SlideShare una empresa de Scribd logo
1
INGENIERIA EN SISTEMAS COMPUTACIONALES
LENGUAJES Y AUTOMATAS I
UNIDAD IV
ISC ENRIQUE PONCE RIVERA
S501
08-05-2016
NOMBRE DEL ALUMNO: ANEL VERONICA SOSA MEJIA
Fecha de entrega: 09/11/2016
2
INDICE
INTRODUCCION...............................................................................................................................................3
Unidad 4. Máquinas de Turing ........................................................................................................................4
4.1 Definición formal MT.................................................................................................................................4
4.2 Construcción modular de una MT.............................................................................................................6
4.3 Lenguajes aceptados por la MT.................................................................................................................7
CONCLUSION...................................................................................................................................................8
REFERENCIAS...................................................................................................................................................9
3
INTRODUCCION
En la siguiente investigación se abordarán temas a cerca de la máquina de Turing y subtemas de la
4ª unidad del plan de estudios de la materia LENGUAJES Y AUTOMATAS I; donde se aprenderá y
conocerá la importancia del estudio de la Máquina de Turing dentro de los procesos de desarrollo
de software, y algunas aplicaciones.
Se conocerá deforma formal que es una máquina de Turing y sus componentes; además de ello se
detallara de forma explícita algunos conceptos sobre su desarrollo y formación.
La máquina de Turing es un dispositivo capaz de establecer los problemas intratables, para conocer
si es resolutorio o no. Tales confirmaciones se deben y se detallan de cada proceso u problemas
matemáticos de la vida real.
Al igual que los AF la máquina de Turing utiliza estructuras, transiciones y formas de conformación
para la representación de los modelos matemáticos, de situación en las que se desea conocer si
estos tienen soluciones, ya que un computador no puede definir dicha confirmación, ya que es un
proceso tardado.
4
Unidad 4. Máquinas de Turing
A finales del siglo XIX, el matemático David Hilbert se preguntó si era posible encontrar un
algoritmo para determinar la verdad o falsedad de cualquier proposición matemática. En
particular, se preguntaba si existiría un modo de determinar si cualquier fórmula del cálculo de
predicados de primer orden, aplicado a enteros, es verdadera. Dado que el cálculo de predicados
de primer orden sobre los enteros es suficientemente potente como para expresar frases como
esta gramática es ambigua, si Hilbert hubiera tenido éxito, existirían algoritmos para dichos
problemas, que ahora sabemos que no existen esta proposición se conoce con el nombre de
problema de Hilbert.
En 1963, Alan Mathinson Turing propuso la máquina que lleva su nombre como modelo de
cualquier computación posible. Este modelo se parece más a una computadora que a un
programa, aunque las verdaderas computadoras electrónicas, o incluso los electromecánicas,
tardaron varios años en ser construidas. La máquina de Turing consta de una unidad de control,
que pueda estar en cualquier estado tomado de un conjunto infinito. Hay una cinta dividida en
cuadrados o casillas, y cada casilla puede contener un símbolo, tomado de otro conjunto infinito.
Inicialmente, se sitúa en la cinta de entrada, que es una cadena de símbolos de longitud infinita,
elegidos del alfabeto de entrada. El resto de las casillas de la cinta, que se extiende infinitamente
hacia la derecha y hacia la izquierda, contiene, inicialmente, un símbolo denominado espacio en
blanco. El espacio en blanco es un símbolo de cinta, pero no un símbolo de entrada, y puede haber
también otros símbolos de cinta además de los símbolos de entrada y del espacio en blanco. Existe
una cabeza de la cinta que siempre está situada sobre una de las casillas de la cinta. Se dice que la
máquina de Turing está señalando dicha casilla. Al principio, la cabeza de la cinta se encuentra en
la casilla de la entrada situada más a la izquierda. Un movimiento de la máquina de Turing es una
función del estado de la unidad de control y del símbolo de la cinta al que señala lacabeza.
4.1 Definición formal MT
Una Máquina de Turing es un modelo matemático que consiste en un autómata capaz de
implementar cualquier problema matemático expresado por medio de un algoritmo.
“Una máquina de Turing es un autómata” un autómata es lo que se conoce como una máquina
teórica, es decir, un dispositivo cuyo funcionamiento se estudia sin necesidad de construirlo
realmente. En concreto un autómata es una máquina teórica que lee unas instrucciones en forma
de símbolos y cambia de estado según éstas.
5
Una máquina de Turing es un autómata que consta de una cabeza lectora y una cinta infinita en la
que la cabeza puede leer símbolos, borrarlos, escribirlos y moverse a la derecha o a la izquierda.
Por supuesto también consta de una función de estado que determinará los cambios de un estado
a otro que se deben producir en función de las instrucciones que reciba.
La Máquina de Turing (MT) es el modelo de autómata con máxima capacidad computacional: la
unidad de control puede desplazarse a izquierda o derecha y sobre escribir símbolos en la cinta de
entrada.
La función de transición. Los argumentos de (q; X ) son un estado q y un símbolo de la cinta X . El
valor de (q; X ), si esta es una tupla (p; Y; S ) donde:
6
4.2 Construcción modular de una MT
Para describir formalmente lo que hace una máquina de Turing, es necesario desarrollar una
notación para describir sus configuraciones o descripciones instantáneas, parecida a la notación
que se desarrolla para los autómatas a pila. En principio una máquina de Turing dispone de una
cinta de longitud infinita, por lo cual podrá suponerse que no es posible describir espáticamente su
configuración. Sin embargo, después de un número finito de movimientos, la máquina de Turing
