se trata de dividir N de forma gerárquica, bien comenzando de mayor a menor (clasificación divisiva) o bien de menor a mayor (clasificación aglomerativa), en esta última los individuos observados se van fusionando en grupos progresivamente mayores. El conjunto inicial de individuos se divide mediante criterios diversos (por ejemplo, presencia o ausencia de un atributo o grupos de atributos). • Ordenación: Se trata de poner de manifiesto unas relaciones espaciales continuas entre individuos. • ORDENACIÓN: Método de Bray−Curtis (índice de disimilitud (D)). D = 1− S Valores de D más altos implican una menor similitud (mayor diferencia). • Valores de D más bajos implican una mayor similitud. • CLASIFICACIÓN • A.1. CLASIFICACIÓN DIVISIVA. Ejemplo 1: Clasificación de 4 inventarios, 1, 2, 3, y 4, descritos por 4 especies (A, B, C y D). grupos especies 1 2 3 4 A + + + + B − − + + C − + − − D + + + − Mediante tablas de contingencia 2x2 de presencia o ausencia entre especies se obtiene una tabla resumen con los cal para todas las especies: A A + − " cal A B C D " + 4 0 4 A 0 0 0 0 0 16
  • 17. − 0 0 0 B 0 4.0 1.3 1.3 6.6 " 4 0 N C 0 1.3 4.0 0.4 5.7 cal = 0 D 0 1.3 0.4 4.0 5.7 El mayor " pertenece a la especie B, y por tanto es a partir de esta especie sobre la que comenzamos la división (especie discriminante). Se puede separar entonces el inventario en dos grupos, uno con presencia de B (B+) correspondiente a los grupos 3 y 4, y otro con ausencia de B (B−) correspondiente a los grupos 1 y 2. Ahora es necesario calcular otras dos series de correspondientes a cada uno de los grupos a partir de las siguientes tablas. grupos especies 1 2 grupos especies 3 4 A + + A + + C − + C − − D + + D + − Tabla 1. Grupos con ausencia de B. Tabla 2. Grupos con presencia de B. A partir de la tabla 1 (B−), para los grupos 1 y 2, sacamos la siguiente especie discriminante: • A C + − " cal A C D " + 1 17
  • 19. La siguiente especie discriminante para el grupo B− es la especie C. Con las siguientes especies discriminantes se vuelven a calcular otras dos series de y así sucesivamente hasta acabar con la clasificación divisiva. Ausencia de la especie C (C−). gr esp 1 A D + − " cal A D " A + + 1 0 1 A 0 0 0 D + − 0 0 0 D 0 0 0 " 1 0 A/D cal = 0 Presencia de la especie C (C+). gr esp 2 A D + − " cal A D " A + + 1 0 1 A 0 0 0 D + − 0 0 0 D 0 0 0 " 1 0 A/D cal = 0 Al no existir una nueva especie discriminante ya no se puede continuar la clasificación divisiva para la ausencia o presencia de la especie C. A partir de la tabla 2 (B+) para los grupos 3 y 4 sacamos la siguiente especie discriminante: • A C + − " cal A C D 19
  • 21. 2 2 cal = 0 La siguiente especie discriminante para el grupo B+ es la especie D. Presencia de la especie D (D+). gr esp 3 A C + − " cal A C " A + + 0 0 0 A 0 0 0 C − − 1 0 1 C 0 0 0 " 1 0 1 A/C cal = 0 Ausencia de la especie D (D−). gr esp 4 A C + − " cal A C " A + + 0 0 0 A 0 0 0 C − − 1 0 1 C 0 0 0 " 1 0 1 A/C cal = 0 Al no existir una nueva especie discriminante ya no se puede continuar la clasificación divisiva para la ausencia o presencia de la especie D. Los resultados de la clasificación divisiva se pueden presentar de forma gráfica (dendrograma) y así hacerse una idea más clara y más general, ya que si la clasificación es excesivamente larga, puede perderse la visión global y el propósito del estudio. DENDROGRAMA DE CLASIFICACIÓN DIVISIVA I: 1, 2, 3 y 4 (B+) (B−) II1: 3 y 4 II2: 1 y 2 (D+) (D−) (C+) (C−) III11: 3 III12: 4 III21: 2 III22: 1 3 4 2 1 21
