1.- Introducción a la electrónica 
 Definición : Física, cargas eléctricas, materiales, semiconductores. 
 Herramientas e instrumentos: 
Pinzas Multímetro 
Cautín Fuente de voltaje 
Caimanes..... Osciloscopio.... 
 Conocimientos básicos: Carga, campo eléctrico y magnético, diferencia de 
potencial, corriente, voltaje. 
 Leyes 
Ohm, Kirchhoff (LVK, LCK), Capacitancia, Inductancia, divisor de voltaje 
y de corriente, circuitos equivalentes de Thevenin y de Norton. 
 Dispositivos: 
Amplificadores operacionales, Diodos, transistores, dispositivos 
digitales (compuertas, contadores, flip flops...), convertidores, pic´s, 
microcontroladores, microprocesadores, DSP... 
 Aplicaciones: Médicas, sociales, entretenimiento, investigación, aeronáutica, 
aeroespacial, navegación, transporte.....
2.- Semiconductores 
SEMICONDUCTORES: Materiales que poseen un nivel de conductividad sobre algún punto 
entre los extremos de un aislante y un conductor. 
COBRE: r = 10-6W-cm 
MICA: r = 1012W-cm 
SILICIO r = 50 x 103W-cm GERMANIO: r = 50 W-cm 
-Alto nivel de pureza 
-Existen grandes cantidades en la naturaleza. 
-Cambio de características de conductores a aislante por medio de procesos de dopado o 
aplicación de luz ó calor. 
MATERIALES SEMICONDUCTORES (GERMANIO Y SILICIO): 
Estructura atómica: Red cristalina 
Enlaces entre átomos: Covalentes 
Electrones de valencia: 4
NIVELES DE ENERGÍA : Mientras más distante se 
encuentre el electrón del núcleo mayor es el estado de 
energía, y cualquier electrón que haya dejado su átomo, 
tiene un estado de energía mayor que cualquier electrón 
en la estructura atómica. 
Banda de conducción 
Banda prohibida 
Eg > 5 eV 
Banda de valencia 
Banda de conducción 
Banda prohibida 
Eg = 1.1, 0.67, 1.41 eV 
Banda de valencia 
Banda de conducción 
Banda de valencia 
Aislante Semiconductor Conductor
Material Intrinseco 
Si Si Si 
Si Si Si 
Si Si Si 
Materiales extrinsecos 
Si Si Si 
Si 5 Si 
Antimonio Si Si Si 
Si Si Si 
Arsénico 
Fósoforo 
Si Si Si 
Si 4 Si 
Boro 
Galio 
Indio 
TIPO n TIPO p
P o r t a d o r e s 
m a y o rit a rio s 
P o r t a d o r e s 
m in o r it a r io s 
Io n e s 
d o n a d o re s 
TIPO p TIPO n 
P o r t a d o r e s 
m a y o r it a r io s 
P o r t a d o r e s 
m in o r it a r io s 
Io n e s 
a c e p t o r e s 
2.1 UNION p-n 
Tip o p Tip o n 
R e g ió n d e 
a g o t a m ie n t o
p n 
p n 
p n 
Sin polarización 
Polarización inversa 
Polarización directa
V D 
ID 
V T 
Is
DIODO 
Es un elementos de dos terminales formado por una unión p-n 
+ - 
Ánodo Cátodo
Ejemplos 
ID=IS(ekVD/Tk-1) 
IS Corriente de saturación inversa 
K 11600/h (h=1 para Ge, y h=2 para Si) 
Tk TC + 273 
Región Zener: 
Bajo polarización negativa existe un punto en el cual bajo un voltaje negativo lo 
suficientemente alto, da como resultado un agudo cambio en las características del 
diodo. 
