SlideShare una empresa de Scribd logo
ESFUERZOS EN PAVIMENTOS
RÍGIDOS
CONTENIDO
Introducción
Esfuerzos producidos por cambios de temperatura
Esfuerzos producidos por cambios de humedad
Esfuerzos producidos por las cargas del tránsito
Presencia de acero en el pavimento rígido
Método de los elementos finitos
INTRODUCCIÓN
ESFUERZOS EN PAVIMENTOS RÍGIDOS
ESFUERZOS EN PAVIMENTOS RÍGIDOS
Cambios de temperatura
—Alabeo por gradiente térmico
—Contracción durante el fraguado
—Expansión y contracción por cambios uniformes de
temperatura
Cambios de humedad
Cargas del tránsito
Otros (bombeo, cambios volumétricos del soporte)
FACTORES QUE CONTRIBUYEN AL DESARROLLO
DE ESFUERZOS EN PAVIMENTOS RÍGIDOS
ESFUERZOS
PRODUCIDOS POR
CAMBIOS DE
TEMPERATURA
ESFUERZOS EN PAVIMENTOS RÍGIDOS
Al cambiar la temperatura ambiente durante el día,
también cambia la temperatura del pavimento
Este ciclo térmico crea un gradiente térmico en la losa
El gradiente produce un alabeo en la losa
El peso propio de la losa y su contacto con la superficie
de apoyo restringen el movimiento, generándose
esfuerzos
Dependiendo de la hora del día, estos esfuerzos se
pueden sumar o restar de los efectos producidos por las
cargas del tránsito
ALABEO POR GRADIENTE TÉRMICO
ALABEO POR GRADIENTE TÉRMICO
FÓRMULAS DE BRADBURY
2
*** tEC
t




 








 2
1
21
2
**



CCtE
t









l
atE
t
)1(3
**



Borde de la losa
Interior de la losa
Esquina de la losa
ALABEO POR GRADIENTE TÉRMICO
FÓRMULAS DE BRADBURY
Notas
1.Debido a que Ci es inversamente proporcional al
módulo de reacción del soporte (k), los esfuerzos por
alabeo se incrementan cuando el soporte es muy
rígido, ya que éste no puede asumir el contorno del
pavimento
2. Como Ci es directamente proporcional a la longitud
de la losa, el aumento de ésta incrementa los esfuerzos
por alabeo térmico
ALABEO POR GRADIENTE TÉRMICO
t Esfuerzo en el sitio considerado
E Módulo elástico del concreto
 Coeficiente de dilatación térmica del concreto (0.000005/ºF)
t Diferencia de temperatura entre las dos caras de la losa (gradiente)
C Coeficiente que depende de la longitud de la losa y del radio de rigidez relativa
C1 Coeficiente en la dirección en la cual se calcula el esfuerzo
C2 Coeficiente en la dirección perpendicular a C1
 Relación de Poisson del concreto
a Radio del área cargada en el borde de la losa
l Radio de rigidez relativa
FÓRMULAS DE BRADBURY
SIGNIFICADO DE LOS TÉRMINOS DE LAS FÓRMULAS
ALABEO POR GRADIENTE TÉRMICO
CARTA DE BRADBURY PARA LA DETERMINACIÓN
DE C, C1 Y C2
ALABEO POR GRADIENTE TÉRMICO
RADIO DE RIGIDEZ RELATIVA
(Westergaard)
Mide la rigidez de la losa de concreto respecto del
suelo de soporte
ALABEO POR GRADIENTE TÉRMICO
h = espesor de la losa
k = módulo de reacción del soporte
EJEMPLO DE CÁLCULO DE ESFUERZOS POR ALABEO
Calcular los diferentes esfuerzos de alabeo para las
siguientes condiciones:
k 200 pci
t 3ºF/pulgadas
 0.000005/ºF
E 5,000,000 psi
 0.15
a 5.9 pulgadas
h 9.0 pulgadas
Long. losa (Bx) 14 pies
Ancho losa (By) 12 pies
ALABEO POR GRADIENTE TÉRMICO
EJEMPLO DE CÁLCULO DE ESFUERZOS POR ALABEO
Solución
ALABEO POR GRADIENTE TÉRMICO
Cálculo de los esfuerzos
EJEMPLO DE CÁLCULO DE ESFUERZOS POR ALABEO
ALABEO POR GRADIENTE TÉRMICO
El ejemplo muestra que los esfuerzos por alabeo
pueden superar a los producidos por las cargas del
tránsito
Sin embargo, dichos esfuerzos no se consideran en el
instante de determinar el espesor del pavimento
La filosofía que gobierna el diseño es que las juntas y
el acero se emplean para aliviar o cuidar los esfuerzos
por alabeo, y el espesor se determina con base en las
cargas del tránsito
CONSIDERACIONES SOBRE LOS ESFUERZOS POR ALABEO
EN EL DISEÑO ESTRUCTURAL DEL PAVIMENTO
ALABEO POR GRADIENTE TÉRMICO
CONTRACCIÓN DURANTE EL FRAGUADO
La fricción entre la losa y la fundación, debido a la
caída de temperatura durante el fraguado de concreto,
produce esfuerzos en el concreto y en la armadura que
contenga
El diseño de la armadura de refuerzo de un
pavimento rígido se basa en la consideración de los
esfuerzos de fricción
CONTRACCIÓN DURANTE EL FRAGUADO
c = (γc)(L)(fa)/2
L = longitud de la losa
γc = peso unitario del concreto
fa = coeficiente de fricción entre la losa y la subrasante
(generalmente 1.5)
ESFUERZOS DEBIDOS A FRICCIÓNCONTRACCIÓN DURANTE EL FRAGUADO
Ejemplo
Determinar el esfuerzo máximo de contracción en una
losa de pavimento rígido de 30 pies de longitud y peso
unitario de 150 libras/pie3, si fa = 1.5
Solución
Nota:
Los esfuerzos friccionales sólo son importantes en losas
de gran longitud
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
Las aberturas de las juntas cambian a causa de los
cambios de temperatura, alterando las condiciones de
transferencia de carga
Las características de contracción controlan la abertura
de las juntas transversales del pavimento
El material que se coloque para sellar las juntas deberá
ser capaz de soportar, sin despegarse, los movimientos
del concreto cuando ocurra la máxima contracción
L = abertura de la junta o cambio en la longitud de la losa.
(Si L >1 mm, se requieren varillas de transferencia
de carga)
C = factor de ajuste debido a la fricción entre losa y soporte
(0.65 para subbase estabilizada y 0.80 para subbase
granular)
L = longitud de la losa (espacio entre juntas)
 = coeficiente de dilatación del concreto (aprox. 0.00001/°C)
T = rango máximo de diferencia de temperatura
 = coeficiente de contracción del concreto (depende de la
resistencia a la tracción indirecta)
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
L = CL (  T + )
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
VALORES DEL COEFICIENTE DE CONTRACCIÓN (δ)
(Experiencias de SIKA Colombia)
Ejemplo
Calcular el movimiento de la junta transversal de una
losa de 4.00 m de longitud, colocada sobre una subbase
granular (C=0.8) , si T = 25 ºC y  = 0.00025
Solución
L = (0.80)(4)(1,000) (0.00001*25 + 0.00025)
L = 1.6 mm
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
L = CL (  t + )
Sensibilidad al coeficiente de contracción (δ)
Si éste fuese constante, la relación es directa y lineal
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A
LAS DIVERSAS VARIABLES
Sensibilidad al coeficiente de contracción (δ)
Si éste varía con la edad del concreto como indican los
resultados de SIKA Colombia, la relación toma otra forma
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A
LAS DIVERSAS VARIABLES
Sensibilidad al cambio de temperatura (ΔT)
La relación es lineal y directa
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A
LAS DIVERSAS VARIABLES
Sensibilidad a la longitud de la losa
A igualdad de los demás factores, si la longitud aumenta,
la abertura de la junta por retracción también aumenta
EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS
SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A
LAS DIVERSAS VARIABLES
ESFUERZOS
PRODUCIDOS POR
CAMBIOS DE
HUMEDAD
ESFUERZOS EN PAVIMENTOS RÍGIDOS
ESFUERZOS PRODUCIDOS POR
CAMBIOS DE HUMEDAD
ALABEO POR CAMBIOS DE HUMEDAD
El alabeo también se produce por cambios de
humedad en la losa
Estos esfuerzos suelen ser opuestos a los producidos
por cambios cíclicos de temperatura
En climas húmedos, la humedad de las losas es
relativamente constante
En climas secos, la superficie se encuentra más seca
que el fondo
ALABEO POR CAMBIOS DE HUMEDAD
ESFUERZOS PRODUCIDOS POR
CAMBIOS DE HUMEDAD
ESFUERZOS
PRODUCIDOS POR
LAS CARGAS DEL
TRÁNSITO
ESFUERZOS EN PAVIMENTOS RÍGIDOS
LOCALIZACIONES CRÍTICAS DE CARGA
 Interior: Ocurre cuando la carga es aplicada en el
interior de la superficie de la losa, lejana a los bordes
 Borde: Ocurre cuando la carga es aplicada en el borde
de la superficie de la losa, lejana a las esquinas
 Esquina: Ocurre cuando el centro de la carga está en la
bisectriz del ángulo de la esquina
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
FÓRMULAS DE WESTERGAARD ( =0.15)
* La presencia del término h2 en el denominador de las 3 fórmulas, sugiere que el
espesor de la losa es crítico en la reducción de esfuerzos por carga a niveles
aceptables
FÓRMULAS DE WESTERGAARD
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
SUPOSICIONES PARA LAS FÓRMULAS DE
WESTERGAARD
La losa actúa como un sólido homogéneo,
isotrópico y elástico en equilibrio
La losa tiene sección transversal uniforme
Todas las fuerzas son normales a la superficie
No hay fuerzas friccionales o de corte
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
SUPOSICIONES PARA LAS FÓRMULAS DE
WESTERGAARD
El eje neutro se encuentra en la mitad de la losa
La deformación por corte es despreciable
La losa se considera infinita para carga en el interior
y semi – infinita para carga en el borde
La carga se aplica sobre un área circular
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
Ejemplo
Determinar los esfuerzos críticos por carga para los
siguientes datos
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
Los resultados muestran que el sitio crítico es el borde
longitudinal (junto a la berma), lejos de las esquinas de
la losa
Solución
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
CARTAS DE INFLUENCIA
Pickett y Ray (1951) desarrollaron cartas de
influencia para el cálculo de momentos y deflexiones
en el interior y en el borde de pavimentos rígidos,
suponiendo que la subrasante actúa como un líquido
denso o como un sólido elástico
La solución implica el dibujo de las huellas de los
neumáticos a una escala apropiada y contar el número
de cuadros cubiertos por ellas en la carta (N)
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
Esfuerzo
CARTAS DE INFLUENCIA
Momento
10000
2
Npl
M 
2
6
h
M

ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
CARTA DE INFLUENCIA PARA DETERMINACIÓN DE
MOMENTO
(Carga en el interior, subrasante líquido denso)
Ejemplo
Empleando la carta de influencia adecuada, determinar
el esfuerzo máximo producido por una carga por eje
tándem en el interior de una losa de pavimento, de
acuerdo con los siguientes datos
—p = 150 psi
—h = 14 pulgadas
—k = 100 libras/ pulgada cúbica
—l = 55.31 pulgadas
—P en el tándem = 160,000 libras
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
psi414
)14(
537,13*6
2

(Carga en el interior, subrasante líquido denso)
Solución
Dibujando el sistema tándem a escala apropiada sobre
la carta de influencia, se cuentan N = 295 cuadros
cubiertos por las improntas
pielbM  537,13
000,10
295*)31.55(*150 2
CARTA DE INFLUENCIA PARA DETERMINACIÓN DE
MOMENTO
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
¿Por qué no se usa la teoría elástica de capas en el
análisis de los pavimentos rígidos?
Porque las juntas y discontinuidades de estos
pavimentos hacen inaplicable esta teoría
ESFUERZOS PRODUCIDOS POR
LAS CARGAS DEL TRÁNSITO
ESFUERZOS COMBINADOS POR CAMBIOS DE
TEMPERATURA Y CARGAS DEL TRÁNSITO
Para las condiciones de temperatura y carga de los
ejemplos previos, determinar el esfuerzo total en la
losa de 9 pulgadas de espesor
Ejemplo
ANÁLISIS DE ELEMENTOS
COMPLEMENTARIOS
PRESENCIA DE
ACERO EN EL
PAVIMENTO RÍGIDO
PRESENCIA DE ACERO
EN LOS PAVIMENTOS RÍGIDOS
REFUERZO POR TEMPERATURA
La cantidad de acero necesaria para mantener
intactas las fisuras en los pavimentos de concreto
reforzado con juntas, se calcula balanceando las
fuerzas a lo largo de un plano horizontal
Si se desarrolla una fisura, la resistencia al
movimiento debe ser soportada por la tensión en el
acero
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO REFORZADO CON JUNTAS
La cantidad necesaria de acero depende de tres factores:
Longitud de la losa: A medida que aumenta, se
incrementa el área de contacto con el material de base, lo que
aumenta el esfuerzo total resistente, generando mayores
esfuerzos a medida que la losa se contrae
Esfuerzo de trabajo del acero: Usualmente se toma
como 75 % del esfuerzo de fluencia
Factor de fricción: Representa la resistencia a la fricción
entre la parte inferior de la losa y la superior del soporte
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO REFORZADO CON JUNTAS
As = (gc*h*L*fa)/2fs
gc = peso unitario del concreto
h = espesor de la losa
L = longitud de la losa
fa = factor de fricción
fs = esfuerzo admisible del acero
REFUERZO POR TEMPERATURA
La cantidad requerida de refuerzo por unidad de
ancho o largo de la losa (As) será:
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO REFORZADO CON JUNTAS
REFUERZO POR TEMPERATURA
FACTORES DE FRICCIÓN
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO REFORZADO CON JUNTAS
Ejemplo
Determinar la armadura requerida por un
pavimento rígido de 8 pulgadas (0.67 pies) de
espesor, 60 pies de longitud y 24 pies de ancho con
una junta longitudinal en el centro
El acero tiene fs = 43,000 psi (6,192,000 lb/pie2)
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO REFORZADO CON JUNTAS
Solución
Armadura requerida en sentido longitudinal
As = (150*0.67*60*1.5)/(2*6,192,000)
As = 0.00073 pie2/pie = 0.105 pg2/pie de ancho
Armadura requerida en sentido transversal
As = (150*0.67*12*1.5)/(2*6,192,000)
As = 0.00073 pie2/pie = 0.021 pg2/pie de largo
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO REFORZADO CON JUNTAS
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO CON REFUERZO CONTINUO
Armadura longitudinal
La cantidad necesaria de acero en sentido longitudinal debe
satisfacer tres criterios
—Espaciamiento entre grietas: para minimizar el
descascaramiento de grietas, la separación máxima debe ser
menor de 2.5 m, en tanto que para minimizar el potencial
de punzonamiento, la mínima separación debe ser 1.07 m
—Ancho de grietas: para minimizar el descascaramiento y
la entrada de agua, no deberá exceder de 1 mm
—Esfuerzo de trabajo del acero: 75% del esfuerzo de
fluencia
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO CON REFUERZO CONTINUO
La ecuación se resuelve para x = 2.5 m, lo que permite
obtener la cantidad mínima de acero para mantener las grietas
a menos de 2.5 m; y con x = 1.07 m para determinar la
máxima cuantía para que las grietas aparezcan separadas
cuando menos a 1.07 m
El diseño del refuerzo requiere la solución de 3 ecuaciones:
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO CON REFUERZO CONTINUO
La solución de estas dos ecuaciones da una cantidad
mínima requerida de acero
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO CON REFUERZO CONTINUO
SIGNIFICADO DE LOS TÉRMINOS DE LAS ECUACIONES
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO CON REFUERZO CONTINUO
La primera ecuación proporciona los porcentajes requeridos
de acero, mínimo (Pmín) y máximo (Pmáx)
Si Pmáx > Pmín, se continúa con las otras ecuaciones, pero si
no, hay que modificar los datos de entrada y rehacer los
cálculos
Para un determinado diámetro de varilla (φ), espesor de
losas (D) y ancho de la sección de pavimento (W), el número
de varillas requeridas se calcula con las expresiones:
REFUERZO POR TEMPERATURA
ARMADURA DE REFUERZO EN PAVIMENTOS DE
CONCRETO CON REFUERZO CONTINUO
Armadura transversal
El diseño del refuerzo requerido en sentido transversal
se realiza con la expresión recomendada para los
pavimentos de concreto reforzado con juntas
VARILLAS DE ANCLAJE
Se diseñan para soportar únicamente esfuerzos de
tensión
La máxima tensión en las varillas de anclaje en
una junta es igual a la fuerza requerida para soportar
la fricción entre el pavimento y el soporte, en el
espacio comprendido entre la junta y el borde del
pavimento
FUNCIÓN DE LAS VARILLAS
ÁREA REQUERIDA
El área de acero de anclaje requerida por pie de
longitud de la junta se obtiene con la expresión:
As = (W*b*fa)/fs
VARILLAS DE ANCLAJE
W = peso del pavimento (lb/pie2) ( 12.5 * espesor de
la losa en pulgadas)
b = distancia entre la junta en estudio y la siguiente
junta libre o el borde del pavimento (pies)
fa = coeficiente de fricción (1.5)
fs = esfuerzo admisible en el acero (psi)
ESPACIAMIENTO ENTRE VARILLAS
El espaciamiento centro a centro entre varillas de
anclaje se determina mediante la expresión:
S = A*12/As
A = área de la sección transversal de la varilla
escogida (pg2). Generalmente se usan varillas de 3/8‖ y
½‖
As = área de acero requerida por pie de junta
VARILLAS DE ANCLAJE
LONGITUD DE LAS VARILLAS DE ANCLAJE
Debe ser por lo menos el doble de la requerida para
desarrollar una resistencia adherente igual al esfuerzo
de trabajo en el acero ( se recomienda que la longitud
así calculada se incremente en 2 pulgadas)
L = (2*fs*A/350 P) + 2
L = longitud de la varilla, en pulgadas
P = perímetro de la varilla, en pulgadas
VARILLAS DE ANCLAJE
EJEMPLO DE DISEÑO DE VARILLAS DE ANCLAJE
VARILLAS DE ANCLAJE
Determinar la cantidad de acero requerida en
varillas de anclaje, en un pavimento rígido de 8
pulgadas de espesor y 24 pies de ancho con una junta
longitudinal en el medio, si el acero tiene fs = 42,000
psi
Solución
As = (12.5*8*12*1.5)/42,000
As = 0.043 pg2/pie de junta
VARILLAS DE ANCLAJE
S = (0.20)(12)/0.043)
S = 55.8 pulgadas (140 centímetros)
L = [ (2)(42,000)(0.20)/(350)(1.571) ] +2 = 32.5
L = 32.5 pulgadas (83 centímetros)
EJEMPLO DE DISEÑO DE VARILLAS DE ANCLAJE
Para la cuantía determinada en el problema
anterior, establecer la separación centro a centro
entre varillas (S) si ellas tienen ½‖ de diámetro (A
= 0.20 pg2 y P = 1.571 pg). Así mismo indicar la
longitud necesaria de cada varilla (L)
Solución
Los libros de diseño de pavimentos rígidos incluyen
tablas con recomendaciones para el dimensionamiento de
las varillas de anclaje, lo que evita la ejecución de cálculos
TABLA DEL ICPC PARA DISEÑO DE VARILLAS DE
ANCLAJE DE ½”, fy = 60,000 psi
VARILLAS DE ANCLAJE
RECETAS DE DISEÑO
VARILLAS DE TRANSFERENCIA DE CARGA
Se diseñan para transferir carga de una losa a la
siguiente
Deben permitir que la junta se abra o se cierre, pero
sosteniendo los extremos de la losa a la misma
elevación
Su empleo reduce los riesgos de escalonamiento y de
bombeo
GENERALIDADES
VARILLAS DE TRANSFERENCIA DE CARGA
Su diseño debe permitir que ellas transmitan de 40%
a 45% de la carga a la losa siguiente, cuando la carga
se encuentre en la junta transversal y lejos del borde
del pavimento
Puesto que el concreto es más débil que el acero, el
tamaño y la separación entre las varillas están
dominados por el esfuerzo de soporte entre la varilla y
el concreto
GENERALIDADES
PRESIÓN EJERCIDA SOBRE UNA VARILLA CARGADA
VARILLAS DE TRANSFERENCIA DE CARGA
VARILLAS DE TRANSFERENCIA DE CARGA
La deflexión de una varilla en la junta está dada por
DELEXIÓN DE LA VARILLA
VARILLAS DE TRANSFERENCIA DE CARGA
DELEXIÓN DE LA VARILLA
D = diámetro de la varilla
K = módulo de soporte de la varilla, que es la
presión necesaria para producir una deflexión
unitaria de la varilla dentro de la masa que la rodea
VARILLAS DE TRANSFERENCIA DE CARGA
La presión de soporte sobre el concreto en la cara de la
junta está dada por
PRESIÓN DE SOPORTE Y ESFUERZO ADMISIBLE
El esfuerzo admisible de soporte ha sido determinado
experimentalmente
Se comparan σ y fb y, en caso necesario, se aumenta el
diámetro de las varillas o se reduce la separación entre ellas
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Su capacidad de carga está influenciada por el
espaciamiento entre varillas, su posición respecto de la
carga por rueda, la capacidad de transferencia de cada
varilla, el espesor del pavimento, el módulo de reacción
del soporte y el espaciamiento centro a centro de las
ruedas dobles del eje considerado
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Se considera que la varilla bajo el centro de la carga
es la más efectiva (1.0) y que la efectividad decrece
linealmente hasta una distancia igual a ―1.8*l‖ (donde
ocurre el momento máximo negativo)
La suma de las efectividades de los pasadores que
intervienen para transferir carga se llama factor de
capacidad (F)
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
La capacidad de transferencia de carga del sistema
de varillas es el producto del factor de capacidad (F)
por la capacidad individual de cada varilla (P)
Pt = F*P
La carga en el borde longitudinal del pavimento
establece la condición crítica, por cuanto interviene el
menor número de varillas
ACCIÓN DEL GRUPO DE VARILLAS – CARGA EN EL BORDE
Factor de capacidad de carga sobre una
varilla de borde (Fb) considerando sólo la
carga P1
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS – CARGA EN EL INTERIOR
Factor de capacidad de carga sobre una varilla
interior (Fc) considerando sólo la carga P1
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
VARILLAS DE TRANSFERENCIA DE CARGA
La carga ubicada en el otro extremo del eje del
vehículo también afecta la capacidad de carga de las
varilla
La magnitud de ese efecto depende de la separación
―R‖ entre las dos ruedas del eje
En este caso se elaboran dos diagramas (uno para
cada carga) y se suman las correspondientes
efectividades de las varillas
ACCIÓN DEL GRUPO DE VARILLAS
VARILLAS DE TRANSFERENCIA DE CARGA
En caso de que R < 1.8*l, existirán varillas con
efectividad de transmisión de carga mayor de 1.0
En este caso, la capacidad de transferencia se debe
reducir proporcionalmente en la medida en que
algunas varillas del sistema estarían sobretensionando
al concreto
ACCIÓN DEL GRUPO DE VARILLAS – CASO R < 1.8 l
Factor de capacidad (F’c) cuando R < 1.8 l
VARILLAS DE TRANSFERENCIA DE CARGA
VARILLAS DE TRANSFERENCIA DE CARGA
Ejemplo No 1
Determinar la capacidad de transferencia de carga de
una varilla (P), de acuerdo con los siguientes datos:
K= 1,500,000 pci
d= ¾ pg =0.75 pulgadas
I = πd4/64 = 0.0155 pg4
E = 29,000,000 psi
z = 0.25 pulgadas
Esfuerzo admisible del concreto (fb) = 3,200 psi
CASO DE UNA VARILLA
VARILLAS DE TRANSFERENCIA DE CARGA
CASO DE UNA VARILLA
Solución al Ejemplo No 1
Despejando P:
P = 1,212 libras
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Ejemplo No 2
Para la carga por rueda simple del Ejemplo No 1,
determinar la capacidad de transferencia de un grupo
de varillas separadas entre centros 12 pulgadas, si el
radio de rigidez relativa es 60 pulgadas
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Solución al Ejemplo No 2
1.8*l = 1.8*60 = 108 pulgadas
Número de varillas involucradas = 1.8*l/s = 108/ 12 = 9
Ejemplo No 3
Determinar el diámetro requerido de varillas de
transferencia, para una carga por eje simple de 25,000
libras
El módulo de elasticidad de las varillas E es
29,000,000 psi y el módulo de soporte (K) es 1,500,000
pci
Las varillas están separadas centro a centro 12
pulgadas y el radio de rigidez relativa (l) es 50 pulgadas
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Ejemplo No 3 (continuación del enunciado)
La abertura de la junta transversal es 0.25 pulgadas
La rueda exterior se aplica sobre la primera varilla y
está alejada de la interior a una distancia mayor de
1.8*l
La resistencia a compresión del concreto es 3,500 psi
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Solución al Ejemplo No 3
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Solución al Ejemplo No 3 (cont.)
Asumiendo 45 % de transferencia de carga, la carga
transferida por el conjunto de varillas (Pt) será:
25,000*0.5*0.45 = 5,625 libras
Número de varillas involucradas
n = 1.8*l/s = 90/12 = 7
2.4
2
)17(
*
90
12
17 