solo habrá recorrido un número finito de casillas. Por tanto, para cualquier configuración existe un
prefijo y un sufijo infinito de casillas que no se han recorrido nunca. El contenido de dichas casillas
debe Ser espacios en blanco o símbolos del conjunto finito de símbolos de entrada.
Por lo tanto, en una configuración solo se muestran las casillas que se encuentren entre el símbolo
más a la izquierda y el símbolo más a la derecha de la cinta que no sean espacios en blanco,
además, habrá que incluir un número finito de espacios en blanco en la configuración, si se da la
condición especial de que la cabeza de la cinta señale a uno de los espacios en blanco situados
antes o después de la cadena de entrada.
Además de la representación de la cinta, debe ser posible representar el estado de la unidad de
control, así como la posición de la cabeza de la cinta. Para ello, insertaremos el estado en la cinta,
situándolo inmediatamente a la izquierda de la casilla señalada por la cabeza. Para que la cadena
que representa el contenido de la cinta junto con el estado de la unidad de control no resulte
ambigua, es necesario asegurarse de que no se utiliza como estado ningún símbolo que forme
parte del conjunto de símbolos de cinta. Sin embargo, es sencillo cambiar los nombres de los
estados de forma que no tengan nada en común con los símbolos de la cinta, dado que la
operación de la máquina de Turing no depende de cómo se llamen sus estados. Por tanto,
utilizaremos la cadena para representar una configuración en la que:
Los movimientos de una máquina de Turing se describen utilizando la notación
7
4.3 Lenguajes aceptados por la MT.
Podremos decir que la forma en la que una máquina de Turing acepta una cadena es la siguiente:
la cadena de entrada se sitúa en la cinta y la cabeza comienza señalando el símbolo de entrada que
se encuentra más a la izquierda; si la máquina de Turing llega a un estado de aceptación al final del
proceso, se considera que la cadena es reconocida, en caso contrario, decimos que la cadena no
fue aceptada.
De manera formal dada una máquina de Turing el lenguaje L(M) es el
conjunto de cadenas de tales que para algún estado p del conjunto de estado
finales F, y cualesquiera dos cadenas de cinta α y β. Los lenguajes que son pueden ser aceptados
por la máquina de Turing reciben el nombre de lenguajes recursivamente enumérales o lenguajes
RE.
Sin embargo este no es el único método para la aceptación de una cadena, existe otro que
comúnmente se le conoce con el nombre de aceptación por parada. Se dice que una máquina de
Turing se para si alcanza un estado q cuando señala a un símbolo de la cinta X, sin que se produzca
ningún movimiento en dicha situación; es decir δ(q,X) no está definida. Siempre se puede suponer
que una máquina de Turing se para si acepta, es decir sin introducir variaciones en el lenguaje
aceptado, se puede hacer que δ(q,X) se quede sin definir siempre que q sea un estado de
aceptación. En general a menos que se especifique lo contrario, suponemos que una máquina de
Turing siempre se para cuándo está en un estado de aceptación, aunque no en todos los casos
ocurre esto. Los lenguajes reconocidos por máquinas de Turing que siempre se paran, acepten o
no, se les conoce con el nombre de recursivos. Las máquinas de Turing que siempre se paran con
independencia de que acepten o no, son un buen modelo de algoritmo. Si existe un algoritmo para
resolver un problema dado, entonces se dice que el problema es decidible, con lo cual se observa
que las máquinas de Turing que siempre se paran, tienen un papel importante en la teoría de la
dicisibilidad.
8
CONCLUSION
Las máquinas de Turing son elementales no solo en la resolución de problemas indefinibles o
intratables; ya que estos ayudan a los ingenieros en programación a usarlos como una metodología
de análisis y diseño en la resolución de dicho problema, estos pueden ser definido de forma
sencilla o tediosa.
Estos algoritmos matemáticos ayudan a la resolución de problemas del mundo real, con la
diferencia que estos tienden a hacer tratados más detalladamente, unos que otros. Las máquinas
de Turing han venido a facilitar y ayudar al programador como al ser humano en las tomas de
decisiones en cuanto a problemas de la vida cotidiana.
Ya que en casos particulares se tiende a llegar al desbordamiento de ideas en cuanto al análisis y
diseño de respuestas a un suceso en particular de la vida diaria, además de ello las máquinas de
Turing ayudan en la estandarización de las máquinas electrónicas para poder entrar de un estado a
otro; es decir, que estas pueden llegar a pensar que decisión tomar, cuando estén sometidas o se
encuentren en una situación dada en un contexto en especial.
El estudio de estas algebras matemáticas, al pasar los años ayudaran en la creación de muchos
elementos electrónicos, que facilitaran la vida de la especie humana en la adaptación de los
cambios informáticos. Los cuales fortalecerán el crecimiento de muchos continentes al desarrollo
del nuevo mundo.
Las herramientas de soluciones de problemas y respuestas en cuanto a su solución podemos
utilizar los grafos y tablas de transiciones de las Máquinas de Turing para conocer el tiempo de
ejecución y el tiempo en que se puede tardar para encontrar la posiblesolución.
En conclusión se detalla en pocas palabras, que las máquinas de Turing son herramientas muy
sencillas y a la vez efectivas, como metodologías para las soluciones de problemas; interpretadas
de forma matemática u Grafórica (grafo), que ayudan al personaje a la interpretación de los
resultados, son ambiguos, sencillos, factibles yóptimos.
9
REFERENCIAS
 JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN. (2008). Introducción a la
teoría de autómatas lenguajes y computación. Madrid, España:PEARSON EDUCACIÓN S.A
 Manuel Alfonseca Moreno, Justo Sancho Rodríguez, Miguel Martínez Orga. (1987). Teoría
de lenguajes, gramáticas y automátas. Madrid, España: Madrid : Universidad y Cultura, D.L.
1987.
 José Del Carmen Méndez Candelaria. (2015). Autómatas Finitos. 2016, de
documents.mx Sitio web: http://documents.mx/documents/unidad-iii-y-iv-
lenguajes-y-automatas-i.html

