SlideShare una empresa de Scribd logo
1 de 92
Descargar para leer sin conexión
Principios de Econometría y modelación Parte 10:  Modelos autorregresivos   Por Lic. Gabriel Leandro, MBA
La Metodología Box – Jenkins  ,[object Object],[object Object],[object Object]
La Metodología Box – Jenkins ,[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object]
Modelos AR  ,[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos AR ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos AR en Gretl ,[object Object],[object Object],[object Object]
Modelos AR en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Modelos AR en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos AR en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos AR en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Modelos SAR ,[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos SAR ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos MA ,[object Object],[object Object],[object Object]
Modelos MA ,[object Object],[object Object],[object Object]
Modelos MA en Gretl ,[object Object],[object Object],[object Object]
Modelos MA en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos MA ,[object Object],[object Object],[object Object]
Modelos SMA  ,[object Object],[object Object]
Modelos SMA ,[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos ARMA ,[object Object],[object Object],[object Object]
Modelos ARMA ,[object Object],[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object]
Modelos ARIMA ,[object Object],[object Object],[object Object]
Autocorrelaciones parciales ,[object Object],[object Object]
Autocorrelaciones parciales ,[object Object],[object Object]
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes ,[object Object],[object Object]
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(1):  y t  =   0  +   1 y t-1  + e t Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(1):  y t  =   0  +   1 y t-1  + e t Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(2):  y t  =   0  +   1 y t-1  +   2 y t-2  + e t Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(2):  y t  =   0  +   1 y t-1  +   2 y t-2  + e t Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(1):  y t  = W 0  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(1):  y t  = W 0  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(2):  y t  = W 0  + e t  - W 1 e t-1  – W 2 e t-2 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(2):  y t  = W 0  + e t  - W 1 e t-1  – W 2 e t-2 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1):  y t  =   0  +   1 y t-1  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1):  y t  =   0  +   1 y t-1  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1):  y t  =   0  +   1 y t-1  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1):  y t  =   0  +   1 y t-1  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes Decrecimiento rápido sin llegar a anularse Decrecimiento rápido sin llegar a anularse ARMA(p,q) Se anula para retardos superiores a p Decrecimiento rápido sin llegar a anularse AR(p) Decrecimiento rápido sin llegar a anularse Se anula para retardos superiores a q MA(q) FAP FAC
Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes ,[object Object],[object Object]
Modelos ARIMA en Gretl ,[object Object],[object Object],[object Object]
Modelos ARIMA en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Modelos ARIMA en Gretl -1 1 0 k -1 1 0 k ARIMA(1,1):  y t  =   0  +   1 y t-1  + e t  - W 1 e t-1 Autocorrelación Autocorrelación parcial
Modelos ARIMA en Gretl ,[object Object],[object Object]
Modelos ARIMA en Gretl ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Estacionalidad y Modelos ARIMA  ,[object Object],[object Object]
Estacionalidad y Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object]
Estacionalidad y Modelos ARIMA ,[object Object],[object Object]
Estacionalidad y Modelos ARIMA ,[object Object],[object Object],[object Object]
Estacionalidad y Modelos ARIMA ,[object Object],[object Object],[object Object],[object Object],[object Object]
Fases de aplicación de la metodología ARIMA  ,[object Object],[object Object]
Fases de aplicación de la metodología ARIMA ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fases de aplicación de la metodología ARIMA ,[object Object],[object Object],[object Object],[object Object],[object Object]
Ejercicio ,[object Object],[object Object]
248,05 42 241,48 28 223,56 14 261,5 55 251,07 41 241,14 27 222,54 13 259,3 54 251,8 40 238,31 26 220,3 12 258,6 53 250,68 39 236,17 25 218,25 11 254,7 52 247,81 38 235 24 219,32 10 251,4 51 247,76 37 233,05 23 219,69 9 248 50 247,57 36 229,99 22 217,33 8 249,3 49 246,45 35 228,96 21 216,4 7 247,8 48 249,9 34 229,3 20 219,61 6 248,8 47 249,61 33 229,69 19 220,05 5 252 46 248,78 32 226,82 18 218,88 4 253,4 45 248,83 31 227,6 17 221,17 3 251,7 44 248,73 30 225,36 16 222,24 2 249,8 43 246,74 29 223,07 15 222,34 1 PCierre n PCierre n PCierre n PCierre n
Solución ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
Solución ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Solución ,[object Object],[object Object]
Solución ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Solución ,[object Object],[object Object]
Solución ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Coeficientes determinacion y correlacion
Coeficientes determinacion y correlacionCoeficientes determinacion y correlacion
Coeficientes determinacion y correlacionJanneth Zepeda
 