 
bF
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Solución al Ejemplo No 3 (cont.)
Carga transferida por la varilla exterior
5,625/4.2 = 1,339 libras
Para calcular la presión de soporte del concreto sobre
la cara de la junta (), se deben conocer el momento de
inercia de la varilla (I) y la rigidez relativa de la varilla
(β), lo que implica asumir un diámetro de varilla
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
Solución al Ejemplo No 3 (cont.)
Adoptando un diámetro de ¾‖ (0.75 pulgadas), se tiene
psi3531)25.0*889.02(
0155.0*29000000*)889.0(*4
1339*1500000
3

VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
I = πd4/64 = 0.0155 pg4
Solución al Ejemplo No 3 (cont.)
El esfuerzo admisible de soporte será
psif
d
f cb 792,3500,3
3
75.04
3
4 '





 





 

Como σ < fb, el diámetro adoptado de ¾‖ es correcto
VARILLAS DE TRANSFERENCIA DE CARGA
ACCIÓN DEL GRUPO DE VARILLAS
La capacidad de transferencia de la varilla depende de
su longitud embebida en el concreto
Friberg demostró que un corte en el segundo punto de
contraflexión de la varilla no afecta el esfuerzo de
soporte del concreto
VARILLAS DE TRANSFERENCIA DE CARGA
LONGITUD REQUERIDA POR LAS VARILLAS
Las pruebas de la ACI demostraron que para varillas
de ¾‖, la longitud embebida debería ser de unos 8
diámetros (6 pulgadas), lo que equivale a una longitud
total de varilla del orden de 12 pulgadas)
La PCA y el ACI recomiendan, en general, longitudes
variables entre 12 y 18 pulgadas (30 – 45 cm) para las
varillas de transferencia de pavimentos rígidos para
calles y carreteras
VARILLAS DE TRANSFERENCIA DE CARGA
LONGITUD REQUERIDA POR LAS VARILLAS
mm pg
160-180 22,2 7/8 350 300
190-200 25,4 1 350 300
210-230 28,6 1 1/8 400 300
240-250 31,8 1 1/4 450 300
260-280 34,9 1 3/8 450 300
290-300 38,1 1 1/2 500 300
diámetro de la varilla *Espesor del
pavimento (mm)
longitud
(mm)
separación entre
centros (mm)
RECOMENDACIONES GENERALES SOBRE
DIMENSIONES MÍNIMAS (PCA 1975)
VARILLAS DE TRANSFERENCIA DE CARGA
* Notas:
Existe una regla según la cual el diámetro de la varilla no
puede ser menor de 1/8 del espesor de la losa (PCA, 1975)
La PCA (1991) recomienda un diámetro de 1y 1/4‖ para
espesores de losa menores de 250 mm y de 1y ½‖ para
espesores iguales o mayores a 250 mm
Existen recomendaciones según las cuales las losas de
menos de 170 mm no requieren pasadores, debido a que
corresponden a vías de tránsito liviano
VARILLAS DE TRANSFERENCIA DE CARGA
RECOMENDACIONES GENERALES SOBRE
DIMENSIONES MÍNIMAS
MÉTODO DE LOS
ELEMENTOS
FINITOS
ESFUERZOS EN PAVIMENTOS RÍGIDOS
MÉTODO DE ELEMENTOS FINITOS
Los pavimentos rígidos se pueden analizar con
programas tridimensionales de elementos finitos
(ejemplos: KENSLABS, everFE, ILLI-SLAB)
Mediante estos programas de cómputo es posible: (i)
Modelar sistemas de losas (ii) Modelar los esfuerzos
producidos por el alabeo y el tránsito (iii) Considerar
la pérdida de contacto de la losa con el soporte (iv)
Evaluar la transferencia de carga por varillas y por
trabazón de agregados (v) Considerar variaciones en la
abertura y en la inclinación de las juntas
MÉTODO DE ELEMENTOS FINITOS
MODELACIÓN DE LAS CONDICIONES DE TRABAJO MEDIANTE everFE
MÉTODO DE ELEMENTOS FINITOS
VISTA DE ESFUERZOS DE TENSIÓN BAJO LAACCIÓN DE DOS CARGAS

Más contenido relacionado

La actualidad más candente

Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Emilio Castillo
 
Diseño de pavimento flexible y rígido
Diseño de pavimento flexible y rígidoDiseño de pavimento flexible y rígido
Diseño de pavimento flexible y rígido
Rosa Beatriz Villalobos Huaman
 
TIPOS DE PAVIMENTOS
TIPOS DE PAVIMENTOSTIPOS DE PAVIMENTOS
TIPOS DE PAVIMENTOS
Bill Romero la Torre
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo
matias diaz
 
cimentaciones superficiales
cimentaciones superficiales   cimentaciones superficiales
cimentaciones superficiales
Franco Solorzano
 
ENSAYO DE CBR
ENSAYO DE CBRENSAYO DE CBR
ENSAYO DE CBR
Elva Cajo
 
MÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGALMÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
Factores que intervienen en el diseño de pavimento
Factores que intervienen en el diseño de pavimentoFactores que intervienen en el diseño de pavimento
Factores que intervienen en el diseño de pavimento
Yfdella Hernandez
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxialToño MF
 
Diseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltosDiseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltos
Jeiner SB
 
Asentamiento en suelos granulares
Asentamiento en suelos granularesAsentamiento en suelos granulares
Asentamiento en suelos granulares
sondorman
 