A este voltaje se le conoce como “voltaje pico inverso” (PRV ó PIV )
2.2 Características del Diodo 
Resistencia en cd ó estática: 
RD=VD/ID 
Resistencia en ac ó dinámica: 
rD=DVD / DID=(dID /dVD)-1=26mA /ID 
Resistencia en ac promedio: 
rav= DVD / DID|punto a punto 
Capacitancia de transición y difusión: 
Tiempo de recuperación inverso 
1 5 
1 0 
5 
C ( p f ) 
- 2 5 - 1 5 - 5 0 0 . 2 5 0 . 5 
V 
C T C D 
T s Tt t 
Ejemplo 
Ejemplo
Modelado de diodos 
Modelo Ideal: 
Modelo Simplificado: 
Modelo de segmentos líneales: 
V D 
ID 
V D 
ID 
V T 
V D 
ID 
V T 
rav 
VT 
VT rav 
Ejemplos
1N4001 
2 1 
1k 
E E = RID+VD 
1.- ID=IS(ekVD/Tk-1) 
2.- VD=0 e ID=0, trazar en la curva del diodo, 
intersección de recta con curva es el punto Q. 
3.-Sustituir el diodo por cualquier modelo de 
equivalente. 
Ejemplos
2.3 Diodo Zener 
Este diodo a diferencia de un diodo semiconductor de propósito general, trabaja 
en la región de polarización negativa. Es decir que la dirección de la conducción 
es opuesta a la de la flecha sobre el símbolo. 
Claro el voltaje Zener es muchas veces menor que VIP de un diodo 
semiconductor, este control se logra con la variación de los niveles de dopado. 
Los voltajes zener van desde 1.8 V. hasta 200V, con rangos de potencia de ¼ W 
hasta 50W.
ANALISIS: 
1.Determinar el estado del diodo Zener mediante su eliminación del circuitos de 
la red y el cálculo del voltaje de circuito abierto resultante 
2.Sustituir el circuitos equivalente adecuado y resolverlo para las incógnitas 
deseadas. 
R 2 
R 1 
B T 1 D 1 
2 1
2.4 Análisis de circuitos con diodos 
Con fuentes de cd. 
-Determine el estado del diodo 
-Sustituya el equivalente adecuado 
-Determine los parámetros restantes de la red. 
E 
R3 
E 
R3 
Determine VD,, VR, ID. 
Ambos casos 
E=8V, 0.5 
R3=2.2kW, 1.2kW 
12V 
Si Ge 
5.6k 
VR, IR 
12V 
Si 
5.6k 
Si 
VD1 , VD2, ID, VR. 
10V 
2.2K 
5V 
Si 
4.7K 
2 1 
10V 
2 1 
Si 
330 
Si 
+ 
V0 
- 
VD, ID, V0. 
+ 
V0 
- 
ID1, ID2, IR, V0. 
Ge 
2 1 
2 1 
2.2K Si 12V 
VR. 
Si 
3.3K 
Si 
5.6K 
20V 
IR1, IR2,
2.5 Aplicaciones 
Rectificadores: Su principal uso es en sistemas electrónicos encargados de 
realizar una conversión de potencia de ac, en potencia de dc. 
DE MEDIA ONDA: 
V1 
D2 
1 2 
1k 
2 1 
120 1k 
0 
2 0 V 
0 V 
SEL > > 
0 s 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 1 0 ms 
T i m e 
V( D1 : 2 ) 
2 0 V 
0 V 
- 2 0 V 
V1 ( V2 ) 
- 2 0 V 
2 0 V 
0 V 
SEL > > 
0 s 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 1 0 ms 
T i m e 
V( R1 : 1 ) 
2 0 V 
0 V 
- 2 0 V 
V1 ( V2 ) 
- 2 0 V
DE ONDA COMPLETA: 
0 s 0 . 5 ms 1 . 0 ms 1 . 5 ms 2 . 0 ms 2 . 5 ms 3 . 0 ms 
2 0 V 
1 0 V 
0 V 
- 1 0 V 
CON TRANSFORMADORES: 
1 T1 5 
6 
4 8 
Si 
R 
Si 
1k 
1 2 
2 1 
2 1 
1 2 
T i m e 
V( V2 : + ) 
- 2 0 V
Recortadores: 
Tienen la capacidad de recortar una porción de la señal de entrada sin 
distorisionar la parte restante de la forma de onda alterna. 