Más contenido relacionado

La actualidad más candente

Lenguajes de programacion tema 2_compiladores e interpretes
Lenguajes de programacion tema 2_compiladores e interpretesLenguajes de programacion tema 2_compiladores e interpretes
Lenguajes de programacion tema 2_compiladores e interpretes
Israel Castillo Cruz
 
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regularesPortafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Humano Terricola
 
Tutorial de JFLAP
Tutorial de JFLAPTutorial de JFLAP
Tutorial de JFLAP
Sara Martínez Gómez
 
La maquina de Turing, sus tipos y aplicaciones.
La maquina de Turing, sus tipos y aplicaciones.La maquina de Turing, sus tipos y aplicaciones.
La maquina de Turing, sus tipos y aplicaciones.
Emmanuel Colon
 
Ejercicios
EjerciciosEjercicios
Ejercicios
Ricardo Tejera
 
Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.
Vikky Moscoso
 
Analisis lexico automatas i
Analisis lexico automatas iAnalisis lexico automatas i
Analisis lexico automatas i
rubiyanetvalenciavelazquez
 
Interrupciones
InterrupcionesInterrupciones
Interrupciones
YESENIA CETINA
 
Automatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No DeterministicosAutomatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No Deterministicos
Rosviannis Barreiro
 
Memoria Estatica
Memoria EstaticaMemoria Estatica
Memoria Estatica
J M
 
3.creacion de componentes visuales
3.creacion de componentes visuales3.creacion de componentes visuales
3.creacion de componentes visuales
Jose Benítez Andrades
 
Control de Flujo [Telecomunicaciones]
Control de Flujo [Telecomunicaciones]Control de Flujo [Telecomunicaciones]
Control de Flujo [Telecomunicaciones]
Ashley Stronghold Witwicky
 
Los lenguajes aceptados para una maquina de turing
Los lenguajes aceptados para una maquina de turingLos lenguajes aceptados para una maquina de turing
Los lenguajes aceptados para una maquina de turing
Jonathan Bastidas
 
Unidad 2 expresiones regulares
Unidad 2 expresiones regularesUnidad 2 expresiones regulares
Unidad 2 expresiones regulares
ROSA IMELDA GARCIA CHI
 
SO Unidad 2: Mecanismos de comunicación y sincronización de procesos
SO Unidad 2: Mecanismos de comunicación y sincronización de procesosSO Unidad 2: Mecanismos de comunicación y sincronización de procesos
SO Unidad 2: Mecanismos de comunicación y sincronización de procesos
Franklin Parrales Bravo
 
Investigacion errores lexicos
Investigacion errores lexicosInvestigacion errores lexicos
Investigacion errores lexicos
Borreguito Inolvidable
 
UNIDAD 3 MODULARIZACIÓN
UNIDAD 3 MODULARIZACIÓNUNIDAD 3 MODULARIZACIÓN
Portafolio Lenguajes y Autómatas Unidad 1
Portafolio Lenguajes y Autómatas Unidad 1Portafolio Lenguajes y Autómatas Unidad 1
Portafolio Lenguajes y Autómatas Unidad 1
Humano Terricola
 
Expresiones Regulares
Expresiones RegularesExpresiones Regulares
Expresiones Regulares
Mariela Bussi Pimentel
 
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
Hugo Alberto Rivera Diaz
 

La actualidad más candente (20)

Lenguajes de programacion tema 2_compiladores e interpretes
Lenguajes de programacion tema 2_compiladores e interpretesLenguajes de programacion tema 2_compiladores e interpretes
Lenguajes de programacion tema 2_compiladores e interpretes
 
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regularesPortafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
 
Tutorial de JFLAP
Tutorial de JFLAPTutorial de JFLAP
Tutorial de JFLAP
 
La maquina de Turing, sus tipos y aplicaciones.
La maquina de Turing, sus tipos y aplicaciones.La maquina de Turing, sus tipos y aplicaciones.
La maquina de Turing, sus tipos y aplicaciones.
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.
 
Analisis lexico automatas i
Analisis lexico automatas iAnalisis lexico automatas i
Analisis lexico automatas i
 
Interrupciones
InterrupcionesInterrupciones
Interrupciones
 
Automatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No DeterministicosAutomatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No Deterministicos
 
Memoria Estatica
Memoria EstaticaMemoria Estatica
Memoria Estatica
 
3.creacion de componentes visuales
3.creacion de componentes visuales3.creacion de componentes visuales
3.creacion de componentes visuales
 
Control de Flujo [Telecomunicaciones]
Control de Flujo [Telecomunicaciones]Control de Flujo [Telecomunicaciones]
Control de Flujo [Telecomunicaciones]
 
Los lenguajes aceptados para una maquina de turing
Los lenguajes aceptados para una maquina de turingLos lenguajes aceptados para una maquina de turing
Los lenguajes aceptados para una maquina de turing
 
Unidad 2 expresiones regulares
Unidad 2 expresiones regularesUnidad 2 expresiones regulares
Unidad 2 expresiones regulares
 
SO Unidad 2: Mecanismos de comunicación y sincronización de procesos
SO Unidad 2: Mecanismos de comunicación y sincronización de procesosSO Unidad 2: Mecanismos de comunicación y sincronización de procesos
SO Unidad 2: Mecanismos de comunicación y sincronización de procesos
 
Investigacion errores lexicos
Investigacion errores lexicosInvestigacion errores lexicos
Investigacion errores lexicos
 
UNIDAD 3 MODULARIZACIÓN
UNIDAD 3 MODULARIZACIÓNUNIDAD 3 MODULARIZACIÓN
UNIDAD 3 MODULARIZACIÓN
 
Portafolio Lenguajes y Autómatas Unidad 1
Portafolio Lenguajes y Autómatas Unidad 1Portafolio Lenguajes y Autómatas Unidad 1
Portafolio Lenguajes y Autómatas Unidad 1
 
Expresiones Regulares
Expresiones RegularesExpresiones Regulares
Expresiones Regulares
 