Teoria de boussinesq
Teoria de boussinesqTeoria de boussinesq
Teoria de boussinesq
Wilbert Pier Mosalve Jinez
 
Fallas en pavimentos flexibles
Fallas en pavimentos flexiblesFallas en pavimentos flexibles
Fallas en pavimentos flexibles
Leonel Cortez M
 
Subrasante
SubrasanteSubrasante
Subrasantegeral24
 
Métodos de diseño de pavimentos
Métodos de diseño de pavimentosMétodos de diseño de pavimentos
Métodos de diseño de pavimentos
eliezerchirinos
 
Fallas pavimento rigido
Fallas pavimento rigidoFallas pavimento rigido
Fallas pavimento rigido
Retilano Vasquez
 
Aashto 93
Aashto 93Aashto 93
Aashto 93
oscar torres
 
MÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGALMÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 

La actualidad más candente (20)

Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
 
Diseño de pavimento flexible y rígido
Diseño de pavimento flexible y rígidoDiseño de pavimento flexible y rígido
Diseño de pavimento flexible y rígido
 
TIPOS DE PAVIMENTOS
TIPOS DE PAVIMENTOSTIPOS DE PAVIMENTOS
TIPOS DE PAVIMENTOS
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo
 
cimentaciones superficiales
cimentaciones superficiales   cimentaciones superficiales
cimentaciones superficiales
 
ENSAYO DE CBR
ENSAYO DE CBRENSAYO DE CBR
ENSAYO DE CBR
 
MÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGALMÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 21: VÍAS EN AFIRMADO - FERNANDO SÁNCHEZ SABOGAL
 
cbr ensayos
cbr ensayoscbr ensayos
cbr ensayos
 
Factores que intervienen en el diseño de pavimento
Factores que intervienen en el diseño de pavimentoFactores que intervienen en el diseño de pavimento
Factores que intervienen en el diseño de pavimento
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxial
 
Diseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltosDiseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltos
 
Asentamiento en suelos granulares
Asentamiento en suelos granularesAsentamiento en suelos granulares
Asentamiento en suelos granulares
 
Teoria de boussinesq
Teoria de boussinesqTeoria de boussinesq
Teoria de boussinesq
 
Fallas en pavimentos flexibles
Fallas en pavimentos flexiblesFallas en pavimentos flexibles
Fallas en pavimentos flexibles
 
Subrasante
SubrasanteSubrasante
Subrasante
 
Métodos de diseño de pavimentos
Métodos de diseño de pavimentosMétodos de diseño de pavimentos
Métodos de diseño de pavimentos
 
Fallas pavimento rigido
Fallas pavimento rigidoFallas pavimento rigido
Fallas pavimento rigido
 
Aashto 93
Aashto 93Aashto 93
Aashto 93
 
Revestimiento de canales
Revestimiento de canalesRevestimiento de canales
Revestimiento de canales
 
MÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGALMÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 6: EVALUACIÓN DE LA SUB RASANTE - FERNANDO SÁNCHEZ SABOGAL
 

Destacado

MÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGALMÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
Emilio Castillo
 
MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)
MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)
MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)
Emilio Castillo
 
GESTIÓN MANTENIMIENTO O CONSERVACIÓN VIAL
GESTIÓN MANTENIMIENTO O CONSERVACIÓN VIALGESTIÓN MANTENIMIENTO O CONSERVACIÓN VIAL
GESTIÓN MANTENIMIENTO O CONSERVACIÓN VIALEmilio Castillo
 
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
Emilio Castillo
 
Gestion conservacion vial
Gestion conservacion vialGestion conservacion vial
Gestion conservacion vial
Emilio Castillo
 
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
Emilio Castillo
 
PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...
PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...
PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...
Emilio Castillo
 
MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...
MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...
MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...
Emilio Castillo
 
MÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....
REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....
REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....
Emilio Castillo
 
EJEMPLOS DE CÁLCULO DE MATERIALES
EJEMPLOS DE CÁLCULO DE MATERIALESEJEMPLOS DE CÁLCULO DE MATERIALES
EJEMPLOS DE CÁLCULO DE MATERIALES
Emilio Castillo
 
CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...
CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...
CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...
Emilio Castillo
 
EJECUCIÓN CONTRACTUAL DE OBRA 2016
EJECUCIÓN CONTRACTUAL DE OBRA 2016EJECUCIÓN CONTRACTUAL DE OBRA 2016
EJECUCIÓN CONTRACTUAL DE OBRA 2016
Emilio Castillo
 
MÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...
REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...
REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...
Emilio Castillo
 
DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)
DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)
DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)
Emilio Castillo
 
MÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGALMÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
PROCEDIMIENTOS DE SELECCIÓN 2016
PROCEDIMIENTOS DE SELECCIÓN 2016PROCEDIMIENTOS DE SELECCIÓN 2016
PROCEDIMIENTOS DE SELECCIÓN 2016
Emilio Castillo
 

Destacado (20)

MÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGALMÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 4: CARACTERIZACIÓN DEL TRÁNSITO - FERNANDO SÁNCHEZ SABOGAL
 
Ensayo -calidad_del_agragado
Ensayo  -calidad_del_agragadoEnsayo  -calidad_del_agragado
Ensayo -calidad_del_agragado
 
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
PAUTAS METODOLÓGICAS PARA EL DESARROLLO DE ALTERNATIVAS DE PAVIMENTOS EN LA F...
 
MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)
MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)
MANUAL DE DISEÑO GEOMÉTRICO DG-2014 (Vigente 28.Jun.15)
 
GESTIÓN MANTENIMIENTO O CONSERVACIÓN VIAL
GESTIÓN MANTENIMIENTO O CONSERVACIÓN VIALGESTIÓN MANTENIMIENTO O CONSERVACIÓN VIAL
GESTIÓN MANTENIMIENTO O CONSERVACIÓN VIAL
 
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
 
Gestion conservacion vial
Gestion conservacion vialGestion conservacion vial
Gestion conservacion vial
 
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
GUÍA METODOLÓGICA PARA LA IDENTIFICACIÓN, FORMULACIÓN Y EVALUACIÓN SOCIAL DE ...
 
PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...
PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...
PAUTAS METODOLÓGICAS PARA EL USO Y APLICACIÓN DEL HDM-4 EN LA FORMULACIÓN Y E...
 
MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...
MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...
MÓDULO 5: CONSIDERACIONES SOBRE DRENAJE EN LOS PAVIMENTOS - FERNANDO SÁNCHEZ ...
 
MÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 11: VARIABILIDAD DE LOS SISTEMAS DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
 
REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....
REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....
REGLAMENTO DE PROTECCIÓN AMBIENTAL PARA EL SECTOR TRANSPORTES (Aprobado D. S....
 
EJEMPLOS DE CÁLCULO DE MATERIALES
EJEMPLOS DE CÁLCULO DE MATERIALESEJEMPLOS DE CÁLCULO DE MATERIALES
EJEMPLOS DE CÁLCULO DE MATERIALES
 
CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...
CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...
CONSTRUCCIÓN DE ESTRUCTURAS - MANUAL DE OBRA (Gallegos, Rios, Casabone, Uccel...
 
EJECUCIÓN CONTRACTUAL DE OBRA 2016
EJECUCIÓN CONTRACTUAL DE OBRA 2016EJECUCIÓN CONTRACTUAL DE OBRA 2016
EJECUCIÓN CONTRACTUAL DE OBRA 2016
 
MÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 15: CONSTRUCCIÓN PAVIMENTOS ASFALTICOS - FERNANDO SÁNCHEZ SABOGAL
 
REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...
REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...
REGLAMENTO D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN MULTIANUAL Y GESTIÓN...
 
DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)
DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)
DISEÑO GEOMÉTRICO DE VÍAS (Edgar Jimenez)
 
MÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGALMÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 14: DISEÑO PAVIMENTOS DE ADOQUINES - FERNANDO SÁNCHEZ SABOGAL
 
PROCEDIMIENTOS DE SELECCIÓN 2016
PROCEDIMIENTOS DE SELECCIÓN 2016PROCEDIMIENTOS DE SELECCIÓN 2016
PROCEDIMIENTOS DE SELECCIÓN 2016
 

Similar a MÓDULO 3: ESFUERZOS EN PAVIMENTOS RÍGIDOS - FERNANDO SÁNCHEZ SABOGAL

Modulo 3
Modulo 3Modulo 3
07 161019213936
07 16101921393607 161019213936
07 161019213936
Michel Rodriguez
 
S06.s1 material
S06.s1   materialS06.s1   material
S06.s1 material
EnriquePonceMayorga
 
pavimentos rígidos análisis variables y cambios
pavimentos rígidos análisis variables y cambiospavimentos rígidos análisis variables y cambios
pavimentos rígidos análisis variables y cambios
JAVIERALEXANDERCAMPO
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)
Luisses Huaman Fernadez
 
Diseno_de_Tuberias_de_Revestimiento_UNAC.pptx
Diseno_de_Tuberias_de_Revestimiento_UNAC.pptxDiseno_de_Tuberias_de_Revestimiento_UNAC.pptx
Diseno_de_Tuberias_de_Revestimiento_UNAC.pptx
franklin wagner
 
472 2991-1-pb
472 2991-1-pb472 2991-1-pb
472 2991-1-pb
CHRISTHIANBARRIONUEV
 
Examen practico # 2 transporte de sedimentos resuelto
Examen practico # 2 transporte de sedimentos resueltoExamen practico # 2 transporte de sedimentos resuelto
Examen practico # 2 transporte de sedimentos resuelto
YSAIAS CHOQUEGONZA HUIRACOCHA
 
Genesis q.presentación.aletas.o.superficies.extendidas
Genesis q.presentación.aletas.o.superficies.extendidasGenesis q.presentación.aletas.o.superficies.extendidas
Genesis q.presentación.aletas.o.superficies.extendidas
JesusLeonardoMolinaW
 
Empuje dinámico de los fluidos
Empuje dinámico de los fluidosEmpuje dinámico de los fluidos
Empuje dinámico de los fluidosKei Annsherly
 
Aletas de transferencia - Edianni Rodriguez
Aletas de transferencia - Edianni RodriguezAletas de transferencia - Edianni Rodriguez
Aletas de transferencia - Edianni Rodriguez
MaraIrausqun
 
Bueno trabajo uno de fundaciones y muros
Bueno trabajo uno de fundaciones y murosBueno trabajo uno de fundaciones y muros
Bueno trabajo uno de fundaciones y muros
Joseluis Peralta
 