SERIE: 
2 0 V 
0 V 
SEL > > 
0 s 0 . 5 ms 1 . 0 ms 1 . 5 ms 2 . 0 ms 2 . 5 ms 3 . 0 ms 
T i m e 
V( R1 : 2 ) 
2 0 V 
0 V 
- 2 0 V 
V( V1 0 : + ) 
- 2 0 V 
1k 
D2 
5V 
0 s 0 . 5 ms 1 . 0 ms 1 . 5 ms 2 . 0 ms 2 . 5 ms 3 . 0 ms 
T i m e 
V( D1 : 2 ) V( V1 : + ) 
2 0 V 
1 0 V 
0 V 
- 1 0 V 
- 2 0 V 
4V 
1k
Sujetadores o cambiadores de nivel: 
C1 
C1 
V1 
5V
Detectores de señal: 
2 
+ 2 
Vin 
1 
C1 
1 
- 
+ 
Vout 
-
Reguladores de voltaje: 
El objetivo de este circuito es mantener un voltaje de salida constante sobre un rango de 
resistencia de carga. El resistor en serie con la fuente se selecciona para que una caida de 
voltaje apropiada aparezca cuando la resistencia de carga está en su valor mínimo. El 
diodo debe ser capaz de disipar una gran gantidad de potencia cuando la resistencia de 
carga está en su valor máximo. 
0 
Vi 
1k 
+ 
Vz 
- Pzm 
1k 
1.- Determinar el estado del diodo zener mediante la 
eliminación de la red y calculando el voltaje através del 
circuito abierto resultante. 
V = VL=RLVi/R + RL 
VL=Vz Iz= IR + IL Pz= Vz IL 
2.- Sustituir el circuito equivalente adecuado y resolverlo para las incongnitas deseadas. 
Vz Vz Vz
Reguladores de voltaje: 
Vi 
R 
+ 
Vz 
- 
Pzm 
RL 
R=1k VZ=10V 
Vi=16V. PZM= 30mW 
RL=1.2k 
=3k
Compuertas lógicas: 
In1 
In2 
0 
Vo. 
D1 
D2 
1k 
In1 
In2 
0 
Vo. 
D1 
D2 
1k 
5V 
In1 In2 V0 
0 0 
0 1 
1 0 
1 1 
In1 In2 V0 
0 0 
0 1 
1 0 
1 1

Semiconductores ppt

  • 1.
    1.- Introducción ala electrónica  Definición : Física, cargas eléctricas, materiales, semiconductores.  Herramientas e instrumentos: Pinzas Multímetro Cautín Fuente de voltaje Caimanes..... Osciloscopio....  Conocimientos básicos: Carga, campo eléctrico y magnético, diferencia de potencial, corriente, voltaje.  Leyes Ohm, Kirchhoff (LVK, LCK), Capacitancia, Inductancia, divisor de voltaje y de corriente, circuitos equivalentes de Thevenin y de Norton.  Dispositivos: Amplificadores operacionales, Diodos, transistores, dispositivos digitales (compuertas, contadores, flip flops...), convertidores, pic´s, microcontroladores, microprocesadores, DSP...  Aplicaciones: Médicas, sociales, entretenimiento, investigación, aeronáutica, aeroespacial, navegación, transporte.....
  • 2.
    2.- Semiconductores SEMICONDUCTORES:Materiales que poseen un nivel de conductividad sobre algún punto entre los extremos de un aislante y un conductor. COBRE: r = 10-6W-cm MICA: r = 1012W-cm SILICIO r = 50 x 103W-cm GERMANIO: r = 50 W-cm -Alto nivel de pureza -Existen grandes cantidades en la naturaleza. -Cambio de características de conductores a aislante por medio de procesos de dopado o aplicación de luz ó calor. MATERIALES SEMICONDUCTORES (GERMANIO Y SILICIO): Estructura atómica: Red cristalina Enlaces entre átomos: Covalentes Electrones de valencia: 4
  • 3.