  • 22. A.2. CLASIFICACIÓN AGLOMERATIVA. Ejemplo 1: Clasificación de 4 inventarios, 1, 2, 3, y 4, descritos por 4 especies (A, B, C y D). grupos especies 1 2 3 4 A + + + + B − − + + C − + − − D + + + − Nj ; Nk 2 3 3 2 A partir de la tabla anterior se realizan cálculos para obtener los índices de similitud de Jaccard (S) entre grupos tomados dos a dos (j y k). Generalmente se expresan como tanto por ciento (%). S(%) 1 100 2 66.6 100 3 66.6 50 100 4 33.3 25 66.6 100 1 2 3 4 Índices de similitud de Jaccard en %. Comenzando por los grupos que presentan mayor similitud se comienza a construir un diagrama para ver gráficamente la clasificación aglomerativa (cuando dos grupos o parcelas se unen, funcionan como un único grupo para unirse al siguiente). En ocasiones se pueden distinguir dos o más subgrupos, relativamente distantes, en la clasificación, dependiendo del (S) al que se unan a otros grupos. Cuando ocurre esto se busca la especie discriminante que, bien por su presencia o ausencia, produce la separación de ambos subgrupos. La busqueda de la especie discriminante se realiza por una serie de ( una tabla de contingencia para cada especie con su presencia y ausencia en los dos subgrupos considerados). La especie que posea el mayor es la discriminante de un grupo frente a otro. DIAGRAMA DE CLASIFICACIÓN AGLOMERATIVA S(%) 93% 72% 51% 30% 64% 40 22
  • 23. 60 80 80% 1 5 2 6 3 4 7 ORDENACIÓN (Ordenación Bray−Curtis). • El algoritmo utilizado es el índice de disimilitud (D). D = 1− S Valores de D más altos implican una menor similitud (mayor diferencia). • Valores de D más bajos implican una mayor similitud. • Calcular para cada grupo su índice de disimilitud y colocar los datos en una tabla resumen (partiendo de la tabla de índices de similitud de Jaccard). • D(%) 1 0 2 33.3 0 3 33.3 50 0 4 66.6 75 33.3 0 1 2 3 4 Índices de disimilitud (D) expresados en %. Representar gráficamente en dos ejes los diferentes grupos según los siguientes criterios: • En un primer eje, que representa el 100% de disimilitud, se colocan en los extremos aquellos grupos con un valor de D más elevado, esto es los grupos menos parecidos. De forma arbitraria, se van colocando a derecha e izquierda del centro del eje los dos siguientes grupos con mayor D, y así sucesivamente de tal forma que los grupos más similares (con menor D) queden colocados más próximos junto al centro del eje. Para colocarlos de forma más precisa, se toman los dos siguientes grupos más disimilares y se miran los índices de disimilitud con respecto a los grupos de los extremos, se suman ambos valores de D y, mediante una regla de tres, se ajusta esa distancia a la que se consideró como 100% en el eje. • En el segundo eje, se procede de igual forma que en el primero pero colocando en los extremos las parcelas más similares (con valores de D bajos). • El tercer eje, presenta poca absorción de la varianza y es poco informativo, por lo que no es necesario representarlo. • Eje 2 5% menos similares ! 95% más similares ! 5% 8% ! más similares 91% Eje 1 83% ! menos similares 78% 23
  • 24. 8% DIVERSIDAD DE ESPECIES. • Para comparar diferentes comunidades o caracterizarlas, se suele evaluar la riqueza en especies, es decir, el número de especies de cada comunidad. Este parámetro, sin embargo, no tiene en cuenta el número de individuos de cada especie. El concepto amplio de diversidad que se emplea en Ecología se refiere a la combinación de riqueza en especies y sus abundancias relativas. La estimación de las abundancias relativas para el cálculo de la diversidad puede realizarse empleando diversas variables (densidad, cobertura, biomasa, ...). En cualquier caso este tipo de estudios debe hacerse a partir de un muestreo aleatorio, instantáneo y con el mismo tamaño muestral. Hay varias técnicas para medir la diversidad a partir del conocimiento de la riqueza específica y de las abundancias relativas: Modelos de abundancia de especies. • Índices de diversidad. • ÍNDICE DE DIVERSIDAD DE Shannon−Wiener. El índice de diversidad de Shannon−Wiener (H) se expresa en bits. Cuanto mayor sea el valor de H mayor será la diversidad. Si se comparan varias comunidades, presentará mayor diversidad la que mayor número de bits posea. siendo Ni = número de individuos de la especie i. N = número total de individuos. Con frecuencia no es posible operar en la calculadora con log2 por lo que es necesario realizar una transformación: Raúl López García Estadística aplicada a la Ecología 12 11 24
  • 25. 25