SlideShare una empresa de Scribd logo
MATRIZ N° 1: Análisis Insumo / Producto<br />Materias Primas, Insumos Servicios, Productos, Sub-productos y Efluentes<br />Objeto de AnálisisMateria Prima: MPInsumo: INProduct.: PRSuM-Producto: SPServicios: SSIdentificación de variablesTipo de VariableC: ControlM: ManipulableR: RespuestaI:IndependienteD: Dependiente            Rangooperativo de    variablesR:RangoP: ParámetroReferenciade Costos(Donde sea permitido)Aspectos técnicos a tomar en cuenta, antes (A),durante (E ) o después (D) , del proceso de                  experimentaciónReferidos a seguridad, impacto ambiental, eficiencia               operativa, entre otrosModelos Matemáticos:Leyes implicadas o temasRelaciones de eficienciaNombreSímbolo IN y SS: Agua  en la succión  Volumen en el tanqueVtC,M,IRCosto del m3 de agua segúnSedapar(A): Abastecimiento de agua para dar inicio al proceso.(A): Limpieza del equipo(A): Correcta conexión del circuito de tuberías para su arranque.(A): El agua debe entrar sin presencia de residuos sólidos.(E): Verificar que no varíe la altura del tanque para que el proceso se realice en estado estacionario(E): Evitar fugas de agua cerca de las conexiones  eléctricas, ya que  podría generarse accidentes.(D): Dejar cerradas las llaves de paso y verificar la completa desconexión eléctrica del equipo para su próximo uso.Perdida de energía en el sistema                            CaudalQ = A VFlujo másico:m = ρAvSección Transversal de la TuberíaTrabajo eléctricoW = VItPotencia eléctricaP = VICarga EstaticaHT = -HS + HDBalance de Energía Mecánica CaudalQsM,IR Carga estática de succión HsC,M,IR Temperatura del aguaTºIP ViscosidaduD,RP DensidadρD,RPIN y SS: Agua en la descarga  Volumen en el tanqueVtC,M,IRAsegurarse del buen funcionamiento del multímetro.(A)Tener mucha prudencia en el momento de medir la intensidad eléctrica. (E)Asegurarse de haber apagado correctamente el   sistema.(D) CaudalQsM,IR Carga estática de descarga HsC,M,IR Temperatura del aguaTºIP ViscosidaduD,RP DensidadρD,RPSS: Corriente eléctrica   Tiempo tI,RRRCosto del Kw según Seal Trabajo eléctricoWeIP VoltajeVIP Intensidad IRP PotenciaPIR<br />MATRIZ N° 2: Análisis de Procesos_ quot;
Donde hay un cambio hay un procesoquot;
<br />Nombre delProcesoIngresosOperadores deCambioSalidasAnálisis de VariablesNombre (Símbolo)ContextoEntradaOperadoresSalidaFactoresfavorablesFactoresdesfavorablesTransporte del fluido de un punto de succión a uno de descarga Agua en la succiónBombasAgua en la descarga  Caudalpotencia nominal y efectiva de la bombatrabajo de la bombapresión de succión y descarga de la bombaCaudal de salida-Medidor de presión-panel de control-regulador del flujo (llaves de paso)-no se cuenta con medidor de caudal-fugas de agua-tanque superior sin capacidad para cebar.Flujo másicoFlujo másico de salidaCarga Estática de succiónCarga estática de descargaVelocidadVelocidad de salidaTemperaturaTemperatura de salidaPresión de succiónPresión de descargaTiempo de entradaTiempo de salidaRedes de TuberíasCaudalTipo de circuito: serie o paraleloTrabajo perdidoTipo de materialLongitudDiámetroNº de accesoriosRugosidadCaudal <br />MATRIZ N° 3: Análisis de Sistemas<br />Identificación de SistemasTipificaciónAnálisis de VariablesInstrumentos de medición de Variables(indicar marca, rango, energía)Modelos MatemáticosSistema eInterfasesProcesos queTienen lugaren el sistemaMacroprocesos enlos que seinscribe elsistemaDinámicadel SistemaT=transformadorF=flujoS=stockE=estacionarioNE=no estacionarioA=abiertoC=cerradoA=aisladoNombreSímboloTipoE=especificaciónC=controlM=manipulableR=respuestaI=independienteD=dependienteTanque y contenidoTransporte de fluidosTransporte de fluidosS,E,AVolumenCaudal de descarga y alimentaciónTemperatura (agua) Nivel del liquido en el tanqueVt,QsQdThC,MM,IIC,MCinta métrica(0-1m)Termómetro(-10 a +120 ºC)Balde, probeta (1 litro)Cronometro (seg.)EGEMBomba y contenidoA,F,Epotenciapresión de succion y de descargatiempoCaudal de succionPPs,PdtQsIC,RIM,CVoltímetroAmperímetroCronometromanómetroTramos de tuberíaA,Etrabajo perdidolongitudLWLEICinta métricaCircuito completoO,E,StiempotIcronometro<br />MATRIZ N° 4 A: Relación de variables identificadas (Esta matriz se Ilena recogiendo informaci6n de las matrices anteriores)Relación de variables identificadasen las distintas matricesRangos de lasvariablesInstrumento de mediciónSistema a que pertenecen las variablesModelos Matemáticos implicadosNombreSímboloVolumen fluidoVf50-60 (litros)Cinta métricaTanque o contenedorEcuacion general de  Energia mecanica : Q Caudal ([L3T−1]; m3/s) A Es el área ([L2]; m2) Es la velocidad lineal promedio. ([LT−1]; m/s)Caudal de succiónQs18-20(litros/min)ProbetaBomba del tanqueCaudal de descargaQd18-20(litros/min)BaldeBomba del tanqueTemperaturaT17-18(Centígrados)TermómetroSistema de fluidosNivel del liquidoY50-60(cm)Cinta métricaTanquePotencial efectivaPe468.72-501.75(Watts)PotenciómetroBombaTrabajo eléctrico perdidoWe-MultimetroBombaTrabajo perdidoWp-MultimetroBombaTiempot10-15(minutos)CronometroCircuito completoMATRIZ N° 4 B: Valoración y priorización de variables                                      Análisis de Conectividad                    entre las variables (*)Relación devariablesidentificadasEn orden deimportanciaRazones técnicas que sustentan la priorizaciónde variablesValores que tomaríanlas variables en laexperimentación(..)VARIABLESV1V2V3V4V5V6V7V8V9N.NombreSímbolo><<> <><><><><<<><Conexiones-La priorización de variables obedece a las variables controlables    y manipulables, ya que solo existen dos variables que pueden controlarse en el sistema a trabajar.1VXXX3Nivel liquidoH50-60(cm)2VXXX3VolumenV50-60(litros)3VXXX3Caudal desc.Qd18-20(litros/min)4V0Caudal succ.Qs18-20(litros/min)5VXXXX4Trabajo elec.We-6VXX2Trabajo perd.LW-7VXX2PotencialP468.72-501.75(Watts)8VXXx3Tiempot10-15(minutos)9VXX2temperaturaT17-18(centígrados)(*)Aquí se identifican el numero de relaciones que tiene una variable evaluando la influencia que ejerce en otras variables (>) o que recibe de otras variables (<).A mayor numero de interrelaciones, mayor conectividad, y por tanto mayor importancia relativa de la variable.,(**)Estos valores deben estar dentro del rango señalado en la matriz anterior. Se les puede asignar 2 6 mas valores, o se les puede mantener en un valor fijo determinado. Esto depende de losobjetivos que se deseen lograr y de la viabilidad operativa)<br />MATRIZ N° 5: Análisis de Tecnología<br />Objeto de AnálisisFunciones que cumplenFabricacióny Costos($.)DinámicaOperativa:Continua: CONDiscontinua:  DISCapacidadNominal: NEfectiva: EOtras Variables a considerarRangooperativo deVariablesR: RangoP: ParámetroTipo de VariableE : EspecificaciónC : ControlM : ManipulableR: RespuestaI : Independiente D: DependienteAspecto técnicos a tomar en  cuenta, antes (A), durante(E) o después (D)del experimentoNombreSímboloBombaFuerzaDisponible en el laboratorioCONEPotenciaPP= ½ HPI, R(A): Debe verificarse si se encuentran en buen funcionamiento(D): Comprobar que el equipo este totalmente apagadoPanel de ControlRegulador del procesoDisponible en el laboratorioCONE---D, C(A): Debe verificarse si se encuentran en buen estado.(E): Cuidado en su manipulación ColectoresRegulador del ManómetroDisponible en el laboratorioCONECaudal de entradaQe-C, M, D(A), (E), (D): Debe verificarse su buen funcionamientoTuberíasTransporte del fluidoDisponible en el laboratorioCONNPérdida de trabajoLw-E, I(A): Debe verificarse si se encuentran en buen estado.(E): Si presenta alguna fuga debe pararse la pruebaManómetroMedición de la PresiónDisponible en el laboratorioCONE---C, M, D(A): Debe verificarse si se encuentran en buen estado.(E): Cuidado en su manipulación, evitar mojar(D): Comprobar que el equipo este apagadoMultímetroMedición de Voltaje e IntensidadDisponible en el laboratorioCONN y EVoltajeIntensidadVIM, D(A): Debe verificarse la polaridad del conector de las termocuplas.(E): Tener cuidado al manipular el equipo, evitar mojar<br />MATRIZ N° 6: Análisis de Seguridad<br />Identificación de riesgosDescripciónMedidas a tomarInstrumentos requeridosDesborde del nivel del tanque.             El nivel del agua en el tanque debe permanecer constante         Controlar el  nivel del agua.                           Cinta métrica.Controlar las fugas de agua ya que en el sistema hacemos uso de electricidad , podría ocurrir un corto circuito.Las tuberías y sus conexiones deben de estar en buen estado.Revisar las tuberías.                                         <br />MATRIZ N° 7: Diseño del Experimento<br />OBJETIVOS DE LAEXPERIMENTACION. Determinación de trabajo eléctrico y pérdida de energía mecánica.Determinación del caudal y presión de un tramo del sistema.   