    NIVELES DE ENERGÍA: Mientras más distante se encuentre el electrón del núcleo mayor es el estado de energía, y cualquier electrón que haya dejado su átomo, tiene un estado de energía mayor que cualquier electrón en la estructura atómica. Banda de conducción Banda prohibida Eg > 5 eV Banda de valencia Banda de conducción Banda prohibida Eg = 1.1, 0.67, 1.41 eV Banda de valencia Banda de conducción Banda de valencia Aislante Semiconductor Conductor
  • 4.
    Material Intrinseco SiSi Si Si Si Si Si Si Si Materiales extrinsecos Si Si Si Si 5 Si Antimonio Si Si Si Si Si Si Arsénico Fósoforo Si Si Si Si 4 Si Boro Galio Indio TIPO n TIPO p
  • 5.
    P o rt a d o r e s m a y o rit a rio s P o r t a d o r e s m in o r it a r io s Io n e s d o n a d o re s TIPO p TIPO n P o r t a d o r e s m a y o r it a r io s P o r t a d o r e s m in o r it a r io s Io n e s a c e p t o r e s 2.1 UNION p-n Tip o p Tip o n R e g ió n d e a g o t a m ie n t o
  • 6.
    p n pn p n Sin polarización Polarización inversa Polarización directa
  • 7.
    V D ID V T Is
  • 8.
    DIODO Es unelementos de dos terminales formado por una unión p-n + - Ánodo Cátodo
  • 9.
    Ejemplos ID=IS(ekVD/Tk-1) ISCorriente de saturación inversa K 11600/h (h=1 para Ge, y h=2 para Si) Tk TC + 273 Región Zener: Bajo polarización negativa existe un punto en el cual bajo un voltaje negativo lo suficientemente alto, da como resultado un agudo cambio en las características del diodo. A este voltaje se le conoce como “voltaje pico inverso” (PRV ó PIV )
  • 10.
    2.2 Características delDiodo Resistencia en cd ó estática: RD=VD/ID Resistencia en ac ó dinámica: rD=DVD / DID=(dID /dVD)-1=26mA /ID Resistencia en ac promedio: rav= DVD / DID|punto a punto Capacitancia de transición y difusión: Tiempo de recuperación inverso 1 5 1 0 5 C ( p f ) - 2 5 - 1 5 - 5 0 0 . 2 5 0 . 5 V C T C D T s Tt t Ejemplo Ejemplo
  • 11.
    Modelado de diodos Modelo Ideal: Modelo Simplificado: Modelo de segmentos líneales: V D ID V D ID V T V D ID V T rav VT VT rav Ejemplos
  • 12.
    1N4001 2 1 1k E E = RID+VD 1.- ID=IS(ekVD/Tk-1) 2.- VD=0 e ID=0, trazar en la curva del diodo, intersección de recta con curva es el punto Q. 3.-Sustituir el diodo por cualquier modelo de equivalente. Ejemplos
  • 13.
    2.3 Diodo Zener Este diodo a diferencia de un diodo semiconductor de propósito general, trabaja en la región de polarización negativa. Es decir que la dirección de la conducción es opuesta a la de la flecha sobre el símbolo. Claro el voltaje Zener es muchas veces menor que VIP de un diodo semiconductor, este control se logra con la variación de los niveles de dopado. Los voltajes zener van desde 1.8 V. hasta 200V, con rangos de potencia de ¼ W hasta 50W.
  • 14.
    ANALISIS: 1.Determinar elestado del diodo Zener mediante su eliminación del circuitos de la red y el cálculo del voltaje de circuito abierto resultante 2.Sustituir el circuitos equivalente adecuado y resolverlo para las incógnitas deseadas. R 2 R 1 B T 1 D 1 2 1
  • 15.