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
 

Similar a maquinas de turing

Maquina de turing - Enzo y Bolivar - Teoria de Automatas
Maquina de turing - Enzo y Bolivar - Teoria de AutomatasMaquina de turing - Enzo y Bolivar - Teoria de Automatas
Maquina de turing - Enzo y Bolivar - Teoria de Automatas
Enzo Casamassima
 
Máquina de Turing.pptx
Máquina de Turing.pptxMáquina de Turing.pptx
Máquina de Turing.pptx
YessicaReyes30
 
Reny galaviz web quest
Reny galaviz web questReny galaviz web quest
Reny galaviz web quest
Reny-Galaviz
 
Reny Galaviz Web Quest
Reny Galaviz Web QuestReny Galaviz Web Quest
Reny Galaviz Web Quest
Reny-Galaviz
 
Algoritmos univ colombia
Algoritmos univ colombiaAlgoritmos univ colombia
Algoritmos univ colombia
Julio Camargo
 
Algoritmos
AlgoritmosAlgoritmos
Algoritmos
Carlos
 
Maquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e IrresolubilidadMaquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e Irresolubilidad
lluis31
 
1 ejercicio mt.
1 ejercicio mt.1 ejercicio mt.
1 ejercicio mt.
Rodrigo Sanabria
 
Máquina de turing
Máquina de turingMáquina de turing
Máquina de turing
Ivan
 
Teoría de autómatas
Teoría de autómatasTeoría de autómatas
Teoría de autómatas
María Inés Cahuana Lázaro
 
Portafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de Turing
Portafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de TuringPortafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de Turing
Portafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de Turing
Humano Terricola
 
Maquina de Turing
Maquina de TuringMaquina de Turing
Maquina de Turing
Fernando Manuel Perez Ramos
 
Primera Presentación
Primera PresentaciónPrimera Presentación
Primera Presentación
Patricho
 
Manuel torres web-quest informe
Manuel torres web-quest informeManuel torres web-quest informe
Manuel torres web-quest informe
Mrx Mirrorx
 
Tema 5 computabilidad y algoritmos
Tema 5 computabilidad y algoritmosTema 5 computabilidad y algoritmos
Tema 5 computabilidad y algoritmos
Mario Dominguez Bobadilla
 
Taller nro 24
Taller nro 24Taller nro 24
Taller nro 24
DIEGOANDRESSANITUGUM
 
Maquina de turing
Maquina de turingMaquina de turing
Maquina de turing
Lalo Palacio
 
Uso de las técnicas de programación para las máquinas de Turing
Uso de las técnicas de programación para las máquinas de TuringUso de las técnicas de programación para las máquinas de Turing
Uso de las técnicas de programación para las máquinas de Turing
Hans Krakaur
 
Máquinas de turing kendra, webster, yasselys
Máquinas de turing kendra, webster, yasselysMáquinas de turing kendra, webster, yasselys
Máquinas de turing kendra, webster, yasselys
Webster Noble
 
Máquina de turing
Máquina de turingMáquina de turing
Máquina de turing
Yamilee Valerio
 

Similar a maquinas de turing (20)

Maquina de turing - Enzo y Bolivar - Teoria de Automatas
Maquina de turing - Enzo y Bolivar - Teoria de AutomatasMaquina de turing - Enzo y Bolivar - Teoria de Automatas
Maquina de turing - Enzo y Bolivar - Teoria de Automatas
 
Máquina de Turing.pptx
Máquina de Turing.pptxMáquina de Turing.pptx
Máquina de Turing.pptx
 
Reny galaviz web quest
Reny galaviz web questReny galaviz web quest
Reny galaviz web quest
 
Reny Galaviz Web Quest
Reny Galaviz Web QuestReny Galaviz Web Quest
Reny Galaviz Web Quest
 
Algoritmos univ colombia
Algoritmos univ colombiaAlgoritmos univ colombia
Algoritmos univ colombia
 
Algoritmos
AlgoritmosAlgoritmos
Algoritmos
 
Maquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e IrresolubilidadMaquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e Irresolubilidad
 
1 ejercicio mt.
1 ejercicio mt.1 ejercicio mt.
1 ejercicio mt.
 
Máquina de turing
Máquina de turingMáquina de turing
Máquina de turing
 
Teoría de autómatas
Teoría de autómatasTeoría de autómatas
Teoría de autómatas
 
Portafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de Turing
Portafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de TuringPortafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de Turing
Portafolio Unidad 4 [Lenguajes y autómatas] - Máquinas de Turing
 
Maquina de Turing
Maquina de TuringMaquina de Turing
Maquina de Turing
 
Primera Presentación
Primera PresentaciónPrimera Presentación
Primera Presentación
 
Manuel torres web-quest informe
Manuel torres web-quest informeManuel torres web-quest informe
Manuel torres web-quest informe
 
Tema 5 computabilidad y algoritmos
Tema 5 computabilidad y algoritmosTema 5 computabilidad y algoritmos
Tema 5 computabilidad y algoritmos
 
Taller nro 24
Taller nro 24Taller nro 24
Taller nro 24
 
Maquina de turing
Maquina de turingMaquina de turing
Maquina de turing
 
Uso de las técnicas de programación para las máquinas de Turing
Uso de las técnicas de programación para las máquinas de TuringUso de las técnicas de programación para las máquinas de Turing
Uso de las técnicas de programación para las máquinas de Turing
 
Máquinas de turing kendra, webster, yasselys
Máquinas de turing kendra, webster, yasselysMáquinas de turing kendra, webster, yasselys
Máquinas de turing kendra, webster, yasselys
 
Máquina de turing
Máquina de turingMáquina de turing
Máquina de turing
 

Más de Anel Sosa

Codigo Visual Studio: Galeria de imagenes
Codigo Visual Studio: Galeria de imagenesCodigo Visual Studio: Galeria de imagenes
Codigo Visual Studio: Galeria de imagenes
Anel Sosa
 
Comandos sql
Comandos sql Comandos sql
Comandos sql
Anel Sosa
 
Codigo ensamblador
Codigo ensamblador Codigo ensamblador
Codigo ensamblador
Anel Sosa
 