Materiales a emplearServicios necesariosEquiposSistemas a evaluarVariables a MedirInstrumentos     -Modulo de experimentos de                              Flujo de Fluidos    -Agua    -Electricidad-Bomba -Sistema de tuberías-Tuberías      -Bombas y            contenido-Tanque y    contenido        - Intensidad    - Voltaje    - Potencia    - Caudal    - Presión-Voltímetro-NanómetroModelos Matemáticos y algoritmoVariablesNumero de PruebasObservacionesi234567S9N   1        V2V3V4V5V6V7VnV<br />FICHA DE RECOJO DE INFORMACION:Equipo de TrabajoCaracteristicas Generales del ExperimentoNombresCargoshoraValores de las VariablesN°PruebaObservacioncsVIV2V3V4V5V6V7V8V9VIOV11<br />Flujo de fluidos<br />Objetivos.-<br />Identificar los sistemas de tubería<br />Analizar las diferencias entre los sistemas de tuberías.<br />Dividir las categorías de sistemas de tubería en serie, paralelo, y ramificadas.<br />Establecer las relaciones generales de flujo y la eficiencia en cada sistema.<br />Fundamento teórico:<br />Definición de flujo: es la cantidad de fluido que se suele transportar en un tiempo determinado y esta dado en las siguientes magnitudes: <br />Flujo volumen, Q = AV,[ m3/s] <br />Flujo en peso, W = g*Q,[ N/s] <br />Flujo masa, M =  r*Q,[ Kg/s ] <br />Características de los tipos de flujo:<br />Flujo laminar, <br />Las partículas del fluido se mueven en capaz de una misma trayectoria<br />Siguen la ley de viscosidad de Newton<br />Flujo Turbulento,<br />Se mueven en forma aleatoria y en todas las direcciones<br />Este tipo de fluido es el mas usual de encontrar en el transporte de fluidos<br />Se tienen mayores esfuerzos cortantes<br />Mayores pérdidas de energía<br />No siguen la ley de Newton<br />NUMERO DE REYNOLDS<br />NRe = fuerzas de inercia al mov.     <br />     fuerzas de oposición al mov.<br />NRe >4000 flujo turbulento<br />NRe < 2000 flujo laminar<br />2000 < NRe < 4000 flujo transición<br />Flujo Ideal:<br />No tiene fricción<br />Es incompresible<br />No es viscoso no se debe confundir con el gas ideal<br />Flujo permanente: dp/dt, dT/dt, = 0<br />Las condiciones de flujo no cambian con el tiempo<br />Flujo Uniforme: dv/ds= cte <br />Cuando la velocidad es la misma en magnitud y dirección<br />Flujo unidimensional: dp/dx, dp/dy, dp/dz =cte <br />No se dan cambio en una dirección del flujo, es decir no se dan cambio de velocidad, presión<br />A medida que un fluido fluye por un conducto, tubo o algún otro dispositivo (tuberías) ocurren perdidas de energía debido a la fricción, al diámetro de la tubería y de igual manera debido a otros accesorios presentes en las líneas de flujo. Tales energías traen como resultado una disminución de la presión entre dos puntos del sistema de flujo lo que hace que dichos sistemas sean creados tomando en cuenta las necesidades de transporte de los fluidos y los parámetros a los cuales deben abstenerse para dicha fabricación de las líneas de flujos.<br />Presión de un fluido: la presión de un fluido se transmite con igual intensidad en todas direcciones y actúa normalmente a cualquier superficie plana. En el mismo plano horizontal, el valor de la presión de un líquido es igual en cualquier punto. <br />Viscosidad: la viscosidad de un fluido es aquella propiedad que determina la cantidad de resistencia opuesta a las fuerzas cortantes. La viscosidad se debe primordialmente a las interacciones entre las moléculas del fluido.<br />En un fluido newtoniano, el gradiente de velocidad es obviamente proporcional al esfuerzo constante. Esta constante de proporcionalidad es la viscosidad, y se define mediante la ecuación:<br />Efecto de la Rugosidad: se sabe desde hace mucho tiempo que, para el flujo turbulento y para un determinado número de Reynolds, una tubería rugosa, da un factor de fricción mayor que en una tubería lisa. Por consiguiente si se pulimenta una tubería rugosa, el factor de fricción disminuye y llega un momento en que si se sigue pulimentándola, no se reduce más el factor de fricción para un determinado número de Reynolds.<br /> Ecuación General Del Flujo de Fluidos: el flujo de fluido en tuberías siempre esta acompañado del rozamiento de las partículas del fluido entre si, y consecuentemente, por la perdida de energía disponible, es decir, tiene que existir una perdida de presión en el sentido del flujo<br />Fórmula de Darcy-Weisbach: la fórmula de Darcy-Weisbah, es la fórmula básica para el cálculo de las pérdidas de carga en las tuberías y conductos. La ecuación es la siguiente:<br />La ecuación de Darcy es valida tanto para flujo laminar como para flujo turbulento de cualquier líquido en una tubería. Sin embargo, puede suceder que debido a velocidades extremas, la presión corriente abajo disminuya de tal manera que llegue a igualar, la presión de vapor del líquido, apareciendo el fenómeno conocido como cavitación y los caudales. Con el debido razonamiento se puede aplicar a tubería de diámetro constante o de diferentes diámetros por la que pasa un fluido donde la densidad permanece razonablemente constante a través de una tubería recta, ya sea horizontal, vertical o inclinada. Para tuberías verticales, inclinada o de diámetros variables, el cambio de presión debido a cambios en la elevación, velocidad o densidad del fluido debe hacerse de acuerdo a la ecuación de Bernoulli.<br />Factor de fricción: la fórmula de Darcy puede ser deducida por el análisis dimensional con la excepción del factor de fricción f, que debe ser determinado experimentalmente. El factor de fricción para condiciones de flujo laminar es de (Re < 2000) es función sola del numero de Reynolds, mientras que para flujo turbulento (Re > 4000) es también función del tipo de pared de tubería.<br />a.- Para flujo Laminar la ecuación de fricción puede ordenarse como sigue.<br />b.- Para flujo Turbulento hay diferentes ecuaciones para cada caso:<br />1.- Para flujo turbulento en tuberías rugosas o lisas las leyes de resistencia universales pueden deducirse a partir de:<br />2.- Para tuberías lisas, Blasius ha sugerido:<br />3.- Para tuberías rugosas:<br />Una bomba centrífuga es un tipo de bomba hidráulica que transforma la energía mecánica de un impulsor rotatorio llamado rodete en energía cinética y potencial requeridas. El fluido entra por el centro del rodete, que dispone de unos álabes para conducir el fluido, y por efecto de la fuerza centrífuga es impulsado hacia el exterior, donde es recogido por la carcasa o cuerpo de la bomba, que por el contorno su forma lo conduce hacia las tubuladuras de salida o hacia el siguiente rodete.<br />La pérdida de carga en una tubería o canal, es la pérdida de energía dinámica del fluido debido a la fricción de las partículas del fluido entre sí y contra las paredes de la tubería que las contiene .<br />RESULTADOS:<br />η= WfWe                                                                                                     ……………. (1)<br />We= PeQ*δ                                                                                              ……………. (2)<br />Pe=v*I                                                                …………….. (2a)<br />Q= Vt                                                                                 …………. (2b)<br />Wf=Lw+ ∆υ22gc+ ∆Z                                            ..………….. (3)<br />Lw=Hf= FD*L*υ2Dgc                                                    ………….. (4)<br />υ= QA                                                                             ……………. (5)<br />A= πD24                                                                                   ..…………. (5a)<br />FD= g (Re)                                                             …………….. (6)<br />Re= υ*D* δμ                                                                ……………. (6a)<br />ALGORITMO<br />3478530151765<br />RECOJO DE DATOS DE FLUJO DE FLUIDOS.<br />CUANDO  LA VÁLVULA ESTA ABIERTA HASTA LA MITAD:<br /> Intensidad (A)Voltaje (v)Tiempo (t)Volumen (ml) 11.602205.870021.612209.1118031.62220790041.622198.91110PROMEDIO1.6125219.67.7972.5<br /> v (voltios)I (A)t (segundos)T (OC)V ( m3) Q (m3/s)Pe (watt)We (J/kg)1219.61.61257.717.50.000970.000126354.1052803.71054<br />D (m)Área (m2)vel (m/s)µρRe fDL (cm)Ki0.01270.00012670.997012370.001081100011713.30.022558226.58<br />ἐ/DHtrHahf = Lw totalWfη %0.001552.2933911.3480313753.6414221333.641422111.9<br />CUANDO  LA VÁLVULA ESTA TOTALMENTE  ABIERTA:<br /> Intensidad (A)Voltaje (v)Tiempo (t)Volumen (ml) 11.642204.280021.652205.6104031.652205.9110041.6521961005PROMEDIO1.6475219.755.425986.25<br /> v (voltios)I (A)t (segundos)T (OC)V ( m3) Q (m3/s)Pe (watt)We (J/kg)1219.751.64755.42517.50.000990.0001818362.0381991.44<br />D (m)Área (m2)vel (m/s)µρRe fDL (cm)Ki0.01270.00012671.43510.001081100016860.40.022558226.58<br />ἐ/DHtrHahf = Lw totalWfη %0.0015108.348672.793111.14171391.1419.6412<br />Bibliografia:<br />Levenspiel-engineering flow –editorial reverte s.a<br />
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos
Matriz de flujo de fluidos