    2.4 Análisis decircuitos con diodos Con fuentes de cd. -Determine el estado del diodo -Sustituya el equivalente adecuado -Determine los parámetros restantes de la red. E R3 E R3 Determine VD,, VR, ID. Ambos casos E=8V, 0.5 R3=2.2kW, 1.2kW 12V Si Ge 5.6k VR, IR 12V Si 5.6k Si VD1 , VD2, ID, VR. 10V 2.2K 5V Si 4.7K 2 1 10V 2 1 Si 330 Si + V0 - VD, ID, V0. + V0 - ID1, ID2, IR, V0. Ge 2 1 2 1 2.2K Si 12V VR. Si 3.3K Si 5.6K 20V IR1, IR2,
  • 16.
    2.5 Aplicaciones Rectificadores:Su principal uso es en sistemas electrónicos encargados de realizar una conversión de potencia de ac, en potencia de dc. DE MEDIA ONDA: V1 D2 1 2 1k 2 1 120 1k 0 2 0 V 0 V SEL > > 0 s 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 1 0 ms T i m e V( D1 : 2 ) 2 0 V 0 V - 2 0 V V1 ( V2 ) - 2 0 V 2 0 V 0 V SEL > > 0 s 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 1 0 ms T i m e V( R1 : 1 ) 2 0 V 0 V - 2 0 V V1 ( V2 ) - 2 0 V
  • 17.
    DE ONDA COMPLETA: 0 s 0 . 5 ms 1 . 0 ms 1 . 5 ms 2 . 0 ms 2 . 5 ms 3 . 0 ms 2 0 V 1 0 V 0 V - 1 0 V CON TRANSFORMADORES: 1 T1 5 6 4 8 Si R Si 1k 1 2 2 1 2 1 1 2 T i m e V( V2 : + ) - 2 0 V
  • 18.
    Recortadores: Tienen lacapacidad de recortar una porción de la señal de entrada sin distorisionar la parte restante de la forma de onda alterna. SERIE: 2 0 V 0 V SEL > > 0 s 0 . 5 ms 1 . 0 ms 1 . 5 ms 2 . 0 ms 2 . 5 ms 3 . 0 ms T i m e V( R1 : 2 ) 2 0 V 0 V - 2 0 V V( V1 0 : + ) - 2 0 V 1k D2 5V 0 s 0 . 5 ms 1 . 0 ms 1 . 5 ms 2 . 0 ms 2 . 5 ms 3 . 0 ms T i m e V( D1 : 2 ) V( V1 : + ) 2 0 V 1 0 V 0 V - 1 0 V - 2 0 V 4V 1k
  • 19.
    Sujetadores o cambiadoresde nivel: C1 C1 V1 5V
  • 20.
    Detectores de señal: 2 + 2 Vin 1 C1 1 - + Vout -
  • 21.
    Reguladores de voltaje: El objetivo de este circuito es mantener un voltaje de salida constante sobre un rango de resistencia de carga. El resistor en serie con la fuente se selecciona para que una caida de voltaje apropiada aparezca cuando la resistencia de carga está en su valor mínimo. El diodo debe ser capaz de disipar una gran gantidad de potencia cuando la resistencia de carga está en su valor máximo. 0 Vi 1k + Vz - Pzm 1k 1.- Determinar el estado del diodo zener mediante la eliminación de la red y calculando el voltaje através del circuito abierto resultante. V = VL=RLVi/R + RL VL=Vz Iz= IR + IL Pz= Vz IL 2.- Sustituir el circuito equivalente adecuado y resolverlo para las incongnitas deseadas. Vz Vz Vz
  • 22.
    Reguladores de voltaje: Vi R + Vz - Pzm RL R=1k VZ=10V Vi=16V. PZM= 30mW RL=1.2k =3k
  • 23.