Esfuerzo cortante. MECÁNICA DE SUELOS II. ceci.ach
Esfuerzo cortante. MECÁNICA DE SUELOS II. ceci.achEsfuerzo cortante. MECÁNICA DE SUELOS II. ceci.ach
Esfuerzo cortante. MECÁNICA DE SUELOS II. ceci.ach
cecilia arisaca
 
Hidraulica2013
Hidraulica2013Hidraulica2013
Hidraulica2013
Martin Saile
 
Hidraulica2013
Hidraulica2013Hidraulica2013
Hidraulica2013
Carlos Velasquez
 
Hidraulica%20en%20 tuberias
Hidraulica%20en%20 tuberiasHidraulica%20en%20 tuberias
Hidraulica%20en%20 tuberiasGrover Cutti H
 
Hidraulica en tuberias
Hidraulica en tuberiasHidraulica en tuberias
Hidraulica en tuberias
Cesar CP Cayllahua Pillaca
 

Similar a MÓDULO 3: ESFUERZOS EN PAVIMENTOS RÍGIDOS - FERNANDO SÁNCHEZ SABOGAL (20)

Modulo 3
Modulo 3Modulo 3
Modulo 3
 
Esfuerzos en pavimentos rigidos
Esfuerzos en pavimentos rigidosEsfuerzos en pavimentos rigidos
Esfuerzos en pavimentos rigidos
 
07 161019213936
07 16101921393607 161019213936
07 161019213936
 
S06.s1 material
S06.s1   materialS06.s1   material
S06.s1 material
 
pavimentos rígidos análisis variables y cambios
pavimentos rígidos análisis variables y cambiospavimentos rígidos análisis variables y cambios
pavimentos rígidos análisis variables y cambios
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)
 
Diseno_de_Tuberias_de_Revestimiento_UNAC.pptx
Diseno_de_Tuberias_de_Revestimiento_UNAC.pptxDiseno_de_Tuberias_de_Revestimiento_UNAC.pptx
Diseno_de_Tuberias_de_Revestimiento_UNAC.pptx
 
2 resistencia al_corte
2 resistencia al_corte2 resistencia al_corte
2 resistencia al_corte
 
472 2991-1-pb
472 2991-1-pb472 2991-1-pb
472 2991-1-pb
 
Tuberiaas
TuberiaasTuberiaas
Tuberiaas
 
Examen practico # 2 transporte de sedimentos resuelto
Examen practico # 2 transporte de sedimentos resueltoExamen practico # 2 transporte de sedimentos resuelto
Examen practico # 2 transporte de sedimentos resuelto
 
Genesis q.presentación.aletas.o.superficies.extendidas
Genesis q.presentación.aletas.o.superficies.extendidasGenesis q.presentación.aletas.o.superficies.extendidas
Genesis q.presentación.aletas.o.superficies.extendidas
 
Empuje dinámico de los fluidos
Empuje dinámico de los fluidosEmpuje dinámico de los fluidos
Empuje dinámico de los fluidos
 
Aletas de transferencia - Edianni Rodriguez
Aletas de transferencia - Edianni RodriguezAletas de transferencia - Edianni Rodriguez
Aletas de transferencia - Edianni Rodriguez
 
Bueno trabajo uno de fundaciones y muros
Bueno trabajo uno de fundaciones y murosBueno trabajo uno de fundaciones y muros
Bueno trabajo uno de fundaciones y muros
 
Esfuerzo cortante. MECÁNICA DE SUELOS II. ceci.ach
Esfuerzo cortante. MECÁNICA DE SUELOS II. ceci.achEsfuerzo cortante. MECÁNICA DE SUELOS II. ceci.ach
Esfuerzo cortante. MECÁNICA DE SUELOS II. ceci.ach
 
Hidraulica2013
Hidraulica2013Hidraulica2013
Hidraulica2013
 
Hidraulica2013
Hidraulica2013Hidraulica2013
Hidraulica2013
 
Hidraulica%20en%20 tuberias
Hidraulica%20en%20 tuberiasHidraulica%20en%20 tuberias
Hidraulica%20en%20 tuberias
 
Hidraulica en tuberias
Hidraulica en tuberiasHidraulica en tuberias
Hidraulica en tuberias
 

Más de Emilio Castillo

SISTEMA DE REAJUSTES DE PRECIOS POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓN
SISTEMA DE REAJUSTES DE PRECIOS  POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓNSISTEMA DE REAJUSTES DE PRECIOS  POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓN
SISTEMA DE REAJUSTES DE PRECIOS POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓN
Emilio Castillo
 
APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...
APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...
APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...
Emilio Castillo
 
CAMINOS I - PROBLEMAS
CAMINOS I - PROBLEMASCAMINOS I - PROBLEMAS
CAMINOS I - PROBLEMAS
Emilio Castillo
 
MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...
MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...
MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...
Emilio Castillo
 
DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...
DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...
DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...
Emilio Castillo
 
MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...
MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...
MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...
Emilio Castillo
 
MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...
MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...
MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...
Emilio Castillo
 
MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...
MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...
MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...
Emilio Castillo
 
MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...
MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...
MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...
Emilio Castillo
 
MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...
MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...
MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...
Emilio Castillo
 
MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...
MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...
MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...
Emilio Castillo
 
MÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
MÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGALMÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
MÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
Emilio Castillo
 
MÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOS
MÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOSMÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOS
MÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOS
Emilio Castillo
 
MANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOSMANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOS
Emilio Castillo
 

Más de Emilio Castillo (16)

SISTEMA DE REAJUSTES DE PRECIOS POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓN
SISTEMA DE REAJUSTES DE PRECIOS  POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓNSISTEMA DE REAJUSTES DE PRECIOS  POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓN
SISTEMA DE REAJUSTES DE PRECIOS POR FÓRMULAS POLINÓMICAS EN LA CONSTRUCCIÓN
 
APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...
APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...
APRUEBAN NUEVO REGLAMENTO DEL D.L. N° 1252 SISTEMA NACIONAL DE PROGRAMACIÓN M...
 
CAMINOS I - PROBLEMAS
CAMINOS I - PROBLEMASCAMINOS I - PROBLEMAS
CAMINOS I - PROBLEMAS
 
MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...
MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...
MANUAL DE CARRETERAS - DISEÑO GEOMÉTRICO DG-2018 (R.D. N° 03-2018-MTC/14, Vig...
 
DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...
DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...
DISEÑO GEOMÉTRICO DE VÍAS CON APLICACIONES BÁSICAS EN EXCEL Y AUTOCAD (Wilman...
 
MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...
MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...
MÓDULO 20: DISEÑO DE OBRAS DE REHABILITACIÓN CORRECCIÓN DE DEFICIENCIAS ESTRU...
 
MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...
MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...
MÓDULO 19: SELECCIÓN DE TRATAMIENTOS Y ESTRATEGIAS DE REHABILITACIÓN - FERNAN...
 
MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...
MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...
MÓDULO 17: MANTENIMIENTO RUTINARIO DE VÍAS PAVIMENTADAS - FERNANDO SÁNCHEZ SA...
 
MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...
MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...
MÓDULO 16: CONSTRUCCIÓN PAVIMENTOS RÍGIDOS Y ADOQUINES - FERNANDO SÁNCHEZ SAB...
 
MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...
MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...
MÓDULO 12: DISEÑO DE PAVIMENTOS ASFÁLTICOS CALLES Y CARRETERAS - FERNANDO SÁN...
 
MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...
MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...
MÓDULO 10: MATERIALES PAVIMENTOS RÍGIDOS Y DE ADOQUINES - FERNANDO SÁNCHEZ SA...
 
MÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 8: LIGANTES BITUMINOSOS - FERNANDO SÁNCHEZ SABOGAL
 
MÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGALMÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 7: MATERIALES PARA BASE Y SUBBASE - FERNANDO SÁNCHEZ SABOGAL
 
MÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGALMÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
MÓDULO 22: ADMINISTRACIÓN DE PAVIMENTOS - FERNANDO SÁNCHEZ SABOGAL
 
MÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOS
MÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOSMÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOS
MÓDULO 1: INTRODUCCIÓN AL DISEÑO DE PAVIMENTOS
 
MANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOSMANUAL DE DISEÑO CON GEOSINTÉTICOS
MANUAL DE DISEÑO CON GEOSINTÉTICOS
 

Último

BOTAnica mesias orland role.pptx1 ciclo agropecuaria
BOTAnica mesias orland role.pptx1 ciclo agropecuariaBOTAnica mesias orland role.pptx1 ciclo agropecuaria
BOTAnica mesias orland role.pptx1 ciclo agropecuaria
mesiassalazarpresent
 
tema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptx
tema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptxtema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptx
tema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptx
DianaSG6
 
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDADPRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
mirellamilagrosvf
 
libro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdflibro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdf
MiriamAquino27
 
Seguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticosSeguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticos
Melvin191754
 
Diagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdfDiagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdf
joseabachesoto
 
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
CarlitosWay20
 
01-introduccion-a-la-perforacion.pdf de minas
01-introduccion-a-la-perforacion.pdf de minas01-introduccion-a-la-perforacion.pdf de minas
01-introduccion-a-la-perforacion.pdf de minas
ivan848686
 
CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024
CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024
CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024
JuanChaparro49
 
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptxMedicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
gabrielperedasanchez
 
HITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdf
HITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdfHITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdf
HITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdf
GROVER MORENO
 
choro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiologíachoro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiología
elvis2000x
 
Siemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdfSiemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdf
RonaldRozoMora
 
Las Fuentes de Alimentacion Conmutadas (Switching).pdf
Las Fuentes de Alimentacion Conmutadas (Switching).pdfLas Fuentes de Alimentacion Conmutadas (Switching).pdf
Las Fuentes de Alimentacion Conmutadas (Switching).pdf
NicolasGramajo1
 
1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV
CarlosAroeira1
 
Distribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de MediasDistribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de Medias
arielemelec005
 
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaaEspecificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
ssuserebb7f71
 
Mapa de carreteras de Colombia 2022 INVIAS
Mapa de carreteras de Colombia 2022 INVIASMapa de carreteras de Colombia 2022 INVIAS
Mapa de carreteras de Colombia 2022 INVIAS
AlfonsoRosalesFonsec
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
KevinCabrera96
 
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
HaroldKewinCanaza1
 

Último (20)