Más contenido relacionado

La actualidad más candente

3. comportamiento de fases version i (1)
3. comportamiento de fases   version i (1)3. comportamiento de fases   version i (1)
3. comportamiento de fases version i (1)Scott Jgdz
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
skiper chuck
 
Estudio técnico Andres gutierrez
Estudio técnico Andres gutierrezEstudio técnico Andres gutierrez
Estudio técnico Andres gutierrez
Andres Fgm
 
Regeneración continúa de catalizador
Regeneración continúa de catalizadorRegeneración continúa de catalizador
Regeneración continúa de catalizador
Academia de Ingeniería de México
 
instrumntacion y control
instrumntacion y controlinstrumntacion y control
instrumntacion y control
Crescencio Aurelio
 
Capítulo iv flujo
Capítulo iv   flujoCapítulo iv   flujo
Capítulo iv flujo
JuanAviaJimnez
 
Modelos de aceleración de vida , arrhenius, eyring
Modelos de aceleración de vida , arrhenius, eyringModelos de aceleración de vida , arrhenius, eyring
Modelos de aceleración de vida , arrhenius, eyring
Rodríguez Saúl
 
Reactor Flujo Piston
Reactor Flujo PistonReactor Flujo Piston
Reactor Flujo Piston
Uriel Velasquez
 
Diseño y control de columnas de destilación con acoplamiento técnico
Diseño y control de columnas de destilación con acoplamiento técnicoDiseño y control de columnas de destilación con acoplamiento técnico
Diseño y control de columnas de destilación con acoplamiento técnico
Academia de Ingeniería de México
 