NUMEROS INDICES,ESTADISTICA DESCRIPTIVA
NUMEROS INDICES,ESTADISTICA DESCRIPTIVANUMEROS INDICES,ESTADISTICA DESCRIPTIVA
NUMEROS INDICES,ESTADISTICA DESCRIPTIVApedro2403
 
Estadisticas series de tiempo
Estadisticas series de tiempoEstadisticas series de tiempo
Estadisticas series de tiempoFatima Suplewiche
 
Muestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaMuestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaJuanito Vithore
 
Anualidades anticipadas
Anualidades anticipadasAnualidades anticipadas
Anualidades anticipadasIvonne Böom
 
Clase10 Endogeneidad y estimación por variables instrumentales
Clase10 Endogeneidad y estimación por variables instrumentalesClase10 Endogeneidad y estimación por variables instrumentales
Clase10 Endogeneidad y estimación por variables instrumentalesNerys Ramírez Mordán
 
Ejercicios de Matemáticas Financiera
 Ejercicios de Matemáticas  Financiera Ejercicios de Matemáticas  Financiera
Ejercicios de Matemáticas FinancieraMarisol Merchan
 
Subir tarea estadistica chi cuadrado
Subir tarea estadistica chi cuadradoSubir tarea estadistica chi cuadrado
Subir tarea estadistica chi cuadradoAndy Shalom
 
Clase de estimacion puntual y intervalo
Clase de estimacion puntual y intervaloClase de estimacion puntual y intervalo
Clase de estimacion puntual y intervaloIvan Nuñez Salinas
 
Trabajo probabilidad
Trabajo probabilidadTrabajo probabilidad
Trabajo probabilidadFreddy Adrian
 
6993547 analisis-de-autocorrelacion
6993547 analisis-de-autocorrelacion6993547 analisis-de-autocorrelacion
6993547 analisis-de-autocorrelacionErika Romero
 

La actualidad más candente (20)

Coeficientes determinacion y correlacion
Coeficientes determinacion y correlacionCoeficientes determinacion y correlacion
Coeficientes determinacion y correlacion
 
Análisis de Regresión Lineal
Análisis de Regresión LinealAnálisis de Regresión Lineal
Análisis de Regresión Lineal
 
NUMEROS INDICES,ESTADISTICA DESCRIPTIVA
NUMEROS INDICES,ESTADISTICA DESCRIPTIVANUMEROS INDICES,ESTADISTICA DESCRIPTIVA
NUMEROS INDICES,ESTADISTICA DESCRIPTIVA
 
Estadisticas series de tiempo
Estadisticas series de tiempoEstadisticas series de tiempo
Estadisticas series de tiempo
 
Muestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaMuestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una media
 
DISTRIBUCION MUESTRAL
DISTRIBUCION MUESTRALDISTRIBUCION MUESTRAL
DISTRIBUCION MUESTRAL
 
Anualidades anticipadas
Anualidades anticipadasAnualidades anticipadas
Anualidades anticipadas
 
Serie de tiempo
Serie de tiempoSerie de tiempo
Serie de tiempo
 
2.ejeercicios
2.ejeercicios2.ejeercicios
2.ejeercicios
 
Clase10 Endogeneidad y estimación por variables instrumentales
Clase10 Endogeneidad y estimación por variables instrumentalesClase10 Endogeneidad y estimación por variables instrumentales
Clase10 Endogeneidad y estimación por variables instrumentales
 
Numeros Indices
Numeros Indices Numeros Indices
Numeros Indices
 
Ejercicios de Matemáticas Financiera
 Ejercicios de Matemáticas  Financiera Ejercicios de Matemáticas  Financiera
Ejercicios de Matemáticas Financiera
 