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
Anel Sosa
 
APLICACIONES DE LAS ECUACIONES DIFERENCIALES
APLICACIONES DE LAS ECUACIONES DIFERENCIALESAPLICACIONES DE LAS ECUACIONES DIFERENCIALES
APLICACIONES DE LAS ECUACIONES DIFERENCIALES
Anel Sosa
 
SISTEMA OPERATIVOS
SISTEMA OPERATIVOSSISTEMA OPERATIVOS
SISTEMA OPERATIVOS
Anel Sosa
 
INVESTIGACIÓN DE CHIPSET
INVESTIGACIÓN DE CHIPSET INVESTIGACIÓN DE CHIPSET
INVESTIGACIÓN DE CHIPSET
Anel Sosa
 
SIMMAN 3G
SIMMAN 3GSIMMAN 3G
SIMMAN 3G
Anel Sosa
 
Metodologia incremental
Metodologia incrementalMetodologia incremental
Metodologia incremental
Anel Sosa
 
Paradigmas de programacion
Paradigmas de programacion Paradigmas de programacion
Paradigmas de programacion
Anel Sosa
 
Escenario socioeconomico
Escenario socioeconomicoEscenario socioeconomico
Escenario socioeconomico
Anel Sosa
 
Investigacion calculo derivadas e integrales
Investigacion calculo derivadas e integralesInvestigacion calculo derivadas e integrales
Investigacion calculo derivadas e integrales
Anel Sosa
 
Lenguajes de simulacion
Lenguajes de simulacionLenguajes de simulacion
Lenguajes de simulacion
Anel Sosa
 
maquinas de turing jflap
maquinas de turing jflapmaquinas de turing jflap
maquinas de turing jflap
Anel Sosa
 
Panuco Veracruz
Panuco Veracruz Panuco Veracruz
Panuco Veracruz
Anel Sosa
 
que es un Curriculum
que es un Curriculumque es un Curriculum
que es un Curriculum
Anel Sosa
 
Programa expresiones regulares
Programa expresiones regularesPrograma expresiones regulares
Programa expresiones regulares
Anel Sosa
 
ESPRESIONES REGULARES
ESPRESIONES REGULARESESPRESIONES REGULARES
ESPRESIONES REGULARES
Anel Sosa
 
investigacion introduccion a los lenguajes y automatas
investigacion introduccion a los lenguajes y automatasinvestigacion introduccion a los lenguajes y automatas
investigacion introduccion a los lenguajes y automatas
Anel Sosa
 
dibujo jigglypuff en java
dibujo jigglypuff en java dibujo jigglypuff en java
dibujo jigglypuff en java
Anel Sosa
 

Más de Anel Sosa (20)

Codigo Visual Studio: Galeria de imagenes
Codigo Visual Studio: Galeria de imagenesCodigo Visual Studio: Galeria de imagenes
Codigo Visual Studio: Galeria de imagenes
 
Comandos sql
Comandos sql Comandos sql
Comandos sql
 
Codigo ensamblador
Codigo ensamblador Codigo ensamblador
Codigo ensamblador
 
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
 
APLICACIONES DE LAS ECUACIONES DIFERENCIALES
APLICACIONES DE LAS ECUACIONES DIFERENCIALESAPLICACIONES DE LAS ECUACIONES DIFERENCIALES
APLICACIONES DE LAS ECUACIONES DIFERENCIALES
 
SISTEMA OPERATIVOS
SISTEMA OPERATIVOSSISTEMA OPERATIVOS
SISTEMA OPERATIVOS
 
INVESTIGACIÓN DE CHIPSET
INVESTIGACIÓN DE CHIPSET INVESTIGACIÓN DE CHIPSET
INVESTIGACIÓN DE CHIPSET
 
SIMMAN 3G
SIMMAN 3GSIMMAN 3G
SIMMAN 3G
 
Metodologia incremental
Metodologia incrementalMetodologia incremental
Metodologia incremental
 
Paradigmas de programacion
Paradigmas de programacion Paradigmas de programacion
Paradigmas de programacion
 
Escenario socioeconomico
Escenario socioeconomicoEscenario socioeconomico
Escenario socioeconomico
 
Investigacion calculo derivadas e integrales
Investigacion calculo derivadas e integralesInvestigacion calculo derivadas e integrales
Investigacion calculo derivadas e integrales
 
Lenguajes de simulacion
Lenguajes de simulacionLenguajes de simulacion
Lenguajes de simulacion
 
maquinas de turing jflap
maquinas de turing jflapmaquinas de turing jflap
maquinas de turing jflap
 
Panuco Veracruz
Panuco Veracruz Panuco Veracruz
Panuco Veracruz
 
que es un Curriculum
que es un Curriculumque es un Curriculum
que es un Curriculum
 
Programa expresiones regulares
Programa expresiones regularesPrograma expresiones regulares
Programa expresiones regulares
 
ESPRESIONES REGULARES
ESPRESIONES REGULARESESPRESIONES REGULARES
ESPRESIONES REGULARES
 
investigacion introduccion a los lenguajes y automatas
investigacion introduccion a los lenguajes y automatasinvestigacion introduccion a los lenguajes y automatas
investigacion introduccion a los lenguajes y automatas
 
dibujo jigglypuff en java
dibujo jigglypuff en java dibujo jigglypuff en java
dibujo jigglypuff en java
 

Último

OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTOOPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
GERARDO GONZALEZ
 
Calculo-de-Camaras-Frigorificas.pdf para trabajos
Calculo-de-Camaras-Frigorificas.pdf para trabajosCalculo-de-Camaras-Frigorificas.pdf para trabajos
Calculo-de-Camaras-Frigorificas.pdf para trabajos
JuanCarlos695207
 
METODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIA
METODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIAMETODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIA
METODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIA
LuisCiriacoMolina
 