Doc 1.3.1 ejercicios_balance_de_masa
Doc 1.3.1 ejercicios_balance_de_masaDoc 1.3.1 ejercicios_balance_de_masa
Doc 1.3.1 ejercicios_balance_de_masa
carmen zayda ccencho alanya
 
P 2 Reducción de tamaño y análisis granulométrico
P 2 Reducción de tamaño y análisis granulométricoP 2 Reducción de tamaño y análisis granulométrico
P 2 Reducción de tamaño y análisis granulométrico
Lucero Gallegos González
 
Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...
José Carlos López
 
Que es un intercambiador de calor
Que es un intercambiador de calorQue es un intercambiador de calor
Que es un intercambiador de caloryumardiaz
 
Reactor tubular.problemas resueltos.
Reactor tubular.problemas resueltos.Reactor tubular.problemas resueltos.
Reactor tubular.problemas resueltos.
omairaflores
 
Reactores
ReactoresReactores
Reactores
Andres Trujillo
 
Reporte reactor-cstr
Reporte reactor-cstrReporte reactor-cstr
Reporte reactor-cstr
Yoli Tevetoğlu
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-artNorman Rivera
 
Estimacion de costes y rentabilidad
Estimacion de costes y rentabilidadEstimacion de costes y rentabilidad
Estimacion de costes y rentabilidad
LUIS MONREAL
 
Resumen medicion te temperatura
Resumen medicion te temperaturaResumen medicion te temperatura
Resumen medicion te temperatura
henry andres medina rincon
 

La actualidad más candente (20)

3. comportamiento de fases version i (1)
3. comportamiento de fases   version i (1)3. comportamiento de fases   version i (1)
3. comportamiento de fases version i (1)
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Estudio técnico Andres gutierrez
Estudio técnico Andres gutierrezEstudio técnico Andres gutierrez
Estudio técnico Andres gutierrez
 
Regeneración continúa de catalizador
Regeneración continúa de catalizadorRegeneración continúa de catalizador
Regeneración continúa de catalizador
 
instrumntacion y control
instrumntacion y controlinstrumntacion y control
instrumntacion y control
 
Capítulo iv flujo
Capítulo iv   flujoCapítulo iv   flujo
Capítulo iv flujo
 
Modelos de aceleración de vida , arrhenius, eyring
Modelos de aceleración de vida , arrhenius, eyringModelos de aceleración de vida , arrhenius, eyring
Modelos de aceleración de vida , arrhenius, eyring
 
Reactor Flujo Piston
Reactor Flujo PistonReactor Flujo Piston
Reactor Flujo Piston
 
Diseño y control de columnas de destilación con acoplamiento técnico
Diseño y control de columnas de destilación con acoplamiento técnicoDiseño y control de columnas de destilación con acoplamiento técnico
Diseño y control de columnas de destilación con acoplamiento técnico
 
Doc 1.3.1 ejercicios_balance_de_masa
Doc 1.3.1 ejercicios_balance_de_masaDoc 1.3.1 ejercicios_balance_de_masa
Doc 1.3.1 ejercicios_balance_de_masa
 
P 2 Reducción de tamaño y análisis granulométrico
P 2 Reducción de tamaño y análisis granulométricoP 2 Reducción de tamaño y análisis granulométrico
P 2 Reducción de tamaño y análisis granulométrico
 
Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...Obtención de datos cinéticos mediante el método integral y el método diferenc...
Obtención de datos cinéticos mediante el método integral y el método diferenc...
 
Que es un intercambiador de calor
Que es un intercambiador de calorQue es un intercambiador de calor
Que es un intercambiador de calor
 
Reactor tubular.problemas resueltos.
Reactor tubular.problemas resueltos.Reactor tubular.problemas resueltos.
Reactor tubular.problemas resueltos.
 
SECADOR DE BANDEJAS
SECADOR DE BANDEJASSECADOR DE BANDEJAS
SECADOR DE BANDEJAS
 
Reactores
ReactoresReactores
Reactores
 
Reporte reactor-cstr
Reporte reactor-cstrReporte reactor-cstr
Reporte reactor-cstr
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-art
 
Estimacion de costes y rentabilidad
Estimacion de costes y rentabilidadEstimacion de costes y rentabilidad
Estimacion de costes y rentabilidad
 
Resumen medicion te temperatura
Resumen medicion te temperaturaResumen medicion te temperatura
Resumen medicion te temperatura
 

Similar a Matriz de flujo de fluidos

Control i-introducción-1
Control i-introducción-1Control i-introducción-1
Control i-introducción-1
Michael Vera Panez
 
Microdeformaciones
MicrodeformacionesMicrodeformaciones
Microdeformaciones
Jesus Mª Cuadrado
 
Transformadores de medida
Transformadores de medidaTransformadores de medida
Transformadores de medidajeracola
 
Sistema de medición de parámetros de arranque en
Sistema de medición de parámetros de arranque enSistema de medición de parámetros de arranque en
Sistema de medición de parámetros de arranque enjeracola
 
ABC de la mecatrónica
ABC de la mecatrónicaABC de la mecatrónica
ABC de la mecatrónica
Lucas M Mazza
 
Labo 5 instru
Labo 5 instruLabo 5 instru
Labo 5 instru
ssusera29ab4
 
Control clásico moderno ingeniería electrónica.ppt
Control clásico moderno ingeniería electrónica.pptControl clásico moderno ingeniería electrónica.ppt
Control clásico moderno ingeniería electrónica.ppt
Waldo Eber Melendez Garro
 
Proyecto final control
Proyecto final controlProyecto final control
Proyecto final control
Alfonso Alvarado Lopez
 
TEMA 7 Acciones de Control S_y_C.PDF
TEMA 7 Acciones de Control S_y_C.PDFTEMA 7 Acciones de Control S_y_C.PDF
TEMA 7 Acciones de Control S_y_C.PDF
JorgeJarrin5
 
Electrónica: ABC de la ingeniería en mecatrónica
Electrónica: ABC de la ingeniería en mecatrónicaElectrónica: ABC de la ingeniería en mecatrónica
Electrónica: ABC de la ingeniería en mecatrónica
SANTIAGO PABLO ALBERTO
 
Curso ISA Instrumentacion Basica Completo.pdf
Curso ISA Instrumentacion Basica Completo.pdfCurso ISA Instrumentacion Basica Completo.pdf
Curso ISA Instrumentacion Basica Completo.pdf
OscarMandujano2
 
Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...
Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...
Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...Augusto Abreu
 
SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas
SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas
SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas
Erika Herbozo
 
Actividad 3. Instrumentación (1).docx
Actividad 3. Instrumentación (1).docxActividad 3. Instrumentación (1).docx
Actividad 3. Instrumentación (1).docx
joanaordoezcaballero
 
Curso de instrumentación y medición
Curso de instrumentación y mediciónCurso de instrumentación y medición
Curso de instrumentación y medición
YPFB Corporacion
 
ppt clase 4.pdf
ppt clase 4.pdfppt clase 4.pdf
ppt clase 4.pdf
LuLopez7
 
Presentacion Cbime
Presentacion CbimePresentacion Cbime
Presentacion Cbime
Ing. Electromecanica
 
Funciones de-transferencia
Funciones de-transferenciaFunciones de-transferencia
Funciones de-transferenciaangel05az
 
4 modelado
4 modelado4 modelado
Webinar Oportunidades de eficiencia energética para los organismos operadores...
Webinar Oportunidades de eficiencia energética para los organismos operadores...Webinar Oportunidades de eficiencia energética para los organismos operadores...
Webinar Oportunidades de eficiencia energética para los organismos operadores...
Procobre Centro Mexicano de Promocion del Cobre A.C.
 