Subir tarea estadistica chi cuadrado
Subir tarea estadistica chi cuadradoSubir tarea estadistica chi cuadrado
Subir tarea estadistica chi cuadrado
 
Clase de estimacion puntual y intervalo
Clase de estimacion puntual y intervaloClase de estimacion puntual y intervalo
Clase de estimacion puntual y intervalo
 
Trabajo probabilidad
Trabajo probabilidadTrabajo probabilidad
Trabajo probabilidad
 
6993547 analisis-de-autocorrelacion
6993547 analisis-de-autocorrelacion6993547 analisis-de-autocorrelacion
6993547 analisis-de-autocorrelacion
 
Distribución poisson
Distribución poissonDistribución poisson
Distribución poisson
 
Teorema del limite central
Teorema del limite centralTeorema del limite central
Teorema del limite central
 
Pruebas de Bondad de Ajuste. Independencia y Homogenidad. Est ind clase10
Pruebas de Bondad de Ajuste. Independencia y Homogenidad. Est ind clase10Pruebas de Bondad de Ajuste. Independencia y Homogenidad. Est ind clase10
Pruebas de Bondad de Ajuste. Independencia y Homogenidad. Est ind clase10
 
Experimentos con un solo factor
Experimentos con un solo factorExperimentos con un solo factor
Experimentos con un solo factor
 

Similar a Modelos ARIMA Box-Jenkins Econometría Pronósticos

Serie Cronológica y Modelos de Pronósticos
Serie Cronológica y Modelos de PronósticosSerie Cronológica y Modelos de Pronósticos
Serie Cronológica y Modelos de PronósticosAlexis José González
 
Curso de-econometria-basica
Curso de-econometria-basicaCurso de-econometria-basica
Curso de-econometria-basicavestaoriginal
 
MODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZ
MODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZMODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZ
MODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZLuz Mamani
 
Matemática para Ingeniería - Determinantes
Matemática para Ingeniería - DeterminantesMatemática para Ingeniería - Determinantes
Matemática para Ingeniería - Determinantes100000281929144
 
Series2 - Analisis de series temporales
Series2 - Analisis de series temporalesSeries2 - Analisis de series temporales
Series2 - Analisis de series temporalesMiguel Jerez
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Regresion aplicada a la ingenieria
Regresion aplicada a la ingenieriaRegresion aplicada a la ingenieria
Regresion aplicada a la ingenieriaBryanRoyCordovaGomez
 
Modelos de regresión lineales y no lineales au aplicación en problemas de ing...
Modelos de regresión lineales y no lineales au aplicación en problemas de ing...Modelos de regresión lineales y no lineales au aplicación en problemas de ing...
Modelos de regresión lineales y no lineales au aplicación en problemas de ing...Néstor Valles Villarreal
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Capítulo iii modelos univariados de series de tiempo
Capítulo iii modelos univariados de series de tiempoCapítulo iii modelos univariados de series de tiempo
Capítulo iii modelos univariados de series de tiempoElder Javier Nunes Pereira
 
Formas funcionales de los modelos de regresión
Formas funcionales de los modelos de regresiónFormas funcionales de los modelos de regresión
Formas funcionales de los modelos de regresiónchrisrgt1999
 
Tema IV Tecnicas de Pronostico Grupo 6.pptx
Tema IV Tecnicas de Pronostico Grupo 6.pptxTema IV Tecnicas de Pronostico Grupo 6.pptx
Tema IV Tecnicas de Pronostico Grupo 6.pptxosdalysmar
 
Regresion lineal
Regresion linealRegresion lineal
Regresion linealHaret Diaz
 
Regresion lineal
Regresion linealRegresion lineal
Regresion linealHaret Diaz
 
Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)
Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)
Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)Álvaro Fierro
 

Similar a Modelos ARIMA Box-Jenkins Econometría Pronósticos (20)