    Compuertas lógicas: In1 In2 0 Vo. D1 D2 1k In1 In2 0 Vo. D1 D2 1k 5V In1 In2 V0 0 0 0 1 1 0 1 1 In1 In2 V0 0 0 0 1 1 0 1 1

Notas del editor

  • #3 Conocen sólo Resistor, Inductores, Capacitores lineales y pasivos Ahora se darán a conocer otros elementos también muy importantes y que son los diodos y transistores . Estos dispositivos estan construidos de materiales llamados semiconductores Los elementos semiconductores más utilizados son el Silicio y el Germanio Los nivels de pureza que se pueden conseguir son muy altos 1: por 10 000 millones Estos son muy importantes porque con la adición de una cantidas de impurezas por un millon de material, pasa de ser un conductor muy pobre a ser un excelente conductor. Estos elementos tienen 32 y 14 electrones respectivamente pero su última capa o capa de valencia tiene 4 e-, disponibles todos ellos a ser compartidos por otro átomo.
  • #5 A estos materiales no se les encuentra en la naturaleza totalmente puros, y por la condición mencionada anteriormente se deben refinar cuidadosamente para reducir las impurezas a un nivel extremadamente bajo. Después de este proceso toman el nombre de Materiales instrinsecos. Sin embargo estos materiales intrinsecos no tienen las características que se necesitan, por lo tanto nuevamente son inyectadas impuerezas pero ahora atravéz de un proceso perfectamente controlado. A este proceso se le denomina dopado. El resultado de este proceso es un material extrinseco, y dependiendo de las impurezas inyectadas podemos obtener materiales “tipo n” o “tipo p”. TIPO “p” : Son materiales creados atravéz de la introducción de impurezas de elementos pentavalentes (5 e- en la capa de valencia), a los cuales se les llama átomos donadores. TIPO “n” : Son materiales creados atravéz de la introducción de impurezas de elementos trivlentes (3 e- en la capa de valencia), a los cuales se les llama átomos aceptores.
  • #6 Cuando se unen 2 materiales extrinsecos uno tipo p y otro tipo n, ocurren algunas combinaciones que dan origen a una ausencia de portadores en la región cercana a la unión, debido a lo cual a esta región se le llama de agotamiento por la falta de portadores.
  • #7 VD=0En ausencia de un voltaje de polarización aplicado, el flujo neto de la carga en cualquier dirección es cero. VD < 0El número de iones positivos en la región de agotamiento del material tipo n se incrementa debido a el gran número de e- libres atridos por el potencial positivo del voltaje aplicado, por lo que la región de agotamiento crece y la barrera de potencial es demaciado grande para que haya un flujo de portadores mayoritarios. Pero el número de portadores minoritarios que están entrando a la región de agotamiento sigue igual por lo que se tienen vectores de flujo de portadores minoritarios que provoca una pequeña corriente llamada de saturación inversa (Is) VD  0El potencial presiona a los e- en el material n y a los huecos en el material p para que se recombinen con los iones cercanos a la unión y se redusca la región de agotamiento. El flujo de portadores minoritarios no ha cambiado pero la reducción de la región de agotamiento ha incrementado en forma importante el flujo de portadores mayoritarios atravéz de la unión.
  • #8 Si realizamos una gráfica en donde se represente la corriente atraves de la unión con respecto del voltaje aplicado ente sus terminales, obtenemos la siguiente figura. Aunque esta no es exactamente la forma en que se comporta una unión p-n, pues el comportamiento de la corriente en polarización directa tiene un comportamiento exponencial. Después de realizar pruebas se encuentra que el comportamiento corriente-voltaje de esta unión es el siguiente:
  • #9 Como el diodo no es más que la ya estudiada unión p-n, su comportamiento debe ser exactamente igual. Su símbolo es el siguiente..... Y sus terminales llamadas positiva ó ánodo y negativo ó cátodo.