Similar a Matriz de flujo de fluidos (20)

Control i-introducción-1
Control i-introducción-1Control i-introducción-1
Control i-introducción-1
 
Microdeformaciones
MicrodeformacionesMicrodeformaciones
Microdeformaciones
 
Transformadores de medida
Transformadores de medidaTransformadores de medida
Transformadores de medida
 
Sistema de medición de parámetros de arranque en
Sistema de medición de parámetros de arranque enSistema de medición de parámetros de arranque en
Sistema de medición de parámetros de arranque en
 
ABC de la mecatrónica
ABC de la mecatrónicaABC de la mecatrónica
ABC de la mecatrónica
 
Labo 5 instru
Labo 5 instruLabo 5 instru
Labo 5 instru
 
Control clásico moderno ingeniería electrónica.ppt
Control clásico moderno ingeniería electrónica.pptControl clásico moderno ingeniería electrónica.ppt
Control clásico moderno ingeniería electrónica.ppt
 
Proyecto final control
Proyecto final controlProyecto final control
Proyecto final control
 
TEMA 7 Acciones de Control S_y_C.PDF
TEMA 7 Acciones de Control S_y_C.PDFTEMA 7 Acciones de Control S_y_C.PDF
TEMA 7 Acciones de Control S_y_C.PDF
 
Electrónica: ABC de la ingeniería en mecatrónica
Electrónica: ABC de la ingeniería en mecatrónicaElectrónica: ABC de la ingeniería en mecatrónica
Electrónica: ABC de la ingeniería en mecatrónica
 
Curso ISA Instrumentacion Basica Completo.pdf
Curso ISA Instrumentacion Basica Completo.pdfCurso ISA Instrumentacion Basica Completo.pdf
Curso ISA Instrumentacion Basica Completo.pdf
 
Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...
Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...
Motodologia para Determinas las Causas de las Perturbaciones Electricas de Te...
 
SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas
SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas
SMC Sistema EDA III Evaluación del aislamiento en Máquinas rotativas
 
Actividad 3. Instrumentación (1).docx
Actividad 3. Instrumentación (1).docxActividad 3. Instrumentación (1).docx
Actividad 3. Instrumentación (1).docx
 
Curso de instrumentación y medición
Curso de instrumentación y mediciónCurso de instrumentación y medición
Curso de instrumentación y medición
 
ppt clase 4.pdf
ppt clase 4.pdfppt clase 4.pdf
ppt clase 4.pdf
 
Presentacion Cbime
Presentacion CbimePresentacion Cbime
Presentacion Cbime
 
Funciones de-transferencia
Funciones de-transferenciaFunciones de-transferencia
Funciones de-transferencia
 
4 modelado
4 modelado4 modelado
4 modelado
 
Webinar Oportunidades de eficiencia energética para los organismos operadores...
Webinar Oportunidades de eficiencia energética para los organismos operadores...Webinar Oportunidades de eficiencia energética para los organismos operadores...
Webinar Oportunidades de eficiencia energética para los organismos operadores...
 

Último

absorcion de gases y practicas de laboratorios
absorcion de gases y practicas de laboratoriosabsorcion de gases y practicas de laboratorios
absorcion de gases y practicas de laboratorios
JuanAlvarez413513
 
Estructuras básicas_ conceptos de programación (1).docx
Estructuras básicas_ conceptos de programación  (1).docxEstructuras básicas_ conceptos de programación  (1).docx
Estructuras básicas_ conceptos de programación (1).docx
SamuelRamirez83524
 
maestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdfmaestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdf
JimmyTejadaSalizar
 
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdfEstructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
IsabellaRubio6
 
Inteligencia Artificial y Ciberseguridad.pdf
Inteligencia Artificial y Ciberseguridad.pdfInteligencia Artificial y Ciberseguridad.pdf
Inteligencia Artificial y Ciberseguridad.pdf
Emilio Casbas
 
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB  S2. PARA VSATMANUAL DEL DECODIFICADOR DVB  S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
Ing. Julio Iván Mera Casas
 
Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...
Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...
Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...
espinozaernesto427
 
actividad 2 tecnologia (3).pdf junto con mis compañeros
actividad 2 tecnologia (3).pdf junto con mis compañerosactividad 2 tecnologia (3).pdf junto con mis compañeros
actividad 2 tecnologia (3).pdf junto con mis compañeros
aljitagallego
 
Ventajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloroVentajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloro
durangense277
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
vazquezgarciajesusma
 
Trabajo tecnología sobre Conceptos Básicos De Programación
Trabajo tecnología sobre Conceptos Básicos De ProgramaciónTrabajo tecnología sobre Conceptos Básicos De Programación
Trabajo tecnología sobre Conceptos Básicos De Programación
SofiaCollazos
 
Estructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdfEstructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdf
cristianrb0324
 
Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.
AlejandraCasallas7
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
CesarPazosQuispe
 
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVATECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
LilibethEstupian
 
Desarrollo de habilidades de pensamiento (2).pdf
Desarrollo de habilidades de pensamiento (2).pdfDesarrollo de habilidades de pensamiento (2).pdf
Desarrollo de habilidades de pensamiento (2).pdf
samuelvideos
 
Conceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación ProyectoConceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación Proyecto
cofferub
 
EduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clasesEduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clases
PABLOCESARGARZONBENI
 
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
marianabz2403
 
Estructuras básicas_ conceptos básicos de programación.pdf
Estructuras básicas_  conceptos básicos de programación.pdfEstructuras básicas_  conceptos básicos de programación.pdf
Estructuras básicas_ conceptos básicos de programación.pdf
ItsSofi
 

Último (20)

absorcion de gases y practicas de laboratorios
absorcion de gases y practicas de laboratoriosabsorcion de gases y practicas de laboratorios
absorcion de gases y practicas de laboratorios
 
Estructuras básicas_ conceptos de programación (1).docx
Estructuras básicas_ conceptos de programación  (1).docxEstructuras básicas_ conceptos de programación  (1).docx
Estructuras básicas_ conceptos de programación (1).docx
 
maestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdfmaestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdf
 
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdfEstructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
 
Inteligencia Artificial y Ciberseguridad.pdf
Inteligencia Artificial y Ciberseguridad.pdfInteligencia Artificial y Ciberseguridad.pdf
Inteligencia Artificial y Ciberseguridad.pdf
 