BOTAnica mesias orland role.pptx1 ciclo agropecuaria
BOTAnica mesias orland role.pptx1 ciclo agropecuariaBOTAnica mesias orland role.pptx1 ciclo agropecuaria
BOTAnica mesias orland role.pptx1 ciclo agropecuaria
 
tema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptx
tema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptxtema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptx
tema-6.4-calculo-de-la-potencia-requerida-para-transporte-de-solidos-.pptx
 
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDADPRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
 
libro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdflibro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdf
 
Seguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticosSeguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticos
 
Diagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdfDiagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdf
 
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
 
01-introduccion-a-la-perforacion.pdf de minas
01-introduccion-a-la-perforacion.pdf de minas01-introduccion-a-la-perforacion.pdf de minas
01-introduccion-a-la-perforacion.pdf de minas
 
CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024
CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024
CODIGO DE SEÑALES Y COLORES NTP399 - ANEXO 17 DS 024
 
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptxMedicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
 
HITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdf
HITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdfHITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdf
HITO DE CONTROL N° 011-2024-OCI5344-SCC SAN PATRICIO.pdf
 
choro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiologíachoro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiología
 
Siemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdfSiemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdf
 
Las Fuentes de Alimentacion Conmutadas (Switching).pdf
Las Fuentes de Alimentacion Conmutadas (Switching).pdfLas Fuentes de Alimentacion Conmutadas (Switching).pdf
Las Fuentes de Alimentacion Conmutadas (Switching).pdf
 
1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV
 
Distribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de MediasDistribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de Medias
 
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaaEspecificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Mapa de carreteras de Colombia 2022 INVIAS
Mapa de carreteras de Colombia 2022 INVIASMapa de carreteras de Colombia 2022 INVIAS
Mapa de carreteras de Colombia 2022 INVIAS
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
 