  • #10 Su comportamiento real es igual que el de la unión p.n salvo una diferencia que se discutirá en seguida. Como podemos ver en la expresión matemática de la función graficada, la temperatura puede tener un marcado efecto sobre las características de un diodo. La diferencia con la curva ya vista, como se puede observar es la caida que podemos observar al aplicar un voltaje demasiado negativo, que indica un incremento muy rápido en la corriente con la misma dirección que IS. Al potencial en donde ocurre esto se le llama potencial o voltaje zener (VZ) . Y en la gráfica a esta región se le llama zener o de avalacha y puede acercarce o alejarse del eje vertical con el incremento de niveles de dopado en los materiales tipo p y n. Los diodos pueden ser de Silicio o Germanio y dependiendo del material sus características pueden variar. La principal es el voltaje a partir del cual se concidera que el diodo está en conducción, y que se llama de umbral. VT = 0.7 (Si) = 0.3 (Ge)
  • #11 RD----- Resistencia que presenta el diodo cuando se aplica un voltaje en dc y pasa una corriente ID rd------ resistencia que sólo se define en una región, la cual queda limitada por la señal en ac que se inyectará al diodo. Realizando la deriva de la exprexión matemática que relaciona ID con VD, sacando el inverso, considerando ID>> IS, =1, T=25C, obtenemos el resultado. El cual sólo es valido si el diodo está en la sección de crecimiento de la curva rav---- Se define como la resistencia determinada por una línea recta dibujada entre 2 intersecciones establecidas por los valores máximos y mínimos del voltaje de entrada. CT----- Capacitancia que está presente en la región de polarización inversa CD----- Capacitancia que está presente en la región de polarización directa, también llamada de almacenamiento. trr------tiempo que le lleva al dispositivo pasar de encendido-apagado, importante solo en aplicaciones de conmutación a alta velocidad Es la suma del ts (tiempo de almacenamiento) y tt (intervalo de transición).
  • #12 Son una combinación de elementos que se eligen en forma adecuada para representar lo mejor posible las características terminales reales del diodo, en su conjunto o en una región de operación particular. Para analizar un circuito con diodos podemos utilizar cualquiera de los 3 modelos ovbiamente el más sencillo es simplemente como conductor o no, y siempre se tomará este modelo, salvo que el problema especifíque otra cosa.
  • #13 Una vez que ya sabemos los diferentes y más sencillos modelos para los diodos, ya podemos iniciar nuestro análisis de circuitos, empezaremos por investigar el punto de operación (Q) del diodo en un circuito determinado. Lo que significa encontrar la corriente que fluye en el diodo cuando se está presente un determinado voltaje entre sus terminales. Para lo cual existen 3 métodos diferentes: Por medio de la ecuación Por medio de la recta de carga Y utilizando el modelo de segmentos lineales. Basados en la hoja de specificaciones del diodo y suponemos que está en plena conducción.
  • #16 1.- 0.7, 7.3, 3.32 mA. 2.- 8V, 0, 0. 3.- 0.5V, 0, 0. 4.- 11V, 2mA. 5.- 0V, 12V, 0A, 0V. 6.- 0.7V, 2.07mA, -0.44V. 7.- 14.09mA, 14.09mA, 28.18mA, 0.7V. 8.- 11.7V. 9.- 0.21mA, 3.32mA.
  • #20 Para el análisis de redes cambiadoras de nivel se sugiere seguir estos pasos: 1.- Iniciar el análisis mediante la considetación de la parte de la señals de entrada que dará polarización directa al diodo. 2.- Durante el periodo donde el diodo está en estado de conducción se asumirá que el capacitor se cargará de manera instantánea al nivel de voltaje que determine la red 3.- Se supondrá que el tiempo durante el cual el diodo está apagado se mantendrá en el nivel de voltaje establecido 4.- A través de todo el análisis debe mantenerse en continuo cuidado la posición y la polaridad de referencia para el voltaje de salida, asegurandose con esto que se está obteniendo un resultado correcto 5.- Tener en mente que la excursión total de voltaje de salida debe ser igual a la excursión de voltaje de la señal de entrada.
  • #21 Una de las primeras aplicaciones de los diodos semiconductores fue como detector en un receptor para ondas de radio de amplitud modulada (AM). Este circuito es muy similar a un rectificador de media onda. La constante de tiempo RC debe ser aproximadamente igual que el periodo de la portadora. Para obtener el RX, este circuito se acopla a un amplificador a través de un capacitor para eliminar los niveles de DC. Entonces la salida del aplificador es acoplado con una bocina para escuchar la onda de AM.