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB  S2. PARA VSATMANUAL DEL DECODIFICADOR DVB  S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
 
Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...
Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...
Las lámparas de alta intensidad de descarga o lámparas de descarga de alta in...
 
actividad 2 tecnologia (3).pdf junto con mis compañeros
actividad 2 tecnologia (3).pdf junto con mis compañerosactividad 2 tecnologia (3).pdf junto con mis compañeros
actividad 2 tecnologia (3).pdf junto con mis compañeros
 
Ventajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloroVentajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloro
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
 
Trabajo tecnología sobre Conceptos Básicos De Programación
Trabajo tecnología sobre Conceptos Básicos De ProgramaciónTrabajo tecnología sobre Conceptos Básicos De Programación
Trabajo tecnología sobre Conceptos Básicos De Programación
 
Estructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdfEstructuras Básicas_Tecnología_Grado10-7.pdf
Estructuras Básicas_Tecnología_Grado10-7.pdf
 
Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
 
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVATECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
 
Desarrollo de habilidades de pensamiento (2).pdf
Desarrollo de habilidades de pensamiento (2).pdfDesarrollo de habilidades de pensamiento (2).pdf
Desarrollo de habilidades de pensamiento (2).pdf
 
Conceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación ProyectoConceptos Básicos de Programación Proyecto
Conceptos Básicos de Programación Proyecto
 
EduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clasesEduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clases
 
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLO DE HABILIDADES DE PENSAMIENTO.pdf
 
Estructuras básicas_ conceptos básicos de programación.pdf
Estructuras básicas_  conceptos básicos de programación.pdfEstructuras básicas_  conceptos básicos de programación.pdf
Estructuras básicas_ conceptos básicos de programación.pdf
 