Equipo 4. Mezclado de Polímeros quimica de polimeros.pptx
Equipo 4. Mezclado de Polímeros quimica de polimeros.pptxEquipo 4. Mezclado de Polímeros quimica de polimeros.pptx
Equipo 4. Mezclado de Polímeros quimica de polimeros.pptx
angiepalacios6170
 
Infografía operaciones básicas construcción .pdf
Infografía operaciones básicas construcción .pdfInfografía operaciones básicas construcción .pdf
Infografía operaciones básicas construcción .pdf
Carlos Pulido
 
DIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicosDIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicos
LuisAngelGuarnizoBet
 
METRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdf
METRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdfMETRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdf
METRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdf
Augusto César Dávila Callupe
 
S09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptx
S09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptxS09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptx
S09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptx
yamilbailonw
 
9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN
9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN
9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN
KarinToledo2
 
Operaciones Básicas creadora Veronica Maiz
Operaciones Básicas creadora Veronica MaizOperaciones Básicas creadora Veronica Maiz
Operaciones Básicas creadora Veronica Maiz
carolina838317
 
muros de contencion, diseño y generalidades
muros de contencion, diseño y generalidadesmuros de contencion, diseño y generalidades
muros de contencion, diseño y generalidades
AlejandroArturoGutie1
 
Presentación- de motor a combustión -diesel.pptx
Presentación- de motor a combustión -diesel.pptxPresentación- de motor a combustión -diesel.pptx
Presentación- de motor a combustión -diesel.pptx
ronnyrocha223
 
Aletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdfAletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdf
elsanti003
 
FICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdf
FICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdfFICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdf
FICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdf
jesus869159
 
chancadoras.............................
chancadoras.............................chancadoras.............................
chancadoras.............................
ssuser8827cb1
 
DIAGRAMA DE FLUJO DE ALGORITMO......
DIAGRAMA DE FLUJO   DE   ALGORITMO......DIAGRAMA DE FLUJO   DE   ALGORITMO......
DIAGRAMA DE FLUJO DE ALGORITMO......
taniarivera1015tvr
 
380378757-velocidades-maximas-y-minimas-en-los-canales.pdf
380378757-velocidades-maximas-y-minimas-en-los-canales.pdf380378757-velocidades-maximas-y-minimas-en-los-canales.pdf
380378757-velocidades-maximas-y-minimas-en-los-canales.pdf
DiegoAlexanderChecaG
 
INGLES_LISTA_DE_VOCABULARIO una lista completa
INGLES_LISTA_DE_VOCABULARIO una lista completaINGLES_LISTA_DE_VOCABULARIO una lista completa
INGLES_LISTA_DE_VOCABULARIO una lista completa
JaimmsArthur
 
Infografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdfInfografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdf
DanielMelndez19
 
Sesión 03 universidad cesar vallejo 2024
Sesión 03 universidad cesar vallejo 2024Sesión 03 universidad cesar vallejo 2024
Sesión 03 universidad cesar vallejo 2024
FantasticVideo1
 

Último (20)

OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTOOPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
 
Calculo-de-Camaras-Frigorificas.pdf para trabajos
Calculo-de-Camaras-Frigorificas.pdf para trabajosCalculo-de-Camaras-Frigorificas.pdf para trabajos
Calculo-de-Camaras-Frigorificas.pdf para trabajos
 
METODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIA
METODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIAMETODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIA
METODOLOGIA DE TRAZO Y REPLANTEO EN TOPOGRAFIA
 
Equipo 4. Mezclado de Polímeros quimica de polimeros.pptx
Equipo 4. Mezclado de Polímeros quimica de polimeros.pptxEquipo 4. Mezclado de Polímeros quimica de polimeros.pptx
Equipo 4. Mezclado de Polímeros quimica de polimeros.pptx
 
Infografía operaciones básicas construcción .pdf
Infografía operaciones básicas construcción .pdfInfografía operaciones básicas construcción .pdf
Infografía operaciones básicas construcción .pdf
 
DIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicosDIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicos
 
METRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdf
METRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdfMETRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdf
METRADOS_Y_PRESUPUESTO_EN_SISTEMA_DRYWALL_24-05.pdf
 
S09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptx
S09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptxS09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptx
S09 PBM-HEMORRAGIAS 2021-I Grabada 1.pptx
 
9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN
9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN
9 Lección perro.pptxcvBWRFWBCCCCCCCCCCCCCCTEN
 
Operaciones Básicas creadora Veronica Maiz
Operaciones Básicas creadora Veronica MaizOperaciones Básicas creadora Veronica Maiz
Operaciones Básicas creadora Veronica Maiz
 
muros de contencion, diseño y generalidades
muros de contencion, diseño y generalidadesmuros de contencion, diseño y generalidades
muros de contencion, diseño y generalidades
 
Presentación- de motor a combustión -diesel.pptx
Presentación- de motor a combustión -diesel.pptxPresentación- de motor a combustión -diesel.pptx
Presentación- de motor a combustión -diesel.pptx
 
Aletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdfAletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdf
 
FICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdf
FICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdfFICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdf
FICHA TECNICA PRODUCTOS CONGELADOS EMBALAJE.pdf
 
chancadoras.............................
chancadoras.............................chancadoras.............................
chancadoras.............................
 
DIAGRAMA DE FLUJO DE ALGORITMO......
DIAGRAMA DE FLUJO   DE   ALGORITMO......DIAGRAMA DE FLUJO   DE   ALGORITMO......
DIAGRAMA DE FLUJO DE ALGORITMO......
 