Arima
Arima Arima
Arima
 
Modelo arima
Modelo arimaModelo arima
Modelo arima
 
Serie Cronológica y Modelos de Pronósticos
Serie Cronológica y Modelos de PronósticosSerie Cronológica y Modelos de Pronósticos
Serie Cronológica y Modelos de Pronósticos
 
Curso de-econometria-basica
Curso de-econometria-basicaCurso de-econometria-basica
Curso de-econometria-basica
 
MODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZ
MODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZMODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZ
MODELO ARIMA - UPT - ECONOMETRIA - HUMBERTO ESPADA SANCHEZ
 
Matemática para Ingeniería - Determinantes
Matemática para Ingeniería - DeterminantesMatemática para Ingeniería - Determinantes
Matemática para Ingeniería - Determinantes
 
Series2 - Analisis de series temporales
Series2 - Analisis de series temporalesSeries2 - Analisis de series temporales
Series2 - Analisis de series temporales
 
Box jenkins
Box jenkinsBox jenkins
Box jenkins
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Regresion aplicada a la ingenieria
Regresion aplicada a la ingenieriaRegresion aplicada a la ingenieria
Regresion aplicada a la ingenieria
 
Modelos de regresión lineales y no lineales au aplicación en problemas de ing...
Modelos de regresión lineales y no lineales au aplicación en problemas de ing...Modelos de regresión lineales y no lineales au aplicación en problemas de ing...
Modelos de regresión lineales y no lineales au aplicación en problemas de ing...
 
C03.pdf
C03.pdfC03.pdf
C03.pdf
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Capítulo iii modelos univariados de series de tiempo
Capítulo iii modelos univariados de series de tiempoCapítulo iii modelos univariados de series de tiempo
Capítulo iii modelos univariados de series de tiempo
 
Formas funcionales de los modelos de regresión
Formas funcionales de los modelos de regresiónFormas funcionales de los modelos de regresión
Formas funcionales de los modelos de regresión
 
Tema IV Tecnicas de Pronostico Grupo 6.pptx
Tema IV Tecnicas de Pronostico Grupo 6.pptxTema IV Tecnicas de Pronostico Grupo 6.pptx
Tema IV Tecnicas de Pronostico Grupo 6.pptx
 
Regresion lineal
Regresion linealRegresion lineal
Regresion lineal
 
Regresion lineal
Regresion linealRegresion lineal
Regresion lineal
 
Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)
Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)
Qué puede aportar la econometría a mi estrategia de marketing online (parte 1)
 

Más de Gabriel Leandro

Más de Gabriel Leandro (20)

Investigacion05
Investigacion05Investigacion05
Investigacion05
 
Investigacion01
Investigacion01Investigacion01
Investigacion01
 
Investigacion02
Investigacion02Investigacion02
Investigacion02
 
Investigacion04
Investigacion04Investigacion04
Investigacion04
 
Investigacion03
Investigacion03Investigacion03
Investigacion03
 
Toma De Decisiones
Toma De DecisionesToma De Decisiones
Toma De Decisiones
 
S4 De Las Prescripciones, Sanciones Y Responsabilidades
S4 De Las Prescripciones, Sanciones Y ResponsabilidadesS4 De Las Prescripciones, Sanciones Y Responsabilidades
S4 De Las Prescripciones, Sanciones Y Responsabilidades
 
Mayordomía
MayordomíaMayordomía
Mayordomía
 
Riesgo Cambiario
Riesgo CambiarioRiesgo Cambiario
Riesgo Cambiario
 
Od Aprovechamiento Del Tiempo
Od Aprovechamiento Del TiempoOd Aprovechamiento Del Tiempo
Od Aprovechamiento Del Tiempo
 
Proyectos 01 Introduccion
Proyectos 01 IntroduccionProyectos 01 Introduccion
Proyectos 01 Introduccion
 
Costos, Presupuestos Y AnáLisis De Estados Financieros
Costos, Presupuestos Y AnáLisis De Estados FinancierosCostos, Presupuestos Y AnáLisis De Estados Financieros
Costos, Presupuestos Y AnáLisis De Estados Financieros
 