Matriz de flujo de fluidos

  • 1. MATRIZ N° 1: Análisis Insumo / Producto<br />Materias Primas, Insumos Servicios, Productos, Sub-productos y Efluentes<br />Objeto de AnálisisMateria Prima: MPInsumo: INProduct.: PRSuM-Producto: SPServicios: SSIdentificación de variablesTipo de VariableC: ControlM: ManipulableR: RespuestaI:IndependienteD: Dependiente Rangooperativo de variablesR:RangoP: ParámetroReferenciade Costos(Donde sea permitido)Aspectos técnicos a tomar en cuenta, antes (A),durante (E ) o después (D) , del proceso de experimentaciónReferidos a seguridad, impacto ambiental, eficiencia operativa, entre otrosModelos Matemáticos:Leyes implicadas o temasRelaciones de eficienciaNombreSímbolo IN y SS: Agua en la succión Volumen en el tanqueVtC,M,IRCosto del m3 de agua segúnSedapar(A): Abastecimiento de agua para dar inicio al proceso.(A): Limpieza del equipo(A): Correcta conexión del circuito de tuberías para su arranque.(A): El agua debe entrar sin presencia de residuos sólidos.(E): Verificar que no varíe la altura del tanque para que el proceso se realice en estado estacionario(E): Evitar fugas de agua cerca de las conexiones eléctricas, ya que podría generarse accidentes.(D): Dejar cerradas las llaves de paso y verificar la completa desconexión eléctrica del equipo para su próximo uso.Perdida de energía en el sistema CaudalQ = A VFlujo másico:m = ρAvSección Transversal de la TuberíaTrabajo eléctricoW = VItPotencia eléctricaP = VICarga EstaticaHT = -HS + HDBalance de Energía Mecánica CaudalQsM,IR Carga estática de succión HsC,M,IR Temperatura del aguaTºIP ViscosidaduD,RP DensidadρD,RPIN y SS: Agua en la descarga Volumen en el tanqueVtC,M,IRAsegurarse del buen funcionamiento del multímetro.(A)Tener mucha prudencia en el momento de medir la intensidad eléctrica. (E)Asegurarse de haber apagado correctamente el sistema.(D) CaudalQsM,IR Carga estática de descarga HsC,M,IR Temperatura del aguaTºIP ViscosidaduD,RP DensidadρD,RPSS: Corriente eléctrica Tiempo tI,RRRCosto del Kw según Seal Trabajo eléctricoWeIP VoltajeVIP Intensidad IRP PotenciaPIR<br />MATRIZ N° 2: Análisis de Procesos_ quot; Donde hay un cambio hay un procesoquot; <br />Nombre delProcesoIngresosOperadores deCambioSalidasAnálisis de VariablesNombre (Símbolo)ContextoEntradaOperadoresSalidaFactoresfavorablesFactoresdesfavorablesTransporte del fluido de un punto de succión a uno de descarga Agua en la succiónBombasAgua en la descarga Caudalpotencia nominal y efectiva de la bombatrabajo de la bombapresión de succión y descarga de la bombaCaudal de salida-Medidor de presión-panel de control-regulador del flujo (llaves de paso)-no se cuenta con medidor de caudal-fugas de agua-tanque superior sin capacidad para cebar.Flujo másicoFlujo másico de salidaCarga Estática de succiónCarga estática de descargaVelocidadVelocidad de salidaTemperaturaTemperatura de salidaPresión de succiónPresión de descargaTiempo de entradaTiempo de salidaRedes de TuberíasCaudalTipo de circuito: serie o paraleloTrabajo perdidoTipo de materialLongitudDiámetroNº de accesoriosRugosidadCaudal <br />MATRIZ N° 3: Análisis de Sistemas<br />Identificación de SistemasTipificaciónAnálisis de VariablesInstrumentos de medición de Variables(indicar marca, rango, energía)Modelos MatemáticosSistema eInterfasesProcesos queTienen lugaren el sistemaMacroprocesos enlos que seinscribe elsistemaDinámicadel SistemaT=transformadorF=flujoS=stockE=estacionarioNE=no estacionarioA=abiertoC=cerradoA=aisladoNombreSímboloTipoE=especificaciónC=controlM=manipulableR=respuestaI=independienteD=dependienteTanque y contenidoTransporte de fluidosTransporte de fluidosS,E,AVolumenCaudal de descarga y alimentaciónTemperatura (agua) Nivel del liquido en el tanqueVt,QsQdThC,MM,IIC,MCinta métrica(0-1m)Termómetro(-10 a +120 ºC)Balde, probeta (1 litro)Cronometro (seg.)EGEMBomba y contenidoA,F,Epotenciapresión de succion y de descargatiempoCaudal de succionPPs,PdtQsIC,RIM,CVoltímetroAmperímetroCronometromanómetroTramos de tuberíaA,Etrabajo perdidolongitudLWLEICinta métricaCircuito completoO,E,StiempotIcronometro<br />MATRIZ N° 4 A: Relación de variables identificadas (Esta matriz se Ilena recogiendo informaci6n de las matrices anteriores)Relación de variables identificadasen las distintas matricesRangos de lasvariablesInstrumento de mediciónSistema a que pertenecen las variablesModelos Matemáticos implicadosNombreSímboloVolumen fluidoVf50-60 (litros)Cinta métricaTanque o contenedorEcuacion general de Energia mecanica : Q Caudal ([L3T−1]; m3/s) A Es el área ([L2]; m2) Es la velocidad lineal promedio. ([LT−1]; m/s)Caudal de succiónQs18-20(litros/min)ProbetaBomba del tanqueCaudal de descargaQd18-20(litros/min)BaldeBomba del tanqueTemperaturaT17-18(Centígrados)TermómetroSistema de fluidosNivel del liquidoY50-60(cm)Cinta métricaTanquePotencial efectivaPe468.72-501.75(Watts)PotenciómetroBombaTrabajo eléctrico perdidoWe-MultimetroBombaTrabajo perdidoWp-MultimetroBombaTiempot10-15(minutos)CronometroCircuito completoMATRIZ N° 4 B: Valoración y priorización de variables Análisis de Conectividad entre las variables (*)Relación devariablesidentificadasEn orden deimportanciaRazones técnicas que sustentan la priorizaciónde variablesValores que tomaríanlas variables en laexperimentación(..)VARIABLESV1V2V3V4V5V6V7V8V9N.NombreSímbolo><<> <><><><><<<><Conexiones-La priorización de variables obedece a las variables controlables y manipulables, ya que solo existen dos variables que pueden controlarse en el sistema a trabajar.1VXXX3Nivel liquidoH50-60(cm)2VXXX3VolumenV50-60(litros)3VXXX3Caudal desc.Qd18-20(litros/min)4V0Caudal succ.Qs18-20(litros/min)5VXXXX4Trabajo elec.We-6VXX2Trabajo perd.LW-7VXX2PotencialP468.72-501.75(Watts)8VXXx3Tiempot10-15(minutos)9VXX2temperaturaT17-18(centígrados)(*)Aquí se identifican el numero de relaciones que tiene una variable evaluando la influencia que ejerce en otras variables (>) o que recibe de otras variables (<).A mayor numero de interrelaciones, mayor conectividad, y por tanto mayor importancia relativa de la variable.,(**)Estos valores deben estar dentro del rango señalado en la matriz anterior. Se les puede asignar 2 6 mas valores, o se les puede mantener en un valor fijo determinado. Esto depende de losobjetivos que se deseen lograr y de la viabilidad operativa)<br />MATRIZ N° 5: Análisis de Tecnología<br />Objeto de AnálisisFunciones que cumplenFabricacióny Costos($.)DinámicaOperativa:Continua: CONDiscontinua: DISCapacidadNominal: NEfectiva: EOtras Variables a considerarRangooperativo deVariablesR: RangoP: ParámetroTipo de VariableE : EspecificaciónC : ControlM : ManipulableR: RespuestaI : Independiente D: DependienteAspecto técnicos a tomar en cuenta, antes (A), durante(E) o después (D)del experimentoNombreSímboloBombaFuerzaDisponible en el laboratorioCONEPotenciaPP= ½ HPI, R(A): Debe verificarse si se encuentran en buen funcionamiento(D): Comprobar que el equipo este totalmente apagadoPanel de ControlRegulador del procesoDisponible en el laboratorioCONE---D, C(A): Debe verificarse si se encuentran en buen estado.(E): Cuidado en su manipulación ColectoresRegulador del ManómetroDisponible en el laboratorioCONECaudal de entradaQe-C, M, D(A), (E), (D): Debe verificarse su buen funcionamientoTuberíasTransporte del fluidoDisponible en el laboratorioCONNPérdida de trabajoLw-E, I(A): Debe verificarse si se encuentran en buen estado.(E): Si presenta alguna fuga debe pararse la pruebaManómetroMedición de la PresiónDisponible en el laboratorioCONE---C, M, D(A): Debe verificarse si se encuentran en buen estado.(E): Cuidado en su manipulación, evitar mojar(D): Comprobar que el equipo este apagadoMultímetroMedición de Voltaje e IntensidadDisponible en el laboratorioCONN y EVoltajeIntensidadVIM, D(A): Debe verificarse la polaridad del conector de las termocuplas.