380378757-velocidades-maximas-y-minimas-en-los-canales.pdf
380378757-velocidades-maximas-y-minimas-en-los-canales.pdf380378757-velocidades-maximas-y-minimas-en-los-canales.pdf
380378757-velocidades-maximas-y-minimas-en-los-canales.pdf
 
INGLES_LISTA_DE_VOCABULARIO una lista completa
INGLES_LISTA_DE_VOCABULARIO una lista completaINGLES_LISTA_DE_VOCABULARIO una lista completa
INGLES_LISTA_DE_VOCABULARIO una lista completa
 
Infografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdfInfografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdf
 
Sesión 03 universidad cesar vallejo 2024
Sesión 03 universidad cesar vallejo 2024Sesión 03 universidad cesar vallejo 2024
Sesión 03 universidad cesar vallejo 2024
 

maquinas de turing

  • 1. 1 INGENIERIA EN SISTEMAS COMPUTACIONALES LENGUAJES Y AUTOMATAS I UNIDAD IV ISC ENRIQUE PONCE RIVERA S501 08-05-2016 NOMBRE DEL ALUMNO: ANEL VERONICA SOSA MEJIA Fecha de entrega: 09/11/2016
  • 2. 2 INDICE INTRODUCCION...............................................................................................................................................3 Unidad 4. Máquinas de Turing ........................................................................................................................4 4.1 Definición formal MT.................................................................................................................................4 4.2 Construcción modular de una MT.............................................................................................................6 4.3 Lenguajes aceptados por la MT.................................................................................................................7 CONCLUSION...................................................................................................................................................8 REFERENCIAS...................................................................................................................................................9
  • 3. 3 INTRODUCCION En la siguiente investigación se abordarán temas a cerca de la máquina de Turing y subtemas de la 4ª unidad del plan de estudios de la materia LENGUAJES Y AUTOMATAS I; donde se aprenderá y conocerá la importancia del estudio de la Máquina de Turing dentro de los procesos de desarrollo de software, y algunas aplicaciones. Se conocerá deforma formal que es una máquina de Turing y sus componentes; además de ello se detallara de forma explícita algunos conceptos sobre su desarrollo y formación. La máquina de Turing es un dispositivo capaz de establecer los problemas intratables, para conocer si es resolutorio o no. Tales confirmaciones se deben y se detallan de cada proceso u problemas matemáticos de la vida real. Al igual que los AF la máquina de Turing utiliza estructuras, transiciones y formas de conformación para la representación de los modelos matemáticos, de situación en las que se desea conocer si estos tienen soluciones, ya que un computador no puede definir dicha confirmación, ya que es un proceso tardado.
  • 4. 4 Unidad 4. Máquinas de Turing A finales del siglo XIX, el matemático David Hilbert se preguntó si era posible encontrar un algoritmo para determinar la verdad o falsedad de cualquier proposición matemática. En particular, se preguntaba si existiría un modo de determinar si cualquier fórmula del cálculo de predicados de primer orden, aplicado a enteros, es verdadera. Dado que el cálculo de predicados de primer orden sobre los enteros es suficientemente potente como para expresar frases como esta gramática es ambigua, si Hilbert hubiera tenido éxito, existirían algoritmos para dichos problemas, que ahora sabemos que no existen esta proposición se conoce con el nombre de problema de Hilbert. En 1963, Alan Mathinson Turing propuso la máquina que lleva su nombre como modelo de cualquier computación posible. Este modelo se parece más a una computadora que a un programa, aunque las verdaderas computadoras electrónicas, o incluso los electromecánicas, tardaron varios años en ser construidas. La máquina de Turing consta de una unidad de control, que pueda estar en cualquier estado tomado de un conjunto infinito. Hay una cinta dividida en cuadrados o casillas, y cada casilla puede contener un símbolo, tomado de otro conjunto infinito. Inicialmente, se sitúa en la cinta de entrada, que es una cadena de símbolos de longitud infinita, elegidos del alfabeto de entrada. El resto de las casillas de la cinta, que se extiende infinitamente hacia la derecha y hacia la izquierda, contiene, inicialmente, un símbolo denominado espacio en blanco. El espacio en blanco es un símbolo de cinta, pero no un símbolo de entrada, y puede haber también otros símbolos de cinta además de los símbolos de entrada y del espacio en blanco. Existe una cabeza de la cinta que siempre está situada sobre una de las casillas de la cinta. Se dice que la máquina de Turing está señalando dicha casilla. Al principio, la cabeza de la cinta se encuentra en la casilla de la entrada situada más a la izquierda. Un movimiento de la máquina de Turing es una función del estado de la unidad de control y del símbolo de la cinta al que señala lacabeza. 4.1 Definición formal MT Una Máquina de Turing es un modelo matemático que consiste en un autómata capaz de implementar cualquier problema matemático expresado por medio de un algoritmo. “Una máquina de Turing es un autómata” un autómata es lo que se conoce como una máquina teórica, es decir, un dispositivo cuyo funcionamiento se estudia sin necesidad de construirlo realmente. En concreto un autómata es una máquina teórica que lee unas instrucciones en forma de símbolos y cambia de estado según éstas.
  • 5. 5 Una máquina de Turing es un autómata que consta de una cabeza lectora y una cinta infinita en la que la cabeza puede leer símbolos, borrarlos, escribirlos y moverse a la derecha o a la izquierda. Por supuesto también consta de una función de estado que determinará los cambios de un estado a otro que se deben producir en función de las instrucciones que reciba. La Máquina de Turing (MT) es el modelo de autómata con máxima capacidad computacional: la unidad de control puede desplazarse a izquierda o derecha y sobre escribir símbolos en la cinta de entrada. La función de transición. Los argumentos de (q; X ) son un estado q y un símbolo de la cinta X . El valor de (q; X ), si esta es una tupla (p; Y; S ) donde:
  • 6. 6 4.2 Construcción modular de una MT Para describir formalmente lo que hace una máquina de Turing, es necesario desarrollar una notación para describir sus configuraciones o descripciones instantáneas, parecida a la notación que se desarrolla para los autómatas a pila. En principio una máquina de Turing dispone de una cinta de longitud infinita, por lo cual podrá suponerse que no es posible describir espáticamente su configuración. Sin embargo, después de un número finito de movimientos, la máquina de Turing solo habrá recorrido un número finito de casillas. Por tanto, para cualquier configuración existe un prefijo y un sufijo infinito de casillas que no se han recorrido nunca. El contenido de dichas casillas debe Ser espacios en blanco o símbolos del conjunto finito de símbolos de entrada. Por lo tanto, en una configuración solo se muestran las casillas que se encuentren entre el símbolo más a la izquierda y el símbolo más a la derecha de la cinta que no sean espacios en blanco, además, habrá que incluir un número finito de espacios en blanco en la configuración, si se da la condición especial de que la cabeza de la cinta señale a uno de los espacios en blanco situados antes o después de la cadena de entrada. Además de la representación de la cinta, debe ser posible representar el estado de la unidad de control, así como la posición de la cabeza de la cinta. Para ello, insertaremos el estado en la cinta, situándolo inmediatamente a la izquierda de la casilla señalada por la cabeza. Para que la cadena que representa el contenido de la cinta junto con el estado de la unidad de control no resulte ambigua, es necesario asegurarse de que no se utiliza como estado ningún símbolo que forme parte del conjunto de símbolos de cinta. Sin embargo, es sencillo cambiar los nombres de los estados de forma que no tengan nada en común con los símbolos de la cinta, dado que la operación de la máquina de Turing no depende de cómo se llamen sus estados. Por tanto, utilizaremos la cadena para representar una configuración en la que: Los movimientos de una máquina de Turing se describen utilizando la notación
  • 7. 7 4.3 Lenguajes aceptados por la MT. Podremos decir que la forma en la que una máquina de Turing acepta una cadena es la siguiente: la cadena de entrada se sitúa en la cinta y la cabeza comienza señalando el símbolo de entrada que se encuentra más a la izquierda; si la máquina de Turing llega a un estado de aceptación al final del proceso, se considera que la cadena es reconocida, en caso contrario, decimos que la cadena no fue aceptada. De manera formal dada una máquina de Turing el lenguaje L(M) es el conjunto de cadenas de tales que para algún estado p del conjunto de estado finales F, y cualesquiera dos cadenas de cinta α y β. Los lenguajes que son pueden ser aceptados por la máquina de Turing reciben el nombre de lenguajes recursivamente enumérales o lenguajes RE. Sin embargo este no es el único método para la aceptación de una cadena, existe otro que comúnmente se le conoce con el nombre de aceptación por parada. Se dice que una máquina de Turing se para si alcanza un estado q cuando señala a un símbolo de la cinta X, sin que se produzca ningún movimiento en dicha situación; es decir δ(q,X) no está definida. Siempre se puede suponer que una máquina de Turing se para si acepta, es decir sin introducir variaciones en el lenguaje aceptado, se puede hacer que δ(q,X) se quede sin definir siempre que q sea un estado de aceptación. En general a menos que se especifique lo contrario, suponemos que una máquina de Turing siempre se para cuándo está en un estado de aceptación, aunque no en todos los casos ocurre esto. Los lenguajes reconocidos por máquinas de Turing que siempre se paran, acepten o no, se les conoce con el nombre de recursivos. Las máquinas de Turing que siempre se paran con independencia de que acepten o no, son un buen modelo de algoritmo. Si existe un algoritmo para resolver un problema dado, entonces se dice que el problema es decidible, con lo cual se observa que las máquinas de Turing que siempre se paran, tienen un papel importante en la teoría de la dicisibilidad.
  • 8. 8 CONCLUSION Las máquinas de Turing son elementales no solo en la resolución de problemas indefinibles o intratables; ya que estos ayudan a los ingenieros en programación a usarlos como una metodología de análisis y diseño en la resolución de dicho problema, estos pueden ser definido de forma sencilla o tediosa. Estos algoritmos matemáticos ayudan a la resolución de problemas del mundo real, con la diferencia que estos tienden a hacer tratados más detalladamente, unos que otros. Las máquinas de Turing han venido a facilitar y ayudar al programador como al ser humano en las tomas de decisiones en cuanto a problemas de la vida cotidiana. Ya que en casos particulares se tiende a llegar al desbordamiento de ideas en cuanto al análisis y diseño de respuestas a un suceso en particular de la vida diaria, además de ello las máquinas de Turing ayudan en la estandarización de las máquinas electrónicas para poder entrar de un estado a otro; es decir, que estas pueden llegar a pensar que decisión tomar, cuando estén sometidas o se encuentren en una situación dada en un contexto en especial. El estudio de estas algebras matemáticas, al pasar los años ayudaran en la creación de muchos elementos electrónicos, que facilitaran la vida de la especie humana en la adaptación de los cambios informáticos. Los cuales fortalecerán el crecimiento de muchos continentes al desarrollo del nuevo mundo. Las herramientas de soluciones de problemas y respuestas en cuanto a su solución podemos utilizar los grafos y tablas de transiciones de las Máquinas de Turing para conocer el tiempo de ejecución y el tiempo en que se puede tardar para encontrar la posiblesolución. En conclusión se detalla en pocas palabras, que las máquinas de Turing son herramientas muy sencillas y a la vez efectivas, como metodologías para las soluciones de problemas; interpretadas de forma matemática u Grafórica (grafo), que ayudan al personaje a la interpretación de los resultados, son ambiguos, sencillos, factibles yóptimos.
  • 9. 9 REFERENCIAS  JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN. (2008). Introducción a la teoría de autómatas lenguajes y computación. Madrid, España:PEARSON EDUCACIÓN S.A  Manuel Alfonseca Moreno, Justo Sancho Rodríguez, Miguel Martínez Orga. (1987). Teoría de lenguajes, gramáticas y automátas. Madrid, España: Madrid : Universidad y Cultura, D.L. 1987.  José Del Carmen Méndez Candelaria. (2015). Autómatas Finitos. 2016, de documents.mx Sitio web: http://documents.mx/documents/unidad-iii-y-iv- lenguajes-y-automatas-i.html