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
 

MÓDULO 3: ESFUERZOS EN PAVIMENTOS RÍGIDOS - FERNANDO SÁNCHEZ SABOGAL

  • 2. CONTENIDO Introducción Esfuerzos producidos por cambios de temperatura Esfuerzos producidos por cambios de humedad Esfuerzos producidos por las cargas del tránsito Presencia de acero en el pavimento rígido Método de los elementos finitos
  • 4. ESFUERZOS EN PAVIMENTOS RÍGIDOS Cambios de temperatura —Alabeo por gradiente térmico —Contracción durante el fraguado —Expansión y contracción por cambios uniformes de temperatura Cambios de humedad Cargas del tránsito Otros (bombeo, cambios volumétricos del soporte) FACTORES QUE CONTRIBUYEN AL DESARROLLO DE ESFUERZOS EN PAVIMENTOS RÍGIDOS
  • 6. Al cambiar la temperatura ambiente durante el día, también cambia la temperatura del pavimento Este ciclo térmico crea un gradiente térmico en la losa El gradiente produce un alabeo en la losa El peso propio de la losa y su contacto con la superficie de apoyo restringen el movimiento, generándose esfuerzos Dependiendo de la hora del día, estos esfuerzos se pueden sumar o restar de los efectos producidos por las cargas del tránsito ALABEO POR GRADIENTE TÉRMICO
  • 8. FÓRMULAS DE BRADBURY 2 *** tEC t                2 1 21 2 **    CCtE t          l atE t )1(3 **    Borde de la losa Interior de la losa Esquina de la losa ALABEO POR GRADIENTE TÉRMICO
  • 9. FÓRMULAS DE BRADBURY Notas 1.Debido a que Ci es inversamente proporcional al módulo de reacción del soporte (k), los esfuerzos por alabeo se incrementan cuando el soporte es muy rígido, ya que éste no puede asumir el contorno del pavimento 2. Como Ci es directamente proporcional a la longitud de la losa, el aumento de ésta incrementa los esfuerzos por alabeo térmico ALABEO POR GRADIENTE TÉRMICO
  • 10. t Esfuerzo en el sitio considerado E Módulo elástico del concreto  Coeficiente de dilatación térmica del concreto (0.000005/ºF) t Diferencia de temperatura entre las dos caras de la losa (gradiente) C Coeficiente que depende de la longitud de la losa y del radio de rigidez relativa C1 Coeficiente en la dirección en la cual se calcula el esfuerzo C2 Coeficiente en la dirección perpendicular a C1  Relación de Poisson del concreto a Radio del área cargada en el borde de la losa l Radio de rigidez relativa FÓRMULAS DE BRADBURY SIGNIFICADO DE LOS TÉRMINOS DE LAS FÓRMULAS ALABEO POR GRADIENTE TÉRMICO
  • 11. CARTA DE BRADBURY PARA LA DETERMINACIÓN DE C, C1 Y C2 ALABEO POR GRADIENTE TÉRMICO
  • 12. RADIO DE RIGIDEZ RELATIVA (Westergaard) Mide la rigidez de la losa de concreto respecto del suelo de soporte ALABEO POR GRADIENTE TÉRMICO h = espesor de la losa k = módulo de reacción del soporte
  • 13. EJEMPLO DE CÁLCULO DE ESFUERZOS POR ALABEO Calcular los diferentes esfuerzos de alabeo para las siguientes condiciones: k 200 pci t 3ºF/pulgadas  0.000005/ºF E 5,000,000 psi  0.15 a 5.9 pulgadas h 9.0 pulgadas Long. losa (Bx) 14 pies Ancho losa (By) 12 pies ALABEO POR GRADIENTE TÉRMICO
  • 14. EJEMPLO DE CÁLCULO DE ESFUERZOS POR ALABEO Solución ALABEO POR GRADIENTE TÉRMICO
  • 15. Cálculo de los esfuerzos EJEMPLO DE CÁLCULO DE ESFUERZOS POR ALABEO ALABEO POR GRADIENTE TÉRMICO
  • 16. El ejemplo muestra que los esfuerzos por alabeo pueden superar a los producidos por las cargas del tránsito Sin embargo, dichos esfuerzos no se consideran en el instante de determinar el espesor del pavimento La filosofía que gobierna el diseño es que las juntas y el acero se emplean para aliviar o cuidar los esfuerzos por alabeo, y el espesor se determina con base en las cargas del tránsito CONSIDERACIONES SOBRE LOS ESFUERZOS POR ALABEO EN EL DISEÑO ESTRUCTURAL DEL PAVIMENTO ALABEO POR GRADIENTE TÉRMICO
  • 17. CONTRACCIÓN DURANTE EL FRAGUADO La fricción entre la losa y la fundación, debido a la caída de temperatura durante el fraguado de concreto, produce esfuerzos en el concreto y en la armadura que contenga El diseño de la armadura de refuerzo de un pavimento rígido se basa en la consideración de los esfuerzos de fricción
  • 18. CONTRACCIÓN DURANTE EL FRAGUADO c = (γc)(L)(fa)/2 L = longitud de la losa γc = peso unitario del concreto fa = coeficiente de fricción entre la losa y la subrasante (generalmente 1.5)
  • 19. ESFUERZOS DEBIDOS A FRICCIÓNCONTRACCIÓN DURANTE EL FRAGUADO Ejemplo Determinar el esfuerzo máximo de contracción en una losa de pavimento rígido de 30 pies de longitud y peso unitario de 150 libras/pie3, si fa = 1.5 Solución Nota: Los esfuerzos friccionales sólo son importantes en losas de gran longitud
  • 20. EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS Las aberturas de las juntas cambian a causa de los cambios de temperatura, alterando las condiciones de transferencia de carga Las características de contracción controlan la abertura de las juntas transversales del pavimento El material que se coloque para sellar las juntas deberá ser capaz de soportar, sin despegarse, los movimientos del concreto cuando ocurra la máxima contracción
  • 21. L = abertura de la junta o cambio en la longitud de la losa. (Si L >1 mm, se requieren varillas de transferencia de carga) C = factor de ajuste debido a la fricción entre losa y soporte (0.65 para subbase estabilizada y 0.80 para subbase granular) L = longitud de la losa (espacio entre juntas)  = coeficiente de dilatación del concreto (aprox. 0.00001/°C) T = rango máximo de diferencia de temperatura  = coeficiente de contracción del concreto (depende de la resistencia a la tracción indirecta) EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS L = CL (  T + )
  • 22. EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS VALORES DEL COEFICIENTE DE CONTRACCIÓN (δ) (Experiencias de SIKA Colombia)
  • 23. Ejemplo Calcular el movimiento de la junta transversal de una losa de 4.00 m de longitud, colocada sobre una subbase granular (C=0.8) , si T = 25 ºC y  = 0.00025 Solución L = (0.80)(4)(1,000) (0.00001*25 + 0.00025) L = 1.6 mm EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS L = CL (  t + )
  • 24. Sensibilidad al coeficiente de contracción (δ) Si éste fuese constante, la relación es directa y lineal EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A LAS DIVERSAS VARIABLES
  • 25. Sensibilidad al coeficiente de contracción (δ) Si éste varía con la edad del concreto como indican los resultados de SIKA Colombia, la relación toma otra forma EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A LAS DIVERSAS VARIABLES
  • 26. Sensibilidad al cambio de temperatura (ΔT) La relación es lineal y directa EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A LAS DIVERSAS VARIABLES
  • 27. Sensibilidad a la longitud de la losa A igualdad de los demás factores, si la longitud aumenta, la abertura de la junta por retracción también aumenta EXPANSIÓN Y CONTRACCIÓN DE LAS LOSAS SENSIBILIDAD DE LAABERTURA DE LA JUNTA (ΔL) A LAS DIVERSAS VARIABLES
  • 29. ESFUERZOS PRODUCIDOS POR CAMBIOS DE HUMEDAD ALABEO POR CAMBIOS DE HUMEDAD El alabeo también se produce por cambios de humedad en la losa Estos esfuerzos suelen ser opuestos a los producidos por cambios cíclicos de temperatura En climas húmedos, la humedad de las losas es relativamente constante En climas secos, la superficie se encuentra más seca que el fondo
  • 30. ALABEO POR CAMBIOS DE HUMEDAD ESFUERZOS PRODUCIDOS POR CAMBIOS DE HUMEDAD
  • 31. ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO ESFUERZOS EN PAVIMENTOS RÍGIDOS
  • 32. LOCALIZACIONES CRÍTICAS DE CARGA  Interior: Ocurre cuando la carga es aplicada en el interior de la superficie de la losa, lejana a los bordes  Borde: Ocurre cuando la carga es aplicada en el borde de la superficie de la losa, lejana a las esquinas  Esquina: Ocurre cuando el centro de la carga está en la bisectriz del ángulo de la esquina ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 33. ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO FÓRMULAS DE WESTERGAARD ( =0.15) * La presencia del término h2 en el denominador de las 3 fórmulas, sugiere que el espesor de la losa es crítico en la reducción de esfuerzos por carga a niveles aceptables
  • 34. FÓRMULAS DE WESTERGAARD ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 35. SUPOSICIONES PARA LAS FÓRMULAS DE WESTERGAARD La losa actúa como un sólido homogéneo, isotrópico y elástico en equilibrio La losa tiene sección transversal uniforme Todas las fuerzas son normales a la superficie No hay fuerzas friccionales o de corte ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 36. SUPOSICIONES PARA LAS FÓRMULAS DE WESTERGAARD El eje neutro se encuentra en la mitad de la losa La deformación por corte es despreciable La losa se considera infinita para carga en el interior y semi – infinita para carga en el borde La carga se aplica sobre un área circular ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 37. Ejemplo Determinar los esfuerzos críticos por carga para los siguientes datos ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 38. Los resultados muestran que el sitio crítico es el borde longitudinal (junto a la berma), lejos de las esquinas de la losa Solución ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 39. CARTAS DE INFLUENCIA Pickett y Ray (1951) desarrollaron cartas de influencia para el cálculo de momentos y deflexiones en el interior y en el borde de pavimentos rígidos, suponiendo que la subrasante actúa como un líquido denso o como un sólido elástico La solución implica el dibujo de las huellas de los neumáticos a una escala apropiada y contar el número de cuadros cubiertos por ellas en la carta (N) ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 40. Esfuerzo CARTAS DE INFLUENCIA Momento 10000 2 Npl M  2 6 h M  ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 41. CARTA DE INFLUENCIA PARA DETERMINACIÓN DE MOMENTO (Carga en el interior, subrasante líquido denso) Ejemplo Empleando la carta de influencia adecuada, determinar el esfuerzo máximo producido por una carga por eje tándem en el interior de una losa de pavimento, de acuerdo con los siguientes datos —p = 150 psi —h = 14 pulgadas —k = 100 libras/ pulgada cúbica —l = 55.31 pulgadas —P en el tándem = 160,000 libras ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 42. psi414 )14( 537,13*6 2  (Carga en el interior, subrasante líquido denso) Solución Dibujando el sistema tándem a escala apropiada sobre la carta de influencia, se cuentan N = 295 cuadros cubiertos por las improntas pielbM  537,13 000,10 295*)31.55(*150 2 CARTA DE INFLUENCIA PARA DETERMINACIÓN DE MOMENTO ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 43. ¿Por qué no se usa la teoría elástica de capas en el análisis de los pavimentos rígidos? Porque las juntas y discontinuidades de estos pavimentos hacen inaplicable esta teoría ESFUERZOS PRODUCIDOS POR LAS CARGAS DEL TRÁNSITO
  • 44. ESFUERZOS COMBINADOS POR CAMBIOS DE TEMPERATURA Y CARGAS DEL TRÁNSITO Para las condiciones de temperatura y carga de los ejemplos previos, determinar el esfuerzo total en la losa de 9 pulgadas de espesor Ejemplo
  • 45. ANÁLISIS DE ELEMENTOS COMPLEMENTARIOS PRESENCIA DE ACERO EN EL PAVIMENTO RÍGIDO
  • 46. PRESENCIA DE ACERO EN LOS PAVIMENTOS RÍGIDOS
  • 47. REFUERZO POR TEMPERATURA La cantidad de acero necesaria para mantener intactas las fisuras en los pavimentos de concreto reforzado con juntas, se calcula balanceando las fuerzas a lo largo de un plano horizontal Si se desarrolla una fisura, la resistencia al movimiento debe ser soportada por la tensión en el acero ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO REFORZADO CON JUNTAS
  • 48. La cantidad necesaria de acero depende de tres factores: Longitud de la losa: A medida que aumenta, se incrementa el área de contacto con el material de base, lo que aumenta el esfuerzo total resistente, generando mayores esfuerzos a medida que la losa se contrae Esfuerzo de trabajo del acero: Usualmente se toma como 75 % del esfuerzo de fluencia Factor de fricción: Representa la resistencia a la fricción entre la parte inferior de la losa y la superior del soporte REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO REFORZADO CON JUNTAS
  • 49. As = (gc*h*L*fa)/2fs gc = peso unitario del concreto h = espesor de la losa L = longitud de la losa fa = factor de fricción fs = esfuerzo admisible del acero REFUERZO POR TEMPERATURA La cantidad requerida de refuerzo por unidad de ancho o largo de la losa (As) será: ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO REFORZADO CON JUNTAS
  • 50. REFUERZO POR TEMPERATURA FACTORES DE FRICCIÓN ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO REFORZADO CON JUNTAS
  • 51. Ejemplo Determinar la armadura requerida por un pavimento rígido de 8 pulgadas (0.67 pies) de espesor, 60 pies de longitud y 24 pies de ancho con una junta longitudinal en el centro El acero tiene fs = 43,000 psi (6,192,000 lb/pie2) REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO REFORZADO CON JUNTAS
  • 52. Solución Armadura requerida en sentido longitudinal As = (150*0.67*60*1.5)/(2*6,192,000) As = 0.00073 pie2/pie = 0.105 pg2/pie de ancho Armadura requerida en sentido transversal As = (150*0.67*12*1.5)/(2*6,192,000) As = 0.00073 pie2/pie = 0.021 pg2/pie de largo REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO REFORZADO CON JUNTAS