(E): Tener cuidado al manipular el equipo, evitar mojar<br />MATRIZ N° 6: Análisis de Seguridad<br />Identificación de riesgosDescripciónMedidas a tomarInstrumentos requeridosDesborde del nivel del tanque. El nivel del agua en el tanque debe permanecer constante Controlar el nivel del agua. Cinta métrica.Controlar las fugas de agua ya que en el sistema hacemos uso de electricidad , podría ocurrir un corto circuito.Las tuberías y sus conexiones deben de estar en buen estado.Revisar las tuberías. <br />MATRIZ N° 7: Diseño del Experimento<br />OBJETIVOS DE LAEXPERIMENTACION. Determinación de trabajo eléctrico y pérdida de energía mecánica.Determinación del caudal y presión de un tramo del sistema. Materiales a emplearServicios necesariosEquiposSistemas a evaluarVariables a MedirInstrumentos -Modulo de experimentos de Flujo de Fluidos -Agua -Electricidad-Bomba -Sistema de tuberías-Tuberías -Bombas y contenido-Tanque y contenido - Intensidad - Voltaje - Potencia - Caudal - Presión-Voltímetro-NanómetroModelos Matemáticos y algoritmoVariablesNumero de PruebasObservacionesi234567S9N 1 V2V3V4V5V6V7VnV<br />FICHA DE RECOJO DE INFORMACION:Equipo de TrabajoCaracteristicas Generales del ExperimentoNombresCargoshoraValores de las VariablesN°PruebaObservacioncsVIV2V3V4V5V6V7V8V9VIOV11<br />Flujo de fluidos<br />Objetivos.-<br />Identificar los sistemas de tubería<br />Analizar las diferencias entre los sistemas de tuberías.<br />Dividir las categorías de sistemas de tubería en serie, paralelo, y ramificadas.<br />Establecer las relaciones generales de flujo y la eficiencia en cada sistema.<br />Fundamento teórico:<br />Definición de flujo: es la cantidad de fluido que se suele transportar en un tiempo determinado y esta dado en las siguientes magnitudes: <br />Flujo volumen, Q = AV,[ m3/s] <br />Flujo en peso, W = g*Q,[ N/s] <br />Flujo masa, M = r*Q,[ Kg/s ] <br />Características de los tipos de flujo:<br />Flujo laminar, <br />Las partículas del fluido se mueven en capaz de una misma trayectoria<br />Siguen la ley de viscosidad de Newton<br />Flujo Turbulento,<br />Se mueven en forma aleatoria y en todas las direcciones<br />Este tipo de fluido es el mas usual de encontrar en el transporte de fluidos<br />Se tienen mayores esfuerzos cortantes<br />Mayores pérdidas de energía<br />No siguen la ley de Newton<br />NUMERO DE REYNOLDS<br />NRe = fuerzas de inercia al mov. <br /> fuerzas de oposición al mov.<br />NRe >4000 flujo turbulento<br />NRe < 2000 flujo laminar<br />2000 < NRe < 4000 flujo transición<br />Flujo Ideal:<br />No tiene fricción<br />Es incompresible<br />No es viscoso no se debe confundir con el gas ideal<br />Flujo permanente: dp/dt, dT/dt, = 0<br />Las condiciones de flujo no cambian con el tiempo<br />Flujo Uniforme: dv/ds= cte <br />Cuando la velocidad es la misma en magnitud y dirección<br />Flujo unidimensional: dp/dx, dp/dy, dp/dz =cte <br />No se dan cambio en una dirección del flujo, es decir no se dan cambio de velocidad, presión<br />A medida que un fluido fluye por un conducto, tubo o algún otro dispositivo (tuberías) ocurren perdidas de energía debido a la fricción, al diámetro de la tubería y de igual manera debido a otros accesorios presentes en las líneas de flujo. Tales energías traen como resultado una disminución de la presión entre dos puntos del sistema de flujo lo que hace que dichos sistemas sean creados tomando en cuenta las necesidades de transporte de los fluidos y los parámetros a los cuales deben abstenerse para dicha fabricación de las líneas de flujos.<br />Presión de un fluido: la presión de un fluido se transmite con igual intensidad en todas direcciones y actúa normalmente a cualquier superficie plana. En el mismo plano horizontal, el valor de la presión de un líquido es igual en cualquier punto. <br />Viscosidad: la viscosidad de un fluido es aquella propiedad que determina la cantidad de resistencia opuesta a las fuerzas cortantes. La viscosidad se debe primordialmente a las interacciones entre las moléculas del fluido.<br />En un fluido newtoniano, el gradiente de velocidad es obviamente proporcional al esfuerzo constante. Esta constante de proporcionalidad es la viscosidad, y se define mediante la ecuación:<br />Efecto de la Rugosidad: se sabe desde hace mucho tiempo que, para el flujo turbulento y para un determinado número de Reynolds, una tubería rugosa, da un factor de fricción mayor que en una tubería lisa. Por consiguiente si se pulimenta una tubería rugosa, el factor de fricción disminuye y llega un momento en que si se sigue pulimentándola, no se reduce más el factor de fricción para un determinado número de Reynolds.<br /> Ecuación General Del Flujo de Fluidos: el flujo de fluido en tuberías siempre esta acompañado del rozamiento de las partículas del fluido entre si, y consecuentemente, por la perdida de energía disponible, es decir, tiene que existir una perdida de presión en el sentido del flujo<br />Fórmula de Darcy-Weisbach: la fórmula de Darcy-Weisbah, es la fórmula básica para el cálculo de las pérdidas de carga en las tuberías y conductos. La ecuación es la siguiente:<br />La ecuación de Darcy es valida tanto para flujo laminar como para flujo turbulento de cualquier líquido en una tubería. Sin embargo, puede suceder que debido a velocidades extremas, la presión corriente abajo disminuya de tal manera que llegue a igualar, la presión de vapor del líquido, apareciendo el fenómeno conocido como cavitación y los caudales. Con el debido razonamiento se puede aplicar a tubería de diámetro constante o de diferentes diámetros por la que pasa un fluido donde la densidad permanece razonablemente constante a través de una tubería recta, ya sea horizontal, vertical o inclinada. Para tuberías verticales, inclinada o de diámetros variables, el cambio de presión debido a cambios en la elevación, velocidad o densidad del fluido debe hacerse de acuerdo a la ecuación de Bernoulli.<br />Factor de fricción: la fórmula de Darcy puede ser deducida por el análisis dimensional con la excepción del factor de fricción f, que debe ser determinado experimentalmente. El factor de fricción para condiciones de flujo laminar es de (Re < 2000) es función sola del numero de Reynolds, mientras que para flujo turbulento (Re > 4000) es también función del tipo de pared de tubería.<br />a.- Para flujo Laminar la ecuación de fricción puede ordenarse como sigue.<br />b.- Para flujo Turbulento hay diferentes ecuaciones para cada caso:<br />1.- Para flujo turbulento en tuberías rugosas o lisas las leyes de resistencia universales pueden deducirse a partir de:<br />2.- Para tuberías lisas, Blasius ha sugerido:<br />3.- Para tuberías rugosas:<br />Una bomba centrífuga es un tipo de bomba hidráulica que transforma la energía mecánica de un impulsor rotatorio llamado rodete en energía cinética y potencial requeridas. El fluido entra por el centro del rodete, que dispone de unos álabes para conducir el fluido, y por efecto de la fuerza centrífuga es impulsado hacia el exterior, donde es recogido por la carcasa o cuerpo de la bomba, que por el contorno su forma lo conduce hacia las tubuladuras de salida o hacia el siguiente rodete.<br />La pérdida de carga en una tubería o canal, es la pérdida de energía dinámica del fluido debido a la fricción de las partículas del fluido entre sí y contra las paredes de la tubería que las contiene .<br />RESULTADOS:<br />η= WfWe ……………. (1)<br />We= PeQ*δ ……………. (2)<br />Pe=v*I …………….. (2a)<br />Q= Vt …………. (2b)<br />Wf=Lw+ ∆υ22gc+ ∆Z ..………….. (3)<br />Lw=Hf= FD*L*υ2Dgc ………….. (4)<br />υ= QA ……………. (5)<br />A= πD24 ..…………. (5a)<br />FD= g (Re) …………….. (6)<br />Re= υ*D* δμ ……………. (6a)<br />ALGORITMO<br />3478530151765<br />RECOJO DE DATOS DE FLUJO DE FLUIDOS.<br />CUANDO LA VÁLVULA ESTA ABIERTA HASTA LA MITAD:<br /> Intensidad (A)Voltaje (v)Tiempo (t)Volumen (ml) 11.602205.870021.612209.1118031.62220790041.622198.91110PROMEDIO1.6125219.67.7972.5<br /> v (voltios)I (A)t (segundos)T (OC)V ( m3) Q (m3/s)Pe (watt)We (J/kg)1219.61.61257.717.50.000970.000126354.1052803.71054<br />D (m)Área (m2)vel (m/s)µρRe fDL (cm)Ki0.01270.00012670.997012370.001081100011713.30.022558226.58<br />ἐ/DHtrHahf = Lw totalWfη %0.001552.2933911.3480313753.6414221333.641422111.9<br />CUANDO LA VÁLVULA ESTA TOTALMENTE ABIERTA:<br /> Intensidad (A)Voltaje (v)Tiempo (t)Volumen (ml) 11.642204.280021.652205.6104031.652205.9110041.6521961005PROMEDIO1.6475219.755.425986.25<br /> v (voltios)I (A)t (segundos)T (OC)V ( m3) Q (m3/s)Pe (watt)We (J/kg)1219.751.64755.42517.50.000990.0001818362.0381991.44<br />D (m)Área (m2)vel (m/s)µρRe fDL (cm)Ki0.01270.00012671.43510.001081100016860.40.022558226.58<br />ἐ/DHtrHahf = Lw totalWfη %0.0015108.348672.793111.14171391.1419.6412<br />Bibliografia:<br />Levenspiel-engineering flow –editorial reverte s.a<br />