Eee ProduccióN
Eee ProduccióNEee ProduccióN
Eee ProduccióN
 
Eee Oferta, Demanda Y Aplicaciones
Eee Oferta, Demanda Y AplicacionesEee Oferta, Demanda Y Aplicaciones
Eee Oferta, Demanda Y Aplicaciones
 
Eee Elasticidad
Eee ElasticidadEee Elasticidad
Eee Elasticidad
 
Eee Costos
Eee CostosEee Costos
Eee Costos
 
Eee Las Flechas
Eee Las FlechasEee Las Flechas
Eee Las Flechas
 
Las Bandas Cambiarias En Costa Rica
Las Bandas Cambiarias En Costa RicaLas Bandas Cambiarias En Costa Rica
Las Bandas Cambiarias En Costa Rica
 
Pobreza
PobrezaPobreza
Pobreza
 
ProgramacióN Lineal
ProgramacióN LinealProgramacióN Lineal
ProgramacióN Lineal
 

Modelos ARIMA Box-Jenkins Econometría Pronósticos

  • 1. Principios de Econometría y modelación Parte 10: Modelos autorregresivos Por Lic. Gabriel Leandro, MBA
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.  
  • 21.
  • 22.
  • 23.
  • 24.  
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(1): y t =  0 +  1 y t-1 + e t Autocorrelación Autocorrelación parcial
  • 52. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(1): y t =  0 +  1 y t-1 + e t Autocorrelación Autocorrelación parcial
  • 53. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(2): y t =  0 +  1 y t-1 +  2 y t-2 + e t Autocorrelación Autocorrelación parcial
  • 54. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k AR(2): y t =  0 +  1 y t-1 +  2 y t-2 + e t Autocorrelación Autocorrelación parcial
  • 55. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(1): y t = W 0 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 56. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(1): y t = W 0 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 57. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(2): y t = W 0 + e t - W 1 e t-1 – W 2 e t-2 Autocorrelación Autocorrelación parcial
  • 58. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k MA(2): y t = W 0 + e t - W 1 e t-1 – W 2 e t-2 Autocorrelación Autocorrelación parcial
  • 59. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1): y t =  0 +  1 y t-1 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 60. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1): y t =  0 +  1 y t-1 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 61. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1): y t =  0 +  1 y t-1 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 62. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes -1 1 0 k -1 1 0 k ARIMA(1,1): y t =  0 +  1 y t-1 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 63. Distribuciones teóricas de los coeficientes de autocorrelación y autocorrelación parcial para algunos de los modelos ARIMA más comunes Decrecimiento rápido sin llegar a anularse Decrecimiento rápido sin llegar a anularse ARMA(p,q) Se anula para retardos superiores a p Decrecimiento rápido sin llegar a anularse AR(p) Decrecimiento rápido sin llegar a anularse Se anula para retardos superiores a q MA(q) FAP FAC
  • 64.
  • 65.
  • 66.
  • 67.  
  • 68. Modelos ARIMA en Gretl -1 1 0 k -1 1 0 k ARIMA(1,1): y t =  0 +  1 y t-1 + e t - W 1 e t-1 Autocorrelación Autocorrelación parcial
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80. 248,05 42 241,48 28 223,56 14 261,5 55 251,07 41 241,14 27 222,54 13 259,3 54 251,8 40 238,31 26 220,3 12 258,6 53 250,68 39 236,17 25 218,25 11 254,7 52 247,81 38 235 24 219,32 10 251,4 51 247,76 37 233,05 23 219,69 9 248 50 247,57 36 229,99 22 217,33 8 249,3 49 246,45 35 228,96 21 216,4 7 247,8 48 249,9 34 229,3 20 219,61 6 248,8 47 249,61 33 229,69 19 220,05 5 252 46 248,78 32 226,82 18 218,88 4 253,4 45 248,83 31 227,6 17 221,17 3 251,7 44 248,73 30 225,36 16 222,24 2 249,8 43 246,74 29 223,07 15 222,34 1 PCierre n PCierre n PCierre n PCierre n
  • 81.
  • 82.  
  • 83.
  • 84.
  • 85.  
  • 86.
  • 87.
  • 88.  
  • 89.
  • 90.  
  • 91.
  • 92.