  • 53. REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO CON REFUERZO CONTINUO Armadura longitudinal La cantidad necesaria de acero en sentido longitudinal debe satisfacer tres criterios —Espaciamiento entre grietas: para minimizar el descascaramiento de grietas, la separación máxima debe ser menor de 2.5 m, en tanto que para minimizar el potencial de punzonamiento, la mínima separación debe ser 1.07 m —Ancho de grietas: para minimizar el descascaramiento y la entrada de agua, no deberá exceder de 1 mm —Esfuerzo de trabajo del acero: 75% del esfuerzo de fluencia
  • 54. REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO CON REFUERZO CONTINUO La ecuación se resuelve para x = 2.5 m, lo que permite obtener la cantidad mínima de acero para mantener las grietas a menos de 2.5 m; y con x = 1.07 m para determinar la máxima cuantía para que las grietas aparezcan separadas cuando menos a 1.07 m El diseño del refuerzo requiere la solución de 3 ecuaciones:
  • 55. REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO CON REFUERZO CONTINUO La solución de estas dos ecuaciones da una cantidad mínima requerida de acero
  • 56. REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO CON REFUERZO CONTINUO SIGNIFICADO DE LOS TÉRMINOS DE LAS ECUACIONES
  • 57. REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO CON REFUERZO CONTINUO La primera ecuación proporciona los porcentajes requeridos de acero, mínimo (Pmín) y máximo (Pmáx) Si Pmáx > Pmín, se continúa con las otras ecuaciones, pero si no, hay que modificar los datos de entrada y rehacer los cálculos Para un determinado diámetro de varilla (φ), espesor de losas (D) y ancho de la sección de pavimento (W), el número de varillas requeridas se calcula con las expresiones:
  • 58. REFUERZO POR TEMPERATURA ARMADURA DE REFUERZO EN PAVIMENTOS DE CONCRETO CON REFUERZO CONTINUO Armadura transversal El diseño del refuerzo requerido en sentido transversal se realiza con la expresión recomendada para los pavimentos de concreto reforzado con juntas
  • 59. VARILLAS DE ANCLAJE Se diseñan para soportar únicamente esfuerzos de tensión La máxima tensión en las varillas de anclaje en una junta es igual a la fuerza requerida para soportar la fricción entre el pavimento y el soporte, en el espacio comprendido entre la junta y el borde del pavimento FUNCIÓN DE LAS VARILLAS
  • 60. ÁREA REQUERIDA El área de acero de anclaje requerida por pie de longitud de la junta se obtiene con la expresión: As = (W*b*fa)/fs VARILLAS DE ANCLAJE W = peso del pavimento (lb/pie2) ( 12.5 * espesor de la losa en pulgadas) b = distancia entre la junta en estudio y la siguiente junta libre o el borde del pavimento (pies) fa = coeficiente de fricción (1.5) fs = esfuerzo admisible en el acero (psi)
  • 61. ESPACIAMIENTO ENTRE VARILLAS El espaciamiento centro a centro entre varillas de anclaje se determina mediante la expresión: S = A*12/As A = área de la sección transversal de la varilla escogida (pg2). Generalmente se usan varillas de 3/8‖ y ½‖ As = área de acero requerida por pie de junta VARILLAS DE ANCLAJE
  • 62. LONGITUD DE LAS VARILLAS DE ANCLAJE Debe ser por lo menos el doble de la requerida para desarrollar una resistencia adherente igual al esfuerzo de trabajo en el acero ( se recomienda que la longitud así calculada se incremente en 2 pulgadas) L = (2*fs*A/350 P) + 2 L = longitud de la varilla, en pulgadas P = perímetro de la varilla, en pulgadas VARILLAS DE ANCLAJE
  • 63. EJEMPLO DE DISEÑO DE VARILLAS DE ANCLAJE VARILLAS DE ANCLAJE Determinar la cantidad de acero requerida en varillas de anclaje, en un pavimento rígido de 8 pulgadas de espesor y 24 pies de ancho con una junta longitudinal en el medio, si el acero tiene fs = 42,000 psi Solución As = (12.5*8*12*1.5)/42,000 As = 0.043 pg2/pie de junta
  • 64. VARILLAS DE ANCLAJE S = (0.20)(12)/0.043) S = 55.8 pulgadas (140 centímetros) L = [ (2)(42,000)(0.20)/(350)(1.571) ] +2 = 32.5 L = 32.5 pulgadas (83 centímetros) EJEMPLO DE DISEÑO DE VARILLAS DE ANCLAJE Para la cuantía determinada en el problema anterior, establecer la separación centro a centro entre varillas (S) si ellas tienen ½‖ de diámetro (A = 0.20 pg2 y P = 1.571 pg). Así mismo indicar la longitud necesaria de cada varilla (L) Solución
  • 65. Los libros de diseño de pavimentos rígidos incluyen tablas con recomendaciones para el dimensionamiento de las varillas de anclaje, lo que evita la ejecución de cálculos TABLA DEL ICPC PARA DISEÑO DE VARILLAS DE ANCLAJE DE ½”, fy = 60,000 psi VARILLAS DE ANCLAJE RECETAS DE DISEÑO
  • 66. VARILLAS DE TRANSFERENCIA DE CARGA Se diseñan para transferir carga de una losa a la siguiente Deben permitir que la junta se abra o se cierre, pero sosteniendo los extremos de la losa a la misma elevación Su empleo reduce los riesgos de escalonamiento y de bombeo GENERALIDADES
  • 67. VARILLAS DE TRANSFERENCIA DE CARGA Su diseño debe permitir que ellas transmitan de 40% a 45% de la carga a la losa siguiente, cuando la carga se encuentre en la junta transversal y lejos del borde del pavimento Puesto que el concreto es más débil que el acero, el tamaño y la separación entre las varillas están dominados por el esfuerzo de soporte entre la varilla y el concreto GENERALIDADES
  • 68. PRESIÓN EJERCIDA SOBRE UNA VARILLA CARGADA VARILLAS DE TRANSFERENCIA DE CARGA
  • 69. VARILLAS DE TRANSFERENCIA DE CARGA La deflexión de una varilla en la junta está dada por DELEXIÓN DE LA VARILLA
  • 70. VARILLAS DE TRANSFERENCIA DE CARGA DELEXIÓN DE LA VARILLA D = diámetro de la varilla K = módulo de soporte de la varilla, que es la presión necesaria para producir una deflexión unitaria de la varilla dentro de la masa que la rodea
  • 71. VARILLAS DE TRANSFERENCIA DE CARGA La presión de soporte sobre el concreto en la cara de la junta está dada por PRESIÓN DE SOPORTE Y ESFUERZO ADMISIBLE El esfuerzo admisible de soporte ha sido determinado experimentalmente Se comparan σ y fb y, en caso necesario, se aumenta el diámetro de las varillas o se reduce la separación entre ellas
  • 72. VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS Su capacidad de carga está influenciada por el espaciamiento entre varillas, su posición respecto de la carga por rueda, la capacidad de transferencia de cada varilla, el espesor del pavimento, el módulo de reacción del soporte y el espaciamiento centro a centro de las ruedas dobles del eje considerado
  • 73. VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS Se considera que la varilla bajo el centro de la carga es la más efectiva (1.0) y que la efectividad decrece linealmente hasta una distancia igual a ―1.8*l‖ (donde ocurre el momento máximo negativo) La suma de las efectividades de los pasadores que intervienen para transferir carga se llama factor de capacidad (F)
  • 74. VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS La capacidad de transferencia de carga del sistema de varillas es el producto del factor de capacidad (F) por la capacidad individual de cada varilla (P) Pt = F*P La carga en el borde longitudinal del pavimento establece la condición crítica, por cuanto interviene el menor número de varillas
  • 75. ACCIÓN DEL GRUPO DE VARILLAS – CARGA EN EL BORDE Factor de capacidad de carga sobre una varilla de borde (Fb) considerando sólo la carga P1 VARILLAS DE TRANSFERENCIA DE CARGA
  • 76. ACCIÓN DEL GRUPO DE VARILLAS – CARGA EN EL INTERIOR Factor de capacidad de carga sobre una varilla interior (Fc) considerando sólo la carga P1 VARILLAS DE TRANSFERENCIA DE CARGA
  • 77. ACCIÓN DEL GRUPO DE VARILLAS VARILLAS DE TRANSFERENCIA DE CARGA La carga ubicada en el otro extremo del eje del vehículo también afecta la capacidad de carga de las varilla La magnitud de ese efecto depende de la separación ―R‖ entre las dos ruedas del eje En este caso se elaboran dos diagramas (uno para cada carga) y se suman las correspondientes efectividades de las varillas
  • 78. ACCIÓN DEL GRUPO DE VARILLAS VARILLAS DE TRANSFERENCIA DE CARGA En caso de que R < 1.8*l, existirán varillas con efectividad de transmisión de carga mayor de 1.0 En este caso, la capacidad de transferencia se debe reducir proporcionalmente en la medida en que algunas varillas del sistema estarían sobretensionando al concreto
  • 79. ACCIÓN DEL GRUPO DE VARILLAS – CASO R < 1.8 l Factor de capacidad (F’c) cuando R < 1.8 l VARILLAS DE TRANSFERENCIA DE CARGA
  • 80. VARILLAS DE TRANSFERENCIA DE CARGA Ejemplo No 1 Determinar la capacidad de transferencia de carga de una varilla (P), de acuerdo con los siguientes datos: K= 1,500,000 pci d= ¾ pg =0.75 pulgadas I = πd4/64 = 0.0155 pg4 E = 29,000,000 psi z = 0.25 pulgadas Esfuerzo admisible del concreto (fb) = 3,200 psi CASO DE UNA VARILLA
  • 81. VARILLAS DE TRANSFERENCIA DE CARGA CASO DE UNA VARILLA Solución al Ejemplo No 1 Despejando P: P = 1,212 libras
  • 82. VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS Ejemplo No 2 Para la carga por rueda simple del Ejemplo No 1, determinar la capacidad de transferencia de un grupo de varillas separadas entre centros 12 pulgadas, si el radio de rigidez relativa es 60 pulgadas
  • 83. VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS Solución al Ejemplo No 2 1.8*l = 1.8*60 = 108 pulgadas Número de varillas involucradas = 1.8*l/s = 108/ 12 = 9
  • 84. Ejemplo No 3 Determinar el diámetro requerido de varillas de transferencia, para una carga por eje simple de 25,000 libras El módulo de elasticidad de las varillas E es 29,000,000 psi y el módulo de soporte (K) es 1,500,000 pci Las varillas están separadas centro a centro 12 pulgadas y el radio de rigidez relativa (l) es 50 pulgadas VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS
  • 85. Ejemplo No 3 (continuación del enunciado) La abertura de la junta transversal es 0.25 pulgadas La rueda exterior se aplica sobre la primera varilla y está alejada de la interior a una distancia mayor de 1.8*l La resistencia a compresión del concreto es 3,500 psi VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS
  • 86. Solución al Ejemplo No 3 VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS
  • 87. Solución al Ejemplo No 3 (cont.) Asumiendo 45 % de transferencia de carga, la carga transferida por el conjunto de varillas (Pt) será: 25,000*0.5*0.45 = 5,625 libras Número de varillas involucradas n = 1.8*l/s = 90/12 = 7 2.4 2 )17( * 90 12 17      bF VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS
  • 88. Solución al Ejemplo No 3 (cont.) Carga transferida por la varilla exterior 5,625/4.2 = 1,339 libras Para calcular la presión de soporte del concreto sobre la cara de la junta (), se deben conocer el momento de inercia de la varilla (I) y la rigidez relativa de la varilla (β), lo que implica asumir un diámetro de varilla VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS
  • 89. Solución al Ejemplo No 3 (cont.) Adoptando un diámetro de ¾‖ (0.75 pulgadas), se tiene psi3531)25.0*889.02( 0155.0*29000000*)889.0(*4 1339*1500000 3  VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS I = πd4/64 = 0.0155 pg4
  • 90. Solución al Ejemplo No 3 (cont.) El esfuerzo admisible de soporte será psif d f cb 792,3500,3 3 75.04 3 4 '                Como σ < fb, el diámetro adoptado de ¾‖ es correcto VARILLAS DE TRANSFERENCIA DE CARGA ACCIÓN DEL GRUPO DE VARILLAS
  • 91. La capacidad de transferencia de la varilla depende de su longitud embebida en el concreto Friberg demostró que un corte en el segundo punto de contraflexión de la varilla no afecta el esfuerzo de soporte del concreto VARILLAS DE TRANSFERENCIA DE CARGA LONGITUD REQUERIDA POR LAS VARILLAS
  • 92. Las pruebas de la ACI demostraron que para varillas de ¾‖, la longitud embebida debería ser de unos 8 diámetros (6 pulgadas), lo que equivale a una longitud total de varilla del orden de 12 pulgadas) La PCA y el ACI recomiendan, en general, longitudes variables entre 12 y 18 pulgadas (30 – 45 cm) para las varillas de transferencia de pavimentos rígidos para calles y carreteras VARILLAS DE TRANSFERENCIA DE CARGA LONGITUD REQUERIDA POR LAS VARILLAS
  • 93. mm pg 160-180 22,2 7/8 350 300 190-200 25,4 1 350 300 210-230 28,6 1 1/8 400 300 240-250 31,8 1 1/4 450 300 260-280 34,9 1 3/8 450 300 290-300 38,1 1 1/2 500 300 diámetro de la varilla *Espesor del pavimento (mm) longitud (mm) separación entre centros (mm) RECOMENDACIONES GENERALES SOBRE DIMENSIONES MÍNIMAS (PCA 1975) VARILLAS DE TRANSFERENCIA DE CARGA
  • 94. * Notas: Existe una regla según la cual el diámetro de la varilla no puede ser menor de 1/8 del espesor de la losa (PCA, 1975) La PCA (1991) recomienda un diámetro de 1y 1/4‖ para espesores de losa menores de 250 mm y de 1y ½‖ para espesores iguales o mayores a 250 mm Existen recomendaciones según las cuales las losas de menos de 170 mm no requieren pasadores, debido a que corresponden a vías de tránsito liviano VARILLAS DE TRANSFERENCIA DE CARGA RECOMENDACIONES GENERALES SOBRE DIMENSIONES MÍNIMAS
  • 96. MÉTODO DE ELEMENTOS FINITOS Los pavimentos rígidos se pueden analizar con programas tridimensionales de elementos finitos (ejemplos: KENSLABS, everFE, ILLI-SLAB) Mediante estos programas de cómputo es posible: (i) Modelar sistemas de losas (ii) Modelar los esfuerzos producidos por el alabeo y el tránsito (iii) Considerar la pérdida de contacto de la losa con el soporte (iv) Evaluar la transferencia de carga por varillas y por trabazón de agregados (v) Considerar variaciones en la abertura y en la inclinación de las juntas
  • 97. MÉTODO DE ELEMENTOS FINITOS MODELACIÓN DE LAS CONDICIONES DE TRABAJO MEDIANTE everFE
  • 98. MÉTODO DE ELEMENTOS FINITOS VISTA DE ESFUERZOS DE TENSIÓN BAJO LAACCIÓN DE DOS CARGAS